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Abstract. We define and study the complexity of robust polynomials for
Boolean functions and the related fault-tolerant quantum decision trees,
where input bits are perturbed by noise. We show that, in contrast to the
classical model of Feige et al., every Boolean function can be computed
by O(n) quantum queries even in the model with noise. This implies,
for instance, the somewhat surprising result that every Boolean function
has robust degree bounded by O(n).

1 Introduction

In the last two decades, polynomials of many varieties have been used to good
effect in complexity theory. We study a variety here that is tailored to analyzing
algorithms with noisy input.

Robust Polynomials. A robust polynomial for a Boolean function f : {0, 1}n →
{0, 1} is a real multivariate polynomial p(z1, . . . , zn) such that for every x =
(x1, . . . , xn) ∈ {0, 1}n and every z = (z1, . . . , zn) ∈ R

n, if ∀i : |xi − zi| ≤ 1/3
then |f(x) − p(z)| ≤ 1/3 (the 1/3 in both cases can be changed to any other
constant). The robust degree of f is the smallest degree of a robust polynomial
for f ; note that we do not require robust polynomials to be multilinear.

The motivation behind the definition of robust polynomials is twofold: First
it can be viewed as a strengthening (restriction) of the notion of approximating
polynomials. An approximating polynomial for f is a multivariate real polyno-
mial q that approximates f within an additive term of 1/3 for each Boolean
input. Approximating polynomials for Boolean functions are of interest in them-
selves and have been the object of study for a while. Their minimal degree is
tightly related to the decision tree complexity of f [9, 2]. Indeed, this “polynomial
method” [2] is one of the main tools for obtaining lower bounds on the number
of queries in quantum algorithms. One difficulty, however, is that approximat-
ing polynomials do not directly compose; if f(x1, . . . , xn) is a Boolean function
with an approximating polynomial pf and g(y1, . . . , ym) is a Boolean function
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with an approximating polynomial pg, then the polynomial on n · m variables
pf (pg, . . . , pg), which is obtained by plugging in a copy of pg for each appearance
of yi, is not necessarily an approximating polynomial for the composed function
f(g, . . . , g) on n · m variables. This difficulty is avoided with robust polynomi-
als; if pf , pg are robust for f, g respectively, then their composition is a robust
polynomial (and thus also approximating) for the composed function.

Another motivation is the study of quantum decision trees that can toler-
ate noise in their inputs. We show that a natural quantum analogue of classical
fault-tolerant decision trees can be defined. As a result, it will follow that every
such algorithm (and in fact every classical noisy decision tree algorithm as well)
implies the existence of a robust degree-2q polynomial for the function, where q
is the number of queries. This relates the robust degree to fault-tolerant compu-
tation in exactly the same way that approximating polynomials are related to
bounded-error quantum algorithms. Surprisingly, our results imply robust quan-
tum algorithms with a linear number of queries, as well as robust polynomials
of linear degree, for any Boolean function. This should be contrasted with the
result of Feige et al. [3] who proved that for most Boolean functions an overhead
factor of Ω(log n) on the number of queries is needed in the noisy case compared
to the non-noisy case. In particular, consider the parity function on n variables.
This function can be decided trivially by an n-query decision tree, and hence
can be represented exactly by an n-degree real multilinear polynomial (which is
just the single monomial containing all variables in the {−1, 1} representation).
Feige et al. [3] prove that in the noisy decision tree any algorithm for Parity

needs Ω(n logn) queries. Using standard amplification techniques, this yields a
O(n logn)-degree robust polynomial for Parity. Can one do better? Our results
imply that there is a robust polynomial for Parity of degree O(n). However,
we only have an indirect description of this polynomial by means of a quantum
algorithm, and do not know how to construct such a polynomial directly.

Noisy Quantum Queries. We now discuss in more detail the model of noisy-
decision trees in the quantum world. The notion of a “noisy query” in the quan-
tum case is not obvious and natural as in the classical case since one application
of a quantum query can address many different xi’s in superposition. A first
proposal would be that for each quantum query, each of the bits is flipped in-
dependently with probability ǫ. Each such quantum query introduces a lot of
randomness and the algorithm’s state after the query is a mixed quantum state
rather than a pure state. In fact, this model is a concrete (and very destruc-
tive) form of decoherence; the effects of various forms of decoherence on oracle
algorithms like Grover’s have been studied before, see e.g., [8, 10].

