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Sine its introdution, the Yao priniple has been an extremely useful toolfor deriving lower bounds on randomized algorithms from lower bounds on de-terministi algorithms: hoose some \hard" input distribution �, prove a lowerbound on deterministi algorithms that ompute f orretly for \most" inputs,weighed aording to �, and then use R�(f) � D�� (f) to get a lower boundon R�(f). This method is used very often, beause it is usually muh easier toanalyze deterministi algorithms than to analyze randomized ones.In reent years quantum omputation reeived a lot of attention. Here quan-tum mehanial priniples are employed to realize more eÆient omputationthan is possible with a lassial omputer. Famous examples are Shor's eÆientquantum fatoring algorithm [15℄ and Grover's searh algorithm [8℄. However,the �eld is still young and open questions abound. In partiular, there has beena searh for good tehniques to provide lower bounds on quantum algorithms,partiularly in the query model of omputation. Two general methods in this di-retion are the polynomial method introdued by Beals, Buhrman, Cleve, Mosa,and de Wolf [3℄ and the quantum adversary method of Ambainis [2℄. In this pa-per we investigate the possibility of a third method, a quantum Yao priniple.It is our hope that suh a priniple will prove itself useful as a link betweentehniques for lower bounds on exat and bounded-error quantum algorithms.The �rst diÆulty one runs into when investigating a quantum version of theYao priniple, is the question what the proper quantum ounterparts of R�(f)and D�� (f) are. Let us �x the error probability at � = 13 here (any other value in(0; 12 ) would do as well). The quantum analogue of R1=3(f) is straightforward: letQ2(f) denote the minimal omplexity among all quantum algorithms that om-pute f(x) with probability at least 23 , for all inputs x. However, the inherently\random" nature of quantum algorithms prohibits a straightforward de�nitionof \deterministi" quantum algorithms in analogy of deterministi lassial al-gorithms. We therefore propose two di�erent de�nitions, a weak and a strongone. In the following, let f : D ! f0; 1g be some funtion that we want toompute, with D � f0; 1gN . If D = f0; 1gN then f is a total funtion, otherwisef is a promise funtion. Let A be a quantum algorithm, PA(x) the aeptaneprobability of A on input x (the probability of outputting 1 on input x), and� : D ! [0; 1℄ a probability distribution over the inputs.De�nition 1. A is weakly 23 -exat for f with respet to � i� �(fx j PA(x) =f(x)g) � 23 .De�nition 2. A is strongly 23 -exat for f with respet to � i� A is weakly23 -exat for f with respet to � and PA(x) 2 f0; 1g for all inputs x 2 f0; 1gN .The seond de�nition most losely mimis the behavior of a lassial determin-isti algorithm: the input x fully determines the output bit (even on x 62 D)and the algorithm gives orret output f(x) for \most" x. The �rst de�nitionis more liberal: here we only require this \input-determines-output" behavior toour for a �-fration of at least 23 of the inputs where the algorithm gives theorret output f(x). Note that a strongly 23 -exat algorithm for f with respet



to � atually omputes some total funtion g : f0; 1gN ! f0; 1g with suessprobability 1, namely the funtion g(x) = PA(x).These two de�nitions lead to a weak and a strong quantum ounterpart tothe lassial distributional omplexity D�1=3(f): let Q�WE(f) and Q�SE(f) denotethe minimal omplexity among all weakly and strongly 23 -exat algorithms forf with respet to �, respetively. Note that Q�WE(f) � Q�SE(f) for all f and �.We an now state two potential quantum versions of the Yao priniple:{ Weak quantum Yao priniple: Q2(f) ?= max� Q�WE(f){ Strong quantum Yao priniple: Q2(f) ?= max� Q�SE(f)In this paper we investigate to what extent these two priniples hold.1.2 ResultsOur results are threefold. First, we prove that both priniples hold in the `�'-diretion, for all f :{ Q2(f) � max� Q�WE(f) � max� Q�SE(f)The proof of the �rst inequality is analogous to the lassial game-theoretiproof. We emphasize that this result is perfetly general, and applies to allomputational models to whih the lassial Yao priniple applies.In order to investigate to what extent the `�'-diretions of these two quan-tum Yao priniples hold, we instantiate our omplexity measures to the queryomplexity setting. Our seond result is an exponential gap between Q2(f) andQ�SE(f) for the query omplexity of Simon's problem [16℄:{ There exist f and � suh that Q2(f) is exponentially smaller than Q�SE(f).This shows that the strong quantum Yao priniple is false.Thirdly, we prove that the weak quantum Yao priniple holds up to a onstantfator for the query omplexity of all symmetri funtions:{ Q2(f) = ��max� Q�WE(f)� for all symmetri fFor this result we �rst onstrut a quantum algorithm that an determine theN -bit input x with ertainty in O(pkN) queries if k is a known upper bound onthe Hamming weight of x. We then use that algorithm to onstrut, for everysymmetri funtion f and distribution �, a quantum algorithm that omputesf(x) with ertainty for \most" inputs x. In addition to this result for symmetrifuntions, we also show that for a partiular monotone non-symmetri funtionf (the AND-OR tree), the max�Q�WE(f) omplexity lies in between the bestknown bounds for Q2(f). The gist of this third bath of results is that mostknown quantum algorithms that are somehow based on Grover's algorithm anbe made weakly 23 -exat. This may atually be the main ontribution of thispaper.



