Robust Polynomials and Quantum Algorithms*

Harry Buhrman' Ilan Newman? Hein Rohrigh
Ronald de Wolf"

Abstract

We define and study the complexity of robust polynomials for Boolean
functions and the related fault-tolerant quantum decision trees, where
input bits are perturbed by noise. We show that, in contrast to the
classical model of Feige et al., every Boolean function can be computed
by O(n) quantum queries even in the model with noise. This implies, for
instance, the somewhat surprising result that every Boolean function has
robust degree bounded by O(n).

1 Introduction

In the last two decades, polynomials of many varieties have been used quite
successfully in complexity theory, both for upper and for lower bounds. We
study a variety here that is tailored to analyzing algorithms with noisy input.

Robust Polynomials. A robust polynomial for a Boolean function f : {0,1}" —
{0,1} is a real multivariate polynomial p(z1,...,2,) such that for every x =
(1,...,2n) € {0,1}™ and every z = (21,...,2,) € R, if Vi : |2; — 2] < 1/3
then |f(x) — p(2)| < 1/3 (the 1/3 in both cases can be changed to any other
constant). The robust degree of f is the smallest degree of a robust polynomial
for f; note that we do not require robust polynomials to be multilinear.

The motivation behind the definition of robust polynomials is twofold. First,
it can be viewed as a strengthening (restriction) of the notion of approximating
polynomials. An approximating polynomial for f is a multivariate real poly-
nomial ¢ that approximates f within an additive term of 1/3 for each Boolean
input. Approximating polynomials for Boolean functions are of interest in them-
selves and have been the object of study for a while. Their minimal degree is

*H.B., H.R., and R.d.W. supported in part by the EU fifth framework projects QAIP,
IST-1999-11234, and RESQ, IST-2001-37559, and an NWO grant. I.N. partially supported
by ISF grant 55/0.

TCWI, Amsterdam, the Netherlands and ILLC, University of Amsterdam, the Netherlands

tDept. of Computer Science, Haifa University, Israel

§Dept. of Computer Science, University of Calgary, Canada.

TCWI, Amsterdam, the Netherlands

tightly related to the decision tree complexity of f [9, 2]. Indeed, this “poly-
nomial method” [2] is one of the main tools for obtaining lower bounds on the
number of queries in quantum algorithms. One difficulty, however, is that ap-
proximating polynomials do not directly compose; if f(x1,...,x,) is a Boolean
function with an approximating polynomial py and g(y1,...,ym) is a Boolean
function with an approximating polynomial py, then the polynomial on n - m
variables py(py, - - -, Dg), which is obtained by plugging in a copy of p, for each
appearance of y;, is not necessarily an approximating polynomial for the com-
posed function f(g,...,g) on n - m variables. This difficulty is avoided with
robust polynomials; if py,p, are robust for f, g respectively, then their compo-
sition is a robust polynomial (and thus also approximating) for the composed
function.

A second motivation for robust polynomials is the study of quantum decision
trees that can tolerate noise in their inputs. We show that a natural quantum
analogue of classical fault-tolerant decision trees can be defined. As a result, it
will follow that every such algorithm that uses ¢ queries to its input bits (and
hence every classical noisy decision tree algorithm as well) implies the existence
of a robust degree-2¢ polynomial for the function. This relates the robust de-
gree to fault-tolerant computation in exactly the same way that approximating
polynomials are related to bounded-error quantum algorithms. Surprisingly,
our results imply robust quantum algorithms with a linear number of queries,
as well as robust polynomials of linear degree, for any Boolean function. This
should be contrasted with the result of Feige et al. [3] who proved that for most
Boolean functions an overhead factor of Q(logn) on the number of queries is
needed in the noisy case compared to the non-noisy case. In particular, consider
the parity function on n variables. This function can be decided trivially by an
n-query decision tree, and hence can be represented exactly by an n-degree
real multilinear polynomial (which is just the single monomial containing all
variables in the {—1, 1} representation). Feige et al. [3] prove that in the noisy
decision tree any algorithm for PARITY needs Q(nlogn) queries. Using standard
amplification techniques, this yields a O(nlogn)-degree robust polynomial for
PARITY. Can one do better? Our results imply that there is a robust polyno-
mial for PARITY of degree O(n). However, we only have an indirect description
of this polynomial by means of a quantum algorithm, and do not know of an
explicit simple construction of such a polynomial.

