
Efficient Quantum Algorithms

for (Gapped) Group Testing and Junta Testing

Andris Ambainis∗ Aleksandrs Belovs† Oded Regev‡ Ronald de Wolf§

Abstract

In the k-junta testing problem, a tester has to efficiently

decide whether a given function f : {0, 1}n → {0, 1} is a k-

junta (i.e., depends on at most k of its input bits) or is ε-far

from any k-junta. Our main result is a quantum algorithm

for this problem with query complexity Õ(
√

k/ε) and time

complexity Õ(n
√

k/ε). This quadratically improves over

the query complexity of the previous best quantum junta

tester, due to Atıcı and Servedio. Our tester is based

on a new quantum algorithm for a gapped version of the

combinatorial group testing problem, with an up to quartic

improvement over the query complexity of the best classical

algorithm. For our upper bound on the time complexity we

give a near-linear time implementation of a shallow variant

of the quantum Fourier transform over the symmetric group,

similar to the Schur-Weyl transform. We also prove a lower

bound of Ω(k1/3) queries for junta-testing (for constant ε).

∗Faculty of Computing, University of Latvia. Supported by

the European Commission FET-Proactive project QALGO, ERC
Advanced Grant MQC and Latvian State Research programme

NexIT project No.1.
†CWI, the Netherlands. Supported by European Commission

FET-Proactive project Quantum Algorithms (QALGO) 600700.

Part of this work was done while at CSAIL, Massachusetts

Institute of Technology, USA, supported by Scott Aaronson’s
Alan T. Waterman Award from the National Science Foundation,

and at Faculty of Computing, University of Latvia.
‡Courant Institute of Mathematical Sciences, New York Uni-

versity. Supported by the Simons Collaboration on Algorithms
and Geometry and by the National Science Foundation (NSF)
under Grant No. CCF-1320188. Any opinions, findings, and con-
clusions or recommendations expressed in this material are those

of the authors and do not necessarily reflect the views of the NSF.
§CWI and University of Amsterdam, the Netherlands. Par-

tially supported by ERC Consolidator Grant QPROGRESS and
by the European Commission FET-Proactive project Quantum
Algorithms (QALGO) 600700.

1 Introduction.

1.1 Quantum property testing. Many computa-
tional problems are too hard to solve perfectly in any
reasonable amount of time (especially if P 6= NP, as
seems likely). Accordingly, much of theoretical as well
as practical computer science is about trying to effi-
ciently solve those problems in a weaker sense. Exam-
ples are trying to approximate the optimal solution, try-
ing to solve the problem fast on average, trying to solve
it fast on most instances, etc. A structured model for
the latter is property testing. Here our goal is to test
whether a given (usually very large) object f has a cer-
tain property P. Typically the hardest instances of the
problem are the ones that are on the boundary, “just
outside” of the property, where one needs to look at a
large part of f to decide if it is in or out of the prop-
erty. But, in many cases such instances tend to appear
due to noise or other imperfections, and as such should
not really be rejected. The setting of property test-
ing excludes such instances: it assumes that the given
instance f either has the property P, or is at least some-
what “far” from P (i.e., far from all instances that have
property P, according to some suitable distance mea-
sure). This “promise” on the inputs makes many hard
problems much easier, and many property testers have
been found over the last two decades to efficiently test
properties of very large objects, see for instance [32].
Note that a tester even allows us to conclude something
about inputs that are outside of the promise: if a tester
accepts input f with high probability, then f must be
close to at least one element that has the property P.

In this paper we focus on quantum algorithms for
property testing. These are substantially less studied
than classical algorithms, but quantum property testing
has been receiving increasing attention in the last few
years, both for testing properties of classical objects and
for testing properties of quantum objects. See [39] for a
recent survey.

1.2 Group testing. We first develop a new quantum
algorithm for a version of the (combinatorial) group

testing problem.1 Group testing was invented in World
War II to efficiently identify ill soldiers [28]. Suppose n
soldiers have each given samples of their blood, and up
to k of them are ill. One way to identify the ill ones is to
separately test each of the n blood samples. However,
blood tests are expensive, and if k � n then something
much more efficient can be done. By combining parts of
the blood samples of a subset S of all soldiers and testing
the combined sample, we can determine whether at least
one of the soldiers in S has the disease, at the expense
of only one blood test. Using binary search we can then
identify one ill soldier using O(log n) tests, and all k ill
soldiers using O(k log n) tests.2

Here we consider a “gapped” decision version of the
group testing problem, which in its simplest form is the
following:3

Gapped group testing (GGT), informal.
For some set A ⊆ [n], define fA : 2[n] → {0, 1}
by setting fA(S) = 1 iff S intersects A. Given
the ability to query an fA where either |A| ≤ k
or |A| ≥ k + d, decide which is the case.

Note that the function fA is like a blood test, where A is
the set of all ill soldiers and the input S is the set of the
soldiers whose blood we include in the tested sample.
The function outputs 1 exactly when at least one of the
soldiers in S is ill.

Recently, Belovs [9] showed that if |A| ≤ k, then
one can identify A with O(

√
k) quantum queries to fA.

Clearly this algorithm can be used to solve the GGT
problem for d = 1. The randomized query complexity
of this problem for d = 1 is Θ̃(k) (see Section 3.1 for
references and proofs about the randomized case), so we
have a quadratic quantum improvement over classical.

Things get more interesting as d grows. Using a
simple modification of the algorithm in [9], in Section 3
we construct an optimal Θ(1 +

√
k/d)-query quantum

algorithm for the GGT problem. The randomized
complexity of the same problem is Θ̃(k) for d ≤

√
k

and Θ̃(1 + (k/d)2) for d ≥
√
k.

The algorithm is constructed from a feasible solu-
tion to the (dual) semidefinite program for the adver-
sary bound. Reichardt et al. [34, 41, 38] have shown

1To avoid confusion: while we use the established term “group
testing” here, this is not a property testing problem in the sense

described above, because we have no “in the property or far from
the property” promise here.

2O(k logn) tests is essentially optimal for simple information-

theoretic reasons: each test gives at most one bit of informa-

tion, but by identifying the k ill soldiers we learn log
(n
k

)
=

Ω(k log(n/k)) bits of information. There is a large literature that

optimizes the constant factor and other aspects of group testing

algorithms, see for instance [29].
3The actual problem is slightly more general, see Definition 3.2.

that the adversary bound characterizes quantum query
complexity up to a constant factor. This means that, in
principle, any quantum query algorithm can be derived
as a solution to this semidefinite program. However, the
number of new quantum algorithms that have actually
been obtained in this way remains fairly small. More-
over, the majority of these algorithms are developed in
the learning graph methodology [7], while our algorithm
is based on different ideas.

We subsequently use this quantum algorithm as
a subroutine for our junta testing algorithm, but we
feel the GGT problem is quite interesting by itself as
well, and may find applications elsewhere. We now
mention several other reasons why our GGT algorithm
is interesting.

Fourth-power improvement. By considering
our bounds on the complexity of the GGT problem,
we see that there is a quartic (fourth-power) quan-
tum improvement in query complexity for the regime√
k ≤ d ≤ k. Most speed-ups obtained by quantum

algorithms are either exponential (mostly, for compu-
tational problems from algebra or number theory) or
quadratic or less (for algorithms based on Grover’s al-
gorithm or its generalizations). In contrast, our algo-
rithm provides a fourth-power speedup, which is quite
surprising given that it is based on the OR function,
for which the best-possible quantum speedup is only
quadratic. Only a few other examples of such speed-
ups are known [46, 35, 11, 9].

Very recently, several new separations were found
for total Boolean functions: a quartic speed-up of
bounded-error quantum algorithms over deterministic
classical algorithms [3], and a 2.5th-power speed-up of
bounded-error quantum algorithms over bounded-error
classical algorithms [14].

Robustness. Our algorithm still works if the ac-
tion of the input function fA(S) is not defined for some
values of S. For instance, if |A| = k and S intersects A,
the value of fA(S) can be anything: 0, 1, or even unde-
fined. The same is true if |A| = k+d and S∩A = ∅. We
say that such S are irrelevant variables. This property
turns out to be very useful in applications of the GGT
algorithm, in particular when we use it as a subroutine
in our junta tester.

Time-efficient implementation. Our algorithm
is one of the few quantum algorithms derived from the
adversary bound with a time-efficient implementation,
i.e., one that is efficient in total number of gates as well
as in total number of queries (in general, the time com-
plexity of the adversary-derived algorithm can be expo-
nentially large in the number of input bits to the prob-
lem). Other examples are the formula-evaluation algo-
rithm of Reichardt and Špalek [43] and the algorithm

for st-connectivity of Belovs and Reichardt [12].

The time complexity of our algorithm is Õ(n
√
k/d),

roughly n times its query complexity. This is probably
the best one can hope for: the oracle takes an n-qubit
input register, so it takes Ω(n) gates just to touch all
those qubits.

The key to our time-efficient algorithm is an ef-
ficient, Õ(n)-time, implementation of the quantum
Fourier transform (QFT) on the linear space which we
denote by Mn. It is of dimension 2n and has an or-
thonormal basis indexed by the set of all subsets of [n].
The symmetric group Sn acts naturally on this space
by permuting its basis elements. Our implementation,
is close to the efficient quantum Schur-Weyl transform
of Bacon, Chuang and Harrow [5, 6]. To the best of our
knowledge, this is the first “algorithmic” application of
this transformation ([6] lists a number of applications of
this transformation for quantum protocols).

1.3 Junta testing. Our main result is about junta
testing. Let f : {0, 1}n → {0, 1} be a Boolean function,
and J ⊆ [n] be the set of (indices of) variables on which
the function depends. We say that f is a k-junta if
|J | ≤ k. Such functions are often studied, for instance
in learning theory if most of the features are irrelevant
for the concept that needs to be learned (e.g., in biology
if only a few genes determine some biological property).
We say that f is ε-far from any k-junta if the normalized
Hamming distance between f and g is at least ε for every
k-junta g (i.e., f and g differ on at least ε2n inputs). The
k-junta testing problem is:

k-junta testing. Given the ability to query
an f : {0, 1}n → {0, 1} that is either a k-junta
or ε-far from any k-junta, decide which is the
case.

We would like to test this efficiently. The primary mea-
sure of efficiency is the number of “queries,” evaluations
of f , which are usually the most expensive part of an
algorithm. However, we will also consider time com-
plexity later.

Junta testing has been well-studied in the last
decade, see [16] for a recent survey. Classically, the best
known tester is by Blais [15] and uses O(k log k + k/ε)
queries to f , quadratically improving upon an earlier
tester of [30]. The best known classical lower bound is
Ω(k) for constant ε [25].

The best quantum tester, due to Atıcı and Serve-
dio [4], uses O(k/ε) queries. It is based on Fourier sam-
pling. This quantum tester is better than Blais’s classi-
cal tester by a log k-factor (for constant ε), but does not
beat the best known classical lower bound, leaving open
the possibility of an equally efficient classical tester.

Our main result in this paper is a quantum tester
with query complexity Õ(

√
k/ε), which (up to logarith-

mic factors) quadratically improves over the previous
best quantum junta tester and actually beats the known
classical lower bound for the first time. We also give a
time-efficient implementation.

Main theorem (informal). There is a quantum k-

junta tester that uses Õ(
√
k/ε) queries and Õ(n

√
k/ε)

time (i.e., elementary quantum gates and query gates).

Similarly to the GGT problem, this time complexity
is the best that one could reasonably expect given our
query complexity, because each query to f involves an
n-qubit input register.