2 PreliminariesIn this setion we formalize the notion of query omplexity, de�ne several om-plexity measures, and state Von Neumann's minimax theorem.2.1 Query ComplexityWe assume familiarity with lassial omputation theory and briey sketh thebasis of quantum omputation; an extensive introdution may be found in thebook by Nielsen and Chuang [12℄. Quantum algorithms operate on qubits asopposed to bits in lassial omputers. The state of an m-qubit quantum systeman be written as j�i =Pi2f0;1gm �ijii; where jii denotes the basis state i, whihis a lassialm-bit string. The �i's are omplex numbers known as the amplitudesof the basis states jii and we require Pi2f0;1gm j�ij2 = 1. Mathematially, thestate of a system is thus desribed by a 2m-dimensional omplex unit vetor. If wemeasure the value of j�i, then we will see the basis state jii with probability j�ij2,after whih the system ollapses to jii. Operations that are not measurementsorrespond to unitary transformations on the vetor of amplitudes.In the query model of omputation, the goal is to ompute some funtionf : D ! f0; 1g on an input x 2 D � f0; 1gN , using as few aesses (\queries")to the N input bits as possible. It is by now standard to formalize a quantumquery as an appliation of a unitary transformation O that ats as Oji; b; zi =ji; b�xi; zi: Here i 2 f1; : : : ; Ng, b 2 f0; 1g, � denotes the exlusive-or funtion,and z denotes the workspae of the algorithm, whih is not a�eted by O. A T -query quantum algorithm A then has the form A = UTOUT�1O � � �U1OU0, witheah Ui a �xed unitary transformation independent of the input x. AlgorithmA is assumed to start in the all-zero state j0 : : : 0i, and its output (0 or 1) isobtained by measuring the rightmost bit of its �nal state Aj0 : : : 0i. The aep-tane probability PA(x) of a quantum algorithm A is de�ned as the probabilityof getting output 1 on input x. Its suess probability SA(x) is the probabilityof getting the orret output f(x) on input x.A quantum algorithm A omputes a funtion f : D ! f0; 1g exatly ifSA(x) = 1 for all inputs x 2 D. Algorithm A omputes f with bounded-errorif SA(x) � 23 for all x 2 D. We use QE(f) and Q2(f) to denote the minimalnumber of queries required by exat and bounded-error quantum algorithmsfor f , respetively. These omplexities are the quantum versions of the lassi-al deterministi and bounded-error deision tree omplexities D(f) and R2(f),respetively. For ompleteness, we repeat our two alternative quantum versionsof the lassial distributional omplexity D�(f) from the introdution. Let � bea probability distribution on the set of all possible inputs. An algorithm A isweakly 23 -exat for f with respet to � if �(fx j PA(x) = f(x)g) � 23 , and A isstrongly 23 -exat for f with respet to � if A is weakly 23 -exat for f with respetto � and PA(x) 2 f0; 1g for all x 2 f0; 1gN . By Q�SE(f) and Q�WE(f) we denotethe minimal number of queries needed by strongly and weakly 23 -exat quantumalgorithms for f with respet to �, respetively. Note that Q�WE(f) � Q�SE(f)for all f and �, hene in partiular max�Q�WE(f) � max�Q�SE(f).