Noisy Quantum Queries. We now discuss in more detail the model of noisy-
decision trees in the quantum world. The notion of a “noisy query” in the
quantum case is not as obvious and natural as in the classical case since one
application of a quantum query can address many different x;’s in superposition.
A first proposal would be that for each quantum query, each of the bits is flipped
independently with probability €. Each such quantum query introduces a lot
of randomness and the algorithm’s state after the query is a mixed quantum
state rather than a pure state. In fact, this model is a concrete (and very
destructive) form of decoherence; the effects of various forms of decoherence on

oracle algorithms like Grover’s have been studied before, see e.g., [8, 10].

A second model, which we will adopt here, is to assume that we have n
quantum procedures, A, ..., A,, such that A; outputs x; with probability at
least 1 — €. Such a coherent-noise model is not unreasonable. For instance, it
could be the case that the input bits are actually computed for us by subroutines.
Such algorithms can always be made coherent by pushing measurements to the
end, which means that we can apply and reverse them at will. To enable us
to apply the A;’s in superposition, we assume we have a black box that maps
A : [$)|0) —]i)A;|0). One application of this will count as one query.

A third model, which we will call the multiple-noisy-copies model, was stud-
ied by Szegedy and Chen [11]. Here, instead of z;, the algorithm can only query
“perturbed” copies ¥; 1, ..., ¥i,m of x;. The y; ; are independent Boolean ran-
dom variables with Pr[z; = y; ;] > 1 —eforeachi=1,...,nand j=1,...,m.
In contrast to the first proposal, this model leaves the queries perfectly re-
versible, since the perturbed copies are fixed at the start of the algorithm and
the same y; ; can be queried more than once. The assumption of this model
is also stronger than the second model, since we can construct a l-query A;
that just outputs a superposition of all y; ;. If m is sufficiently large, this A;
will compute z; with high success probability, satisfying the assumption of the
second model (see Section 4.2 for details).

Robust Quantum Algorithms. Assuming the second model of noisy queries
and some fixed €, we call a quantum algorithm robust if it computes f with
bounded error probability on inputs of n bits given by bounded-error algorithms
Ay, ..., Ay, respectively. A first observation is that every T-query non-robust al-
gorithm can be made robust at a multiplicative cost of O(logT"). With O(logT')
queries, a majority gate, and an uncomputation step, we can construct a uni-
tary U, that approximates an exact quantum query U, : |i)|b) — [i)|b @ z;) very
well: ||U, — U,|| < 1/100T. Since errors add linearly in a quantum algorithm,
replacing U, by U, in a non-robust algorithm gives a robust algorithm with
almost the same final state. In some cases better constructions are possible.
For instance, a recent result by Hgyer et al. [5] implies a quantum algorithm
that robustly computes ORrR with O(y/n) queries. This is only a constant factor
worse than the noiseless case, which is Grover’s algorithm [4]. In fact, we do
not know of any function where the robust quantum query complexity is more
than a constant factor larger than the non-robust complexity.

Our main result about robust quantum algorithms (made precise in Theo-
rem 2) is the following:

There exists a quantum algorithm that outputs zi,...,z,, with
high probability, using O(n) invocations of the A; algorithms (i.e.,
queries).

As already mentioned, this result implies that every n-bit function f can be
robustly quantum computed with O(n) queries. This contrasts with the classical
Q(nlogn) lower bound for PARITY. It is quite interesting to note that quantum

computers, which usually are more fragile than classical computers, are actually
more robust in the case of computing PARITY with noisy inputs. The result for
PARITY can be extended to every symmetric function f: for every such function,
the optimal quantum algorithm can be made robust with only a constant factor
overhead (see Section 4.1).