Our junta tester is described in Section 4. The
idea is the following (suppressing the dependence on ε
for simplicity). If f is far from any k-junta, then it
depends on some K > k variables, and together those
K − k “extra” variables will have at least ε “influence”
(this will be quantified using the Fourier coefficients
of f). We use the GGT algorithm to distinguish
this case from the case when the function depends only
on k variables.4 The larger K is, the simpler it is to
solve the GGT problem, but the harder it is to detect
influential variables, as the ε influence gets spread over
more variables. These two effects cancel each other out,
and it requires Õ(

√
k) many queries to distinguish the

two cases, independently of the value of K.
Let us now briefly mention the lower bounds we ob-

tain. As already noted by Atıcı and Servedio [4] and ex-
plained in Section 6, the classical lower bound approach
for junta testing fails for quantum algorithms, because
the corresponding instances can be easily solved quan-
tumly in O(log k) queries. Instead of this, in Section 6
we describe a different approach using reduction from
the problem of testing image size of a function. This
already gives a lower bound of Ω(k1/3) by the Aaronson-
Shi lower bound for the collision problem [1]. We believe
that the actual complexity of testing support size of a
distribution is around Ω(

√
k), but proving this seems to

require techniques beyond the state of the art in quan-
tum lower bounds.

2 Preliminaries.

We use [n] to denote the set {1, 2, . . . , n}, and 2A to
denote the set of subsets of A. A k-subset is a subset of
size k. All matrices in this paper have real entries. If
A is a matrix, A[[i, j]] denotes the element at row i and
column j. A projector always stands for an orthogonal

4In the setting of classical testers, Garćıa-Soriano [31, p. 111]

also noted “a striking resemblance between group testing and
junta testing.”

projector. We use ΠS to denote the projector onto a
subspace S. We use log and ln to denote logarithms in
base 2 and e, respectively. The notation Fq stands for
a finite field with q elements.

We assume familiarity with basic probability the-
ory. Let B(k, p) denote the binomial distribution:
Pr[B(k, p) = i] =

(
k
i

)
pi(1 − p)k−i. We use Hn(k,m) to

denote the hypergeometric distribution, i.e., the distri-
bution of

∣∣A∩ [k]
∣∣ when A is sampled from all m-subsets

of [n] uniformly at random. By X ∼ B, we denote that
X is sampled from probability distribution B.

2.1 Quantum algorithms. Let us define quantum
query algorithms. For a more complete treatment
see [21]. A quantum query algorithm is defined as a
sequence of unitary transformations alternating with
oracle calls:
(2.1)
U0 → Ox → U1 → Ox → · · · → UT−1 → Ox → UT .

Here the Uis are arbitrary unitary transformations that
are independent of the input. The input oracle Ox is
the same throughout the algorithm, and is the only way
the algorithm accesses the input string x = (xj). The
input oracle decomposes in the following way:

(2.2) Ox =
⊕

j∈[n]
Ox,j ,

where Ox,j is some unitary transformation that only
depends on the symbol xj . In this paper x will be a
Boolean string, and we adopt the following convention:
Ox,j = I if xj = 0, and Ox,j = −I if xj = 1, where I is
the identity operator.

The computation starts in a predefined state |0〉.
After all the operations in (2.1) are performed, some
predefined output register is measured. We say that
the algorithm computes a function F (with bounded
error) if, for any x in the domain, the result of the
measurement is F (x) with probability at least 2/3. The
number T is the query complexity of the algorithm. The
smallest value of T among all algorithms computing f
is the quantum query complexity of F , and is denoted
by Q(F).

We will also be interested in time complexity (also
known as gate complexity) of the algorithm. It is defined
as the total number of elementary quantum gates (from
some fixed universal set of gates) required to implement
all the unitary transformations U0, . . . , UT .

One of our main algorithmic tools is amplitude
amplification. This is encapsulated in the following
result of Brassard et al. [19, Section 2], which generalizes
Grover’s quantum search algorithm [33].

Lemma 2.1. (Amplitude amplification) Let A be
some quantum procedure and S some set of basis states
on the algorithm’s output space. Suppose that the
probability that measuring the state A|0〉 gives a basis
state in S is at least p. Then there exists another
procedure B, which invokes A and A−1 O(1/

√
p) many

times (we sometimes call such an invocation a “round
of amplitude amplification”), such that the probability
that measuring the state B|0〉 gives a basis state in S
is at least 9/10. If, in contrast, the probability of
obtaining a basis state in S when measuring A|0〉 was 0,
this probability will still be 0 when measuring B|0〉.

For time-efficient implementation of our algorithm,
we need the following two results.

Theorem 2.2. (Phase Estimation [36, 26])
Assume a unitary U is given as a black box. There
exists a quantum algorithm that, given an eigenvector
|psi〉 of U with eigenvalue eiφ, outputs a real number
w such that |w − φ| ≤ δ with probability at least
9/10. Moreover, the algorithm uses O(1/δ) controlled
applications of U and U−1 and 1

δ polylog(1/δ) other
elementary operations.

Lemma 2.3. (Effective Spectral Gap Lemma [38])
Let Π1 and Π2 be two orthogonal projectors in the same
vector space (not necessarily pairwise orthogonal), and
R1 = 2Π1− I and R2 = 2Π2− I be the reflections about
their images. For δ ≥ 0, let Pδ be the projector on the
span of all eigenvectors of R2R1 that have eigenvalues
eiθ with |θ| ≤ δ. Then, for any vector w in the kernel
of Π1, we have

‖PδΠ2w‖ ≤
δ

2
‖w‖.

2.2 Adversary bound. Here we describe the dual
adversary bound, the main tool for the construction of
our algorithms.

Let F : D → {0, 1}, with D ⊆ {0, 1}n, be a par-
tial Boolean function. The (dual) adversary bound,
ADV±(F), is defined as the optimal value of the fol-
lowing semi-definite optimization problem:

minimize max
z∈D

∑
j∈[n]Xj [[z, z]]

(2.3a)

s.t.
∑

j:xj 6=yj
Xj [[x, y]] = 1 for all F (x) 6= F (y);

(2.3b)

Xj � 0 for all j ∈ [n],(2.3c)

where Xj are D × D positive semi-definite matrices.
Recall that Q(F) denotes the bounded-error quantum
query complexity of F . Then, we have the following
important result.

Theorem 2.4. ([34, 42, 38]) For every F , Q(F) =
Θ(ADV±(F)).

Because of Theorem 2.4, one may come up with a
solution to the adversary bound instead of explicitly
constructing a quantum algorithm. This is how we
construct the algorithm in Section 3. The following
“unweighted adversary bound” is a useful special case
(and precursor) of the general adversary lower bound:

Theorem 2.5. ([2]) Suppose there is a non-empty re-
lation R ⊆ F−1(1)× F−1(0) that satisfies

(i) for each x ∈ F−1(1) appearing in R, there are at
least m distinct y ∈ F−1(0) such that (x, y) ∈ R;

(ii) for each y ∈ F−1(0) appearing in R, there are at
least m′ distinct x ∈ F−1(1) such that (x, y) ∈ R;

(iii) for each x ∈ F−1(1) and each j ∈ [n], there are
at most ` distinct y ∈ F−1(0) such that (x, y) ∈ R
and xj 6= yj;

(iv) for each y ∈ F−1(0) and each j ∈ [n], there are at
most `′ distinct x ∈ F−1(1) such that (x, y) ∈ R
and xj 6= yj;

Then, the bounded-error quantum query complexity of

F is Ω
(√

mm′

``′

)
.

The adversary bound is also useful for function
composition. Assume F : D → {0, 1}, with D ⊆ {0, 1}n,
and, for any j ∈ [n], let Gj be a partial Boolean function
on mj variables. The composed Boolean function
F ◦ (G1, . . . , Gn) on

∑n
j=1mj variables is defined by

(2.4)
(x11, . . . , x1m1

, . . . , xn1, . . . , xnmn
) 7→

F
(
G1(x11, . . . , x1m1

), . . . , Gn(xn1, . . . , xnmn
)
)
,

where the composed function is defined on the input
(x11, . . . , xnmn

) iff the values of all Gj on the right-hand
side of (2.4) are defined, and the corresponding n-tuple
belongs to D.

Theorem 2.6. ([41]) We have

ADV±
(
F ◦(G1, . . . , Gn)

)
≤ ADV±(F) max

j∈[n]
ADV±(Gj).

In particular, this theorem together with Theo-
rem 2.4 implies

Corollary 2.7. (Tight composition result)
Q
(
F ◦ (G1, . . . , Gn)

)
= O

(
Q(F) max

j∈[n]
Q(Gj)

)
.

That is, one can compose functions without the loga-
rithmic overhead in query complexity that arises in the
standard method of composition (which would reduce
the error probability of the algorithm for the internal
functions to � 1/n by taking the majority-outcome of
O(log n) independent runs of the algorithm).

2.3 Irrelevant Variables. Consider the following
motivating example. Let G1, . . . , Gn be partial Boolean
functions. We define the “robust conjunction” of the
functions Gi,

(2.5) H(x) =
∧̃

i∈[n]
Gi(x) ,

as the partial Boolean functionH given by the following:
if G1(x) = · · · = Gn(x) = 1 (in particular, x is in
the domain of all Gi), then H(x) = 1; if there exists
an i for which Gi(x) = 0 (in particular, x is in the
domain of Gi), then H(x) = 0; and otherwise H(x) is
not defined. Note that in the second case x may lie
outside the domain of Gj for some (or even all) j 6= i.

One interpretation of this expression, which we use
in Section 4, is as follows. The function H is some
test for x, and the Gi are sub-tests, which check for
different possibilities of how H can fail. Thus, a positive
input must satisfy all the sub-tests, whereas a negative
x has to fail at least one sub-test Gi but might give an
ambiguous answer on other tests Gj .

Classically, the above is a non-issue, since we can
always apply the algorithm for Gi on an input x, even if
that input is outside the domain of Gi—the algorithm’s
output must still be either 0 or 1. Quantumly, the situa-
tion is more delicate: strictly speaking, we cannot apply
the textbook Grover search to evaluate H since the or-
acle in the definition of a quantum query algorithm is
supposed to apply either I or −I on each input, but
a quantum algorithm for Gi on an input x outside its
domain may apply an arbitrary unitary transformation
on its entire working space.

In this particular case, H can be evaluated using
amplitude amplification, Lemma 2.1, instead of the
usual Grover search. In Proposition 2.11 below, we
extend this result to the case when the conjunction
is replaced by an arbitrary partial Boolean function
F . Additionally, we show how to generalize the tight
composition result, Corollary 2.7, to this more general
setting. In order to do this, we have to make a number
of definitions.

Definition 2.8. (Irrelevant variables) Let
F : D → {0, 1} be a partial Boolean function with
the domain D ⊆ {0, 1}n. For each input x ∈ D,
some input variables j ∈ [n] may be called irrelevant,
the remaining variables called relevant. This can be
done in an arbitrary way, as long as the following
consistency condition is satisfied: for any x, y ∈ D such
that F (x) 6= F (y), there must exist a variable j relevant
to both x and y and such that xj 6= yj.

Definition 2.9. (Evaluation) Evaluation of the
function F with irrelevant variables is defined as in

Section 2.1, with the difference that, for an input
z ∈ D, the input oracle may malfunction on irrelevant
variables, i.e., Oz,j in (2.2) may be an arbitrary unitary
if j is irrelevant for z.

Definition 2.10. (Composition) The composition
F ◦ (G1, . . . , Gn) with irrelevant variables is defined as
in (2.4) but on a larger domain. Namely, the right-hand
side of (2.4) is defined iff there exists z ∈ D such that
zj = Gj(xj1, . . . , xjmj

) for all relevant j. In particular,
the value of Gj(xj1, . . . , xjmj

) need not be defined for
irrelevant j. The value of the composed function on
this input is then set to F (z), and does not depend on
the particular choice of z.

We use the last two definitions as follows. Defini-
tion 2.10 is used in Section 4 to get a query-efficient al-
gorithm for testing juntas, using Corollary 2.12 below.
Thus we save a logarithmic factor, as described after
Corollary 2.7. Definition 2.9 is used in Section 5 to get
a time-efficient implementation of the algorithm from
Section 4 (again, see the discussion after Corollary 2.7).