One of the �rst quantum algorithms operating in the query model is Grover'ssearh algorithm [8, 4℄. Let jxj denote the Hamming weight (number of 1's) inthe input x, and let xi denote the ith bit of x. If t = jxj > 0 then Grover'salgorithm uses �4pN=t queries and with high probability outputs an i suh thatxi = 1. If jxj = 0 then the algorithm always outputs `no solutions'. Brassard,H�yer, Mosa, and Tapp [4℄ gave an exat version of Grover's algorithm thataomplishes the same task with probability 1 if jxj is known.A funtion f : f0; 1gN ! f0; 1g is symmetri if its value f(x) depends only onjxj. For suh f , de�ne fk = f(x) where jxj = k. In [3℄ it is proven that Q2(f) =�(pN(N � � (f))), where � (f) = minfj2k �N � 1j j fk 6= fk+1 and 0 � k �N � 1g. Informally, the quantity � (f) (introdued by Paturi [14℄) measuresthe length of the interval around Hamming weight N2 where f is onstant. Asymmetri funtion f is a threshold funtion if there is a 0 < t � N , suh thatf(x) = 1 i� jxj � t. Note that for t � N=2 we have Q2(f) = �(ptN) as a diretonsequene of the bound for symmetri funtions. A funtion f : f0; 1gN !f0; 1g is monotone if (8i xi � yi)) f(x) � f(y).2.2 Von Neumann's Minimax TheoremThe book by Owen [13℄ provides an exellent introdution to game theory. Herewe only state Von Neumann's famous minimax theorem [10℄. Consider a two-player, zero-sum game with payo� matrix P . Player 1 wants to maximize thepayo�, player 2 wants to minimize. Both players have available a �nite set ofpure strategies. If player 1 plays pure strategy i and player 2 plays pure strategyj, then the payo� is Pij = eTi Pej , where ei and ej are the appropriate unitvetors and supersript-T denotes vetor transposition. In addition, they mayalso use a mixed strategy. This is a probability distribution over the set of purestrategies, modeled by a vetor of non-negative reals that sum to 1. If player 1plays mixed strategy � and player 2 plays mixed strategy �, then the expetedpayo� of the game is �TP�. The minimax theorem states that the maximalpayo� that player 1 an assure if he an base � on �, equals the minimal payo�that player 2 an assure if he an base � on �:min� max� �TP� = max� min� �TP�:Without loss of generality the \inner" hoies an be assumed to be pure strate-gies, hene min� maxi eTi P� = max� minj �TPej :As mentioned in the introdution, the lassial Yao priniple is an easy onse-quene of this theorem. In the next setion we use it to prove one half of thequantum Yao priniple.3 Proof of One Half of the Quantum Yao PrinipleHere we prove Q2(f) � max�Q�WE(f). The proof is similar to the derivation ofthe lassial Yao priniple, but the details are a bit more messy.



Theorem 1. For all f : D ! f0; 1g, with D �nite, Q2(f) � max� Q�WE(f).Proof. Consider the (in�nite) set of all quantum algorithms of omplexity �max�Q�WE(f). Let i be any algorithm from this set, and x 2 D an input.Consider the quantity bSi(x), whih is 1 if algorithm i omputes f(x) withsuess probability 1, and whih is 0 otherwise. Call algorithms i and j similarif bSi(x) = bSj(x) for all x 2 D. In this way, similarity is an equivalenerelation on the set of all quantum algorithms of omplexity � max�Q�WE(f).Note that similarity partitions this set into at most 2jDj equivalene lasses.From eah equivalene lass, we hoose as a representative an algorithm fromthat lass with the least omplexity.Now onsider the game in whih player 1 wants to ompute f , and as purestrategies he has available the (�nite) set of representatives of the equivalenelasses. Player 2 is an adversary that hooses hard inputs x 2 D to f . Let Sbe the matrix of suess probabilities (Six = Si(x)). De�ne the payo� matrixas Pix = bSix. Now onsider the quantity maxi eTi P�. This represents the �-fration of inputs on whih the best weakly 23 -exat quantum algorithm for fwith respet to that � is orret. This quantity is at least 23 for all �, sine we'vebeen onsidering all quantum algorithms of omplexity up to max�Q�WE(f).From the minimax theorem we now obtain23 � min� maxi eTi P� = max� minx �TPex � max� minx �TSex:Here the last term an be interpreted as the suess probability of a quantumalgorithm formed by a probability distribution � over the set of representativesof the equivalene lasses (suh a distribution an be easily realized in a quan-tum algorithm using a superposition). By the above inequality, this algorithmhas suess probability � 23 for all inputs x 2 D. Sine it is a probability distri-bution over algorithms of omplexity � max�Q�WE(f), its omplexity is at mostmax�Q�WE(f). Hene Q2(f) � max�Q�WE(f). utCorollary 1. For all f : D ! f0; 1g, with D �nite, Q2(f) � max� Q�SE(f).We again emphasize that this result applies to all omputational modelswhere the lassial Yao priniple applies.4 A Counterexample for the Strong Quantum YaoPrinipleFrom here on, we will instantiate our omplexity measures to the query omplex-ity setting. Ambainis [1℄ has proven that for almost all Boolean funtions f wehave Q2(f) = 
(N). This result immediately implies that both the strong andweak quantum Yao priniple hold up to a onstant fator for almost all Booleanfuntions in the query omplexity setting.



