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Abstract

We study the simultaneous message passing model of communication complexity. Building
on the quantum fingerprinting protocol of Buhrman et al., Yao recently showed that a large
class of efficient classical public-coin protocols can be turned into efficient quantum protocols
without public coin. This raises the question whether this can be done always, i.e. whether
quantum communication can always replace a public coin in the SMP model. We answer this
question in the negative, exhibiting a communication problem where classical communication
with public coin is exponentially more efficient than quantum communication. Together with
a separation in the other direction due to Bar-Yossef et al., this shows that the quantum SMP
model is incomparable with the classical public-coin SMP model.

In addition we give a characterization of the power of quantum fingerprinting by means of
a connection to geometrical tools from machine learning, a quadratic improvement of Yao’s
simulation, and a nearly tight analysis of the Hamming distance problem from Yao’s paper.

1 Introduction

1.1 Setting

The area of communication complexity deals with the amount of communication required for solving
computational problems with distributed input. This area is interesting in its own right, but also
has many applications to lower bounds on circuit size, data structures, etc. The simultaneous
message passing (SMP) model involves three parties: Alice, Bob, and a referee. Alice gets input x,
Bob gets input y. They each send one message to the referee, to enable him to compute something
depending on both x and y, such as a Boolean function or some relational property. The cost or
complexity of a communication protocol is the length of the total communication for a worst-case
input, and the complexity of a problem is the cost of the best protocol.

The SMP model is arguably the weakest setting of communication complexity that is still
interesting. Even this simple setting is not well understood. In the case of deterministic protocols,
the optimal communication is determined by the number of distinct rows (and columns) in the
communication matrix, which is a simple property. However, as soon as we add randomization
to the model things become much more complicated. For one, we can choose to either add public
or private coin flips. In more general communication models this difference affects the optimal
communication by at most an additive O(log n) [19], but in the SMP model the difference can be
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huge. For example, the equality function for n-bit strings requires about
√
n bits of communication

if the parties have only a private coin [1, 20, 2], but only constant communication with a public coin!
No simple characterization of public-coin or private-coin communication complexity is known.1

The situation becomes more complicated still when we throw in quantum communication.
Buhrman et al. [6] exhibited a no-coin quantum protocol for the equality function with O(log n)
qubits of communication. This is exponentially better than classical private-coin protocols, but
slightly worse than public-coin protocols. Roughly speaking, their quantum fingerprinting tech-
nique may be viewed as replacing the shared randomness by a quantum superposition. This idea
was generalized by Yao [23], who showed that every public-coin protocol with c-bit messages for
a Boolean function can be simulated by a quantum fingerprinting protocol that uses O(24c log n)
qubits of communication. In particular, every O(1)-bit public-coin protocol can be simulated by
an O(log n)-qubit quantum protocol without public coin. Again, quantum superposition essentially
replaces shared randomness in his construction.

1.2 Our results

This raises the question whether something similar always holds in the SMP model: can every
efficient classical public-coin protocol be efficiently simulated by some quantum protocol without
public coin? (Here we do not allow the quantum Alice and Bob to start with an entangled state,
since this could simulate a public coin for free.) Since the appearance of Yao’s paper, quite a
number of people have tried to address this. Our main result is a negative answer to this question.
Suppose Alice receives input x ∈ {0, 1}n and Bob receives y, s ∈ {0, 1}n with the property that s
has Hamming weight n/2. The referee is required to output a triple (i, xi, yi) for an i satisfying
si = 1, but he is also allowed to output “don’t know” with some small probability ε. We prove
that public-coin protocols can solve this task with O(log n) bits of communication, while every
quantum protocol needs Ω(

√
n) qubits of communication. This shows for the first time that the

resource of public coin flips cannot efficiently be traded for quantum communication. Our proof of
the quantum lower bound may be of wider interest for the way it treats the independence of Alice’s
and Bob’s messages.

