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Abstract

The rigidity of a matrix measures how many of its entries need to be changed in order to
reduce its rank to some value. Good lower bounds on the rigidity of an explicit matrix would
imply good lower bounds for arithmetic circuits as well as for communication complexity. Here
we reprove the best known bounds on the rigidity of the Hadamard matrix, due to Kashin
and Razborov, using tools from quantum computing. Our proofs are somewhat simpler than
earlier ones (at least for those familiar with quantum) and give slightly better constants. More
importantly, they give a new approach to attack this longstanding open problem.

1 Introduction

1.1 Rigidity

Suppose we have some n×n matrix M whose rank we want to reduce. The rigidity of M measures
the minimal number R of entries we need to change in order to reduce its rank to r. Formally:

RM (r) = min{weight(M − M̃) | rank(M̃) ≤ r},

where “weight” counts the number of non-zero entries. Here the rank could be taken over any field
of interest; in this paper we consider the complex field. Roughly speaking, high rigidity means that
M ’s rank is robust against changes: changes in few entries won’t change the rank much.

Rigidity was defined by Valiant [22, Section 6] in the 1970s with a view to proving circuit lower
bounds. In particular, he showed that an explicit n×n matrix M with RM (εn) ≥ n1+δ for ε, δ > 0
would imply that log-depth arithmetic circuits that compute the linear map M : R

n → R
n need

superlinear circuit size. Clearly, RM (r) ≥ n− r for every full-rank matrix (reducing the rank by 1
requires changing at least 1 entry). This bound is optimal for the identity matrix, but usually far
from tight. Valiant showed that most matrices have rigidity (n−r)2, but finding an explicit matrix
with high rigidity has been open for decades.

A very natural and widely studied candidate for such a high-rigidity matrix is the Hadamard
matrix. This is an orthogonal n×n matrix H with entries +1 and −1; such matrices exist whenever
n is a power of 2, but are conjectured to exist whenever n is a multiple of 4. Suppose we have a
matrix H̃ differing from H in R positions such that rank(H̃) ≤ r. The goal in proving high rigidity
is to lower bound R in terms of n and r. Alon [5] proved R = Ω(n2/r2), which was reproved by
Lokam [17] using spectral methods. Kashin and Razborov [11] improved this to R = Ω(n2/r). This
is currently the best known for the Hadamard matrix.
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In view of the difficulty in proving strong lower bounds on rigidity proper, Lokam [17] also
introduced a relaxed notion of rigidity. This limits the size of each change in entries to some
parameter θ > 0. Formally

RM (r, θ) = min{weight(M − M̃ ) | rank(M̃ ) ≤ r, ‖ M − M̃ ‖
∞

≤ θ},

where ‖ · ‖
∞

measures the largest entry (in absolute value) of its argument. For the Hadamard
matrix, Lokam proved the bound RH(r, θ) = Ω(n2/θ) if θ ≤ n/r and RH(r, θ) = Ω(n2/θ2) if
θ > r/n. In particular, if entries can change at most by a constant then the rigidity is Ω(n2). For
the case θ > r/n, Kashin and Razborov [11] improved the bound to RH(r, θ) = Ω(n3/rθ2). Study
of this relaxed notion of rigidity is further motivated by the fact that stronger lower bounds would
separate the communication complexity versions of the classes PH and PSPACE [17].

Apart from the Hadamard matrix, the rigidity of some other explicit matrices has been studied
as well, sometimes giving slightly better boundsRM (r) = Ω(n2 log(n/r)/r), for instance for Discrete
Fourier Transform matrices [9, 21, 16]. Very recently, Lokam [18] showed a near-optimal rigidity
bound RP (n/17) = Ω(n2) for the matrix P whose entries are the square roots of distinct primes,
and proved an Ω(n2/ log n) arithmetic circuit lower bound for the induced linear map P : R

n → R
n.

This matrix P , however, is “less explicit” than the Hadamard matrix and the rigidity bound has
no consequences for communication complexity because P is not a Boolean matrix. Moreover, the
same circuit lower bound was already shown by Lickteig [15] (see also [7, Exercise 9.5]) without the
use of rigidity.