However, the strong quantum Yao priniple does not hold in general. Belowwe exhibit a funtion f and distribution � where Q2(f) is exponentially lessthan Q�SE(f). The funtion is Simon's problem [16℄, and our separation is basedon Simon's lassial lower bound ombined with the result that lassial andquantum query omplexity are polynomially related for all total funtions [3℄.Theorem 2. There exist a problem f on N = n2n bits and a distribution �suh that Q2(f) = O(n2) and Q�SE(f) = 
(2n8 ).Proof. Consider Simon's problem: given a funtion � : f0; 1gn ! f0; 1gn withthe promise that there is an s 2 f0; 1gn suh that �(a) = �(b) i� a � b = s,deide whether s = 0 or not. This funtion � is given as an input x of N = n2nbits, using n 1-bit entries for eah funtion value �(�). The input bits an bequeried in the usual way. Using Simon's bounded-error quantum algorithm, thisproblem an be solved in O(n2) queries, and hene Q2(Simon) = O(n2). Nowde�ne a distribution � whih uniformly plaes half the total weight on inputswith s = 0 and half the total weight on inputs with s 6= 0. Simon provedthat under this distribution, any lassial algorithm that is orret on a fration� 23 requires 
(p2n) queries. Now take any strongly 23 -exat T -query quantumalgorithm A for this problem, then A omputes some total funtion g. SineD(g) = O(QE(g)4) [3℄, there exists a deterministi lassial algorithm that om-putes g using O(T 4) queries. But this lassial algorithm is then orret on a�-fration 23 of all Simon inputs. Simon's lower bound on lassial algorithmsnow implies that O(T 4) = 
(p2n), and hene Q�SE(Simon) = 
(2n8 ). ut5 A Positive Result for the Weak Quantum Yao PrinipleIn this setion we show that the weak quantum Yao priniple holds for all sym-metri funtions. We start with the speial ase of threshold funtions.5.1 Equality up to a Constant Fator for Threshold FuntionsConsider a threshold funtion with threshold t � N=2. For every distribution�, we will exhibit a weakly 23 -exat quantum algorithm for f with respet to �with O(ptN) queries. This, together with Theorem 1 and the known fat thatQ2(f) = �(ptN) for threshold funtions f [3℄, gives the desired result.Note that given a threshold funtion f : f0; 1gN ! f0; 1g with threshold t, inorder to be sure that f(x) = 1, it suÆes to �nd at least t 1's in the input. Theruial idea behind our algorithm is that if the number of 1's in the input is largeenough, then for eah distribution � over the inputs, we an pik a substantiallysmaller part of the input suh that there are between t and 100t 1's in thissub-part for a large �-fration of the inputs. This idea is formally stated in thefollowing tehnial lemma.11 We need the ondition i � 10 in this lemma in order to be able to approximate thehypergeometri distribution by a binomial distribution with suÆient auray.