Yao’s exponential simulation can be made to work for relations as well, and our quantum
lower bound shows that it is essentially optimal, since the required quantum communication is
exponentially larger than the classical public-coin complexity for our relational problem. We expect
a similar gap to hold for (promise) Boolean functions as well. In Section 4 we describe a function for
which we conjecture an exponential gap. So far, we have not been able to prove this. Our separation
complements a separation in the other direction: Bar-Yossef et al. [3] exhibited a relational problem
where quantum SMP protocols are exponentially more efficient than classical SMP protocols even
with a public coin (also in their case it is open whether there is a similar gap for a Boolean function).
Accordingly, the quantum SMP model is incomparable with the classical public-coin SMP model.

In addition to our main result, we address some other open problems from Yao’s paper. A
quantum fingerprinting protocol is one based on estimating the inner product between a fingerprint
of Alice’s input and a fingerprint of Bob’s input. Both the protocols of Buhrman et al. [6] and of
Yao [23] are based on this technique. Our main result says that no quantum protocol can efficiently
solve the above relational task, so in particular quantum fingerprinting protocols are not able to

1Kremer et al. [16] claimed a characterization of public-coin complexity as the largest of the two one-way commu-
nication complexities, but Bar-Yossef et al. [4, Section 4] exhibited a function where their characterization fails.

2



do this. Still, quantum fingerprinting is the only technique we know to get interesting quantum
protocols in the SMP model, and it makes sense to study this technique in detail. In Section 4 we
analyze the power of quantum fingerprinting, and tightly characterize it in terms of the optimal
margin achievable by realizations of the computational problem via an arrangement of homogeneous
halfspaces. The latter notion is well studied in machine learning. We also give a small improvement
of Yao’s simulation for Boolean functions in Section 5, by shaving a factor of 2 from the exponent.
A similar improvement has independently been observed by Chakrabarti and Regev [7] and by
Golinsky and Sen [12]. The latter also extend Yao’s definition of convex width. Finally, we give
nearly tight bounds on the quantum SMP complexity of the Hamming distance problem, which
was the main application of Yao’s simulation in his paper.

2 Preliminaries

Communication complexity, in particular the simultaneous message passing model discussed here, is
very intuitive so we will not provide formal definitions. Instead we refer to Kushilevitz and Nisan [17]
for classical communication complexity and to the surveys [15, 5, 22] for the quantum variant. We

use R
‖
ε(P ), R

‖,pub
ε (P ), Q

‖
ε(P ) to denote, respectively, the classical private-coin, classical public-

coin, and quantum private-coin communication complexities with worst-case error probability ε for
a distributed problem P . When the subscript is omitted, we take ε = 1/3.

The essentials needed for this paper are quantum states and their measurement. First, an
m-qubit pure state is a superposition |φ〉 =

∑

z∈{0,1}m αz|z〉 over all classical m-bit states. The

αz’s are complex numbers called amplitudes, and
∑

z |αz|2 = 1. Hence a pure state |φ〉 is a unit
vector in C

2m

. Its complex conjugate (a row vector with entries conjugated) is denoted 〈φ|. The
inner product between |φ〉 and |ψ〉 =

∑

z βz |z〉 is the dot product 〈φ| · |ψ〉 = 〈φ|ψ〉 =
∑

z α
∗
zβz.

The norm of a vector v is ‖ v ‖ =
√

〈v|v〉. Second, a mixed state ρ =
∑

i pi|φi〉〈φi| corresponds to
a probability distribution over pure states, where |φi〉 is given with probability pi. A k-outcome
positive operator-valued measurement (POVM) is given by k positive operators E1, . . . , Ek with the
property that

∑k
i=1Ei = I. When this POVM is applied to a mixed stated ρ, the probability of the

i-th outcome is given by the trace Tr(Eiρ). We refer to Nielsen and Chuang [21] for more details.

3 Exponential Separation for a Relation

In this section we prove our main result: we separate classical public-coin SMP protocols from
quantum protocols, by exhibiting a problem where the latter requires exponentially more commu-
nication. Consider the following relational problem P :

Input: Alice receives input x ∈ {0, 1}n, Bob receives y, s ∈ {0, 1}n with |s| = n/2.
Output: with probability ≥ 1 − ε output (i, xi, yi) s.t. si = 1, otherwise “don’t know”.