1.2 Our contribution

In this paper we give new proofs of the best known bounds on the rigidity of the Hadamard matrix,
both the standard rigidity and the relaxed one:

• if r ≤ n/2, then RH(r) ≥ n2

4r

• RH(r, θ) ≥ n2(n− r)

2θn+ r(θ2 + 2θ)

Our constant in the former bound is a bit better than the one of Kashin and Razborov [11] (their
proof gives n2/256r). However, we feel our proof technique is more interesting than our precise re-
sult. As detailed in Section 2, the proof relies on interpreting an approximation H̃ of the Hadamard
matrix H as a quantum communication system, and then using quantum information theory bounds
from [19] to relate the rank of H̃ to the quality of its approximation.1 Actually our bounds hold
not just for the Hadamard matrix, but for every orthogonal matrix where all entries have the
same magnitude. This includes for instance the Discrete Fourier Transform matrices. However, for
definiteness we will state the results for the Hadamard matrix only.

This paper fits in a recent but fast-growing line of research where results about classical objects
are proved or reproved using quantum computational techniques. Other examples of this are lower
bounds for locally decodable codes and private information retrieval [13, 23], classical proof systems
for lattice problems derived from earlier quantum proof systems [3, 4], strong limitations on classical

1The connection between the Hadamard matrix and quantum communication was also exploited in the lower
bound for the communication complexity of inner product by Cleve et al. [8].
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algorithms for local search [1] inspired by an earlier quantum computation proof, a proof that the
complexity class PP is closed under intersection [2], formula size lower bounds from quantum lower
bounds [14], and a new approach to proving lower bounds for classical circuit depth using quantum
communication complexity [12].

It should be noted that the use of quantum computing is not strictly necessary for either of our
results. The first is proved in two steps: (1) using the quantum approach we show that every a× b
submatrix of H has rank at least ab/n and (2) using a non-quantum argument we show that an
approximation H̃ with small R contains a large submatrix of H and hence by (1) must have high
rank. The result of (1) was already proved by Lokam [17, Corollary 2.2] using spectral analysis,
so one may obtain the same result classically using Lokam’s proof for (1) and our argument for
(2). Either way, we feel the proof is significantly simpler than that of Kashin and Razborov [11],
who show that a random a × a submatrix of H has rank Ω(a) with high probability. Our proof
gives a better constant too: 1/4 instead of 1/256. In contrast, the quantum aspects of our proof
for the bound on RH(r, θ) cannot easily be replaced by a classical argument, but that proof is
not significantly simpler than the one of Kashin and Razborov (which uses the Hoffman-Wielandt
inequality) and the constant is essentially the same.

Despite this, we feel our quantum approach has merit for two reasons. First, it unifies the two
results, both of which are now proved from the same quantum information theoretic idea. And
second, using quantum computational tools gives a whole new perspective on the rigidity issue,
and might just be the new approach we need to solve this longstanding open problem. Our hope
is that these techniques not only reprove the best known bounds, but will also push them further.

2 Relation to quantum communication

Very briefly, an r-dimensional quantum state is a unit vector of complex amplitudes, written |φ〉 =∑r
i=1 αi|i〉 ∈ C

r. Here |i〉 is the r-dimensional vector that has a 1 in its ith coordinate and 0s
elsewhere. The inner product between |φ〉 and |ψ〉 =

∑r
i=1 βi|i〉 is 〈φ|ψ〉 =

∑
i α

∗

i βi. A (projective)
measurement is an orthogonal set of projectors {Pi}. If this measurement is applied to some state
|φ〉, the probability of obtaining outcome i is given by the squared norm ‖ Pi|φ〉 ‖2. If {|vi〉} is an
orthonormal basis, then a measurement in this basis corresponds to the projectors Pi = |vi〉〈vi|.
In this case the probability of outcome i is ‖ Pi|φ〉 ‖2 = |〈vi|φ〉|2. We refer to [20] for more details
about quantum computing.

Our proofs are instantiations of the following general idea, which relates (approximations of)
the Hadamard matrix to quantum communication. Let H be an n×n Hadamard matrix. Its rows,
after normalization by a factor 1/

√
n, form an orthonormal set known as the Hadamard basis. If

Alice sends Bob the n-dimensional quantum state |Hi〉 corresponding to the normalized ith row of
H, and Bob measures the received state in the Hadamard basis, then he learns i with probability 1.