A second model, which we will adopt here, is to assume that we have n
quantum procedures, A1, . . . , An, such that Ai outputs xi with probability at
least 1 − ǫ. Such a coherent-noise model is not unreasonable. For instance, it
could be the case that the input bits are actually computed for us by subroutines.
Such algorithms can always be made coherent by pushing measurements to the
end, which means that we can apply and reverse them at will. To enable us



to apply the Ai’s in superposition, we assume we have a black box that maps
A : |i〉|0〉 7→ |i〉Ai|0〉. One application of this will count as one query.

A third model, which we will call the multiple-noisy-copies model, was studied
by Szegedy and Chen [11]. Here, instead of xi, the algorithm can only query
“perturbed” copies yi,1, . . . , yi,m of xi. The yi,j are independent Boolean random
variables with Pr[xi = yi,j ] ≥ 1 − ǫ for each i = 1, . . . , n and j = 1, . . . ,m. In
contrast to the first proposal, this model leaves the queries perfectly reversible,
since the perturbed copies are fixed at the start of the algorithm and the same
yi,j can be queried more than once. The assumption of this model is also stronger
than the second model, since we can construct a 1-query Ai that just outputs
a superposition of all yi,j . If m is sufficiently large, this Ai will compute xi

with high success probability, satisfying the assumption of the second model
(see Section 4.2 for details).

Robust Quantum Algorithms. Assuming the second model and some fixed ǫ, we
call a quantum algorithm robust if it computes f with bounded error probability
on inputs of n bits given by bounded-error algorithms A1, . . . , An, respectively. A
first observation is that every T -query non-robust algorithm can be made robust
at a multiplicative cost of O(logT ). With O(logT ) queries, a majority gate, and
an uncomputation step, we can construct a unitary Ũx that approximates an
exact quantum query Ux : |i〉|b〉 7→ |i〉|b ⊕ xi〉 very well: ‖Ux − Ũx‖ ≤ 1/100T .
Since errors add linearly in a quantum algorithm, replacing Ux by Ũx in a non-
robust algorithm gives a robust algorithm with almost the same final state. In
some cases better constructions are possible. For instance, a recent result by
Høyer et al. [5] implies a quantum algorithm that robustly computes Or with
O(

√
n) queries. This is only a constant factor worse than the noiseless case,

which is Grover’s algorithm [4]. In fact, we do not know of any function where
the robust quantum query complexity is more than a constant factor larger than
the non-robust complexity.

Our main result about quantum computing (made precise in Theorem 2) is
the following:

There exists a quantum algorithm that outputs x1, . . . , xn, with high
probability, using O(n) invocations of the Ai algorithms (i.e., queries).

As already mentioned, this result implies that every n-bit function f can be
robustly quantum computed with O(n) queries. This contrasts with the classical
Ω(n logn) lower bound for Parity. It is quite interesting to note that quantum
computers, which usually are more fragile than classical computers, are actually
more robust in the case of computing Parity with noisy inputs. The result for
Parity can be extended to every symmetric function f : for every such function,
the optimal quantum algorithm can be made robust with only a constant factor
overhead (see Section 4.1).

Our result has a direct bearing on the direct-sum problem, which is the ques-
tion how the complexity of computing n independent instances of a function
scales with the complexity of one instance. One would expect that computing n
instances with bounded-error takes no more than n times the complexity of one



instance. However, since we want all n instances to be computed correctly simul-
taneously with high probability, the only known general method in the classical
world is to compute each instance with error probability reduced to O(1/n). This
costs another factor of O(logn). In fact, it follows from the Ω(n logn) bound
for Parity that this factor of logn is optimal if we can only run algorithms for
individual instances in a black-box fashion. In contrast, our result implies that in
the quantum world, the bounded-error complexity of n instances is at most O(n)
times the bounded-error complexity of one instance. This is a very general result.
For example, it also applies to communication complexity [7, Section 4.1.1]. If
Alice and Bob have a bounded-error protocol for a distributed function f , us-
ing c bits (or qubits) of communication, then there is a bounded-error quantum
protocol for n instances of f , using O(n(c + logn)) qubits of communication.
The additive logn is because Alice and Bob need to communicate (possibly in
superposition) the index of the instance that they are computing. In contrast,
the best known general classical solution uses Θ(cn logn) bits of communication.