Our result has a direct bearing on the direct-sum problem, which is the
question how the complexity of computing n independent instances of a function
scales with the complexity of one instance. One would expect that computing
n instances with bounded-error takes no more than n times the complexity of
one instance. However, since we want all n instances to be computed correctly
simultaneously with high probability, the only known general method in the
classical world is to compute each instance with error probability reduced to
O(1/n). This costs another factor of O(logn). In fact, it follows from the
Q(nlogn) bound for PARITY that this factor of logn is optimal if we can only
run algorithms for individual instances in a black-box fashion. In contrast, our
result implies that in the quantum world, the bounded-error complexity of n
instances is at most O(n) times the bounded-error complexity of one instance.
This is a very general result. For example, it also applies to communication
complexity [7, Section 4.1.1]. If Alice and Bob have a bounded-error protocol
for a distributed function f, using ¢ bits (or qubits) of communication, then
there is a bounded-error quantum protocol for n instances of f, using O(n(c +
logn)) qubits of communication. The additive logn is because Alice and Bob
need to communicate (possibly in superposition) the index of the instance that
they are computing. In contrast, the best known general classical solution uses
©(cnlogn) bits of communication.

Note about Related Work. In their manuscript [6], Iwama et al. study a
similar but slightly weaker setting. There, the error probability for each input
variable is ezactly €. If € is known, then one can use a version of exact amplitude
amplification to “rotate off” the error using O(1) queries and hence make the
algorithm robust. If e unknown, it can be estimated very well using quantum
amplitude estimation, after which amplitude amplification can be used as if €
was known. Iwama et al. derive from this that any quantum algorithm can be
made robust (in their model) with only a constant factor overhead. Their model
has the disadvantage that it does not cover the subroutine-scenario, where each
input bit x; is computed for us by an algorithm or subroutine A; whose error
we can only upper bound. Our model does not need the assumption that the
error is the same for all input bits, and hence does not have this disadvantage.

2 Robust Polynomials — Preliminaries

In this section we study robust polynomials of two different but essentially
equivalent types. The first type arises from the multiple-noisy-copies model,
the second type is what we discussed in the introduction.

Definition 1 An (e, m)-perturbation of x € {0,1}" is a matriz y of n x m
independent binary random variables y; ; so that Prly; ; = x;] > 1 — € for each
1<j<m.

Definition 2 A type-1 (e, m)-robust polynomial for the Boolean function f :
{0,1}" — {0,1} is a real polynomial p in nm variables y; ; (with 1 < i <n
and 1 < j < m) so that for every x € {0,1}" and y an (¢, m)-perturbation of
x, Pr[lp(y) — f(z)| > 1/3] < 1/3. Moreover, for every v € {0,1}"™, we require
—1/3 <p(v) <4/3.

Note that since ny = y;,; for a bit y; ;, we can restrict attention to multilinear
polynomials here.

Notice that the error parameter 1/3 in our definition of type-1 polynomial
is consistent with having exzpected error more than 1/2 for some x: it could
be that |p(x) — f(z)] = 1/3 with probability 2/3, and |p(x) — f(z)| = 1 with
probability 1/3, giving expected error 5/9. However, this is not a significant
problem, as the next lemma shows that the error parameter 1/3 can be reduced
to any small § > 0 at only a small multiplicative cost in the degree and the
number of perturbations.

Lemma 1 Consider any 6 > 0. If there is a type-1 (¢, m)-robust polynomial p
for f of degree d, then there exists a type-1 (e,m’)-robust polynomial q for f of
degree O(dlog(1/6)) and m’ = O(mlog(1/6)), such that for x € {0,1}" and y

an (e, m)-perturbation of x, we have
Prllg(y) - f(@)] = 9] < 0.
Moreover, for every v € {0,1}"™ we have q(v) € [—6,1 + 6].

Proof. We first analyze the following single-variate “amplification polynomial”

of degree k:
hi(o) = > (’;)xiu_:p)“.

i>k/2

Note that hi(z) is exactly the probability that among & coin flips with bias x
towards 1, more than half come up 1. Hence by the Chernoff bound we have
hi(z) € [0,27%R)] for all z € [0,1/3], hr(z) € [0,1] for 2 € [1/3,2/3], and
hi(z) € [1 — 27K 1] for & € [2/3,1]. By “stretching” the domain a bit, we
can turn this into a degree-k polynomial hy, such that hy(x) € [0,27%®)] for
x € [~2/5,2/5], hi(x) € [0,1] for 2 € [2/5,3/5], and hy(x) € [1 —27R) 1] for
x € [3/5,7/5].