This problem is easy for public coin-protocols, R
‖,pub
ε (P ) = O(log n log(1/ε)): Alice and Bob just

send (i, xi) and (i, yi, si), respectively, to the referee for log(1/ε) public random i’s. With probability
1− ε, si = 1 for at least one of those i’s and the referee outputs the corresponding (i, xi, yi). With
probability ε he doesn’t see an i for which si = 1, in which case he outputs “don’t know”. We
assume here that the public coin is shared by Alice and Bob, not by the referee. If we also allow
the referee to view the coin, the classical public-coin complexity drops to O(log(1/ε)). Below we
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show that we cannot trade the public coin for quantum communication: quantum SMP protocols
need to communicate Ω(

√
n) qubits to solve this task.

Consider a quantum protocol that solves P and where Alice and Bob each send m-qubit mes-
sages. Let αx and βys denote Alice’s and Bob’s messages produced in response to the given x and
(y, s), respectively. These may be mixed states, reflecting private randomness.

Alice’s message cannot predict many xi’s well.

Define states αi0 =
1

2n−1

∑

x:xi=0

αx, αi1 =
1

2n−1

∑

x:xi=1

αx, and α =
1

2n

∑

x

αx =
1

2
αi0 +

1

2
αi1.

Suppose we have a quantum measurement that does the following: given i, and either αi0 or αi1

(each with probability 1/2), with probability ai it outputs xi (either 0 or 1), and with probability
1 − ai it outputs “don’t know”. We will use quantum information theory to show that most ai’s
must be fairly small. The “average message” α carries at least ai bits of information about xi. By
Holevo’s theorem [13], the m-qubit α cannot contain more than m bits of information, hence

n
∑

i=1

ai ≤ m.

By Markov’s inequality, there exist n/2 i’s satisfying ai ≤ 2m/n. In what follows, fix s to the n-bit
string corresponding to those n/2 i’s.

Bob’s message cannot predict many yi’s well.
We similarly analyze Bob’s average message βys for our fixed s. Define βi0 and βi1 as before. Let
bi be the maximal probability with which we can output yi, given i and one of βi0 or βi1. Then

n
∑

i=1

bi ≤ m.

Predictions of xi and yi are essentially independent.
Now consider the referee. He does his measurement on the state αx ⊗ βys, and with probability pi

(probability taken over random x and y), outputs (i, xi, yi), and with probability p? ≤ ε he outputs
“don’t know”. We now want to show that pi = O(aibi). This follows from the next lemma, which
has the flavor of a “direct product theorem” from computational complexity.

Lemma 1 A zero-error measurement for mixed states α0 and α1 is a 3-outcome measurement that
outputs 0 or ? given α0, and outputs 1 or ? given α1. Its success probability is the probability
that it outputs 0 or 1 under a uniform distribution over α0 and α1. Let a be the maximal success
probability over all zero-error measurements for α0 and α1 (so 1 − a is the probability of output
?). Define b similarly for mixed states β0 or β1, and p for 5-outcome zero-error measurements for
α0 ⊗ β0, α0 ⊗ β1, α1 ⊗ β0, and α1 ⊗ β1. Then p ≤ 4ab.

Proof. Define a(0) = maxM Pr[measurement outputs 0 given α0], where M is the set of zero-error
measurements for α0 and α1. Similarly define a(1). Then it is easy to see that

1

2
max(a(0), a(1)) ≤ a ≤ 1

2
(a(0) + a(1)). (1)

We can similarly define b(0) and b(1) for the measurement on β0 or β1, and p(00), p(01), p(10), p(11) for
the measurement on α0 ⊗ β0, α0 ⊗ β1, α1 ⊗ β0, α1 ⊗ β1. In particular

p ≤ 1

4
(p(00) + p(01) + p(10) + p(11)). (2)
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Now we will show that p(cd) = a(c)b(d) for c, d ∈ {0, 1}. Without loss of generality assume c = d = 0.
Call S0 the support of α0 (i.e. the span of the eigenstates with non-zero weight of α0), S⊥

0 its
orthogonal complement, and similarly T0 and T ⊥

0 for β0. Note that because the measurement has
zero error the support of the measurement operators corresponding to output “0” have to be in
S⊥

1 . Clearly the measurement that maximizes a(0) is the projection onto S⊥
1 and a(0) = Tr(α0|S⊥

1

).