Note about Related Work. In a recent manuscript, Iwama et al. [6] study a
similar but slightly weaker setting. There, the error probability for each input
variable is exactly ǫ. If ǫ is known, then one can use a version of exact amplitude
amplification to “rotate off” the error using O(1) queries and hence make the
algorithm robust. If ǫ unknown, it can be estimated very well using quantum
amplitude estimation, after which amplitude amplification can be used as if ǫ
was known. Iwama et al. derive from this that any quantum algorithm can be
made robust (in their model) with only a constant factor overhead. Their model
has the disadvantage that it does not cover the subroutine-scenario, where each
input bit xi is computed for us by an algorithm or subroutine Ai whose error we
can only upper bound. Our model does not need the assumption that the error
is the same for all input bits, and hence does not have this disadvantage.

2 Robust Polynomials — Preliminaries

In this section we study robust polynomials of two different but essentially equiv-
alent types. The first type arises from the multiple-noisy-copies model, the second
type is what we discussed in the introduction. For brevity, we omit the proofs
of the lemmas presented in this section.

Definition 1. An (ǫ,m) perturbation of x ∈ {0, 1}n is a matrix y of n × m
independent binary random variables yi,j so that Pr[yi,j = xi] ≥ 1 − ǫ for each
1 ≤ j ≤ m.

Definition 2. A type-1 (ǫ,m)-robust polynomial for the Boolean function f :
{0, 1}n → {0, 1} is a real polynomial p in nm variables yi,j (with 1 ≤ i ≤ n
and 1 ≤ j ≤ m) so that for every x ∈ {0, 1}n and y an (ǫ,m) perturbation of
x, Pr[|p(y) − f(x)| ≥ 1/3] ≤ 1/3. Moreover, for every v ∈ {0, 1}nm, we require
−1/3 ≤ p(v) ≤ 4/3.



Note that since y2
i,j = yi,j for a bit yi,j , we can restrict attention to multilinear

polynomials here.
The approximation “quality” of a type-1 robust polynomial can be boosted

at constant multiplicative cost in the degree. Analogously we can improve the
parameters to other constants:

Lemma 1. If there is a type-1 (ǫ,m)-robust polynomial of degree d for f , then
for some m′ = O(m) there exists a type-1 (ǫ,m′)-robust polynomial p of degree
O(d) so that x ∈ {0, 1}n and y an (ǫ,m′) perturbation of x, Pr[|p(y) − f(x)| ≥
1/9] ≤ 1/9. Moreover, for any v ∈ {0, 1}nm′

, −1/9 ≤ p(v) ≤ 10/9.

The second kind of robust polynomial is the following:

Definition 3. For a Boolean function f : {0, 1}n → {0, 1}, we call q a type-2
ǫ-robust polynomial for f if q is a real polynomial in n variables so that for every
x ∈ {0, 1}n and every z ∈ [0, 1]n we have |q(z) − f(x)| ≤ 1/3 if |zi − xi| ≤ ǫ for
all i ∈ [n]. If ǫ = 0, then q is called an approximating polynomial for f .

A minimal-degree type-2 robust polynomial for f need not be multilinear, in
contrast to the type-1 variety. Note that we restrict the zi’s to lie in the set
[0, ǫ]∪[1−ǫ, 1] rather than the less restrictive [−ǫ, ǫ]∪[1−ǫ, 1+ǫ]. This facilitates
later proofs, because it enables us to interpret the zi’s as probabilities. However,
with some extra work we could also use the less restrictive definition here.

