
Lower Bounds for Quantum Search and DerandomizationHarry Buhrman� Ronald de WolfyNovember 18, 1998AbstractWe prove lower bounds on the error probability of a quantum algorithm for searching throughan unordered list of N items, as a function of the number T of queries it makes. In particular,if T 2 O(pN) then the error is lower bounded by a constant. If we want error � 1=2N thenwe need T 2 
(N) queries. We apply this to show that a quantum computer cannot do muchbetter than a classical computer when amplifying the success probability of an RP-machine. Aclassical computer can achieve error � 1=2k using k applications of the RP-machine, a quantumcomputer still needs at least ck applications for this (when treating the machine as a black-box), where c > 0 is a constant independent of k. Furthermore, we prove a lower bound of
(plogN= log logN) queries for quantum bounded-error search of an ordered list of N items.1 IntroductionSuppose we have an unsorted list of N items and we want to �nd an item with some speci�cproperty. For instance we want to �nd an item with a speci�c value at one of its �elds. In theworst case, a classical deterministic or randomized computer will have to look at �(N) items tohave a high probability of �nding such an item if there is one. On the other hand, Grover's quantumsearch algorithm can perform look-ups or queries in superposition, and �nds the desired item withhigh probability using only O(pN) queries. The following is known about the error probability "in quantum search:� " can be made an arbitrarily small constant using O(pN) queries [Gro96] but not usingo(pN) queries [BBBV97, BBHT98, Zal97, BBC+98, Gro98a].� " can be made � 1=2N� using O(N0:5+�) queries [BCW98, Theorem 1.16].� If we want no error at all (" = 0), then we need N queries [BBC+98, Corollary 6.2].Many applications of quantum computing will need to apply quantum search several times as asubroutine. We should avoid that the errors of each application add up to an overall error that istoo big. Accordingly, we should make the error probability of each application as small as possible,if necessary by spending slightly more than O(pN) queries.We give a detailed analysis of the trade-o� between the error probability of a quantum searchalgorithm and the number of queries it uses. We obtain the following lower bound on " in terms ofthe number T of queries that the algorithm uses:" 2 
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where b is some �xed constant and we assume T < N . Our proof �rst translates a quantum searchalgorithm with T queries to a multivariate polynomial of degree d � 2T that has certain properties,and then uses techniques from [Pat92] and [CR92] to prove a lower bound on " in terms of d. Thisimplies a lower bound in terms of T .1 In particular, this bound implies that " cannot be made o(1)using only O(pN) queries. Also, " can only be made � 1=2N using 
(N) queries.In Section 5 we apply this bound to the derandomization of classical RP-machines (RP is theclass of languages that can be recognized in polynomial time with one-sided error at most 1=2). Aclassical computer can achieve error � 1=2k by running the RP-machine k times and answering `yes'i� at least one of those k runs answered `yes'. Since this is basically a search among k items, wewould expect a quantum computer to be able to achieve error � 1=2k using roughlypk applicationsof the RP-machine. Somewhat surprisingly, we show that a quantum computer cannot do muchbetter than the classical computer: it would also need at least ck applications of the machine toobtain error � 1=2k (when treating the machine as a black-box). Here c > 0 does not depend on k.We interpret this as follows: general results on amplitude ampli�cation [BHT98, Gro98b, Mos98]show that a quantum computer can achieve a square-root speed-up when amplifying a very smallsuccess probability to a constant one, but our result shows that it can achieve