Similarly b(0) = Tr(β0|T ⊥
1

)). To determine the measurement on α0 ⊗ β0 that gives the maximum

p(00) note that each zero-error measurement to determine α0 ⊗ β0 has to be in the intersection
I = (S0×T1)

⊥∩(S1×T0)
⊥∩(S1×T1)

⊥. Expanding (S0×T1)
⊥ = (S⊥

0 ×T ⊥
1 )⊕(S0×T ⊥

1 )⊕(S⊥
0 ×T1)

and similarly for the other terms we obtain I = S⊥
1 ×T ⊥

1 , so the optimal measurement is a projection
on I, giving p(00) = Tr[(α0⊗β0)|(S⊥

1
×T ⊥

1
)] = Tr(α0|S⊥

1

)Tr(β0|T ⊥
1

) = a(0)b(0). The lemma now follows

from (1) and (2): p ≤ 1
4(a(0)b(0) + a(0)b(1) + a(1)b(0)0 + a(1)b(1)) ≤ 1

4(4 · 2a2b) = 4ab. 2

Wrapping up the lower bound.
Combining these building blocks gives m = Ω(

√
n):

1 − ε ≤ Pr[referee outputs (i, xi, yi) for some i with si = 1]

≤
∑

i:si=1

pi ≤
∑

i:si=1

4aibi ≤
8m

n

n
∑

i=1

bi ≤
8m2

n
.

A matching classical upper bound.
This Ω(

√
n) bound is tight, witness the following classical private-coin protocol, inspired by [1].

Alice and Bob view n-bit strings as
√
n × √

n squares (we ignore rounding for simplicity). Alice
sends the referee a randomly chosen row of x, with its column-index, at the cost of

√
n + log

√
n

bits. Bob sends the referee a randomly chosen column of y, with its index, and the same column
of s at the cost of 2

√
n+ log

√
n bits. Alice’s row and Bob’s column intersect in exactly one point

i ∈ [n], so for one (uniformly random) i the referee now has i, xi, yi, si. With probability 1/2, si = 1
and the referee is done. Repeating this log(1/ε) times costs O(

√
n log(1/ε)) bits and has error ≤ ε.

We summarize the exponential separation in our main theorem:

Theorem 1 For the problem P we have R‖,pub(P ) = Θ(log n) and R‖(P ), Q‖(P ) = Θ(
√
n).

Remark: R‖,pub(P ) = Ω(log n) follows from Q‖(P ) = Θ(
√
n) and from the extension of Yao’s

exponential simulation to relations (as outlined at the end of Section 5). That simulation result is
no longer true if the referee sees the shared random string, since R‖,pub(P ) drops to constant then.

4 Characterization of Quantum Fingerprinting

As mentioned, all nontrivial and nonclassical quantum SMP protocols known are based on a tech-
nique called quantum fingerprinting. Here we will analyze the power of protocols that employ this
technique, and show that it is closely related to a well studied notion from computational learning
theory. This addresses the 4th open problem Yao states in [23]. In particular, we will show that
such quantum fingerprinting protocols cannot efficiently compute many Boolean functions for which
there is an efficient classical public-coin protocol.
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Consider quantum protocols where Alice sends a q-qubit state |αx〉, Bob sends a q-qubit state
|βy〉, and the referee does the 2-outcome “swap test” [6]. This test outputs 0 with probability

1

2
+

|〈αx|βy〉|2
2

.

They repeat this r times in parallel, and the referee determines his output based on the r bits
that are the outcomes of his r swap tests. We will call such protocols “repeated fingerprinting
protocols”. The cost of the protocol is 2qr. For simplicity we assume all amplitudes are real.
A quantum protocol of this form can only work efficiently if we can ensure that |〈αx|βy〉|2 ≤ δ0
whenever f(x, y) = 0 and |〈αx|βy〉|2 ≥ δ1 whenever f(x, y) = 1. Here δ0 < δ1 should be reasonably
far apart, otherwise r would have to be too large to distinguish the two cases. A statistical argument
shows that r = Θ(1/(δ1−δ0)2) is necessary and sufficient. We now define two geometrical concepts:

Definition 1 Let f : D → {0, 1}, with D ⊆ X × Y , be a distributed, possibly partial, Boolean
function. Consider an assignment of unit vectors αx ∈ R

d, βy ∈ R
d to all x ∈ X and y ∈ Y .