Now suppose that instead of H we have some rank-r n × n matrix H̃ that approximates H in
some way or other. Then we can still use the quantum states |H̃i〉 corresponding to its normalized
rows for quantum communication. Alice now sends the state |H̃i〉. Crucially, she can do this by
means of an r-dimensional quantum state. Let |v1〉, . . . , |vr〉 be an orthonormal basis for the row
space of H̃. In order to send |H̃i〉 =

∑r
j=1 αj |vj〉, Alice sends

∑r
j=1 αj |j〉 and Bob applies the

unitary map |j〉 7→ |vj〉 to obtain |H̃i〉. He measures this in the Hadamard basis, and now his
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probability of getting the correct outcome i is

pi = |〈Hi|H̃i〉|2.

The “quality” of these pi’s correlates with the “quality” of H̃: the closer the ith row of H̃ is to the
ith row of H, the closer pi will be to 1.

Accordingly, Alice can communicate a random element i ∈ [n] via an r-dimensional quantum
system, with average success probability p =

∑n
i=1 pi/n. But now we can apply the following upper

bound on the average success probability, due to Nayak [19, Theorem 2.4.2] (see Appendix A):

p ≤ r

n
.

Intuitively, the “quality” of the approximation H̃, as measured by the average success probability
p, gives a lower bound on the required rank r of H̃. Below we instantiate this idea in two different
ways to get our two bounds.

3 Bound on RH(r)

The next theorem was proved by Lokam [17, Corollary 2.7] using some spectral analysis. We reprove
it here using a quantum argument.

Theorem 1 (Lokam) Every a× b submatrix A of H has rank r ≥ ab/n.

Proof. Obtain rank-r matrix H̃ from H by setting all entries outside of A to 0. Consider the a
quantum states |H̃i〉 corresponding to the nonempty rows; they have normalization factor 1/

√
b.

For each such i, Bob’s success probability is

pi = |〈Hi|H̃i〉|2 =

∣∣∣∣
b√
bn

∣∣∣∣
2

=
b

n
.

But we’re communicating one of a possibilities using r dimensions, so Nayak’s bound implies

1

n

n∑

i=1

pi = p ≤ r

a
.

Combining both bounds gives the theorem. 2

Surprisingly, Lokam’s result allows us quite easily to derive Kashin and Razborov’s [11] bound
on rigidity, which is significantly stronger than Lokam’s (and Alon’s). We also obtain a slightly
better constant than [11]: their proof gives 1/256 instead of our 1/4. This is the best bound known
on the rigidity of the Hadamard matrix.

Theorem 2 If r ≤ n/2, then RH(r) ≥ n2/4r.

Proof. Consider some rank-r matrix H̃ with at most R = RH(r) “errors” compared to H. By
averaging, there exists a set of a = 2r rows of H̃ with at most aR/n errors. Now consider the
submatrix A of H̃ consisting of those a rows and the b ≥ n− aR/n columns that have no errors in
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those a rows. If b = 0 then R ≥ n2/2r and we are done, so we can assume A is nonempty. This A
is errorfree, hence a submatrix of H itself, and the previous theorem implies

r = rank(H̃) ≥ rank(A) ≥ ab

n
≥ a(n− aR/n)

n
.

Rearranging gives the theorem. 2

4 Bound on RH(r, θ)

We now consider the case where the maximal change in entries of H is bounded by θ.

Theorem 3 RH(r, θ) ≥ n2(n − r)

2θn+ r(θ2 + 2θ)
.

Proof. Consider some rank-r matrix H̃ with at most R = RH(r, θ) errors, and ‖ H − H̃ ‖
∞

≤ θ.
As before, define the quantum states corresponding to its rows:

|H̃i〉 = ci

n∑

j=1

H̃ij|j〉,

where ci = 1/
√∑

j H̃
2
ij is a normalizing constant. Note that

∑
j H̃

2
ij ≤ (n − ∆(Hi, H̃i)) +

∆(Hi, H̃i)(1 + θ)2 = n + ∆(Hi, H̃i)(θ
2 + 2θ), where ∆(·, ·) measures Hamming distance. Bob’s

success probability pi is now

pi = |〈Hi|H̃i〉|2 ≥ c2i
n

(n− θ∆(Hi, H̃i))
2 ≥ c2i (n − 2θ∆(Hi, H̃i)) ≥

n− 2θ∆(Hi, H̃i)

n+ ∆(Hi, H̃i)(θ2 + 2θ)
.