at most a linearspeed-up when amplifying a constant success probability to a probability very close to 1.Finally, in Section 6 we look at the problem of searching an ordered list of N items (orderedaccording to some key �eld of the items). Since many databases in practice are ordered rather thanunordered, we feel this problem merits as much attention as the unordered search has received sofar in the quantum computing literature. Classically, we can search such an ordered list with onlylogN queries using binary search. It is unknown whether a quantum computer can improve onthis. However, we show that it cannot improve much more than a square-root: we prove a lowerbound of 
(plogN= log logN) queries for bounded-error quantum search in this setting, using anovel kind of quantum reduction from the PARITY-problem.To summarize:� We prove a general lower bound on the error in quantum search of an unordered list.� We apply this to show that a quantum computer can achieve at most a linear speed-up whenamplifying an already-big success probability.� We prove a lower bound of roughly plogN for quantum search of an ordered list of N items.2 PreliminariesIn this section we de�ne the setting of quantum gate networks (which are equivalent to quantumTuring machines [Yao93]) and queries.A qubit is a superposition �0j0i+ �1j1i of both values of a classical bit. Similarly, a register ofm qubits is a superposition j�i of all 2m classical bitstrings of m bits, writtenj�i = Xk2f0;1gm �kjki:Here �k is a complex number, called the amplitude of state jki. If we observe j�i we will see oneand only one jki. The probability of seeing one speci�c jki is given by j�kj2. Hence we must havePk2f0;1gm j�kj2 = 1. After observing j�i and seeing jki, the superposition j�i has collapsed to jki.1Nayak and Wu [NW98] also use polynomial-techniques from [BBC+98] and [Pat92], in order to prove lowerbounds for quantum computing the median and mean of a function.2



If we do not observe a state, quantum mechanics tells us that it will evolve unitarily. Thismeans that the vector of amplitudes is transformed according to a linear operator that preservesnorm (so the sum of the amplitudes squared remains 1). A unitary operator U always has aninverse U�1, which equals its conjugate transpose U�. A quantum gate network working on mqubits is like a classical circuit working on m classical bits, except that instead of AND-, OR-, andNOT-gates we have quantum gates which operate unitarily on one or more qubits. A quantum gatenetwork transforms an initial state into a �nal state much in the way a classical circuit transformsits input into one or more output bits. It is known that operations on one or two qubits at atime are su�cient to build any unitary transformation [BBC+95]. The most common measure ofcomplexity of a quantum gate network is the number of elementary quantum gates it contains, butin this paper we will disregard this and only count the number of queries.Making queries to a list X = (x0; : : : ; xN�1) of N bits is incorporated in the model as follows.Classically, making a query to X means inputting some j 2 f0; : : : ; N � 1g into a black-box,and receiving the value xj as output. A query gate O (for \oracle") performs the correspondingmapping, which is our only way to access the bits xj:jj; 0; 0i ! jj; xj ; 0i;where 0 is a string of zeroes. Because O must be reversible, it also mapsjj; 1; 0i ! jj; xj ; 0i:We will look at quantum networks that contain both elementary gates and query gates, butonly count the latter. The advantage of a quantum computer over a classical computer is itsability to make queries in superposition: applying O once to the state 1pN Pj jj; 0; 0i results in1pN Pj jj; xj ; 0i, which in some sense \contains" all the bits xj.In terms of linear algebra, a quantum gate network A with T queries can be viewed as follows:�rst A applies some unitary operation U0 to the initial state, then it applies O, then