The following proposition is a special case of the
construction in [10].

Proposition 2.11. Let (Xj) be a feasible solution to
the adversary bound (2.3) with objective value T . Call
an input variable j is irrelevant for an input z ∈ D iff
Xj [[z, z]] = 0. With this choice of irrelevant variables,

(a) There exists a quantum algorithm that evaluates the
function F in the sense of Definition 2.9, using
O(T) queries.

(b) For arbitrary partial Boolean functions Gj, we have

ADV±
(
F ◦ (G1, . . . , Gn)

)
≤ T max

j∈[n]
ADV±(Gj),

where F ◦ (G1, . . . , Gn) is as in Definition 2.10.

It is easy to see that this choice of irrelevant
variables satisfies the consistency condition of Defini-
tion 2.8. Indeed, if F (x) 6= F (y), then (2.3b) implies
the existence of j with Xj [[x, y]] 6= 0, and since Xj � 0,
both Xj [[x, x]] and Xj [[y, y]] are non-zero.

The proof of point (a) is analogous to the proof of
the upper bound of Theorem 2.4, and we will skip the
details here. However, we will prove in Section 5.1 that
our time-efficient implementation of the corresponding
solution to the adversary bound has this property.

See the full version of the paper for a self-contained
proof of point (b). It immediately gives the following
variant of Corollary 2.7.

Corollary 2.12. Let (Xj) be a feasible solution to the
adversary bound (2.3) with objective value T . We say

that an input variable j is irrelevant for an input z ∈ D
iff Xj [[z, z]] = 0. For arbitrary partial Boolean functions
Gj, we have

Q
(
F ◦ (G1, . . . , Gn)

)
= O

(
T max

j∈[n]
Q(Gj)

)
,

with the composition as in Definition 2.10 with this
choice of irrelevant variables.

Example 2.13. (AND) Let us return to the example
in (2.5). Consider the AND function on the domain
D = {z ∈ {0, 1}n | |z| ≥ n − 1}, where |z| is the
Hamming weight. A feasible solution to (2.3) for this
function is given by Xj = ψjψ

∗
j , where ψj ∈ RD is

given by

ψj [[z]] =

n−1/4, if |z| = n;

n1/4, if |z| = n− 1 and zj = 0;

0, if |z| = n− 1 and zj = 1.

The objective value of this solution is
√
n. Note that if

|z| = n−1, then any variable j with zj = 1 is irrelevant
for this input. This coincides with our definition of the
“robust conjunction” at the beginning of this section.

2.4 Fourier analysis. We use Fourier analysis for
arbitrary real-valued functions f : {0, 1}n → R. If f
is Boolean, it is usually convenient to assume that
its range is {±1} = {1,−1} rather than {0,1}. For
a string s ∈ {0, 1}n, the corresponding character is
a Boolean function χs : {0, 1}n → {±1} defined by
χs(x) = (−1)s·x, where s·x =

∑
j sjxj denotes the inner

product of s and x. We will often use the corresponding
subset S ⊆ [n] instead of a string s ∈ {0, 1}n.

Every function f : {0, 1}n → R, has a Fourier
decomposition as follows:

f(x) =
∑

s∈{0,1}n
f̂(s)χs(x),

where f̂(s) = 2−n
∑
x f(x)χs(x) is the Fourier coeffi-

cient. The set
{
s | f̂(s) 6= 0

}
is called the (Fourier)

spectrum of f . Parseval’s identity says that rhis trans-
formation respects the norm: Ex

[
f(x)2

]
=
∑
s f̂(s)2.

In particular, for a Boolean f : {0, 1}n → {±1}, we have∑
s f̂(s)2 = 1.

For a subset S ⊆ [n], we define the influence of S
on f by

(2.6) InfS(f) =
∑

T : T∩S 6=∅

f̂(T)2.

If S consists of a single element j ∈ [n] we write Infj(f),

which is
∑
T : j∈T f̂(T)2.

An alternative (but equivalent) definition of influ-
ence for functions with range {±1} is as follows. Con-
sider the following randomized procedure. Generate
x ∈ {0, 1}n uniformly at random. Obtain y ∈ {0, 1}n
from x by replacing, for each j ∈ S, xj by an indepen-
dent uniformly random bit. Then, the influence InfS(f)
is precisely twice the probability that f(x) 6= f(y). Note
that the influence Infj(f) equals the probability that
f(x) 6= f(x⊕j) when x is sampled from {0, 1}n uni-
formly at random, where x⊕j denotes x with the jth
bit flipped. We repeatedly use the following two obvi-
ous properties of influence:

• Monotonicity. If S ⊆ T , then InfS(f) ≤ InfT (f).

• Subadditivity. InfS∪T (f) ≤ InfS(f) + InfT (f) for
all S, T ⊆ [n].

The following lemma from [30, 4] explains why influence
is important in our junta testing algorithm.

Lemma 2.14. If f is ε-far from any k-junta, then for
all W ⊆ [n] of size |W | ≤ k we have Inf [n]\W (f) ≥ ε.

Proof. Define a (not necessarily Boolean) function

g : {0, 1}n → R by g(x) =
∑
S⊆W f̂(S)χS(x). Let h be

the Boolean function that is the sign of g. This h only
depends on the variables in W , so it is a k-junta. Since
f is ε-far from any k-junta, we have (using Parseval’s
identity)

ε ≤
∣∣{x | f(x) 6= h(x)

}∣∣
2n

≤ E
x

[
(f(x)− g(x))2

]
=
∑
S

(f̂(S)− ĝ(S))2 =
∑
S 6⊆W

f̂(S)2.

3 Gap version of group testing.

Our junta testers, which we describe in the next section,
work by generating a random subset S ⊆ [n] and testing
whether it intersects the set of influential variables of
f . In this section we study a more abstract problem,
where we assume that we have an oracle that answers
this intersection-question with certainty. We believe
this problem is of independent interest.

For each A ⊆ [n], define the function
IntersectsA : 2[n] → {0, 1} by

(3.7) IntersectsA(S) =

{
1, if A ∩ S 6= ∅;
0, otherwise.

In the standard version of group testing [29] one is
given oracle access to the function IntersectsA for some
A with |A| ≤ k, and the task is to identify A. A natural
variant of this problem is to compute or approximate
the cardinality of A (a task already considered in the

group testing literature [27]), and a decision version of
the latter is deciding whether that cardinality is k or
k + d for some d, k ≥ 1. We define this formally next.

Definition 3.1. (EGGT) Let k and d be positive in-
tegers, X consist of all subsets of [n] having size exactly
k, and Y consist of all subsets of [n] having size exactly
k + d. In the exact gap version of the group testing
(EGGT) problem with parameters k and d, one is given
oracle access to the function IntersectsA with A ∈ X∪Y,
and the task is to decide whether A ∈ X or A ∈ Y.

We also study a relaxation of EGGT, in which we
allow “false negatives” in the small-set case and “false
positives” in the large-set case. This will be convenient
for our applications. Luckily, algorithms for solving
EGGT often turn out to also solve this harder problem.

Definition 3.2. (GGT) Let k and d be positive inte-
gers. Define two families of functions
(3.8)

X̃ =
{
f : 2[n] → {0, 1}

∣∣∣
∃A ∈ X ∀S ⊆ [n] : S ∩A = ∅ =⇒ f(S) = 0

}
and
(3.9)

Ỹ =
{
f : 2[n] → {0, 1}

∣∣∣
∃B ∈ Y ∀S ⊆ [n] : S ∩B 6= ∅ =⇒ f(S) = 1

}
.

In the gap version of the group testing (GGT) problem
with parameters k and d, one is given oracle access to
f ∈ X̃ ∪ Ỹ, and the task is to decide whether f ∈ X̃ or
f ∈ Ỹ.

It is easy to see that EGGT is a special case of
the GGT, where the implications in (3.8) and (3.9) are
replaced by equivalences. The GGT problem also
includes as a special case the problem of distinguishing
a function IntersectsA(f) with |A| ≤ k from a function
IntersectsA(f) with |A| ≥ k + d.

3.1 Randomized complexity. In this section we
show that the randomized query complexity of the gap
version of group testing is Θ̃

(
min{k, 1 + (k/d)2}

)
.

The upper bound already follows from the existing
literature on group testing: an O

(
1+(k/d)2

)
bound ap-

pears in [24] (with a surprisingly elaborate analysis) and
an O

(
k log k

)
bound appears in [23] and independently

in [31, Section 5.3]. Strictly speaking those results only
apply to the EGGT problem. Because of that, and also
for completeness, we include in Theorem 3.3 an upper
bound for the more general GGT problem.

The only lower bound for randomized complexity
that we are aware of is Ω(k) for the special case d = 1
due to Garćıa-Soriano [31, Section 5.3], who calls the
problem “relaxed group testing.” In Theorem 3.4, we
give a short reduction from the Gap Hamming Distance
problem in communication complexity which applies
only to GGT. The full version of the paper contains
a substantially longer but self-contained proof which
applies to EGGT as well.

Theorem 3.3. For any k, d ≥ 1, the randomized query
complexity of the GGT problem with parameters k and
d is O

(
min{k log k, 1 + (k/d)2}

)
.

Proof. We start with the easier upper bound of O
(
1 +

(k/d)2
)
. Take S ⊆ [n] by including each element

independently at random with probability 1/k. If we are
in the “small” case of GGT (as in (3.8)), the probability
of f(S) = 1 is at most 1 − (1 − 1/k)k. If, on the other
hand, we are in the “large” case of GGT (as in (3.9))
then that probability is at least 1 − (1 − 1/k)k+d. As
these two probabilities differ by Ω(min{1, d/k}), by a
Chernoff bound, we can distinguish the two cases by
repeating this procedure O

(
1 + (k/d)2

)
times.

We now prove the upper bound O
(
k log k

)
. The

algorithm maintains a partition of [n], initially set to
the trivial partition {[n]}. Each set in the partition can
be either active or inactive, with the initial set [n] being
active. We maintain the invariant that for all sets S in
the partition, f(S) = 1. (We can assume f([n]) = 1 as
otherwise we are clearly in the “small” case.) At each
step of the algorithm, we take an active set S in the
partition and repeat the following 10 log k times. We
partition S into S1 and S2 by taking each element of S
independently to be in either S1 or S2 with probability
1/2. We then query f on both S1 and S2. If f returns
1 on both, then we replace S with S1 and S2, and this
ends the loop for S. Otherwise, if we did not manage
to split S after 10 log k attempts, we declare S to be
inactive and move on to another set in the partition. If
at any point the partition contains at least k + 1 sets
we stop and output “large.” Otherwise, if all (at most
k) sets are inactive, we stop and output “small.”

Notice that after each step we either add a set to the
partition or declare a set inactive. There can therefore
be at most 2k steps, and since each step involves at
most 10 log k queries, the total number of queries is at
most 20k log k. The correctness in the “small” case is
immediate from our invariant: the only way for the
algorithm to output “large” is if there are k + 1 sets
in the partition on which f returns 1 but this cannot
happen in the small case. So consider the “large” case as
in (3.9) with some set B of size at least k+ 1. We claim
that with high probability, all inactive sets intersect B

in at most 1 element, and hence it cannot happen that
there are at most k sets in the partition and all are
inactive. To see why, notice that if a set S intersects
B in at least two elements, then there is probability
1/2 that when we split S into S1 and S2, these two
elements would end up in a different set. In this case
f must answer 1 on both S1 and S2 and S would be
split. Therefore the probability for such an S to become
inactive is at most 2−10 log k = k−10, which means that
with high probability this bad event will never happen.

Theorem 3.4. For any k, d ≥ 1, the randomized query
complexity of the GGT problem with parameters k and
d is Ω̃

(
min{k, 1 + (k/d)2}

)
.