Definition 4. For f : {0, 1}n → {0, 1}, let rdeg1(f) denote the minimum degree
of any type-1 (1/3, 5 logn)-robust polynomial for f , rdeg2(f) be the minimum

degree of any type-2 1/3-robust polynomial approximating f , and d̃eg(f) be the
minimum degree among all approximating polynomials for f .

We characterize the relation of type-1 and type-2 robust polynomials as follows:

Theorem 1. For every type-2 ǫ-robust polynomial of degree d for f there is
a type-1 (ǫ/2,O(log(n)/(1/2 − ǫ)2))-robust polynomial of degree d for f . Con-
versely, for every type-1 (ǫ,m)-robust polynomial of degree d for f there is a
type-2 ǫ-robust polynomial of degree O(d) for f .

Proof. Let p be a type-2 ǫ-robust polynomial of degree d for f . We choose m =
O(log(n)/(1/2 − ǫ)2). If each yi,j is wrong with probability ≤ ǫ/2, then with
probability at least 2/3, the averages yi will satisfy |yi − xi| ≤ ǫ for all i ∈ [n].
Hence the polynomial p(y1, . . . , yn) will be a type-1 (ǫ/2,O(log(n)/(1/2− ǫ)2))-
robust polynomial of degree d for f .

For the other direction, consider a type-1 (ǫ,m)-robust polynomial of degree
d for f . Using Lemma 1, we boost the approximation parameters to obtain a
type-1 (ǫ,m′)-robust polynomial p of degree O(d), with m′ = O(m), so that for
any x ∈ {0, 1}n and (ǫ,m′) perturbation y of x, Pr[|p(y) − f(x)| ≥ 1/9] ≤ 1/9.
For z ∈ R

n with 0 ≤ zi ≤ 1 for all i, let yi,j (i ∈ [n], j ∈ [m′]) be independent
random variables, where yi,j = 1 with probability zi. Define q(z) := E[p(y)]. This
q is a polynomial in z, because E[p(y)] = p(E[y]) and E[yi,j ] = zi. Moreover, if
for z there exists x ∈ {0, 1}n with |zi − xi| ≤ ǫ for all i, then y is an (ǫ,m′)



perturbation of x. Therefore V := {v : |p(v) − f(x)| ≤ 1/9} has probability
Pr[y ∈ V ] ≥ 8/9 and

|f(x) − q(z)| ≤
∣∣∣∣∣
∑

v∈V

Pr[y = v] (f(x) − p(v))

∣∣∣∣∣+
∣∣∣∣∣
∑

v/∈V

Pr[y = v]

(
1 +

1

9

)∣∣∣∣∣ <
1

3
.

This means that q(z) is a type-2 ǫ-robust polynomial for f of degree O(d). ⊓⊔

Note that in Definition 2 we require for type-1 polynomials p that for any
Boolean assignment v ∈ {0, 1}nm to the (possibly real) variables, the polynomial
value p(v) lies between −1/3 and 4/3. Because of this totality requirement, the
following corollary is given for total Boolean f only.

Corollary 1. rdeg1(f) = Θ(rdeg2(f)) for every (total) Boolean function f :
{0, 1}n → {0, 1}.

Robust quantum algorithms provide one way to construct robust polynomials:

Lemma 2. Let f : {0, 1}n → {0, 1} be a Boolean function. Let Q be a quantum
algorithm that makes at most q queries on inputs from {0, 1}n×m. If for every
x ∈ {0, 1}n and y an (ǫ,m) perturbation of x, we have that Pr[Q(y) = f(x)] ≥
29/30, then there exists a degree-2q type-1 (ǫ,m)-robust polynomial for f .

3 Quantum Robust Input Recovery

In this section we prove our main result, that we can recover an n-bit string
x using O(n) invocations of algorithms A1, . . . , An where Ai computes xi with
bounded error.

Theorem 2. Given ǫ-error algorithms A1, . . . , An for the bits x1, . . . , xn, there
is a quantum algorithm that recovers x = x1 . . . xn with probability 2/3 using
O(n/(1/2 − ǫ)2) queries (invocations of the Ai).