it appliesanother U1, another O, and so on up till UT . Thus A corresponds to a big unitary transformationA = UTOUT�1O : : : OU1OU0:The behavior of O depends on X, but the Ui are �xed unitary transformations independent of X.We �x the initial state to j0i, independent of X. The �nal state is then a superposition Aj0i whichdepends on X only via the T query gates.One speci�c bit of the �nal state (the rightmost one, say) is considered the output bit. Theoutput of the network is de�ned as the value we obtain if we observe this bit. Note that the outputis a random variable. The acceptance probability of a quantum network on a speci�c black-box X isde�ned to be the probability that the output is 1. The key lemma of [BBC+98] gives the followingrelation between a T -query network and a polynomial that expresses its acceptance probability asa function of X (such a relation is also implicit in some of the proofs of [FR98, FFKL93]):Lemma 1 The acceptance probability of a quantum network that makes T queries to a black-boxX, can be written as a real-valued multilinear N -variate polynomial P (X) of degree at most 2T .Note that if we want to compute a Boolean function, then the acceptance probability P (X)should be close to 1 if f(X) = 1, and P (X) should be close to 0 if f(X) = 0. Since the degreeof P is � 2T , a lower bound on the degree of a polynomial with such properties implies a lower3



bound on T . See [BBC+98] for some of the lower bounds on quantum query complexity that canbe obtained in this way.An N -variate polynomial P of degree d can be reduced to a single-variate one in the followingway (due to [MP68]). Let P sym be the polynomial that averages P over all permutations of itsinput: P sym(X) = P�2SN P (�(X))N ! :P sym is an N -variate polynomial of degree at most d. It can be shown that there is a single-variatepolynomial Q of degree at most d, such that P sym(X) = Q(jXj) for all X 2 f0; 1gN . Here jXjdenotes the Hamming weight (number of 1s) of X.3 Lower Bound on the Error in Quantum SearchIn this section we establish a general lower bound on the error probability in quantum search.Consider an unordered list of N items. We will abstract from the speci�c contents of the items,treating the list like a kind of black-box. A query at place j of the list just returns one bit xj ,indicating whether the jth item on the list has the property we are looking for. A query gateperforms the following mapping, which is our only access to the bits xj:jj; b; 0i ! jj; b � xj; 0i;where b is a bit and 0 is a string of zeroes. The aim is to �nd a j such that xj = 1 (if there is one),using as few queries as possible.Rather than proving a lower bound on search directly, we will prove a lower bound on computingthe OR-function (i.e. determining whetherX contains at least one 1). This clearly reduces to search.The main idea of our proof is the following. By the lemma of the previous section, the acceptanceprobability of a quantum computer with T queries that computes the OR with error probability� " can be written as a multivariate polynomial of degree � 2T of the N bits in the list. Thispolynomial can be reduced to a single-variate polynomial s of degree d � 2T with the followingproperties:s(0) = 0 21� " � s(x) � 1 for all integers x 2 [1; N ]We will prove a lower bound on " in terms of d, which implies a lower bound in terms of T . Becausewe can achieve " = 0 i� T = N [BBC+98, Proposition 6.1], we assume T < N and hence " > 0.De�ne p(x) = 1� s(N � x). Then p has degree d and0 � p(x) � " for all integers x 2 [0; N � 1]p(N) = 1Thus p is \small" at integer points in [0; N � 1] and \big" at N . Coppersmith and Rivlin [CR92,p. 980] prove the following theorem, which allows us to show that p is also \small" at non-integerpoints in [0; N � 1].2Since we can always test whether we actually found a solution at the expense of one more query, we can assumethe algorithm always gives the right answer `no' if the list contains only 0s. Hence s(0) = 0. However, our resultsremain una�ected if we allow a small error here also (i.e. 0 � s(0) � ").4