Proof. Following the general approach to classical test-
ing lower bounds of Blais et al. [17], we will show
a reduction from the Gap Hamming Distance (GHD)
problem in communication complexity. In this prob-
lem there are two parties, Alice and Bob. Alice receives
a bit string x ∈ {0, 1}n and Bob receives a bit string
y ∈ {0, 1}n. Their goal is to decide if the Hamming
weight of x ⊕ y (i.e., the Hamming distance between
x and y) is greater than n/2 + g or at most n/2 − g
(and can behave arbitrarily for values in between). They
are allowed the use of shared randomness and, for each
input (x, y), need to output the correct answer with
probability, say, at least 2/3. It was shown in [22] (see
also [45]) that for any 1 ≤ g < n/2, any protocol solving
this problem must use at least Ω(min{n, n2/g2}) bits of
communication (and this is tight).

Now let k, d ≥ 1. It clearly suffices to prove
the theorem for d < k, so assume that this is the
case. The result now follows from the observation that
any algorithm solving GGT with parameters k and d
making q ≤ k queries implies a protocol for GHD
with parameters n = 2k and g = d using O(q log k)
bits of communication. In this protocol, Alice and
Bob simulate the GGT algorithm given oracle access
to IntersectsA where A ⊆ [n] is the support of x ⊕ y,
using their shared randomness as coins to the algorithm.
Whenever the algorithm performs a query S, Alice and
Bob compute IntersectsA(S) by running an Equality
protocol with error probability less than 1/(10k) and
communication O(log k) (see [37, Example 3.13]) to
check if the restrictions of x and y to S are identical. It
remains to notice that if the Hamming weight of x⊕y is
at most n/2−g = k−d, then IntersectsA ∈ X̃ , whereas if

it is greater than n/2 +g = k+d, then IntersectsA ∈ Ỹ.

3.2 Quantum complexity. The aim of this section
is to show that the quantum query complexity of the
GGT problem is Θ

(
1+
√
k/d
)
. Thus, when

√
k ≤ d ≤ k,

the quantum algorithm provides a quartic improvement

over the randomized one. We start with a lower bound
for EGGT, which implies the same lower bound for
GGT.

Proposition 3.5. The quantum query complexity of
the EGGT problem with parameters k and d is Ω(1 +√
k/d).

Proof. Take n = k + d. In this case Y contains only
one element, namely [n], and the corresponding function
takes value 1 on every S except S = ∅. Intuitively,
one detects that A ∈ X by finding an i 6∈ A, so the
problem becomes the unstructured search problem of
size n, where the d elements of [n] \ A are marked.
Unstructured search requires Ω

(√
n/d

)
queries [18].

This intuitive argument can be made rigorous via
the unweighted adversary lower bound (Theorem 2.5).
We put the one input in Y in relation with all

(
n
k

)
inputs

in X , so m = 1 and m′ =
(
n
k

)
. For each fixed nonempty

S ⊆ [n], there are
(
n−|S|
k

)
different A ∈

(
[n]
k

)
such that

A ∩ S = ∅ (these are the A ∈ X where a query to S
returns value 0, showing that A 6= [n]). This number is
maximized for |S| = 1, so `′ ≤

(
n−1
k

)
(and ` = 1). The

lower bound from Theorem 2.5 is

Ω

(√
mm′

``′

)
= Ω

(√(
n

k

)/(
n− 1

k

))
= Ω

(√
n/d

)
= Ω(1 +

√
k/d).

The remaining part of this section is devoted to
showing a matching upper bound on the quantum query
complexity. In Section 5 we will show how to implement
this algorithm time-efficiently.

Theorem 3.6. There exists a quantum algorithm that
solves the GGT problem with parameters k and d using
O
(√

1 + k/d
)

queries.

Proof. We construct a feasible solution to the semidefi-
nite program (2.3) for the EGGT problem. The adver-
sary bound reads as follows:

minimize max
A∈X∪Y

∑
S⊆[n]XS [[A,A]]

(3.10a)

s.t.
∑

S : A∩S=∅ xor B∩S=∅

XS [[A,B]] = 1 ∀A ∈ X , B ∈ Y;

(3.10b)

XS � 0 for all S ⊆ [n].
(3.10c)

Moreover, our solution will be such that

(3.11) XS [[A,A]] = 0 if
A ∈ X and S ∩A 6= ∅, or
A ∈ Y and |S ∩A| 6= 1.

This ensures that a feasible solution to (3.10) also gives
a feasible solution to the adversary bound for the GGT
problem. Indeed, for a function f ∈ X̃ , we can choose
Af ∈ X that satisfies the existential quantifier in (3.8).

Similarly, for g ∈ Ỹ, we can select Ag ∈ Y that satisfies
the existential quantifier in (3.9). A feasible solution for

the GGT problem then consists of (X̃ ∪ Ỹ) × (X̃ ∪ Ỹ)

matrices X̃S given by X̃S [[f, g]] = XS [[Af , Ag]]. Thus,

X̃S is the matrix XS with many repeated rows and
columns. A simple case analysis involving (3.10b)
and (3.11) shows that this is a feasible solution for the
GGT problem.

Our feasible solution to (3.10) is an adaptation of
the solution given in [9] for the task of finding the
subset A. It is possible to give a solution to (3.10) in
the style of [9]. However, below we give a more direct
construction resulting in matrices XS of rank 1.

Clearly, we may assume that n ≥ k+d. Let S ⊆ [n],
and s = |S|. If s = 0 or s > n − k − d + 1, we define
XS = 0. If 1 ≤ s ≤ n− k − d+ 1, we define XS = ψψ∗,
where ψ is a vector indexed by sets A ∈ X ∪ Y with
entries

(3.12) ψ[[A]] =

αs, if A ∈ X and A ∩ S = ∅;
βs, if A ∈ Y and |A ∩ S| = 1;

0, otherwise.

Here αs and βs are some positive real numbers satisfying

(3.13) αsβs =

(
(n− k)

(
n− k − 1

s− 1

))−1

.

The values of αs and βs depend on d and will be chosen
later in order to minimize the value of the objective
function (3.10a). From (3.12), it is easy to conclude
that (3.11) indeed holds.

Ignoring repeated and zero entries, XS is essentially
a 2× 2 block matrix of the form

XS =

(
α2
s αsβs

αsβs β2
s

)
.

The proof now follows from the two claims below.

Claim 3.7. The matrices XS form a feasible solution
to (3.10b) for the EGGT problem and any value of d.

Proof. Fix A ∈ X , B ∈ Y, and let ` = |B \ A| ≥ d.
Note that XS [[A,B]] = 0 if the condition on S in the
sum in (3.10b) is not satisfied. Next,

∑
S⊆[n]

XS [[A,B]] =
1

n− k
n−k−`+1∑

s=1

`
(
n−k−`
s−1

)(
n−k−1
s−1

)
=

`

n− k T (n− k − `, n− k − 1) ,

where, for non-negative integers a ≤ b, we define

T (a, b) = 1 +
a

b
+ · · ·+ a(a− 1)(a− 2) · · · 1

b(b− 1)(b− 2) · · · (b− a+ 1)
.

Thus, to show that
∑
S⊆[n]XS [[A,B]] = 1 it remains to

show that T (a, b) = (b+ 1)/(b− a+ 1). This is easy to
check by induction on a: the case a = 0 is trivial, and
for the inductive step we have

T (a, b) = 1 +
a

b
T (a− 1, b− 1) =

b+ 1

b− a+ 1
.

Claim 3.8. For each d, there exists a choice of αs and
βs satisfying (3.13) such that the objective value (3.10a)
is O(

√
1 + k/d).

Proof. Fix a positive integer s ≤ n− k − d+ 1. For all
A ∈ X and B ∈ Y, we have

(3.14)
∑

S⊆[n] : |S|=s

XS [[A,A]] =

(
n− k
s

)
α2
s

and

(3.15)
∑

S⊆[n] : |S|=s

XS [[B,B]] = (k + d)

(
n− k − d
s− 1

)
β2
s .

We take αs and βs so that the values of (3.14)
and (3.15) are equal. In particular, they are equal to
their geometric mean, which, by (3.13), is

(3.16)

√(
n−k
s

)
(k + d)

(
n−k−d
s−1

)
(n− k)

(
n−k−1
s−1

)
≤
√

k + d

s(n− k)

(
1− s− 1

n− k − 1

)d−1

,

where we used that
(
n−k
s

)
= n−k

s

(
n−k−1
s−1

)
and

(k + d)
(
n−k−d
s−1

)
(n− k)

(
n−k−1
s−1

) ≤ k + d

n− k

(
n− k − s
n− k − 1

)d−1

=
k + d

n− k

(
1− s− 1

n− k − 1

)d−1

.

Let us denote m = n− k− 1. Using (3.16), we get that

for all A ∈ X ∪ Y:∑
S⊆[n]

XS [[A,A]] =

∑
S⊆[n] : |S|=1

XS [[A,A]] +

n−k−d+1∑
s=2

∑
S⊆[n] : |S|=s

XS [[A,A]]

≤
√
k + d

d
+

1

m

m+1∑
s=2

√
k + d

(s− 1)/m

(
1− s− 1

m

)d−1

≤
√
k + d

d
+

∫ 1

0

√
k + d

p
(1− p)d−1 dp

=

√
k + d

d
+
√
k + d B

(
1/2, (d+ 1)/2

)
= O

(√
k + d

d

)
,

where B stands for the beta function. Here, we substi-
tuted p = (s− 1)/m, used monotonicity of the function
p−1(1−p)d−1, and applied a well-known asymptotic for
the beta function.

In the light of to Proposition 2.11, the condi-
tion (3.11) can be restated as follows:

Observation 3.9. The feasible solution to the adver-
sary bound (3.10) constructed in the proof of Theo-
rem 3.6 has the following irrelevant variables in the
sense of Proposition 2.11:

• If the input A is in X (i.e., |A| = k), an input
variable S ⊆ [n] is irrelevant if S ∩A 6= ∅.

• If the input A is in Y (i.e., |A| = k + d), an input
variable S ⊆ [n] is irrelevant if |S ∩A| 6= 1.

4 Quantum algorithm for junta testing.

The aim of this section is to prove the following theorem:

Theorem 4.1. There exists a bounded-error quantum
tester that distinguishes k-juntas from functions that are
ε-far from any k-junta, with query complexity

O
(√

k/ε log k
)
.

Suppose f : {0, 1}n → {±1} depends on a set J ⊆
[n] of K variables. Thus, the promise is that either f is
a k-junta (K ≤ k), or f is ε-far from any k-junta (we
will call such f a “non-junta” for simplicity). The goal
of the tester is to distinguish these two cases.

At the lowest level of our algorithm, there is the
following subroutine.

Lemma 4.2. (Influence Tester) There exists an al-
gorithm that, given a subset V ⊆ [n], accepts with prob-
ability at least 0.9 if InfV (f) ≥ δ and rejects with cer-
tainty if InfV (f) = 0. The algorithm uses O(

√
1/δ)

queries and O(n/
√
δ) other elementary operations.

Proof. We pick x, y randomly as described in Section 2
below (2.6), and check if f(x) 6= f(y). By applying
amplitude amplification for O(1/

√
δ) rounds to amplify

the basis states where f(x) 6= f(y), we obtain the
lemma.

The idea is to run the GGT algorithm of Theo-
rem 3.6 with the Influence Tester of Lemma 4.2 as the
input oracle. The complication is that we do not know
what value of δ we should specify: the Fourier weight of
a non-junta can be either concentrated on few (though
more than k) variables with large influence, or scat-
tered over many variables with tiny influence, and these
cases call for different values of δ. We identify roughly
log k different types of non-juntas, and design a sepa-
rate tester for each of them. A junta will be accepted
(with high probability) by all of these testers, whereas
a non-junta will be rejected by at least one of them.
The description is given in Algorithm 1, followed by the
definition of the different types of non-juntas.