We use r independent (e, m)-perturbations of z, denoted y = y1, ..., y,. For
each perturbation y; it holds that Pr[|p(y;) — f(z)| > 1/3] < 1/3. Using the
amplification polynomial hy with k& = O(1) we can get the value of p closer
to f: Pr[|lhr(p(y:)) — f(z)] > 1/20] < 1/3. Note that the expected value of
|hi(p(y:)) — f(2)] is now at most (2/3)(1/20) + (1/3)1 = 11/30. If we now

define an average polynomial B(y) = 2 37| hi(p(y;)) for r = O(log(1/9)), then

by the Chernoff bound we have '

Pr[[p(y) — f(x)] = 2/5] < 6.

Finally we apply hj again, this time with degree k = O(log(1/6)), in order to
get the value of D d-close to the value f(x): if we define q(y) = hix(p(y)) then

Pr{lq(y) — f(z)| = ¢] < 0.

The degree of ¢ is O(dlog(1/6)), and m’ = O(mlog(1/§)). The last property of
the lemma is also easily seen. O

The second kind of robust polynomial is the following:

Definition 3 For a Boolean function f : {0,1}™ — {0,1}, we call q a type-2
e-robust polynomial for f if q is a real polynomial in n variables so that for every
x € {0,1}™ and every z € [0,1]" we have |q(z) — f(z)| <1/3 if |z; — x| < € for
alli € [n]. If e =0, then q is called an approximating polynomial for f.

A minimal-degree type-2 robust polynomial for f need not be multilinear, in
contrast to the type-1 variety. Note that we restrict the z;’s to lie in the set
[0, e]U[1—¢, 1] rather than the less restrictive [—¢, €]U[1 —¢, 14-€]. This facilitates
later proofs, because it enables us to interpret the z;’s as probabilities. However,
with some extra work we could also use the less restrictive definition here.

Definition 4 For f : {0,1}" — {0,1}, let rdeg, (f) denote the minimum degree
of any type-1 (1/3,5logn)-robust polynomial for f, rdeg,(f) be the minimum
degree of any type-2 1/3-robust polynomial approximating f, and c/lgé(f) be the
manimum degree among all approximating polynomials for f.

We characterize the relation of type-1 and type-2 robust polynomials as follows:

Theorem 1 For every type-2 e-robust polynomial of degree d for f there is a
type-1 (€/2,0(log(n)/(1/2 — €)?))-robust polynomial of degree d for f. Con-
versely, for every type-1 (e,m)-robust polynomial of degree d for [there is a
type-2 e-robust polynomial of degree O(d) for f.

Proof. Let p be a type-2 e-robust polynomial of degree d for f. We choose
m = O(log(n)/(1/2—¢)?). If each y; ; is wrong with probability < €/2, then with
probability at least 2/3, the averages g, will satisfy |y, — x;| < € for all ¢ € [n].
Hence the polynomial p(7y,...,7,) will be a type-1 (¢/2, O(log(n)/(1/2 —€)?))-
robust polynomial of degree d for f.

For the other direction, counsider a type-1 (e, m)-robust polynomial of degree
d for f. Using Lemma 1, we boost the approximation parameters to obtain a
type-1 (e, m’)-robust polynomial p of degree O(d), with m’ = O(m), so that for
any = € {0,1}" and (e, m’)-perturbation y of x, Pr[|p(y) — f(x)| > 1/9] < 1/9.
For z = (z1,...,2,) define the formal polynomial ¢(z) (over the Reals) by

replacing each appearance of y; ; in p(y) with z;. For z € R” with 0 < z; <1
for all 4, let y; ; (i € [n], 7 € [m']) be independent 0/1 random variables, where
Ely; ;] = z;. Then the polynomial ¢(z) that is defined above could be viewed as
q(z) = E[p(y)] because E[p(y)] = p(Ely]) and E[y; ;] = z;. In particular, if for z
there exists € {0,1}"™ with |z; —z;| < € for all 4, then for any y € {0, 1}™™ that
is an (e, m)-perturbation of z, ¢(z) := E[p(y)] (here expectation is according to
the distribution induced by y). Therefore V := {v € {0,1}" : |p(v) — f(z)| <
1/9} has probability Pry € V] > 8/9 and

f(@) = a(z)] < | > Prly = o] (f(2) = p(v))

veV

+ <

1
7 -

> Prly =1 (1+ %)

vV

This means that ¢(z) is a type-2 e-robust polynomial for f of degree O(d). O

Note, in all the above we have discussed total Boolean functions. The defini-
tions above make sense also for partial Boolean functions (or promise problems).
The theorem as well as the next corollary are true also for such cases.