This assignment is called a (d, δ0, δ1)-threshold embedding of f if |〈αx|βy〉|2 ≤ δ0 for all (x, y) ∈
f−1(0) and |〈αx|βy〉|2 ≥ δ1 for all (x, y) ∈ f−1(1).

The assignment is called a d-dimensional realization of f with margin γ > 0 if 〈αx|βy〉 ≥ γ for
all (x, y) ∈ f−1(0) and 〈αx|βy〉 ≤ −γ for all (x, y) ∈ f−1(1).

Lemma 2 If there is a (d, δ0, δ1)-threshold embedding of f , then there is a (d2 + 1)-dimensional
realization of f with margin γ = (δ1 − δ0)/(2 + δ1 + δ0).

Conversely, if there is a d-dimensional realization of f with margin γ, then there is a (d +
1, δ0, δ1)-threshold embedding of f with δ0 = (1 − γ)2/4 and δ1 = (1 + γ)2/4.

Proof. Let αx, βy be the vectors in a (d, δ0, δ1)-threshold embedding of f . For a = (δ1 + δ0)/(2 +
δ1 + δ0), define new vectors α′

x = (
√
a,
√

1 − a · αx ⊗ αx) and β′y = (
√
a,−

√
1 − a · βy ⊗ βy). These

are unit vectors of dimension d2 + 1. Now

〈α′
x|β′y〉 = a− (1 − a)|〈αx|βy〉|2.

If (x, y) ∈ f−1(1), then |〈αx|βy〉|2 ≥ δ1 and hence 〈α′
x|β′y〉 ≤ a − (1 − a)δ1 = −γ. Similarly,

〈α′
x|β′y〉 ≥ γ for (x, y) ∈ f−1(0).
For the converse, let αx, βy be the vectors in a d-dimensional realization of f with margin γ.

Define new (d+ 1)-dimensional unit vectors α′
x = (1, αx)/

√
2 and β′y = (1,−βy)/

√
2. Now

|〈α′
x|β′y〉|2 =

1

4
(1 − 〈αx|βy〉)2 .

If (x, y) ∈ f−1(1), then 〈αx|βy〉 ≤ −γ and hence |〈α′
x|β′y〉|2 ≥ 1

4 (1 + γ)2 = δ1. A similar argument

shows |〈α′
x|β′y〉|2 ≤ 1

4 (1 − γ)2 = δ0 for (x, y) ∈ f−1(0). 2

Our notion of a “threshold embedding” is essentially Yao’s [23, Section 6, question 4], except
that we square the inner product instead of taking its absolute value, since it’s the square that
appears in the swap test’s probability. Clearly, threshold embeddings and repeated fingerprinting
protocols are essentially the same thing. The notion of a “realization” is computational learning
theory’s notion of the realization of a concept class by an arrangement of homogeneous halfspaces.
The tradeoffs between dimension d and margin γ have been well studied [9, 10, 11]. In particular,
we can invoke a bound on the best achievable margin of realizations due to Forster [9]:
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Theorem 2 (Forster) For f : X×Y → {0, 1}, define the |X|×|Y |-matrix M by Mxy = (−1)f(x,y).
Every realization of f (irrespective of its dimension) has margin γ at most γ ≤ ‖M ‖/

√

|X| · |Y |,
where ‖M ‖ is the operator norm (largest singular value) of M . In particular, if f : {0, 1}n ×
{0, 1}n → {0, 1} is the inner product function, then ‖M ‖ =

√
2n and hence γ ≤ 1/

√
2n.