Algorithm 1 Quantum Junta Tester

1. Accept if all of the following blog(200k)c+2 testers
accept, reject if at least one of them rejects:

• Tester of the first kind with
` ∈ {0, . . . , blog(200k)c};
• Tester of the second kind.

Subroutine 1.1 Tester of the first kind

1. Run the GGT algorithm of Theorem 3.6 with
parameters k and d = 2` and the following oracle:

• On input S ⊆ [n], run Influence Tester on
V = S and δ = ε/(2`+3 log(400k)).

2. Accept if the GGT algorithm accepts, otherwise
reject.

Subroutine 1.2 Tester of the second kind

1. Estimate the acceptance probability of the follow-
ing subroutine with additive error .05:

• Generate V ⊆ [n] by adding each i to V with
probability 1/k independently at random.

• Run Influence Tester with this choice of V and
δ = ε/(4k).

2. Accept if the estimated acceptance probability is
≤ 0.8, otherwise reject.

Let us describe these types of non-juntas. For
notational convenience, assume the first K variables are
the influential ones, ordered by influence (of course, the
tester does not know this order):

(4.17)
Inf1(f) ≥ Inf2(f) ≥ · · · ≥ InfK(f) > 0

= InfK+1(f) = · · · = Infn(f).

Our tester does not know the number K − k of
“extra” variables if f is far from any k-junta. However,
Lemma 2.14 implies that

(4.18) Inf{k+1,...,K}(f) ≥ ε.
Our tests are tailored to the following cases:

1.
∑200k
j=k+1 Infj(f) ≥ ε/2. This case is additionally

split into blog(200k)c+ 1 subcases:∣∣∣∣{j ∈ [n]
∣∣∣ Infj(f) ≥ ε

2`+3 log(400k)

}∣∣∣∣ ≥ k + 2`,

where ` ∈ {0, . . . , blog(200k)c}. Such an f is of the
first kind, for this value of `.

2.
∑200k
j=k+1 Infj(f) ≤ ε/2. Such an f is of the second

kind.

Note that f may be a non-junta of the first kind for
many different values of ` simultaneously; an extreme
example is if f is the n-bit parity function.

Lemma 4.3. Every non-junta f satisfies at least one of
the cases above.

Proof. It is clear that any f satisfies the first or the
second case above, so the only thing we need to show is
that the first case is fully covered by its blog(200k)c+ 1
subcases. Assume f satisfies the first case. Denote ε′ =
ε/(8 log(400k)) and consider the following intervals,
which together partition the interval [0, 1]:

A∞ =

[
0,

ε′

2blog(200k)c

)
, A` =

[
ε′

2`
,

ε′

2`−1

)
, A0 = [ε′, 1] ,

where ` runs from blog(200k)c to 1. Let

B` =
{
j ∈ {k + 1, . . . , 200k} | Infj(f) ∈ A`

}
.

Each j is included in exactly one of the B`. Let
also W` =

∑
j∈B`

Infj(f). Thus,
∑
`W` ≥ ε/2,

because we are in the first case. Next, W∞ < 200k ·
ε/(8 · 2blog(200k)c) ≤ ε/4. Thus, there exists ` ∈
{0, . . . , blog(200k)c} such that W` ≥ ε/(4 log(400k)).
Then, either ` = 0 and |B`| ≥ 1, or

|B`| ≥W`

/(
ε

2`+2 log(400k)

)
≥ 2` .

Also, all j ∈ B` satisfy Infj(f) ≥ ε/(2`+3 log(400k)).
By (4.17), all j ∈ [k] also satisfy this inequality. This
means that f satisfies the first case with this value of `.

Lemma 4.4. For each ` ∈ {0, . . . , blog(200k)c}, Sub-
routine 1.1 accepts if f is a junta, and rejects if f is a
non-junta of the first kind for this value of `. Its query
complexity can be made O(

√
(k/ε) log k).

Proof. The composition in Subroutine 1.1 is understood
here in the sense of Definition 2.10 with the functions
F and G defined as follows.

The partial function F is the EGGT function from
Definition 3.1. Given a function h : 2[n] → {0, 1},
F (h) = 0 if h = IntersectsA with |A| = k, and F (h) = 1
if h = IntersectsA with |A| = k + d, where IntersectsA
is defined in (3.7). In all other cases, the value F (h) is
not defined.

For each S ⊆ [n], the partial function GS is
as defined in Lemma 4.2. Given a total function
f : {0, 1}n → {0, 1}, define GS(f) = 0 if InfS(f) = 0
and GS(f) = 1 if InfS(f) ≥ δ. If 0 < InfS(f) < δ, the
value GS(f) is not defined.

The function evaluated in Subroutine 1.1 is the
following restriction of the composed function F ◦
(G∅, G{1}, G{2}, . . . , G[n]):

f 7→ F
(
G∅(f), G{1}(f), G{2}(f), . . . , G[n](f)

)
,

where, as the arguments of F , we have all possible 2n

functions GS . The composition here is understood as in
Definition 2.10 with the irrelevant variables of F given
by Observation 3.9.

The query complexity of the subroutine can be
computed using Corollary 2.12. The complexity of
the algorithm for F in Theorem 3.6 is O(

√
k/2`), as

2` = O(k). The quantum query complexity of each
GV is O(

√
(2`/ε) log k) by Lemma 4.2. Thus, the total

query complexity of the subroutine is O(
√

(k/ε) log k).
Let us prove the correctness of the subroutine.

Assume f is a non-junta of the first kind with this value
of `. By definition, there exists A ⊆ [n] of size k + d
such that for all j ∈ A, Infj(f) ≥ δ. As the influence
is monotone in S, InfS(f) ≥ δ for all S that intersect
A. By Observation 3.9, all input variables S satisfying
S∩A = ∅ are irrelevant, hence the value of the composed
function is 1 in this case.

On the other hand, if f is a junta, there exists
A ⊆ [n] of size k such that for all S ⊆ [n] satisfying
S ∩ A = ∅, we have InfS(f) = 0. By Observation 3.9,
all input variables S satisfying S ∩A 6= ∅ are irrelevant,
hence the value of the composed function is 0 in this
case.

From the proof of Lemma 4.4, it is clear why we
need a separate tester for the second case. If 2` becomes
ω(k), the complexity of Influence Tester still grows as

Õ(2`/ε), whereas the GGT algorithm cannot use fewer

than O(1) queries. Our second tester (Subroutine 1.2)
does not use the GGT algorithm, and relies on more
traditional means.

Lemma 4.5. Subroutine 1.2 accepts if f is a junta, and
rejects if f is a non-junta of the second kind. Its query
complexity is O(

√
k/ε).

Proof. The estimate of the query complexity of Subrou-
tine 1.2 is straightforward. Let us prove its correctness.
We will show that the inner procedure has acceptance
probability≤ 0.75 if f is a k-junta, and acceptance prob-
ability ≥ 0.85 if f satisfies the second case.

If f is a k-junta then the probability that the set V
does not intersect with the set J of (at most k) relevant
variables is:

(1− 1/k)|J| ≥ (1− 1/k)k ≥ 1/4,

assuming k ≥ 2. If V and J are disjoint, then
the algorithm always rejects, hence, the acceptance
probability is at most 0.75.

Now suppose f is a non-junta of the second kind.
For notational convenience, we still assume that the
variables of f are ordered by decreasing influence as
in (4.17). For j ∈ [n], let us define

Infj(f) =

{
0, if j ≤ 200k;∑
S : S∩{200k+1,...,j}={j} f̂(S)2, otherwise.

For S ⊆ [n], define InfS(f) =
∑
j∈S Infj(f).

This quantity satisfies two important properties.
First, 0 ≤ InfS(f) ≤ InfS(f) for all S ⊆ [n]. And
second, it is additive is S, i.e., InfS∪T (f) = InfS(f) +
InfT (f) for all disjoint S and T . Note that InfS(f) is
only subadditive in S.

Next, as f satisfies the second case, Infj(f) ≤
ε/(200k) for j > 200k. Hence, Infj(f) ≤ ε/(200k) for
all j ∈ [n]. Finally,

Inf [n](f) = Inf{200k+1,...,K}(f)

≥ Inf{k+1,...,K}(f)−
200k∑
j=k+1

Infj(f) ≥ ε

2
.

Consider the random variable InfV (f) where V is as in
Subroutine 1.2. Its expectation is

µ = E[InfV (f)] =
1

k
Inf [n](f) ≥ ε

2k
,

and its variance is

σ2 = Var[InfV (f)] ≤ 1

k

∑
j

Infj(f)2

≤ 1

k
max
j

Infj(f) · Inf [n](f) ≤ ε

200k
µ ≤ µ2

100
.

Then, Chebyshev’s inequality implies

Pr
[
InfV (f) < ε/4k

]
≤ Pr

[
|InfV (f)− µ| ≥ µ/2

]
≤ Pr

[
|InfV (f)− µ| ≥ 5σ

]
≤= 0.04.

Hence, with probability at least 0.96, we have InfV (f) ≥
InfV (f) ≥ ε/4k. If this is indeed the case, the influence
tester in Lemma 4.2 accepts with probability ≥ 0.9.
Thus, the inner procedure accepts with probability at
least 0.96 · 0.9 > 0.85 if f satisfies the second case.

From Lemmas 4.4 and 4.5, it is easy to see that
Algorithm 1 is correct. If f is a junta, then all of the
O(log k) subtesters accept. If f is a non-junta, then
at least one of them rejects (and the output of the
remaining ones is not defined). Thus, our algorithm
is of the “robust conjunction” from (2.5). Hence, using
Example 2.13 and Corollary 2.12, we get that the query
complexity of Algorithm 1 is

O
(√

log k ·
√

(k/ε) log k
)

= O
(√

k/ε log k
)
.

This concludes the proof of Theorem 4.1.

5 Efficient implementation.

The main aim of this section is to prove that the
algorithm from Theorem 3.6 can be implemented time-
efficiently. Here by “time” we mean the total number of
gates the algorithm uses, both the query-gates and all
elementary quantum gates (from some arbitrary fixed
universal set of gates) used to implement the unitaries
in between the queries. Moreover, we will prove that
our algorithm computes a function that has irrelevant
variables as specified by Observation 3.9.

For clarity, we will now explicitly describe the
problem which arises from applying Definition 2.9 to
the EGGT problem of Definition 3.1.

Definition 5.1. (QGGT) In the quantum gap group
testing (QGGT) problem with parameters k and d, one
is given access to an oracle Of satisfying the following
properties. The oracle Of acts on two registers: the n-
qubit input register I, and an arbitrary internal working
register W. The oracle is in the block-diagonal form
Of =

⊕
S⊆{0,1}n Of,S, where Of,S is a unitary operator

on W, that gets invoked in Of when the value of the
register I is S. We are promised that Of belongs to one
of the following two families:

(5.19)
X̃ =

{
Of

∣∣∣ ∃A ∈ X ∀S ⊆ [n] :

S ∩A = ∅ =⇒ Of,S |0〉W = |0〉W
}

and5

(5.20)
Ỹ =

{
Of

∣∣∣ ∃B ∈ Y ∀S ⊆ [n] :

S ∩B 6= ∅ =⇒ Of,S |0〉W = −|0〉W
}
.

The task is to detect whether Of ∈ X̃ or Of ∈ Ỹ.

Theorem 5.2. There exists a quantum algorithm that
solves the QGGT problem with parameters k and d in
time Õ

(
n
√

1 + k/d
)

using O
(√

1 + k/d
)

queries.

The time complexity of the algorithm is roughly
n times its query complexity; as mentioned in the
introduction, this is probably the best one can hope
for.

Note that the QGGT problem incorporates the
usual quantization of the GGT problem from Defini-
tion 3.2. However, the QGGT problem is more general
than the GGT problem, the difference being that Of,S
may be an arbitrary unitary in W when the premises
in (5.19) or (5.20) do not hold.

With Theorem 5.2 in hand, it is easy to show that
Algorithm 1 can be implemented time-efficiently as well,
with a slight increase in the number of queries.