We assume that ǫ > 0 and that Ai is a unitary transformation

Ai : |0t〉 7→ αi|0〉|ψ0
i 〉 +

√
1 − α2

i |1〉|ψ1
i 〉

for some αi ≥ 0 such that |αi|2 ≤ ǫ if xi = 1 and |αi|2 ≥ 1− ǫ if xi = 0; |ψ0
i 〉 and

|ψ1
i 〉 are arbitrary (t− 1)-qubit norm-1 quantum states. It is standard that any

quantum algorithm can be expressed in this form by postponing measurements
(i.e., unitarily write the measurement in an auxiliary register without collapsing
the state); any classical randomized algorithm can be converted into this form
by making it reversible and replacing random bits by states (|0〉 + |1〉)/

√
2.

By applying a NOT to the first qubit after the execution of Ai, we can easily
implement

Āi : |0t〉 7→ αi|1〉|ψ0
i 〉 +

√
1 − α2

i |0〉|ψ1
i 〉 ,



Procedure RobustFind(n, A, ǫ, β, γ, δ)

n ∈ N, A : n quantum algorithms, ǫ, β, γ, δ > 0
Output: i ∈ [n] ∪ {⊥} with the following properties:

1. if A is ǫ-close to x ∈ {0, 1}n and |x| ≥ βn, then i 6=⊥ with probability ≥ 1− δ
2. if A is ǫ-close to x ∈ {0, 1}n and if i 6=⊥, then xi = 1 with probability ≥ 1− γ

Complexity: O

„

1

( 1

2
−ǫ)2

·
q

1

β
· log 1

γδ

«

invocations of the Ai

Procedure AllInputs(n, A, ǫ)

n ∈ N, A : n algorithms, ǫ > 0

1: for i← to n do

2: run Ai

3: x̃i ← result of Ai

4: for k← 1 to log(ǫ(log n)2) do

5: ǫ′ ← ǫ/2k−1

6: for ℓ← 1 to 1.7ǫ′n do

7: i← RobustFind(n,A(x̃), ǫ, 0.3ǫ′, 1

8
, 1

8
)

8: if i 6=⊥ then

9: x̃i ← 1− x̃i

10: for m← n/(log n)2 down to 1 do

11: i← RobustFind(n,A(x̃), ǫ, m
n

, 1

20n
, 1

20n
)

12: if i 6=⊥ then

13: x̃i ← 1− x̃i

14: return x̃

which operates like Ai but outputs 1 when Ai would have output 0 and vice
versa. Define Ai(b) by Ai(0) := Ai and Ai(1) = Āi. If we plug the right bit xi

into Ai, then for all Ai we expect output 0: for the unique good x ∈ {0, 1}n,
A(x) := (A1(x1), . . . , An(xn)) is ǫ-close to 0n by the following notion of closeness:

Definition 5. For ǫ < 1/2 and decision algorithms A = (A1, . . . , An), we say
A is ǫ-close to x ∈ {0, 1}n if Pr[Ai outputs xi] ≥ 1 − ǫ for all i ∈ [n].

Our algorithm builds on a robust quantum search algorithm by Høyer, Mosca,
and de Wolf [5], which we call RobustFind. This subroutine takes a vector A of
n quantum algorithms and in the good case returns an index i so that the “high
probability” output of Ai is 1. This allows us to verify a purported solution
x̃ ∈ {0, 1}n by running RobustFind on A(x̃) to find differences with the real
input x. In fact, adjusting the parameters to RobustFind as we move closer and
closer to a good solution, AllInputs (as defined by the pseudo code on page 7)
manages to construct the unique x with high probability. Note that RobustFind
is the only quantum component of our otherwise classical algorithm.

The first step of our algorithm (Lines 1–3) is to classically sample each i
once and to store this initial approximation into a variable x̃i. We call i ∈ [n]
a bad index if xi 6= x̃i. The following rounds of the algorithm (Lines 4–9) use



RobustFind with error probabilities γ = δ = 1/8 and a decreasing estimate of
the number of bad indices, β. This way we refine x̃ until we have fewer than
n/(logn)2 bad indices. At that point, we can afford to set γ and δ to very small
values to eliminate all remaining bad indices with high probability.