Corollary 1 rdeg,(f) = ©(rdeg,(f)) for every Boolean function f :{0,1}" —
{0,1}.

Since we know that the acceptance probability of a T-query quantum algorithm
can be written as a multivariate polynomial of degree at most 27" in its in-
put bits [1], robust quantum algorithms provide one way to construct robust
polynomials:

Lemma 2 Let f:{0,1}"™ — {0,1} be a Boolean function. Let Q be a quantum
algorithm that makes at most q queries on inputs from {0,1}"*™. If for every
x € {0,1}™ and y an (e, m)-perturbation of =, we have that Pr[Q(y) = f(z)] >
29/30, then there exists a degree-2q type-1 (e,m)-robust polynomial for f.

3 Quantum Robust Input Recovery

In this section we prove our main result, that we can recover an n-bit string
x using O(n) invocations of algorithms A, ..., A, where A; computes x; with
bounded error. Let h(z) denote the Hamming weight of a bit string x. Our
main theorem says that with high probability we can find ¢ 1-bits in the input
x (if they are present) using O(y/nt) noisy queries.

Theorem 2 Consider e-error algorithms Ay, ..., A, that compute the bits © =
T1y ..., &y with error probability at most some € < 1/2. For every t, 1 <t < n,
there is a quantum algorithm that makes O(v/nt) queries (invocations of the A;)
and that outputs & = %1, ..., T, such that with probability 2/3

1. forali:z;=1=x;=1

2. h(Z) > min{t, h(z)}.

In particular, with ¢t = n we obtain & = x using O(n) queries.
We assume that 0 < € < 1/100 is fixed and that A; is a unitary transforma-

tion
A 2 |07) = i0)[9) + /1 = Z[1)|4;)

for some a; > 0 such that |o;|? < eif z; = 1 and |o;|> > 1 —€if z; = 0; |¢)) and
|p}) are arbitrary (t — 1)-qubit norm-1 quantum states. It is standard that any
quantum algorithm can be expressed in this form by postponing measurements
(i.e., unitarily write the measurement in an auxiliary register without collapsing
the state); any classical randomized algorithm can be converted into this form
by making it reversible and replacing random bits by states (|0) + [1))/v/2.
By applying a NOT to the first qubit after the execution of A;, we can easily
implement

A; 1]0%) = au|1)[¥0) + /1 — aZ|0)[v])

which operates like A; but outputs 1 when A; would have output 0 and vice
versa. Define A;(b) by A;(0) := A; and A;(1) = A;. If we plug the right
bit z; into A;, then for all A; we expect output 0: for the unique good x €
{0,1}™, A(z) := (A1(x1),. .., An(xy)) is e-close to 0™ by the following notion of
closeness:

Definition 5 For € < 1/2 and decision algorithms A = (A1,...,A,), we say
A is e-close to x € {0,1}" if Pr[A; outputs x;] > 1 — € for all i € [n].

Another notation that we use is the following. Let A = (Ay,...,4,) be
a sequence of decision algorithm as above and let S C [n]. We define A% =
(A7,..., AS) where A? = A; ifi € S and A7 = 01ifi ¢ S. Clearly we can
implement the quantum procedures A° by controlling A; with S. For S as
above and x € {0,1}" we denote by x° € {0,1}" the string that is identical to
x on indices in S and is 0 on indices in S.

Our algorithm builds on a robust quantum search algorithm by Hgyer,
Mosca, and de Wolf [5], which we call RobustFind. This subroutine takes a
vector A of n quantum algorithms and in the good case returns an index i
so that the “high probability” output of A; is 1. Formally, the input/output
relation of RobustFind is stated in Theorem 3.