Theorem 5.3. There exists a bounded-error quantum
tester that distinguishes k-juntas from functions that
are ε-far from any k-junta in time Õ

(
n
√
k/ε
)

using

Õ
(√

k/ε
)

queries.

Proof. It is easy to see from the proof of Lemma 4.5 that
the time complexity of Subroutine 1.2 is Õ

(
n
√
k/ε
)
.

Unfortunately, it is hard to estimate the time com-
plexity of the implementation of Subroutine 1.1 in
Lemma 4.4, because Lemma 4.4 invokes Proposi-
tion 2.11(b) to analyze the composition of quantum al-
gorithms (Proposition 2.11(b) upper bounds the query
complexity of the composition but not its time complex-
ity). However, Algorithm 1 can be implemented to have

time complexity Õ
(
n
√
k/ε
)

as follows.
We first reduce the error probability of each call to

the Influence Tester of Lemma 4.2 to� ε/k by O(log k
ε)

repetitions, and run it backwards (after copying the an-
swer) to set the workspace back to its initial state; then
run the QGGT algorithm on this oracle as if it’s er-
rorless. Standard techniques show that the resulting
variant of Subroutine 1.1 can be made to have error
probability ≤ 1/3, and we do not need to invoke Propo-
sition 2.11(b) anymore. The query complexity of Sub-
routine 1.1 has now gone up by a factor O(log k

ε), but its

5One can also weaken the premise S ∩ B 6= ∅ in (5.20) to

|S∩B| = 1. We chose this definition to make the QGGT problem
more similar to the GGT problem.

time complexity becomes Õ
(
n
√
k/ε
)
, because it is the

time complexity of the QGGT algorithm, plus its oracle-
query complexity multiplied by the time complexity of
the amplified Influence Tester of Lemma 4.2 that imple-
ments one oracle call.

The resulting variant of Algorithm 1 can thus be
implemented in time Õ

(
n
√
k/ε
)
.

5.1 Proof of Theorem 5.2. The problem is solved
by a (by now relatively standard) implementation of
the dual adversary bound as in [42]. The analysis fol-
lows [38], with the simplification that we have Boolean
input and output (see also [8, Section 3.4]). Our main
innovation here is an efficient implementation of a spe-
cific reflection in Section 5.2, which we do by means of
a new and efficient quantum Fourier transform.

Recall the QGGT problem as defined in Defini-
tion 5.1. Due to technical reasons, we have to assume
that Of,S not only satisfies (5.19) or (5.20), but is also
a reflection. This is without loss of generality.

Our algorithm only uses the input register I, so we
omit this subscript below. The register W is not written,
but assumed to be in the state |0〉W. We also add a new
basis state |0〉 to I, and assume that Of |0〉 = −|0〉 for
all Of .

The query-efficient algorithm in Theorem 3.6 was
obtained by constructing the matrices XS in (3.12)
that depend on parameters αs and βs satisfying (3.13).
The objective value (3.10a) is W = O(

√
1 + k/d) by

Claim 3.8. Also we define γ = C1

√
W for some constant

C1 to be determined later.
Let Λ be the projector onto the span of the vectors

(5.21) ψA = |0〉+ γ

n−k−d+1∑
s=1

αs
∑

S⊆[n] : |S|=s, S∩A=∅

|S〉

over all A ∈ X , and RΛ = 2Λ− I be the corresponding
reflection. (In Section 5.2 we show how to implement
RΛ efficiently.) The QGGT problem is solved by
Algorithm 2, where C is some constant to be defined
later.

Algorithm 2 Quantum Algorithm for the
QGGT problem

1. Prepare the state |0〉.
2. Perform phase estimation on the operator U =
OfRΛ with precision δ = 1/(CW).

3. Accept if and only if the phase-estimate is greater
than δ.

Claim 5.4. Algorithm 2 is correct.

Proof. Let us first assume that Of ∈ Ỹ. Let B ∈ Y be
a corresponding element from (5.20), so |B| = k + d.
Define the following vector

(5.22) u = γ|0〉 −
n−k−d+1∑

s=1

βs
∑

S⊆[n] : |S|=s, |S∩B|=1

|S〉.

The squared norm of this vector is

‖u‖2 = γ2 +

n−k−d+1∑
s=1

(k + d)

(
n− k − d
s− 1

)
β2
s

= γ2 +
∑
S⊆[n]

XS [[B,B]] ≤ C2
1W +W,

where the second equality uses (3.15), and the last
inequality uses that the objective value (3.10a) is W .

We now show that u is an eigenvector of U = OfRΛ

with eigenvalue 1 (so the eigenvalue’s phase is 0). First,
Ofu = −u, because Of |S〉 = −|S〉 for all S occurring
in (5.22) and we earlier already assumed Of |0〉 = −|0〉.
Second, for all A ∈ X we have

〈ψA, u〉 = γ − γ
n−k−d+1∑

s=1

∑
S⊆[n]:|S|=s,S∩A=∅,|S∩B|=1

αsβs

= γ − γ
∑

S : A∩S=∅ xor B∩S=∅

XS [[A,B]] = 0,

where we used (3.12) and (3.10b). Hence, Λu = 0 and
RΛu = (2Λ− I)u = −u. Therefore, Uu = OfRΛu = u.

Furthermore, the inner product of the normalized
eigenvector u/‖u‖ and |0〉 is

γ

‖u‖ ≥
C1

√
W√

C2
1W +W

=
1√

1 + 1/C2
1

,

which can be made arbitrarily close to 1 by setting C1

to a sufficiently large constant. Since |0〉 is the starting
state of Algorithm 2, the algorithm will (with probabil-
ity at least 2/3 if we set C1 appropriately) produce a
phase estimate that is at most δ, and correctly rejects
Of ∈ Ỹ.

Now assume Of ∈ X̃ . Let A ∈ X be the
corresponding element from (5.19), so |A| = k. In this
case, we will apply Lemma 2.3 with R1 = −RΛ = I−2Λ,
R2 = −Of (hence U = OfRΛ = R2R1), Π1 = I − Λ,
Π2 = (I−Of)/2, and w = ψA. Indeed, since Λw = w, w
lies in the kernel of Π1, and we assume Of is a reflection,
so the conditions of the lemma are satisfied. We have
Π2w = |0〉 because Of |0〉 = −|0〉, and Of |S〉 = |S〉 for
all S in the support of ψA. Also,

‖ψA‖2 = 1 + γ2
n−k−d+1∑

s=1

(
n− k
s

)
α2
s

= 1 + γ2W = 1 + C2
1W

2.

Since also W = Ω(1), we have ‖w‖ = O(W). Therefore,
using Lemma 2.3, the algorithm’s initial state |0〉 barely
overlaps with eigenvectors of U = R2R1 whose phase is
(2δ)-close to 0:

‖P2δ|0〉‖ = ‖P2δΠ2w‖ ≤ δ‖w‖ = O(1/C).

Hence the probability that phase estimation erroneously
yields an estimate that is δ-close to 0 can be made less
than 1/3 by choosing C a sufficiently large constant.

Then Algorithm 2 accepts all Of ∈ X̃ with probability
at least 2/3.

As RΛ can be implemented without executing the
input oracle, the query complexity of Algorithm 2
is O(W) = O(

√
1 + k/d) by Theorem 2.2. To get

the time complexity, the query complexity has to be
multiplied by the cost of implementing U = OfRΛ. In
Section 5.2 we show that RΛ can be implemented in
time Õ(n). Thus, Algorithm 2 can be implemented in

time Õ(n
√

1 + k/d).

5.2 Efficient implementation of RΛ. This section
is devoted to the proof of the following lemma, which
shows that the reflection RΛ = 2Λ − I can be imple-
mented efficiently, in time Õ(n). For simplicity we as-
sume n > 2k. This is without loss of generality, as we
can extend the set [n] with dummy elements. Next, we
identify |0〉 of Eq. (5.21) with |∅〉, and absorb γ into αs.
To state the lemma, it is also more convenient to replace
A in Eq. (5.21) by its complement, T = [n] \A.

Lemma 5.5. Let α0, α1, . . . , αn−k be arbitrary complex
numbers and let Λ be the projector onto the span of the
vectors

ψT =

n−k∑
`=0

α`
∑

B⊆T : |B|=`

|B〉

over all T ⊆ [n] with |T | = n−k. Then, the correspond-
ing reflection RΛ = 2Λ− I can be implemented in time
Õ(n), up to an error in the operator norm that can be
made smaller than any inverse polynomial in n.

Representation theory background. In order
to prove Lemma 5.5, we will use the structural prop-
erties implied by the invariance of the vectors ψT un-
der permutations of [n]. We need some basic results
from the representation theory of the symmetric group.
These results are only used in this section. The reader
may refer to a textbook on the topic such as [44], or
to the appendix of [9], where we briefly formulate the
required notions and results.

Let Sn denote the symmetric group on [n]. We con-
sider (left) modules over the group algebra CSn. We

call them Sn-modules; they are also known as represen-
tations of Sn. There is a 1-1 correspondence between
irreducible Sn-modules and partitions (t1, . . . , tk) of n
(where t1 ≥ t2 ≥ · · · ≥ tk and t1 + t2 + · · · + tk = n).
Irreducible Sn-modules are called Specht modules.

A linear mapping θ : V → W between two Sn-
modules is called an Sn-homomorphism if, for all π ∈ Sn
and v ∈ V , we have θ(πv) = π(θ(v)). The following
result is basic for such homomorphisms:

Lemma 5.6. (Schur’s Lemma) Assume θ : V → W
is an Sn-homomorphism between two irreducible Sn-
modules V and W . Then, θ = 0 if V and W are not
isomorphic. Otherwise, θ is uniquely defined up to a
scalar multiplier.

Let M denote the complex vector space with the
set of subsets of [n] as its orthonormal basis and with
the group action πA = π(A), where π ∈ Sn, A ⊆ [n],
and π(A) denotes the image of the set A under the
transformation π. We call {A}A⊆[n] the standard basis
of M .

The module M naturally decomposes into a direct
sumM =

⊕n
`=0M`, where M` is spanned by the subsets

of cardinality `.6 The following lemma describes the
decomposition of M` into irreducible submodules S`(t)
(for different values of t), which will be isomorphic to
the Specht module S(t) corresponding to the partition
(n− t, t) of n.

In the formulation of the lemma and later we use
⊗ to denote disjoint union of subsets of [n], extended
by linearity, so for example ({1}− {2})⊗ ({3}− {4}) =
{1, 3} − {1, 4} − {2, 3}+ {2, 4}.
Lemma 5.7. The Sn-module M` has the following
decomposition into irreducible submodules: M` =⊕`′

t=0 S`(t), where `′ = min{`, n − `}, and each S`(t)
is isomorphic to S(t). The submodule S`(t) is spanned
by the vectors
(5.23)

v`(t, a, b) =
(
{a1} − {b1}

)
⊗ · · · ⊗

(
{at} − {bt}

)
⊗
(∑
A⊆[n]\{a1,...,at,b1,...,bt} : |A|=`−t

A

)
defined by disjoint sequences a = (a1, . . . , at) and b =
(b1, . . . , bt) of pairwise distinct elements of [n]. The
dimension of S(t) is

(
n
t

)
−
(
n
t−1

)
.

There is a unique (up to a scalar) Sn-isomorphism
between S`(t) and Sm(t). We can choose the scalar so
that the isomorphism maps each vector v`(t, a, b) to the
corresponding vm(t, a, b).

6In terms of [44], M` is isomorphic to the permutation module

corresponding to the partition (n − `′, `′) of n, where `′ =
min{`, n− `}.

The lemma follows from general theory [44, Sections
2.9 and 2.10]. The Appendix of [9] contains a short
proof, see also Remark 5.11 below. Figure 1 depicts the
different subspaces involved in the decomposition of M .