Success probability. Let B0 denote the random variable counting the number of
bad indices after Line 3 and let Bk denote the random variable of the number of
bad indices after the iteration k of the for loop in Lines 4–9. By Gk we denote
the event Bk ≤ nǫ/2k−1. We have

Pr [Gkmax
] ≥ Pr [G0]

kmax∏

k=1

Pr [Gk|Gk−1] . (1)

We now show that Pr[Gk|Gk−1] is large by means of Chernoff bounds on the
number of bad indices that we find in round k and the number of errors we make.
For k = 0, we know that E[B0] ≤ ǫn and thus Pr[B0 ≤ 2ǫn] ≥ 0.9. In round k,
we want to reduce the upper bound on the number of bad indices from 2nǫ/2k−1

to nǫ/2k−1. Let Ek denote the random variable of the number of errors that we
make in round k, i.e., the number of wrongly identified bad indices. Similarly, let
Ck denote the random variable of the number of correctly identified bad indices.
Then Bk = Bk−1 − Ck + Ek, so

Pr [Gk|Gk−1] ≥ Pr [Ek ≤ 1.1γr | Gk−1] · Pr
[
Ck ≥ Bk−1 −

nǫ

2k−1
+ 1.1γr | Gk−1

]

(2)
We choose the number of repetitions of RobustFind to be r := 1.7nǫ/2k−1 and
our lower bound on the fraction of bad indices to be β := 0.3ǫ/2k−1. Then
E[Ek|Gk−1] ≤ γr and Pr [Ek ≤ 1.1γr | Gk−1] ≥ 1 − e−Ω(r). To bound the second
factor in (2), we need to take into account that we have no guarantee on the
success probability of a single RobustFind invocation if the number of bad indices
falls below βn. However, if this happens, then Ck ≥ Bk−1 − βn ≥ Bk−1 −
nǫ/2k−1 + 1.1γr, i.e., the second factor in (2) is trivially 1. Therefore it is safe
to assume that each invocation of RobustFind has success probability at least
(1 − γ)(1 − δ). Hence,

E [Bk−1 − Ck + 1.1γr | Gk−1] ≤ 2
nǫ

2k−1
− (1 − γ)(1 − δ)r + 1.1γr ≤ 0.9

nǫ

2k−1

and Pr
[
Bk−1 − Ck + 1.1γr ≤ nǫ

2k−1
| Gk−1

]
≥ 1 − e−Ω(r) .

Altogether, this establishes Pr [Gk|Gk−1] ≥ 1 − e−Ω(r).
Substituting this bound into (1) we obtain, with kmax = log(ǫ(logn)2) and

r = 1.7nǫ/2k−1 = Ω(n/(logn)2),

Pr[Gkmax
] ≥ Pr[G0]

(
1 − e−Ω(r)

)kmax

≥ 0.9

(
1 − log(ǫ(logn)2)

eΩ(n/(log n)2)

)
= 0.9 − o(1).

Hence, for large n with probability 0.8 we have at most n/(logn)2 bad indices
at the end of the for loop in Lines 4–9. In this case, we will find with con-
stant probability all bad indices by making the individual error probability in



RobustFind so small that we can use a union bound: we determine each of the
remaining bad indices with error probability 1/(10n). This implies an overall
success probability ≥ 0.8 · 0.9 > 2/3.

Complexity. We bound the number of queries to f in Lines 4–9 as follows:

kmax∑

k=1

nǫ/2k−1∑

ℓ=1

C
1

(
1
2 − ǫ

)2

√
1

ǫ/2k
≤ C′

√
ǫ

(
1
2 − ǫ

)2n
∞∑

k=1

1

2k/2
= O

(
n

(
1
2 − ǫ

)2

)

for some constants C,C′. Lines 10–13 result in

O




n/(log n)2∑

m=1

1
(

1
2 − ǫ

)2
√
n

m
logn


 = O

(
n

(
1
2 − ǫ

)2

)

many queries. Therefore, the total query complexity of AllInputs is O(n/(1/2−
ǫ)2).