Theorem 1 (Coppersmith & Rivlin) There exist positive constants a and b with the followingproperty. For every polynomial p of degree d such thatjp(x)j � 1 for all integers x 2 [0; n]and any � > 0 such that n � �d2, we havejp(x)j < aeb=� for all real x 2 [0; n]:Let � = (N � 1)=d2. Applying Coppersmith and Rivlin's theorem to p=" (which is bounded by1 at integer points) we obtain:jp(x)j < "aeb=� for all real x 2 [0; N � 1]:Now we rescale p to q(x) = p((x+1)(N�1)=2) (i.e. the domain [0; N�1] is transformed to [�1; 1]),which has the following properties:jq(x)j < "aeb=� for all real x 2 [�1; 1]For � = 2=(N � 1) we have q(1 + �) = p(N) = 1Thus q is \small" on all x 2 [�1; 1] and \big" just outside this interval (q(1 + �) = 1).Let Td denote the degree-d Chebyshev polynomial [Riv90]:Td(x) = 12 ��x+px2 � 1�d + �x�px2 � 1�d� :The following is known:� If q is a polynomial of degree d such that jq(x)j � c for all x 2 [�1; 1] then jq(x)j � cjTd(x)jfor all jxj � 1 [Pat92, Fact 2][Riv90, p.108]� Td(1 + �) � e2dp2�+�2 for all � � 0 [Pat92, p.471, before Fact 2]3Linking all this we obtain1 = q(1 + �) � "aeb=� jTd(1 + �)j � "aeb=�+2dp2�+�2 :This shows that if q is \big" just outside the interval [�1; 1], then it cannot have been very smallinside this interval, so " cannot have been very small. Substituting � = (N�1)=d2 and � = 2=(N�1)we obtain the following lower bound on ":" � 1ae�bd2=(N�1)�4d=pN=(N�1)2 :Since d � 2T , where T is the number of queries of the quantum search algorithm, we have (simpli-fying a bit):Theorem 2 If T < N then " 2 
 �e�4bT 2=N�8T=pN�.We note some special cases of this general theorem:3For x = 1 + �: Td(x) � (x + px2 � 1)d = (1 + � +p2�+ �2)d � (1 + 2p2�+ �2)d � e2dp2�+�2 (Paturi,personal communication). 5



Corollary 1 No quantum network for bounded-error search of an unordered list that uses O(pN)queries can have error probability o(1).For instance, an error � 1=N cannot be achieved using only O(pN) queries.4Corollary 2 Every quantum network for bounded-error search of an unordered list that uses �N0:5+� queries (� � 0) must have error probability 
 �1=2cN2�� (where c > 0 is some �xed con-stant).In particular, this shows that we cannot obtain error probability � 1=2N unless we have � =0:5 and thus use 
(N) queries. [BCW98, Theorem 1.16] proves the upper bound that the errorprobability can be made as small as 1=2N� using O(N0:5+�) queries, so there is still a gap betweenupper and lower bound.Finally, a lower bound on T in terms of " and N :Corollary 3 If T (N)=pN !1 but T < N , then T 2 
�qN log(1=")�.4 The In
uence of the Number of SolutionsSuppose we have a quantum search algorithm that uses T queries and works well (i.e. has error� ") whenever the number of 1s in the list of N items is either 0 or at least t. (Here t is some�xed number < N .) Such an algorithm induces a polynomial of degree d � 2T with the followingproperties:s(0) = 01� " � s(x) � 1 for all integers x 2 [t;N ]De�ne p(x) = 1� s(N � x), which has degree d and0 � p(x) � " for all integers x 2 [0; N � t]p(N) = 1Now we de�ne q(x) = p((x+1)(N�t)=2), � = (N�t)=d2 and � = 2t=(N�t), and derive completelyanalogous to the previous section:1 = q(1 + �) � "aeb=� jTd(1 + �)j � "aeb=�+2dp2�+�2= "aebd2=(N�t)+2dp4t=(N�t)+4t2=(N�t)2= "aebd2=(N�t)+4dptN=(N�t)2 :Hence for quantum search in this situation we have the bound:" 2 
�e�bd2=(N�t)�4dptN=(N�t)2� 2 
�e�4bT 2=(N�t)�8TptN=(N�t)2� :[BBHT98] proves that an expected number of O(pN=t) queries is su�cient to search with highprobability. If we put T = cpN=t then the lower bound on the error probability becomes roughly4Which is too bad, because such a small error would reduce the quantum complexity of �2 (the second level ofthe polynomial hierarchy) from O(p2nn) to O(p2n) [BCW98].6