S0(0)S1(0) · · · S`(0)R(0)

R(t)

...
...

...

· · · Sn(0)

R(n2)

S`(t)· · · · · ·· · ·

...

Sn
2
(n2)

...

...

M
0

M
1

M
`· · · · · · M
n

Figure 1: Decomposition of M

Let ṽ`(t, a, b) denote the normalized vector
v`(t, a, b)/‖v`(t, a, b)‖, that is

(5.24) v`(t, a, b) =

√
2t
(
n− 2t

`− t

)
ṽ`(t, a, b).

Also, let ϑt→` : St(t) → S`(t) denote the isomorphism
from Lemma 5.7 given by ṽt(t, a, b) 7→ ṽ`(t, a, b). This
is a unitary transformation.

For each t, we choose an orthonormal basis
{et(t, x)}x of St(t). Also, let e`(t, x) = ϑt→` et(t, x),
so that {e`(t, x)}x is an orthonormal basis of S`(t). The
precise choice of the basis of St(t) is irrelevant, but
it is important that the bases of S`(t) for various `
are synchronized via the isomorphism ϑt→`. The set
{e`(t, x)}`,t,x forms an orthonormal basis of M , which
we call the Fourier basis. Let R(t) denote the submod-
ule

⊕n−t
`=t S`(t) of M .

Claim 5.8. In the Fourier basis, any Sn-
homomorphism from M to itself is of the form⊕bn/2c

t=0 At ⊗ IS(t), where At ⊗ IS(t) acts on R(t), At is
an (n− 2t+ 1)× (n− 2t+ 1) matrix, and IS(t) denotes
the identity operator on S(t).

Proof. By Schur’s lemma, any Sn-homomorphism maps
each irreducible module to an isomorphic one. Hence,
each R(t) is mapped to itself. Also, as ϑt→` is the only
isomorphism between St(t) and S`(t), we see by Schur’s
lemma that a vector e`(t, x) is mapped into a linear
combination of the vectors {em(t, x)}m. Thus, in R(t),
the homomorphism has the form At⊗IS(t) for some At.

The quantum Fourier transform of M . Let the
register A have M as its vector space with the standard
basis. Let also T and L be (n+ 1)-qudits (i.e., registers

of dimension n + 1), and let n-qubit register B store
indices x of the Fourier basis elements e`(t, x). The
Fourier transform of M is the following unitary map,
for which it is convenient to use ket notation:

(5.25) F : |t〉T|`〉L|x〉B 7→ |e`(t, x)〉A.

Note that while F is a unitary from a 2n-dimensional
space to a 2n-dimensional space, it is convenient to use
more than n qubits to represent the basis states (namely
n+ 2dlog(n+ 1)e qubits).

The Fourier transform segregates copies of non-
isomorphic Specht modules of M by assigning them
different values of t in the register T. For each Specht
module S(t), the copies are labeled by `, which is the size
(as a subset of [n]) of the standard basis elements of M
used by the copy. Finally, the basis elements of S(t) are
indexed by x, the precise choice of which is irrelevant
for our application. The next theorem follows from
the efficient quantum Schur-Weyl transform of Bacon,
Chuang and Harrow [5, 6]. See the full version of our
paper for a self-contained proof.

Theorem 5.9. There exists a quantum algorithm
with time complexity Õ(n) that implements the map
from (5.25) for all choices of t, ` and x for which the
last expression is defined, up to an error in the oper-
ator norm that can be made smaller than any inverse
polynomial in n.

Decomposing Λ in terms of representations.
The main observation behind our implementation of RΛ

is that Λ is invariant under the permutation of elements,
hence it is an Sn-homomorphism from M to itself, and
thus subject to the decomposition of Claim 5.8. In
fact, it is not hard to obtain the matrices At in this
decomposition.

Claim 5.10. The image of Λ contains at most one copy
of each S(t) for t = 0, . . . , k. In the Fourier basis, Λ has

the following form:
⊕k

t=0(w̃tw̃
∗
t)⊗IS(t), where w̃t is the

normalized version of the (n−2t+1)-dimensional vector
wt that is given by

(5.26) wt[[`]] = α`

(
n− `− t
k − t

)√(
n− 2t

`− t

)
,

for ` ∈ {t, . . . , n − k}, and wt[[`]] = 0 for ` ∈ {n − k +
1, . . . , n− t}. (If wt is the 0-vector, we assume that w̃t
is the 0-vector as well.)

Proof. We first assume that αn−k 6= 0. Because Λ
is an Sn-homomorphism, by Claim 5.8, Λ has the
form

⊕
tAt ⊗ IS(t) in the Fourier basis. We claim

that Λ contains exactly one copy of each S(t) with
0 ≤ t ≤ k, i.e., all At are rank-1 projectors: indeed,
the projection of Λ on Mn−k is surjective, and as we
know from Lemma 5.7, the latter does contain a copy
of each S(t). Since S(t) has dimension

(
n
t

)
−
(
n
t−1

)
, the

direct sum of these copies of S(t) already has dimension∑k
t=0

((
n
t

)
−
(
n
t−1

))
=
(
n
k

)
. On the other hand, Λ

clearly has dimension at most
(
n
k

)
, hence Λ cannot

contain more than one copy of any of these S(t). Thus,

Λ actually has the form
⊕k

t=0(w̃tw̃
∗
t) ⊗ IS(t) for some

vectors w̃t.
It remains to find the coefficients of w̃t. Take a

vector vn−k(t, a, b) ∈Mn−k for some sequences a and b,
and act on it with the linear transformation that maps
a basis vector T ∈ Mn−k to the vector ψT ∈ M . The
resulting vector u is clearly in the image of Λ. We claim
that

(5.27)

u =

n−k∑
`=t

α`

(
n− `− t
k − t

)
v`(t, a, b)

=

n−k∑
`=t

α`

(
n− `− t
k − t

)√
2t
(
n− 2t

`− t

)
ṽ`(t, a, b).

To prove the first equality of (5.27), consider a basis
element A ∈M` for an ` ∈ {t, . . . , n−k} and look at its
coefficient in u. If A contains both ai and bi for some i,
it appears in none of the ψT of which u consists. If A
avoids both ai and bi for some i, then any coefficient it
gets from ψT is cancelled by the coefficient it gets from
ψT4{ai,bi}, where 4 stands for symmetric difference.
Finally, if A uses exactly one of each ai, bi, it appears in
ψT for

(
n−`−t
k−t

)
choices of T , with coefficient equal to its

coefficient in v`(t, a, b) times α` in each. This establishes
the first equality of (5.27). The second equality in (5.27)
follows immediately from (5.24).

Now let v = (vx) be the vector of coefficients of
the representation of ṽt(t, a, b) in the basis {et(t, x)}x,
i.e., ṽt(t, a, b) =

∑
x vxet(t, x) = F

(
|t〉T|t〉L|v〉B

)
. Then,

by our choice of orthonormal basis, F−1(ṽ`(t, a, b)) =
|t〉T|`〉L|v〉B for ` ∈ {t, . . . , n − k}, and from (5.27), we
have

F−1
(
u/
√

2t
)

=

n−k∑
`=t

α`

(
n− `− t
k − t

)√(
n− 2t

`− t

)
F−1(ṽ`(t, a, b))

= |t〉T|wt〉L|v〉B,

where wt is defined in (5.26). As u is in the image of Λ
and F−1u is u represented in the Fourier basis, wt must
be proportional to w̃t.

Now consider the case αn−k = 0. In this case,
change αn−k to an arbitrary non-zero value, and per-
form the above calculations for the resulting projec-
tor Λ′. The result follows from the observation that
the image of Λ is a projection of the image of Λ′ onto⊕

`<n−kM`.

Remark 5.11. Note that (5.27) essentially proves the
second part of Lemma 5.7. Indeed, it shows that
the transformation vn−k(t, a, b) 7→ v`(t, a, b) is linear
(which is not obvious from (5.23)). It is clear that
it is invariant under the action of Sn, hence, it is an
isomorphism between the copies of S(t) in Mn−k and
M`.

Implementing RΛ. Having the efficient imple-
mentation of the QFT of Theorem 5.9, it is easy to
implement the translation RΛ up to polynomially small
error. First, we run the QFT of Theorem 5.9 in reverse,
and obtain the representation of M in the Fourier basis.
In this basis, by Claim 5.10, our task boils down to the
reflection about the vector w̃t in the register L, where
t is the value of the register T. The implementation
of this reflection is reasonably straightforward. See the
full version of the paper for detail.

6 Quantum lower bound for junta testing.

Let us assume that ε = Ω(1). Tight classical lower
bounds on junta testing [25, 17] are based on distin-
guishing a k-junta from a function that depends on
k +O(1) variables. As noted by Atıcı and Servedio [4],
this approach is doomed in the quantum setting because
these two cases can be distinguished in O(log k) quan-
tum queries as follows. For a function that depends on
only k + O(1) variables but is far from any k-junta, it
follows from Lemma 2.14 that at least one of the O(1)
“extra” variables has Ω(1) influence. Hence there ex-
ists a subset S ⊆ [n] of k + 1 variables each having
influence Ω(1). Each of those k + 1 variables will occur
in a Fourier Sample with constant probability, so the
probability that a fixed variable from S is not seen in
t Fourier Samples is exponentially small in t. By the
union bound, after t = O(log k) Fourier Samples, with
high probability all k + 1 variables of S will have been
seen and we can conclude the function is not a k-junta.

Instead of this, Atıcı and Servedio presented a
different approach based on distinguishing a k-junta
from a function that depends on k + Ω(k) variables.
Using this technique, they proved an Ω(

√
k) lower

bound for a special class of non-adaptive quantum
algorithms.

In this section, we give an explicit description of
the Atıcı-Servedio construction, and use it to prove a

quantum lower bound for the junta testing problem.
Consider the following problem.

Definition 6.1. (Testing the image size) An im-
age size tester, given oracle access to a function
g : [m] → [n], is required to distinguish whether the
image of g is of size at most `, or g is ε-far away from
any such function.

It turns out that a junta tester can be used to solve
this problem. The connection is through the following
ancillary function.

Definition 6.2. (Addressing function) Assume
that m is a power of two, and g : [m] → [n] is a func-
tion. We define the corresponding addressing function
f : {0, 1}n+logm → {±1} as follows. Interpret the input
string x of f as a concatenation yz with y ∈ {0, 1}n
and z ∈ {0, 1}logm = [m]. Then, f(x) = (−1)yg(z) . The
variables in y are called addressed variables, and the
variables in z are called the address variables.

It is easy to see that a quantum query to f can be
simulated by two quantum queries to g: one to compute
g(z), and one to uncompute it.

Lemma 6.3. For a function g : [m] → [n] with m
a power of 2, let f : {0, 1}n+logm → {±1} be the
corresponding addressing function. Let ` ≥ 1 be an
integer and define k = `+logm. If the size of the image
of g does not exceed `, then f is a k-junta. Conversely,
if g is ε-far from any function with an image of size
at most `, then f is ε′/2-far from any k-junta where
ε′ = ε− (logm)/k.

Proof. The first statement is obvious. So assume g is
ε-far from any function with an image of size at most `.
We claim that g is also ε′-far from any function with an
image of size at most k. Indeed, if h is a function with
image of size at most k, we can reduce its image to be
of size at most ` by modifying it on at most a (logm)/k
fraction of inputs corresponding to the “least popular”
outputs.

In order to show that f is ε′/2-far from any k-junta,
take an arbitrary k-subset W ⊆ [n + logm], and any
Boolean function h depending only on the variables in
W . We want to show that f is ε′/2-far from h. Indeed,
by the previous claim, at least ε′ fraction of the inputs to
g map to indices outside W ∩ [n]. For any such z ∈ [m],
and any y ∈ {0, 1}n, exactly one x ∈ {yz, y⊕g(z)z}
satisfies f(x) 6= h(x) (where x⊕j stands for x with the
jth bit flipped). Hence, the distance between f and h
is at least ε′/2.