4 Making Quantum Algorithms Robust

4.1 Inputs Computed by Quantum Algorithms

Here we state a few corollaries of Theorem 2. First, once we have recovered the
input x we can compute any function of x without further queries, hence

Corollary 2. For every f : {0, 1}n → {0, 1}, there is a robust quantum algo-
rithm that computes f using O(n) queries.

In particular, Parity can be robustly quantum computed with O(n) queries
while it takes Ω(n log n) queries classically [3].

Second, in the context of the direct-sum problem, the complexity of quantum
computing a vector of instances of a function scales linearly with the complexity
of one instance.

Corollary 3 (Direct Sum). If there exists a T -query bounded-error quantum
algorithm for f , then there is an O(Tn)-query bounded-error quantum algorithm
for n independent instances of f .

As mentioned, the best classical upper bound has an additional factor of logn,
and this is optimal in a classical black-box setting.

Thirdly, all symmetric functions can be computed robustly on a quantum
computer with the same asymptotic complexity as non-robustly. A function is
symmetric if its value only depends on the Hamming weight of the input. Let
Γ (f) := min{|2k − n + 1| : f changes value if the Hamming weight of the
input changes from k to k+1}. The non-robust algorithm for computing f with
O(
√
n(n− Γ (f))) queries [1, Theorem 4.10] can be made robust by a similar

algorithm as the one used in the proof of our Theorem 2, giving:

Theorem 3. For every symmetric function f , there is a robust quantum algo-
rithm that computes f using O(

√
n(n− Γ (f))) quantum queries.



4.2 Multiple Noisy Copies

As mentioned in the introduction, the assumption that we have a bounded-error
algorithm Ai for each of the input bits xi also covers the model of [11] where we
have a sequence yi,1, . . . , yi,m of noisy copies of xi. These we can query by means
of a mapping |i〉|j〉|0〉 7→ |i〉|j〉|yi,j〉. Here we spell out this connection in some
more detail. First, by a Chernoff bound, choosing m := O(log(n)/ǫ2) implies
that the average yi :=

∑m
j=1 yi,j/m is close to xi with very high probability:

Pr[|yi − xi| ≥ 2ǫ] ≤ 1/(100n). By the union bound, with probability 99/100 this
closeness will hold for all i ∈ [n] simultaneously. Assuming this is the case, we
implement the following unitary mapping using one query: Ai : |0log(m)+1〉 7→

1√
m

∑m
j=1 |j〉|yi,j〉. Measuring the last qubit of the resulting state gives xi with

probability at least 1− 2ǫ. Hence, we can run our algorithm from Section 3 and
recover x using O(n) queries to the yi,j . Similarly, all consequences mentioned
in Section 4.1 hold for this multiple-noisy-copies model as well.

5 Making Approximating Polynomials Robust

Theorem 4. rdeg1,2(f) = O(n) for every f : {0, 1}n → {0, 1}.

Proof. By Corollary 2 and the discussion in Section 4.2, f has an O(n)-query
robust quantum algorithm in the multiple-noisy-copies model that operates on
O(logn) copies. By Lemma 2 this induces a type-1 robust polynomial for f of
degree O(n). And finally, by Corollary 1 there also exists a degree-O(n) type-2
robust polynomial for f . ⊓⊔

In particular, this shows that for functions with approximate degree Θ(n) we
can make the approximating polynomial robust at only constant factor overhead
in the degree. This case includes explicit functions like Parity and Majority,
but also random (hence almost all) functions. It is open whether approximating
polynomials can always be made robust at only a constant overhead in the
degree. The best we can do is show that a non-robust degree-d approximating
polynomial can be made robust at a cost of a factor O(log d). Our proof makes
use of the well known notion of certificate complexity.

Definition 6. An assignment C : S → {0, 1} of values to some subset S ⊆ [n]
of the n variables is consistent with x ∈ {0, 1}n if xi = C(i) for all i ∈ S.
For b ∈ {0, 1}, a b-certificate for f is an assignment C such that f(x) = b
whenever x is consistent with C. The size of C is |S|, the cardinality of S. The
certificate complexity Cx(f) of f on x is the size of a smallest f(x)-certificate
that is consistent with x. The certificate complexity of f is C(f) = maxxCx(f).