Lemma 1. Let t be a threshold, � a probability distribution over the x 2 f0; 1gN,and i an integer suh that 10 � i � logN � log t � 1. Denote the event t2i �jxj � t2i+1 by I, and let x ^ y denote the bitwise AND of x and y. There is ay 2 f0; 1gN with jyj = minf 10N2i ; Ng, suh that Pr�[t � jx ^ yj � 100t j I ℄ > 0:7.Proof. We assume 10N2i � N , for otherwise the lemma trivially holds. Considerany x 2 f0; 1gN with t2i � jxj � t2i+1. We laim that if we pik a y 2 f0; 1gNwith jyj = 10N2i uniformly at random, then Pr[t � jx^ yj � 100t℄ > 0:7. To provethis laim, note that jx ^ yj is hypergeometrially distributed, with expetedvalue E(jx ^ yj) = jxjjyjN 2 [10t; 20t℄. By Markov's inequality it follows diretlythat Pr[jx ^ yj > 100t℄ � 0:2.We an approximate the above distribution with a binomial distribution sinethe number of draws is small ompared to the size of the sample spae, seee.g. [11℄, and we shall heneforth treat jx^yj as if it were binomially distributed,with suess probability � = jxjN and number of draws n = jyj. To bound Pr[jx^yj < t℄, we use the Cherno� bound as explained in [9, pp.67-73℄:Pr[jx ^ yj < (1� Æ)E(jx ^ yj)℄ < e�Æ2E(jx^yj)2 :Choosing Æ = 910 , we obtain Pr[jx ^ yj < t℄ < e� 810t200 < 0:1. Combining theprevious two inequalities, it then follows that Pr[t � jx^yj � 100t℄ > 0:7, whihproves the above laim.Now imagine a matrix whose rows are indexed by the x satisfying t2i �jxj � t2i+1 and whose olumns are indexed by theM = �Njyj� di�erent y of weightjyj = 10N2i . We give the (x; y) entry of this matrix value �(xjI) if t � jx^yj � 100tand value 0 otherwise. By the above laim, eah row will ontain at least 70% nonzero entries, so the sum of the entries of the x-row is at least 0:7M�(xjI). Hene,the sum of all entries in the matrix is equal toPx 0:7M�(xjI) = 0:7M . But thenthere must be a olumn with �(� j I)-weight at least 0.7. The y orrespondingto this olumn is the y we are looking for in this lemma. utWe will use the fat stated in the previous lemma to suessively searhfor t 1's in exponentially smaller parts of the inputs, assuming the presene ofinreasingly more 1's in the original input. The following lemma states that thissearhing an be done eÆiently:Lemma 2. There exists a quantum algorithm that an �nd all the 1's in aninput x of size N with probability 1, using at most �2pkN queries, if k is aknown upper bound on the number of 1's in x.Proof. Assume an upper bound k on the number of 1's in x. Suppose we run theexat version of Grover's algorithm assuming jxj = k. Either we �nd a solution,in whih ase we an remove that solution from the searh spae, lower our upperbound k by 1 and ontinue; or we do not �nd a solution, in whih ase we knowthat jxj must be less than k, so we an safely lower our upper bound k by 1



and ontinue. Aordingly, it easily follows by indution on k that Algorithm 1below �nds all jxj solutions with ertainty. The number of queries it uses iskXi=1 �4rNi � �4pN Z k0 dipi = �2pkN: utAlgorithm 1for i = k down to 1 doApply the exat version of Grover's algorithm, assumingthere are i solutions.if a solution has been found thenmark its index as a zero in the searh spaeend ifend foroutput the positions of all solutions foundWe are now ready to prove an upper bound on Q�WE(f):Lemma 3. For threshold funtion f with threshold t, and for every distribution�, we have Q�WE(f) = O(ptN).Proof. Fix a distribution �. Invoking Lemmas 1 and 2, our algorithm (Algorithm2 below) is as follows. First we ount the number of 1's in the input usingAlgorithm 1, assuming an upper bound of 210t 1's. If after that we haven'tfound at least t 1's yet, then we suessively assume that there are between t2iand t2i+1 1's in the input, with i going up from 10 to logN � log t� 1. For eahof these assumptions, we searh a smaller part of the input. If we have reahedthe i for whih t2i � jxj � t2i+1, then Lemma 1 guarantees that for a large�-fration of those inputs we an �nd a small sub-part ontaining between t and100t 1's. We then ount the number of 1's in this sub-part using Algorithm 1.This algorithm will be orret on all inputs x with jxj < t and will produea orret answer on at least a �-fration 0.7 of all inputs x with jxj � t asguaranteed by Lemma 1. Hene it will be orret on a �-fration at least �(fx jjxj < tg) + 0:7(1� �(fx j jxj < tg) � 0:7: Furthermore, its query omplexity isO(ptN) + logN�log t�1Xi=10 O r tN2i ! = O(ptN);where the �rst term orresponds to the ost of searhing the entire spae onewith a small upper bound, and the summation orresponds to searhing onse-utively smaller sub-parts y(i). ut