Let us now state some corollaries of this result.
First, we get an upper bound on the quantum query
complexity of testing the support size.

Corollary 6.4. If logm = o(`), the image size can be
tested in O

(√
`/ε log `

)
quantum queries.

More importantly, however, we get a lower bound
on the quantum query complexity of junta testing. This
is based on the following well-known special case of the
image size testing problem.

Definition 6.5. (Collision Problem [20]) Let m
be an even integer, and n ∈ N. In the collision problem,
one is given oracle access to a function g : [m] → [n],
that is either 1-to-1 or 2-to-1. The task is decide which
is the case.

Brassard et al. [20] constructed a quantum O(m1/3)-
query algorithm for the collision problem. Later, Aaron-
son and Shi [1] proved a matching lower bound:

Theorem 6.6. The bounded-error quantum query com-
plexity of the collision problem is Ω(m1/3).

If g : [m]→ [n] is 2-to-1, then its image size is m/2
and the corresponding addressing function f depends on
only m/2+logm variables. On the other hand, if g is 1-
to-1, then its image size is m and f depends on m+logm
variables. Moreover, it follows from Lemma 6.3 that f
is 1/5-far from any (m/2 + logm)-junta if m is large
enough. Combined with Theorem 6.6, we get

Theorem 6.7. Every quantum tester that distinguishes
k-juntas from functions that are 1/5-far from any k-
junta with bounded error, needs to make Ω(k1/3) queries
to the function.

7 Conclusion and open problems.

In this paper we presented quantum algorithms for test-
ing several well known properties of Boolean functions.
Our main result is a quantum algorithm for the k-junta
testing problem with query complexity O(

√
k/ε log k),

and a time-efficient implementation of this based on a
new near-linear time implementation of a shallow ver-
sion of the quantum Fourier transform over the sym-
metric group. The query complexity of our tester is al-
most quadratically better than the best previous quan-
tum tester and also almost quadratically better than the
best-possible classical tester.

The topics for future work include:

1. Better lower bound for junta testing. The
main open question is: what is the actual quantum
query complexity of this problem?

We believe that the true answer is around
√
k/ε but

it is quite challenging to improve our current lower
bound of Ω(k1/3). Nevertheless, we think that
Lemma 6.3 may give a lower bound of Ω(k1/2−δ) for

any δ > 0. In particular, we think that it should be
possible to combine the lower bound construction
by Raskhodnikova et al. [40] with two recent devel-
opments in quantum lower bounds: Zhandry’s new
machinery for the polynomial method [47], which
he applied to the collision and the set equality prob-
lems [48], and Belovs’s and Rosmanis’s tight adver-
sary lower bounds for the same functions [13].

2. Better upper bound. Regarding the upper
bound, we wonder if the log k factor can be re-
moved. This question is essentially equivalent to
finding a solution to the adversary bound for the
GGT problem that works for all values of d si-
multaneously. By this, we mean a feasible solution
to (3.10) such that, when f is an IntersectsA func-
tion,

∑
S⊆[n]

XS [[f, f]] =

{
O(
√
k), if |A| = k;

O
(√

k
d

)
, if |A| = k + d > k.

Note that our current solution does not satisfy this
property because we use different rescaling for each
value of d. A different approach may be needed to
obtain this property.

3. Other applications of QGGT and our QFT.
Several of our algorithms are based on a quantum
algorithm for a group testing problem, QGGT,
which we find quite interesting in its own right, as
it shows a quartic quantum-over-classical speedup.
We think there might be more applications for
QGGT waiting to be found.

Acknowledgements. We thank Ashley Montanaro
for getting some of us interested in quantum junta
testers in the first place, and for initial discussions; Eric
Blais for some discussions about monotonicity testing,
and in particular for his suggestion to study the clas-
sical complexity of the GGT problem; Mark Zhandry
for answering a question about [48]; Alexander Rus-
sell for helpful discussions about the quantum Fourier
transform over the symmetric group; Aram Harrow for
answering a question about the Schur-Weyl transform;
and Jeroen Zuiddam for some helpful comments. We
thank the anonymous referees for many helpful sugges-
tions and bringing references [5, 31] to our attention.

References

[1] S. Aaronson and Y. Shi. Quantum lower bounds for
the collision and the element distinctness problems.
Journal of the ACM, 51(4):595–605, 2004.

[2] A. Ambainis. Quantum lower bounds by quantum
arguments. Journal of Computer and System Sciences,
64(4):750–767, 2002.

[3] A. Ambainis, K. Balodis, A. Belovs, T. Lee, M. Santha,
and J. Smotrovs. Separations in query complexity
based on pointer functions. 2015.

[4] A. Atıcı and R. A. Servedio. Quantum algorithms
for learning and testing juntas. Quantum Information
Processing, 6(5):323–348, 2007.

[5] D. Bacon, I. Chuang, and A. Harrow. Efficient quan-
tum circuits for Schur and Clebsch-Gordan transforms.
Physical Review Letters, 97(17):170502, 2006.

[6] D. Bacon, I. Chuang, and A. Harrow. The quantum
Schur and Clebsch-Gordan transforms: I. efficient
qudit circuits. In Proc. of 18th ACM-SIAM SODA,
pages 1235–1244, 2007.

[7] A. Belovs. Span programs for functions with constant-
sized 1-certificates. In Proc. of 44th ACM STOC, pages
77–84, 2012.

[8] A. Belovs. Applications of the Adversary Method in
Quantum Query Algorithms. PhD thesis, University of
Latvia, 2013.

[9] A. Belovs. Quantum algorithms for learning symmetric
juntas via the adversary bound. Computational Com-
plexity, 24(2):255–293, 2015.

[10] A. Belovs. Variations on quantum adversaries. 2015.
[11] A. Belovs and E. Blais. Quantum algorithm for

monotonicity testing on the hypercube. 2015.
[12] A. Belovs and B. W. Reichardt. Span programs

and quantum algorithms for st-connectivity and claw
detection. In Proc. of 20th ESA, volume 7501 of LNCS,
pages 193–204, 2012.

[13] A. Belovs and A. Rosmanis. Adversary lower bounds
for the collision and the set equality problems. 2013.

[14] S. Ben-David. A super-Grover separation between
randomized and quantum query complexities. 2015.

[15] E. Blais. Testing juntas nearly optimally. In Proc. of
41st ACM STOC, pages 151–158, 2009.

[16] E. Blais. Testing juntas: a brief survey. In Goldreich
[32], pages 32–40.

[17] E. Blais, J. Brody, and K. Matulef. Property testing
lower bounds via communication complexity. Compu-
tational Complexity, 21(2):311–358, 2012.

[18] M. Boyer, G. Brassard, P. Høyer, and A. Tapp. Tight
bounds on quantum searching. Fortschritte der Physik,
46(4-5):493–505, 1998.

[19] G. Brassard, P. Høyer, M. Mosca, and A. Tapp. Quan-
tum amplitude amplification and estimation. In Quan-
tum Computation and Quantum Information: A Mil-
lennium Volume, volume 305 of AMS Contemporary
Mathematics Series, pages 53–74, 2002.

[20] G. Brassard, P. Høyer, and A. Tapp. Quantum
cryptanalysis of hash and claw-free functions. In Proc.
of 3rd LATIN, volume 1380 of LNCS, pages 163–169.
Springer, 1998.

[21] H. Buhrman and R. de Wolf. Complexity measures
and decision tree complexity: a survey. Theoretical
Computer Science, 288:21–43, 2002.

[22] A. Chakrabarti and O. Regev. An optimal lower bound
on the communication complexity of gap Hamming
distance. SIAM Journal on Computing, 41(5):1299–
1317, 2012.

[23] Y. Cheng. An efficient randomized group testing proce-
dure to determine the number of defectives. Operations
Research Letters, 39(5):352–354, 2011.

[24] Y. Cheng and Y. Xu. An efficient FPRAS type
group testing procedure to approximate the number
of defectives. Journal of Combinatorial Optimization,
27(2):302–314, 2014.

[25] H. Chockler and D. Gutfreund. A lower bound for test-
ing juntas. Information Processing Letters, 90(6):301–
305, 2004.

[26] R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca.
Quantum algorithms revisited. Proceedings of the
Royal Society of London A: Mathematical, Physical and
Engineering Sciences, 454(1969):339–354, 1998.

[27] P. Damaschke and A. S. Muhammad. Bounds for
nonadaptive group tests to estimate the amount of
defectives. In Proc. of 4th COCOA, volume 6509 of
LNCS, pages 117–130. Springer, 2010.

[28] R. Dorfman. The detection of defective members
of large populations. The Annals of Mathematical
Statistics, 14(4):436–440, 1943.

[29] D. Z. Du and F. Hwang. Combinatorial group testing
and its applications, volume 3 of Series on Applied
Mathematics. World Scientific, 1993.

[30] E. Fischer, G. Kindler, D. Ron, S. Safra, and
A. Samorodnitsky. Testing juntas. Journal of Com-
puter and System Sciences, 68(4):753–787, 2004.

[31] D. Garćıa-Soriano. Query-Efficient Computation in
Property Testing and Learning Theory. PhD thesis,
CWI and University of Amsterdam, 2012.

[32] O. Goldreich, editor. Property Testing: Current Re-
search and Surveys, volume 6390 of LNCS. Springer,
2010.

[33] L. K. Grover. A fast quantum mechanical algorithm for
database search. In Proc. of 28th ACM STOC, pages
212–219, 1996.

[34] P. Høyer, T. Lee, and R. Špalek. Negative weights
make adversaries stronger. In Proc. of 39th ACM
STOC, pages 526–535, 2007.

[35] K. Iwama, H. Nishimura, R. Raymond, and
J. Teruyama. Quantum counterfeit coin problems.
Theoretical Computer Science, 456:51–64, 2012.

[36] A. Kitaev. Quantum measurements and the Abelian
stabilizer problem. 1995.

[37] E. Kushilevitz and N. Nisan. Communication Com-
plexity. Cambridge University Press, 1997.

[38] T. Lee, R. Mittal, B. W. Reichardt, R. Špalek, and
M. Szegedy. Quantum query complexity of state
conversion. In Proc. of 52nd IEEE FOCS, pages 344–
353, 2011.

[39] A. Montanaro and R. de Wolf. A survey of quantum
property testing. Theory of Computing, 2015. To
appear.

[40] S. Raskhodnikova, D. Ron, A. Shpilka, and A. Smith.

Strong lower bounds for approximating distribution
support size and the distinct elements problem. SIAM
Journal on Computing, 39(3):813–842, 2009.

[41] B. W. Reichardt. Span programs and quantum query
complexity: The general adversary bound is nearly
tight for every boolean function. In Proc. of 50th IEEE
FOCS, pages 544–551, 2009.

[42] B. W. Reichardt. Reflections for quantum query
algorithms. In Proc. of 22nd ACM-SIAM SODA, pages
560–569, 2011.

[43] B. W. Reichardt and R. Špalek. Span-program-based
quantum algorithm for evaluating formulas. Theory of
Computing, 8:291–319, 2012.

[44] B. E. Sagan. The symmetric group: representa-
tions, combinatorial algorithms, and symmetric func-
tions, volume 203 of Graduate Texts in Mathematics.
Springer, 2001.

[45] A. A. Sherstov. The communication complexity of gap
Hamming distance. Theory of Computing, 8(8):197–
208, 2012.

[46] W. van Dam and I. E. Shparlinski. Classical and
quantum algorithms for exponential congruences. In
Proc. of 3rd TQC, volume 5106 of LNCS, pages 1–10.
Springer, 2008.

[47] M. Zhandry. How to construct quantum random
functions. In Proc. of 53rd IEEE FOCS, pages 679–
687, 2012.

[48] M. Zhandry. A note on the quantum collision and set
equality problems. Quantum Information & Computa-
tion, 15(7&8):557–567, 2015.