Lemma 3. Let p be an ǫ-approximating polynomial for f : {0, 1}n → {0, 1},
and c = C(f) be the certificate complexity of f . If x ∈ {0, 1}n and z ∈ [0, 1]n

satisfy |xi − zi| ≤ 1/10c for all i ∈ [n], then |p(z) − f(x)| ≤ ǫ+ 2/15.



Proof. Consider a certificate C for x of size c. We will use xC and xC to denote
the parts of x corresponding to C and to its complement, respectively, and write

x = xCxC . If y ∈ {0, 1}n is chosen according to the z-distribution (yi = 1 with
probability zi), then

p(z) = Ey[p(y)] =
∑

yCyC

Pr[yC ] Pr[yC ]p(yCyC) =
∑

yC

Pr[yC ] · EyC [p(yCyC)] .

Now consider the expectation EyC [p(yCyC)], where yC ∈ {0, 1}n−c is fixed, while
the yC-bits are still chosen according to the z-distribution. Consider the c-variate

polynomial obtained from p by fixing the bits in yC . Since the “error” in the
zC-variables is at most 1/10c, we have Pr[yC = xC ] ≥ (1 − 1/10c)c ≥ 9/10, so

|EyC [p(yCyC)]−p(xCyC)| ≤ (1/10)(4/3) = 2/15. But f(xCyC) = f(x), because

the input xCyC satisfies the same certificate as x. Hence

|EyC [p(yCyC)]−f(x)| ≤ |EyC [p(yCyC)]−p(xCyC)|+|p(xCyC)−f(x)| ≤ 2/15+ǫ,

and also |p(z) − f(x)| ≤ ǫ+ 2/15. ⊓⊔

This lemma implies that we can make a non-robust approximating polynomial
robust at the cost of a factor of O(logC(f)) in the degree (replace each variable

by a O(logC(f))-degree error-reducing polynomial). Since C(f) and d̃eg(f) are

polynomially related (C(f) = O(d̃eg(f)4), see [2]), we obtain:

Theorem 5. rdeg1,2(f) = O(d̃eg(f) · log d̃eg(f)).

6 Summary and Open Problems

The main results of this paper are as follows:

– For every n-bit Boolean function f there is an n-variate polynomial p of
degree O(n) that robustly approximates it, i.e., p(x) remains close to f(x) if
we slightly vary the n inputs.

– There is an O(n)-query quantum algorithm that robustly recovers n noisy
input bits. Hence every n-bit function can be quantum computed with O(n)
queries in the presence of noise. This contrasts with the classical case, where
most functions need Θ(n log n) queries.

Note that the use of the robust Or algorithm by [5] is not necessary for recover-
ing the whole input. It would suffice to use Grover’s algorithm, that runs in time√
n/t when there are t marked items. When we know an estimate of t, like in

our logn rounds algorithm, we can make the error of a single query as small as
1/
√
n/t at the cost of a log (n/t) multiplicative factor. Standard analysis shows

that in this case Grover’s algorithm behaves as the robust Or algorithm. How-
ever this way we would not obtain the results about every symmetric function
(Theorem 3).



We mention some open problems. First, in contrast to the classical case
(Parity) we do not know of any function where making a quantum algorithm
robust costs more than a constant factor. Such a constant overhead suffices
in the case of symmetric functions and functions whose approximate degree is
Ω(n). It is conceivable that quantum algorithms (and polynomials) can always
be made robust at a constant factor overhead. Proving or disproving this would
be very interesting. We are not aware of a direct “closed form” or other natural
way to describe a robust degree-n polynomial for the parity of n bits, but can
only infer its existence from the existence of a robust quantum algorithm. Given
the simplicity of the non-robust representing polynomial for Parity, one would
hope for a simple closed form for robust polynomials for Parity as well.

Finally, we have chosen our model of a noisy query such that we can co-
herently make a query and reverse it. It is not clear to what extent non-robust
quantum algorithms can be made resilient against decohering queries, since the
usual transformations to achieve fault-tolerant quantum computation do not
immediately apply to the query gate, which acts on a non-constant number of
quantum bits simultaneously.
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