(e�c0c) (for some constant c0 > 0), which can indeed be made arbitrarily small by increasing c.On the other hand, if T 2 o(pN=t) then the lower bound on the error goes to the constant 1=a forN ! 1 and t = o(N). Now if we were able to achieve some error < 1=2 using o(pN=t) queries,we could also make the error < 1=a by repeating a constant number of times, which would stilltake only o(pN=t) queries. This shows that we cannot achieve error < 1=2 using o(pN=t) queries.Thus the O(pN=t) upper bound is tight up to a constant factor (as already shown in a di�erentway in [BBHT98]).5 Application to Derandomization of RPLet A be some RP-algorithm for a language L with running time � p(n). A always gives the rightanswer `no' for every input x 62 L, and gives the right answer `yes' with probability at least 1=2 forevery x 2 L. We want to lower the error probability using as few calls to A as possible. For a �xedinput x of length n we can consider A as a black-box of N � 2p(n) items. Each item correspondsto the value A outputs when given a speci�c random string (A can use at most p(n) random bitsand hence at most 2p(n) distinct random strings). By de�nition of RP, this black-box satis�es thepromise that either it contains 0 1s (if x 62 L) or at least N=2 1s (if x 2 L).A classical computer can improve the error probability to at most 1=2k by making k black-boxqueries (i.e. k applications of the algorithm on k di�erent random strings) and answering `yes' i�at least one those k queries answered `yes'. How much better can a quantum computer do, if weonly allow it to call A as a black-box? Note that the classical method basically searches througha list of k items, looking for a 1. Accordingly, the following quantum algorithm suggests itself:select k random strings and search whether one of these gives a `yes' in O(pk) applications ofthe algorithm. Thus we would expect a quantum computer to be able to achieve the same errorprobability � 1=2k using roughly pk applications of the algorithm instead of k.However, note that the situation here corresponds exactly to the previous section with t = N=2.Thus if the quantum computer makes T queries and has error probability " on the worst-caseblack-box, then " 2 
 �e�8bT 2=N�8Tp2� :If we want " � 1=2k (for some �xed k and all N), it follows that T � ck, for some c > 0 that doesnot depend on k.5 Thus the quantum algorithm cannot achieve the square-root speed-up that weexpected; it can achieve at most a linear speed-up.Why does the above-mentioned pk-method not work? The reason is that the quantum searchingalgorithm itself has some error probability, in addition to the probability � 1=2k that the chosensample of k items does not contain a 1 when the larger list of N items does contain a 1. Theerror introduced by quantum search can only be made su�ciently small at the cost of increasing kand/or the number of queries spent.In sum: on a classical computer we can amplify an RP-algorithm to error probability " � 1=2kusing k applications of the algorithm, on a quantum computer we cannot do much better: we stillneed at least ck applications to achieve error " � 1=2k, provided we use the RP-machine only as ablack-box.5For su�ciently large k, c will be roughly 1=8p2 log e � 0:06.
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6 Lower Bound on Search in an Ordered ListGrover's algorithm can �nd a speci�c item in an unordered list of N items with high probability,using only O(pN) queries (a.k.a. database look-ups), whereas a classical algorithm needs �(N)queries for this. There exist several lower-bound proofs that show that the O(pN) is optimal[BBBV97, BBHT98, Zal97, BBC+98, Gro98a].What about search in a list of N items which is ordered according to some key-value of eachitem? A classical deterministic algorithm can search such a list using logN queries by means ofbinary search (each query can e�ectively halve the relevant part of the list: looking at the key ofthe middle item of the list tells you whether the item you are searching for is in the �rst or thesecond half of the list). How much better can we do on a quantum computer? Can we again get asquare-root speed-up? Here we show that the speed-up cannot be much better than a square-root:we prove a lower bound of 