Theorem 3 (HMW) There is a procedure RobustFind(n, A, ¢, 8, v, 0)
where n € N, A : n quantum algorithms, €, 3,7v,5 >0
Output: i€ [n]U{L} and with the following properties:

1. if A is e-close to x € {0,1}™ and |x| > Bn, then i #L with probability
>1-6

2. if A is e-close to x € {0,1}™ and if i #L, then x; = 1 with probability
>1—x

Complexity: O (ﬁ . \/g -log %) invocations of the A;
3—€

Before we formally prove Theorem 2 we explain the intuition and high level
of our algorithm (as defined by the Alllnputs pseudo code on page 9) and of the
proof. Clearly, for t = O(1) Theorem 2 is obvious as we can run RobustFind ¢
times to recover ¢ indices 7 such that z; = 1 with O(y/n) queries. Therefore all
considerations below will be for ¢ > g for some %y that is independent of n and
will be specified later.

An important feature of the robust quantum search is that it can be used to
verify a purported solution Z € {0,1}" by running RobustFind on A(Z) to find
differences with the real input x.

Procedure Alllnputs(n, t, A, €)
n,t € N, A : n algorithms, € > 0

1: T« 0"

Part 1, Aim: to find a set of indices S C [n] that contains at least
min(h(x),t) and at most 3t/2 1’s of the input.
for 3t/2 times do

i — RobustFind(n, A(Z), €, 1o5- ﬁ, ﬁ)

if i #1 then

.’Z‘i —1- ji

S — {z | T; = 1}
if |S| < 5t/4 then

S «— [n]

Part 2, Aim: correctly find all but t/ log?t 1’s.
9: [« ﬁ
10: « 0"
11: for k — 1 to log((logt)?) do
12: [y — B/2F
13: tr «— 3t/2k
14: for ¢/ — 1 to t;, do

15: i < RobustFind(n, A% (), €, Bkn, 165 155)
16: if i #1 then
17: T, —1—2xa4

Part 3, Aim: correctly find all other 1’s and get rid of remaining errors.
18: for m « t/(logt)? down to 1 do
19: i < RobustFind(n, A% (%), e, 2, ﬁ, ﬁ)
20: if i #1 then
21: T;—1—x;
22: return ¥

Let x be the unique assignment such that A is e-close to z. Assume first
that the Hamming weight is h(z) < 3t/2. Our idea is to apply RobustFind
repeatedly for about 3¢/2 times (with threshold, say, 8 = ¢/(100n)) and error
probability 1/100. We expect that for at least a 98/100-fraction of the calls
RobustFind will return an index ¢ such that ; = 1, and expect at most 2/100-
fraction of wrong indices. The first problem to note is that RobustFind might
return the same (correct) index over and over again. This is easily resolved as
follows: We set & € {0,1}™ to be &; = 1 for every index i that we obtained form
RobustFind and 0 everywhere else, and call RobustFind with A(Z) rather then
with A. This means that the 1’s that are to be reported by RobustFind are in
@ Z which is supported on the erroneous indices of Z, namely, on those indices
that are either 1 in & but are 0 in « (false positive) and those indices that are
0 on & while they are 1 on z (false negative).

Done this, we expect about 3¢/200 errors of both kinds (false positive and
false negative) in the 3t/2 calls to RobustFind, which should result in Z being
quite close to 2. We then call RobustFind 3t/4 times hoping to correct some of
the errors while not introducing too many new errors. This would be reasonable
as we call RobustFind in this second phase half the times we call it in the first
phase. Thus we expect to have half the number of new errors, while good chance
of correcting many old errors (as they are 1 in @ & and hence RobustFind is
expected to report a 98/100-fraction of them). We keep doing this until the
number of expected errors is smaller than ¢/(log”t). At this point we can afford
to run RobustFind for ¢/(log?t) times, with error probability as low as 1/(20t).
This finds all remaining errors with high probability. Indeed this is the structure
of part 2 and part 3 of our algorithm.