Combining this with Lemma 2, we see that a (d, δ1, δ0)-threshold embedding of the inner product
function has δ1−δ0 = O(1/

√
2n). In repeated fingerprinting protocols, we then need r ≈ 2n different

swap tests to enable the referee to reliably distinguish 0-inputs from 1-inputs! Now consider the
following promise function, using blocks of inner product functions (IP(x, y) =

∑

j xjyj mod 2):

Let x = x1 . . . xm and y = y1 . . . ym, for m = n/ log n and xi, yi ∈ {0, 1}log n.
Promise: there is a b ∈ {0, 1} such that IP(xi, yi) = b for at least 2/3 of the i.
Output: f(x, y) = b

Clearly, R‖,pub(f) ≤ 2 log n: Alice and Bob just pick a shared random i and send xi and yi to
the referee, who outputs IP(xi, yi). In contrast, f cannot be computed efficiently by a repeated
fingerprinting protocol: for bitstrings a, b ∈ {0, 1}log n, set xi = a and yi = b for all i ≤ m/3, and fix
the other 2m/3 (xi, yi)-blocks such that half of them have inner product 0 and the other half has
inner product 1. Then f(x, y) = IP(a, b). Since any repeated fingerprinting protocol needs about
n qubits to compute IP on log n qubits, the same lower bound applies to our promise function
f . This shows that Yao’s exponential simulation of public-coin protocols by repeated fingerprint-
ing protocols cannot be improved much without going outside the fingerprinting framework. We
actually conjecture that all quantum SMP protocols need Ω(

√
n) qubits for this function.

In general, the preceding arguments show that we can’t have an efficient repeated fingerprinting
protocol if f cannot be realized with large margin. If the largest achievable margin is γ, the protocol
will need Ω(1/γ2) copies of |αx〉 and |βy〉. If all rows or all columns of the matrix M are distinct,
then we know that |αx〉 and |βy〉 need Ω(log n) qubits, which gives an Ω(log(n)/γ2) lower bound.
We now show that this lower bound is essentially optimal. Consider a realization of f with maximal
margin γ. Its vectors may have very high dimension, but nearly the same margin can be achieved
via a random projection to fairly low dimension [10, Section 5, Lemma 2]:

Lemma 3 (FKLMSS) A d-dimensional realization of f with margin γ can be converted into an
O((n/γ)2)-dimensional realization of f with margin γ/2.

Using Lemma 2, this gives us a (d, δ1, δ0)-threshold embedding of f with d = O((n/γ)2), δ0 =
(1−γ/2)2/4 and δ1 = (1+γ/2)2/4. Note that δ1−δ0 = γ/2. This translates directly into a repeated
fingerprinting protocol with states |αx〉 and |βy〉 of d dimensions, hence O(log(n/γ)) qubits, and
r = O(1/γ2). For example, if f is equality then γ is constant, which implies an O(log n)-qubit
repeated fingerprinting protocol for equality (of course, we already had one with r = 1). In sum:

Theorem 3 For f : X × Y → {0, 1}, define the |X| × |Y |-matrix M by Mxy = (−1)f(x,y), and
let γ denote the largest margin among all realizations of M . There exists a repeated fingerprinting
protocol for f that uses r = O(1/γ2) copies of O(log(n/γ))-qubit states. Conversely, every repeated
fingerprinting protocol for f needs Ω(1/γ2) copies of its |αx〉 and |βy〉 states.
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5 An Improved Exponential Upper Bound

We now describe a way to simulate a given classical public-coin protocol for a Boolean function f
by means of a quantum fingerprinting scheme. We assume for simplicity that all Alice’s messages
are c bits (our simulation actually gets better if one party’s messages are shorter than the other’s).
While Yao’s simulation from [23] took O(24c(c + log n)) qubits, ours takes O(22c(c + log n)) and
is arguably a bit simpler as well. We may assume that the protocol uses only log n +O(1) bits of
randomness, i.e., n′ = O(n) possible random strings r, each equally likely, and that the referee is
deterministic [19]. Let arx be the c-bit message that Alice sends with random string r and input
x, and similarly bry for Bob’s c-bit messages. Let R(a, b) ∈ {0, 1} denote the referee’s output given
messages a and b. Then the acceptance probability of the protocol on input x and y is

P (x, y) =
1

n′
∑

r

R(arx, bry).