(plogN= log logN) queries for bounded-error quantum search of anordered list. In contrast, we have no upper bound better than the classical logN .We will formalize a query on an ordered list as follows, abstracting from the speci�c contents ofthe key �eld. The list is viewed as a list of N bits, x0; : : : ; xN�1, and there is an unknown numberi such that xj = 1 i� j � i. Here xj being 1 can be interpreted as saying that the jth item on thelist has a key-value smaller or equal to the value we are looking for. The goal is to �nd the numberi, which is the point in the list where the looked-for item resides, using as few queries as possible.In quantum network terms, a query corresponds to a gate C that mapsjj; b; 0i ! jj; b � xj; 0i:The following theorem proves a lower bound of roughly plogN queries for quantum searching anordered list with bounded error probability. To improve readability, we have deferred some of themore technical details to the appendix. Basically these show that we can approximately simulatethe gate C using roughly plogN queries to a black-box of logN bits that represents the number i.Theorem 3 A quantum network for bounded-error search of an ordered list of N items must useat least 
(plogN= log logN) queries.Proof Suppose we have a network S for bounded-error ordered search that uses T queries to �ndthe number i hidden in an ordered black-box X with high probability. Since logN queries aresu�cient for this (classical binary search), we can assume T � logN . We will show how we canget from S to a network eS that determines the whole contents of an arbitrary black-box Y of logNbits with high probability, using only T �O(plogN log logN) queries to Y . This would allow us tocompute the PARITY-function of Y (i.e. whether or not Y contains odd many 1s). Since we havea (logN)=2 lower bound for the latter [BBC+98, Proposition 6.4], we haveT � O(plogN log logN) � logN2 ;from which the theorem follows.So let Y be an arbitrary black-box of logN bits. This represents a number i 2 f0; : : : ; N � 1g.Let X = (x0; : : : ; xN�1) be the ordered black-box corresponding to i, so xj = 1 i� j � i. Thenetwork S, when allowed to make queries to X, outputs the number i with high probability. Aquery-gate C for X maps jj; b; 0i ! jj; b � xj; 0i:8



Since xj = 1 i� j � i, Lemmas 2 and 3 of the appendix imply that there is a quantum network eCthat uses O(plogN log logN) queries to Y and mapsjj; b; 0i ! jj; b� xj; 0i+ jjijWjbi;where k jWjbi k� �= logN for all j; b, for some small �xed � of our choice.Let eS be obtained from S by replacing all T C-gates by eC-networks. Note that eS containsT �O(plogN log logN) queries to Y . Consider the way eS acts on initial state j0i, compared to S.Each replacement of C by eC introduces an error, but each of these errors is at most p2�= logN inEuclidean norm by Lemma 4. By unitarity these T errors add linearly, so the �nal states will beclose together: k Sj0i � eSj0i k� Tp2�= logN � p2�:Since observing the �nal state Sj0i yields the number i with high probability, observing eSj0i willalso yield i with high probability. Thus the network eS allows us to learn i, and hence the wholeblack-box Y . 2AcknowledgementsWe would like to thank David Deutsch, Wim van Dam and Mike Mosca for discussions whichemphasized the importance of making the error in quantum search as small as possible.References[BBBV97] C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani. Strengths and weaknessesof quantum computing. SIAM Journal on Computing, 26(5):1510{1523, 1997. quant-ph/9701001.[BBC+95] A. Barenco, C.H. Bennett, R. Cleve, D.P. DiVincenzo, N. Margolus, P. Shor, T. Sleator,J. Smolin, and H. Weinfurter. Elementary gates for quantum computation. PhysicalReview A, 52:3457{3467, 1995.