Since pi is a convex function of Hamming distance, we also get a lower bound for the average:

p ≥ n− 2θR/n

n+R(θ2 + 2θ)/n
.

Nayak’s bound implies p ≤ r/n. Rearranging gives the theorem. 2

For θ ≥ n/r we obtain the second result of Kashin and Razborov [11]:

RH(r, θ) = Ω(n2(n− r)/rθ2).

If θ ≤ n/r we get an earlier result of Lokam [17]:

RH(r, θ) = Ω(n(n− r)/θ).

5



5 Discussion

As mentioned in the introduction, this paper is the next in a recent line of papers about classical
theorems with quantum proofs. So far, these results are somewhat ad hoc and it is hard to see what
unifies them other than the use of some quantum mechanical apparatus. A “quantum method”
in analogy to the “probabilistic method” [6] is not yet in sight but would be a very intriguing
possibility. Using quantum methods as a mathematical proof tool shows the usefulness of the
study of quantum computers, quantum communication protocols, etc., irrespective of whether a
large quantum computer will ever be built in the lab. Using the methods introduced here to prove
stronger rigidity lower bounds would enhance this further.

Most lower bounds proofs for RM (r) in the literature (including ours) work in two steps: (1)
show that all or most submatrices of M have fairly large rank, and (2) show that if the number

of errors R is small, there is some (or many) big submatrix of M̃ that is uncorrupted. Such an

uncorrupted submatrix of M̃ is a submatrix of M and hence by (1) will have fairly large rank. As
Lokam [16] observes, this approach will not yield much stronger bounds on rigidity than we already

have: it is easy to show that a random set of R = O(max(a,b)n2

ab
log(n/max(a, b))) positions hits

every a× b submatrix of an n × n matrix. Lokam’s [18] recent Ω(n2) rigidity bound for a matrix
consisting of the roots of distinct primes indeed does something quite different, but unfortunately
this technique will not work for matrices over {+1,−1} like the Hadamard matrix.

One idea that would give a stronger lower bound for RH(r) is the following. We used the result
that every a× b submatrix of H has rank at least ab/n. This bound is tight for some submatrices
but too weak for others. We conjecture (or rather, hope) that submatrices for which this bound
is more or less tight, are very “redundant” in the sense that each or most of its rows are spanned
by many sets of rows of the submatrix. Such a submatrix can tolerate a number of errors without
losing much of its rank, so then we don’t need to find an uncorrupted submatrix of H̃ (as in the
current proof), but could settle for a submatrix with little corruption.
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A Proof of Nayak’s bound

For the sake of completeness, in this appendix we include Nayak’s elegant proof of his upper bound
on the average success probability of a low-dimensional quantum encoding [19, Theorem 2.4.2].

Consider an encoding i 7→ |φi〉 of i ∈ [n] into an r-dimensional space with orthonormal basis
|1〉, . . . , |r〉. Let Q be the projector on this space. Suppose there is a measurement with orthogonal
projectors P1, . . . , Pn (possibly on a larger space) and success probabilities

pi = Pr[measuring |φi〉 gives outcome i] = ‖ Pi|φi〉 ‖2.

Diagonalize Pi =
∑

j∈Si
|vij〉〈vij |. Note that the set of all |vij〉 forms on orthonormal basis of the

whole Hilbert space on which the measurement acts, hence
∑n

i=1

∑
j∈Si

|〈φ|vij〉|2 = ‖ |φ〉 ‖2 for
every state |φ〉 in this space. Now

pi = ‖ Pi|φi〉 ‖2 =
∑

j∈Si

|〈vij |φi〉|2 ≤
∑

j∈Si

‖ Q|vij〉 ‖2 =
∑

j∈Si

r∑

k=1

|〈k|vij〉|2,

and
n∑

i=1

pi ≤
n∑

i=1

∑

j∈Si

r∑

k=1

|〈k|vij〉|2 =

r∑

k=1

n∑

i=1

∑

j∈Si

|〈k|vij〉|2 =

r∑

k=1

‖ |k〉 ‖2 = r.

This implies p =
∑n

i=1 pi/n ≤ r/n for the average success probability.
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