This differs from f(x, y) by at most ε = 1/3. We will derive a reasonably good threshold embedding
from this. For Ary = {a : R(a, bry) = 1}, define

|αx〉 =
1√
n′

∑

r

|r〉|arx〉 and |βy〉 =
1√
n′

∑

r

|r〉





1√
2c

∑

a∈Ary

|a〉 +

√

2c − |Ary|
2c

|dummy〉



 ,

where ‘dummy’ is some extra dimension. These states live in dimension d = n′(2c + 1) The crucial
observation is the following bound on δ0 and δ1:

〈αx|βy〉 =
1

n′
∑

r

1√
2c
R(arx, bry) =

1√
2c
P (x, y) =

{ ≥ 2
3·
√

2c
if f(x, y) = 1

≤ 1
3·
√

2c
if f(x, y) = 0

The O(22c(c+ log n)) simulation follows immediately by repeated fingerprinting.

Remark: Yao’s simulation can be extended to work for relational problems as well, with some
extra overhead. Consider a classical public-coin protocol with c-bit messages. With “[·]” denoting
the truth value of a statement, the inner product of the states

∑

r |r〉|[arx = a]〉 and
∑

r |r〉|2−[bry =
b]〉 equals the probability that the referee receives messages a, b in the classical public-coin protocol.
Hence given 2O(c) copies of these states, for all a, b, we can simultaneously estimate all these
probabilities up to additive error 1/(100 · 22c). This enables the quantum referee to simulate the
classical referee’s behavior with small error probability. Also zero-error properties can be preserved.
Due to this observation, Q‖(P ) = Ω(

√
n) implies a tight classical bound R‖,pub(P ) = Ω(log n).

6 The Hamming Distance Problem

6.1 Upper bounds

As an example of his simulation, Yao [23] considered the following Hamming distance problem:

HAM
(d)
n (x, y) = 1 iff the Hamming distance between x and y is ∆(x, y) ≤ d.
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For d = 0, this is just the equality problem. Yao showed R‖,pub(HAM
(d)
n ) = O(d2) (actually, a

better classical protocol may be derived from the earlier paper [8]). This implies Q‖(HAM
(d)
n ) =

2O(d2)(d2 + log n), hence for constant d the problem can be solved with O(log n) qubits.
The third open problem of his paper asks for better upper bounds for this problem, both

quantum and classical. We give two different quantum SMP protocols that are more efficient
than Yao’s. The first costs O(d2 log n) qubits, and is similar to a protocol found independently
by Chakrabarti and Regev [7]. It derives a threshold embedding directly from Yao’s classical
construction in [23, Section 4]. There, the length of the messages sent by the parties is m = Θ(d2).
The referee accepts only if the Hamming distance between the messages is below a certain threshold
t = Θ(m). Let arx be Alice’s message on random string r and input x, arxi be the i-th bit of this
message, and similarly for Bob. Again we may assume r ranges over a set of size n′ = O(n) [19].
Yao shows that for uniformly random r and i, Pr[arxi = bryi] ≤ t/m − Θ(1/d) if ∆(x, y) ≤ d,
and Pr[arxi = bryi] ≥ t/m + Θ(1/d) if ∆(x, y) > d. Here t/m = Θ(1). Now define the following
(log(n′) + 2 log(d) + 1)-qubit states:

|αx〉 =
1√
mn′

∑

r

|r〉
∑

1≤i≤m

|i〉|arxi〉 and |βy〉 =
1√
mn′

∑

r

|r〉
∑

1≤i≤m

|i〉|bryi〉.

Then

〈αx|βy〉 =
1

mn′
∑

r

∑

1≤i≤m

δarxi,bryi
= Pr[arxi = bryi].

This threshold embedding implies an O(d2 log n)-qubit repeated quantum fingerprinting protocol.
Our second protocol is not of the repeated fingerprinting type, though it uses fingerprints as a

tool. It has complexity O(d(log n)2). This is much cheaper than Yao’s protocol for d≫ √
log log n.

The idea is the following. For every x, there are onlyD =
∑d

i=0

(

n
i

)

different y for which the function
evaluates to 1 (the Hamming ball of radius d around x). We let Alice and Bob send O(logD) copies
of the fingerprints of x and y, respectively, to the referee. We assume these fingerprints are derived
from a linear constant-distance error-correcting code E : {0, 1}n → {0, 1}m, m = O(n), as

|φx〉 =
1√
m

m
∑

i=1

(−1)E(x)i |i〉.