Algorithm 2Count the number of 1's in the input using Algorithm 1, assuming an upper boundof 210t 1'sif at least t 1's are found thenoutput 1end iffor i = 10 to logN � log t� 1 doLet y(i) 2 f0; 1gN be a string of weight minfN; 10N2i g satisfying Lemma 1Using Algorithm 1, ount the number of solutions in the sub-partof the input indued by y(i), assuming an upper bound of 100t 1's.if at least t 1's are found thenoutput 1end ifend foroutput 0Reall that for threshold funtions f : f0; 1gN ! f0; 1g with threshold t �N=2, we haveQ2(f) = �(ptN). By Theorem 1 it then follows that max�Q�WE(f) =
(ptN). In ombination with Lemma 3, this yields:Lemma 4. For all threshold funtions f : f0; 1gN ! f0; 1g with t � N=2Q2(f) = ��max� Q�WE(f)� = � �ptN� :5.2 Equality up to a Constant Fator for Symmetri Funtions.With the result about threshold funtions in mind, we an easily prove that thequantum Yao priniple holds for all symmetri funtions as well.Theorem 3. For all symmetri funtions f : f0; 1gN ! f0; 1gQ2(f) = ��max� Q�WE(f)� = � �pN(N � � (f))� :We give an informal sketh of the proof whose details are straightforward.Firstly, note that � (f) measures the length of the interval around Hammingweight N2 where f is onstant, so in order to ompute f(x) it suÆes to knowjxj exatly if jxj 2 [0; N�� (f)2 ) or jxj 2 (N+� (f)�22 ; N ℄, or to know that jxj 2[N�� (f)2 ; N+� (f)�22 ℄ otherwise. Using the threshold algorithm from Setion 5.1twie, we an, at a ost of O(pN(N � � (f))) queries, ompute whih of threeintervals jxj is in. If jxj is in the interval of length � (f) around N2 where f isonstant we are done. In both other ases we now in e�et have an upper boundon the number of 1's in the input, and we an use Algorithm 1 to exatly ountthe number of 1's, again using O(pN(N � � (f))) queries.



5.3 A Result for the AND-OR TreeAbove we proved that the weak quantum Yao priniple holds (up to a onstantfator) for all symmetri funtions. A similar result might be provable for allmonotone funtions. In this setion we state a preliminary result in this diretion,namely that the known upper and lower bounds on the Q2(f)-omplexity of the2-level AND-OR tree arry over to weakly 23 -exat quantum algorithms. Thismonotone but non-symmetri funtion is the AND of pN independent ORs ofpN variables eah. In the sequel, we use AO to denote this N -bit AND-OR tree.No tight haraterization of Q2(AO) is known, but Buhrman, Cleve, andWidgerson [5℄ proved Q2(AO) = O(pN logN) via a reursive appliation ofGrover's algorithm. Using a result about eÆient error-redution in quantumsearh from [6℄, this an be improved to Q2(AO) = O(pN logN). This nearlymathes Ambainis' lower bound of 
(pN) [2℄. Note that Ambainis' bound to-gether with our Theorem 1 immediately gives the lower bound max�Q�WE(AO) =
(pN). Using the same tehniques as in the previous setion one an show thatthe best known upper bound arries over to weakly 23 -exat algorithms. Due tospae onstraints we omit the proof, whih may be found at the Los Alamospreprint server at http://xxx.lanl.gov/abs/quant-ph/0109070.Theorem 4. For every distribution � we have Q�WE(AO) = O(pN logN).6 Summary and Open ProblemsIn this paper we investigated to what extent quantum versions of the lassialYao priniple hold. We formulated a strong and a weak version of the quantumYao priniple, showed that both hold in one diretion, falsi�ed the other diretionfor the strong version, and proved the weak version for the query omplexity ofall symmetri funtions.The main question left open by this researh is the general validity of theweak quantum Yao priniple. On the one hand, we may be able to �nd a oun-terexample to the weak priniple as well, perhaps based on the query omplexityof the order-�nding problem. Shor showed that the order-�nding problem an besolved by a bounded-error quantum algorithm using O(logN) queries [15℄. UsingCleve's 
(N1=3= logN) lower bound on lassial algorithms for order-�nding [7℄,we might be able to exhibit a � suh that any weakly 23 -exat quantum algo-rithm for f with respet to � requiresN
(1) queries, as it seems hard to onstrutweakly 23 -exat quantum algorithms for this problem.On the other hand, we may try to extend the lass of funtions for whihwe know the weak quantum Yao priniple does hold. A good starting point heremight be the lass of all monotone funtions. We disussed one suh funtion,the 2-level AND-OR tree, in Setion 5.3. Unfortunately, at the time of writingno general haraterization of the Q2(f) omplexity of monotone funtions isknown.
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