[BBC+98] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum lower bounds bypolynomials. In Proceedings of 39th FOCS, pages 352{361, 1998. also quant-ph/9802049.[BBHT98] M. Boyer, G. Brassard, P. H�yer, and A. Tapp. Tight bounds on quantum searching.Fortschritte der Physik, 46(4{5):493{505, 1998. Earlier version in Physcomp'96; alsoquant-ph/9605034.[BCW98] H. Buhrman, R. Cleve, and A. Wigderson. Quantum vs. classical communication andcomputation (preliminary version). In Proceedings of 30th STOC, pages 63{68, 1998.quant-ph/9802040.[BHT98] G. Brassard, P. H�yer, and A. Tapp. Quantum counting. In Proceedings of 25th ICALP,volume 1443 of Lecture Notes in Computer Science, pages 820{831. Springer, 1998.quant-ph/9805082. 9
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to �nd the leftmost bit where two lists di�er, which tells us which of the two numbers representedby the two lists is bigger.Lemma 2 There exists a quantum algorithm A that with bounded error probability outputs on inputj (0 � j � N � 1) whether j is smaller or equal to a number i represented by a black-box of logNbits, using O(plogN) queries to the black-box.By standard techniques, we can make the error probability O(1= logN) by repeating the algo-rithm O(log logN) times.The second lemma shows how to obtain an approximately \clean" computation that uses nomeasurements (the proof is as in [CDNT97, Section 3] and [BCW98, Theorem 1.14]).Lemma 3 Suppose there exists a quantum algorithm A that uses T queries and outputs a bit xjwith error probability � " on initial state jj; 0i, for every j, and does not change the j-register.Then there exists a quantum algorithm A0 that uses 2T queries and no measurements, and mapsjj; b; 0i ! jj; b� xj; 0i+ jjijWjbi;where k jWjbi k� p2", for every j and b 2 f0; 1g.Proof The idea is the familiar \compute, copy answer, uncompute"-sequence. By standardtechniques, we can assume A itself uses no measurements and is followed by a single measurement.Then there exist amplitudes �0 and �1 and unit-length vectors jV0i and jV1i such thatAjj; 0; 0i = �0jj; xjijV0i+ �1jj; xjijV1i;and j�1j2 � ". For ease of notation, we assume this state is preceded by the bit b. Applying thecontrolled-not operation that maps jb; j; xi ! jb� x; j; xi, we get�0jb� xj; j; xjijV0i+ �1jb� xj; j; xjijV1i =jb� xji (�0jj; xjijV0i+ �1jj; xjijV1i) + �1jb� xj ; j; xjijV1i � �1jb� xj ; j; xjijV1i:Applying I 
A�1 givesjb� xjijj; 0; 0i+ (I 
A�1) (�1jb� xj; j; xjijV1i � �1jb� xj; j; xjijV1i) :Applying an operation B which swaps the �rst bit and j, we getjj; b � xj ; 0; 0i+B(I 
A�1) (�1jb� xj; j; xjijV1i � �1jb� xj ; j; xjijV1i) :Note that B(I 
 A�1) (�1jb� xj; j; xjijV1i � �1jb� xj; j; xjijV1i) = jjijWjbi for some jWjbi, be-cause A and hence also A�1 do not change j. Nowk jWjbi k = k jjijWjbi k= k B(I 
A�1) (�1jb� xj; j; xjijV1i � �1jb� xj; j; xjijV1i) k= k �1jb� xj ; j; xjijV1i � �1jb� xj ; j; xjijV1i k= q2j�1j2 � p2":Thus the quantum algorithm A0 which �rst applies A, then XORs the answer-bit into b, and thenapplies A�1, satis�es the lemma. 2The next lemma uses an idea from [CDNT97]. It shows that if we can simulate a gate C bymeans of a network eC that works well on basis states, then eC also works well on superpositions ofbasis states. 11



Lemma 4 Let C and eC be unitary transformations such thatC : jj; b; 0i ! jj; b � xj; 0ieC : jj; b; 0i ! jj; b � xj; 0i+ jjijWjbiIf k jWjbi k� " for every j 2 f0; : : : ; N � 1g and b 2 f0; 1g, and j�i =Pj;b �jbjj; b; 0i has norm 1,then k Cj�i � ~Cj�i k� p2".Proof k Cj�i � ~Cj�i k = kXj;b �jbjjijWjbi k� kXj �j0jjijWj0i k + kXj �j1jjijWj1i k(1)= sXj j�j0j2 k jjijWj0i k2 +sXj j�j1j2 k jjijWj1i k2� "sXj j�j0j2 + "sXj j�j1j2 (2)� p2":Here (1) holds because the states jjijWjbi in Pj �jbjjijWjbi are all orthogonal, and (2) holdsbecause pa+p1� a � p2 for all a 2 [0; 1]. 2
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