However, the idea above fails to work when h(z) > t. To see the problem
assume that t = \/n while h(x) = n/2. Then, after the first round above, & will
be supported on about /n indices, out of which about 1/n/100 might be false
positives. However, in every next call to RobustFind, the procedure has about
n/2—+/n false negative indices to report back - those that are 1’s in = but still 0
in Z. Thus, even if all the next O(t) calls will return a correct such index we still
might be left with the same /n/100 false positive errors that are introduced
in the first round. Note that if ¢ = n, which is the case when the algorithm
is applied to find all inputs, this last discussion is of no concern. However, for
relatively small ¢ (which will be needed for some application, e.g., Theorem 4)
we need to introduce a first part to the algorithm. This part is only meant to
find a subset S C [n] such that h(x°) < 3t/2. Once this is done, we can use 2
instead of x in the description above which will now work for every input.

We now prove that the success probability of the algorithm is at least 2/3.

Success probability. The algorithm is composed of three parts. We first
prove that after Part 1, that is, prior to line 9, we have min(¢, h(z)) < h(z®) <
3t/2 with probability 1 — o(1).

Indeed, assume first that at line 7 we have |S| > 5¢/4. Then the upper bound
on h(z®) is trivial. For the lower bound assume (by way of contradiction) that

10

h(z%) < t. Then we can have |S| > 5t/4 only if at least ¢/4 wrong indices have
been reported by RobustFind. However, as we call RobustFind with v = 1/100
we expect at most 3t/200 errors. Thus by a Chernoff bound we have h(z%) > ¢
with probability 1 — o(1).

If, on the other hand, we reach line 7 with |S| < 5¢/4 then S is set to be
[n], for which the lower bound on h(z®) certainly holds. For the upper bound
assume that h(z) > 3t/2. Then to have |S| < 5¢/4 at line 7 means that at least
t/4 — t/100 errors occurred in the 3t/2 calls for RobustFind (an error here is
whenever RobustFind returns either ¢ =L or a false negative index; the ¢/100
term comes from the threshold § = ¢/(100n)). However, the error probability
in this case is at most 2/100 (as we call RobustFind with § = = 1/100). Thus
we expect at most 3t/100 errors. Again by Chernoff we are done.

Accordingly, we may assume that with probability 1 — o(1), the S we have
at line 9 is such that min(¢, h(z)) < h(z®) < 3t/2. In Part 2 of the algorithm
we want to find correctly most of the 1’s in 2. We maintain Z as our current
estimate of 9. Initially # = 0". Denote by G,k = 1,...,log((logt)?) the event
that h(Z @ 2°) < 30t;/100 at the end of the kth run of the loop in line 10. We
prove inductively that Pr[Gy|Gy_1] = e~ (). This together with an assertion
that Pr[G1] = e~ ®® will imply that at the end of Part 2, h(z® @) < t/log*t
with probability at least 9/10, assuming that ¢ is large enough (so that e~2(tx) =
e~ 2t/108” D) < 1 /(1010g(log? 1))).

Indeed, let us examine the situation during the first round, namely for &k = 1.
We call RobustFind in the first round for ¢; = 3¢/2 times with threshold Sin =
t/200. Thus, as long as h(z® @ %) > ¢/200 happens, each call to RobustFind
gives an ¢ € [n] with probability at least 99/100. Moreover, we expect at most
a 1/100 fraction of errors in the reported indices. Assume first that at the
beginning of the first round h(z° @ %) > 20¢/100 and let h = h(z* © &) — /200.
Then after the first h calls to RobustFind we expect at least 98/100 fraction of
correct indices. Thus with probability e~*(*) we will get less than 90/100 correct
indices. However, if we do get at least % - h(2x° @ &) correct indices after those

100
h calls we get an & for which h(z® @ #) < 2%h < 6t/100. Now, assuming this

happens, then G; can happen at the end olfO%he first round only if during the
rest of the 3t/2—h < 129¢/100 remaining calls at least 39¢/100 incorrect indices
have been made. As the probability for an incorrect index is bounded by 1,/100
we expect only at most 1.3t/100 errors. Thus, by Chernoff 39¢/100 errors will
occur with probability e=(*). If, however, at the beginning of the first round
h(z® @ &) < 20t/100 then by a similar argument G'; can happen at the end of
the first round only if during the the 3¢/2 calls to RobustFind at least 25¢/100
incorrect indices have been made. Again by Chernoff this will happen with
probability e=**). This concludes the proof that Pr[G;] = e~2®).