This enables the referee to test whether x = y with error probability ≪ 1/D2, but also to make
D different equality tests such that with high probability these tests all succeed simultaneously
(test unitarily, copy the answer, and reverse to get almost the original state back). The referee
can change the j-th bit of the fingerprinted string, i.e., map |φx〉 7→ |φxj 〉 using the unitary map
|i〉 7→ (−1)E(ej)i |i〉, since E(xj) = E(x) ⊕ E(ej) by linearity. Hence he can just try out all D
possibilities around x and test whether y equals any one of those D strings. This suffices to

compute HAM
(d)
n (x, y) at a cost of O(logD · log n) = O(d(log n)2) qubits (and O(log n) for d = 0).

The same idea gives a classical public-coin SMP protocol that uses O(logD) = O(d log n) bits
of communication (do the usual classical protocol for equality with error reduced to ≪ 1/D). For
d≫ log n, this is better than Yao’s O(d2)-bit protocol.

6.2 Lower bounds

Here we show that the above protocols are close to optimal, by proving an Ω(d) lower bound on

all 1-way quantum protocols for HAM
(d)
n (1-way protocols are 2-party protocols where Alice sends
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one message to Bob, who computes the output). Consider a protocol where Alice sends a q-qubit

message ρx to Bob, who then outputs HAM
(d)
n (x, y) with probability ≥ 2/3. We will show that the

messages actually induce a quantum random access code for the set of d-bit strings [18]. A random
access code of a d-bit string z allows its user to recover each bit zi with probability at least 2/3.
Invoking Nayak’s (1 −H(2/3))d lower bound on the length of such encodings then finishes off the
proof (here H(·) is the binary entropy function).

Suppose Alice has a d-bit string z. She defines x = z0n−d, and sends to Bob the Hamming
weight |z| and the quantum message ρx. The total communication is log d classical bits and q
qubits. Bob looks at the |z| that he received, and defines y = ei1

d+1−|z|0n−2d−1+|z|, where ei is the
d-bit string that has a 1 only at position i. Then Bob completes the protocol for x and y. We have:

zi = 1 iff ∆(x, y) = d
zi = 0 iff ∆(x, y) = d+ 1

This gives Bob the bit zi, with probability 2/3, for any i ∈ [d] of his choice. Accordingly, the pair
(|z|, ρx) forms a random access code for z, and Nayak’s bound implies log(d) + q ≥ (1−H(2/3))d.
The same lower bound, with a loss of a factor of 2, also applies to the model where Alice and Bob
start out with an unlimited amount of entanglement (such as shared EPR pairs) [14]. Hence:

Theorem 4 Every quantum 1-way communication protocol for HAM
(d)
n needs Ω(d) qubits of com-

munication (even with unlimited prior entanglement).

This bound also holds for weaker models, such as all SMP models discussed in this paper,
including the public-coin ones. With private coin, it is also easy to show an Ω(log n) bound via a
reduction from equality. We summarize our quantum SMP upper and lower bounds:

Theorem 5 Ω(d+ log n) ≤ Q‖(HAM
(d)
n ) ≤ O(d log nmin(d, log n)).

7 Summary and Open Problems

In this paper we have shed some new light on the power of quantum simultaneous message passing
protocols, in particular in comparison to classical public-coin protocols. Our main result is

• A relational problem where quantum SMP protocols need exponentially more communication
than classical public-coin ones. This gives the first exponential separation between the two
models, and shows that the resource of public randomness cannot be traded efficiently for
quantum communication.

In addition we proved

• A characterization of the optimal quantum fingerprinting scheme in terms of the best margin
achievable by arrangements of homogeneous halfspaces.

• Every classical c-bit public-coin protocol can be simulated by a quantum SMP protocol using
O(22c(c+ log n)) qubits of communication, which is a quadratic improvement over [23].

• We constructed better quantum SMP protocols for the Hamming distance problem, and
showed that these are close to optimal.

The main problem left open by this paper is to modify our separation to work for a Boolean
function, for instance the one from Section 4. And, of course, we would like to find more quantum
protocols beating their classical counterparts in some way or other.
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