We now inductively prove that Pr[Gy|Gp_1] < e~),

Indeed, assume that G_1 happens, namely that just prior to the beginning
of the kth round we have h(Z@x%) < 30t;_1/100 = 60t;,/100. In round k we call
RobustFind with threshold Bxn = t/200; hence, as long as h(z ©) > t;/200,
we expect RobustFind to return an index ¢ € [n] NS with probability at least

11

99/100. Moreover, every time it returns a correct index (which occurs with
probability at least 99/100) it is a 1 in (# @ 2°) hence reduces the weight of
symmetric difference (the total number of errors) by 1.

Suppose first that prior to round k, h(Z @ z°) < 30t;/100. Then, for G}
to happen at the end of round k, RobustFind would need to return at least
31t1,/100 wrong indices, namely ¢ € [n] NS such that #; = z; (returning a L
here does not count as a false index). However, as the probability of a wrong
index is at most 1/100 and RobustFind is called ¢; times, then, by Chernoff,
the probability of G}, is e~ (),

Assume now that h(Z @ z°) > 30t,/100 at the beginning of round k. Recall
also that by the assumption that G_; occurs, we have h(i @ %) < 60t;/100
at the beginning of the kth round. Consider the first h = h(z © x%) — t;,/200
calls for RobustFind. In each of those calls h(Z @ z°) > #;,/200 = Sjn, hence
with probability 99/100 every such call returns an index i € [n] N S which is
then a correct index with probability 99/100. Thus we expect that at least
% - h correct indices will be returned in the first h calls. By Chernoff, the
probability that the number of correctly returned indices in those h calls is less
then 90h/100 is e~ () (as h > 15t,/100). But if the number of correctly
returned indices is at least 90h/100 it implies that after the first h calls of
RobustFind, h(Z @ z%) < 0.2k < 0.2 - 59t /100 < 12t;/100. Thus, at this point
we are still left with 3¢5 /2 — h calls to RobustFind which will result in G only
if at least 48t;/100 wrong indices will be returned. This again will happen with
probability e=(*), We conclude that in all cases Pr[Gy|Gj_1] = e~ (),

Note that ¢, > t/(log®t). Thus if we choose t > to such that for every k
the probability Pr[G|Gr_1] = e~ (%) < 1/(10t) we get that Pr[G}] < 1/10 for
k= log2 t after the end of Part 2. Hence, with probability at least 0.8, we have
h(z @ x) < t/(logt)? bad indices at the end of the for loop in lines 11-17.

Finally, in Part 3 we find with constant probability all remaining wrong
indices by making the individual error probability in RobustFind so small that
we can use the union bound: we determine each of the remaining bad indices
with error probability 1/(10¢). This implies an overall success probability of at
least 0.8-0.9 > 2/3.

Complexity. Clearly the complexity is determined by Parts 2 and 3 of the
algorithm. We bound the number of queries to f in lines 11-17 as follows:

log(log? t) log(log? t) " ok
0 ; ti/1/Br | =0 kz;: s\ :o(\/ﬁ) (1)

The work in lines 18-21 is bounded by

Yost)? S
0 \/j logt | = O (Vnt
30 st] =0 (vai)

many queries. Therefore, the total query complexity of Alllnputs is O(v/nt).

12

4 Making Quantum Algorithms Robust

4.1 Inputs Computed by Quantum Algorithms

Here we state a few corollaries of Theorem 2. First, once we have recovered the
input we can compute any function of x without further queries, hence

Corollary 2 For every f : {0,1}™ — {0,1}, there is a robust quantum algo-
rithm that computes f using O(n) queries.

In particular, PARITY can be robustly quantum computed with O(n) queries
while it takes 2(nlogn) queries classically [3].

Second, in the context of the direct-sum problem, the complexity of quantum
computing a vector of instances of a function scales linearly with the complexity
of one instance.

Corollary 3 (Direct Sum) If there exists a T-query bounded-error quantum
algorithm for f, then there is an O(Tn)-query bounded-error quantum algorithm
for n independent instances of f.

As mentioned, the best classical upper bound has an additional factor of logn,
and this is optimal in a classical black-box setting.

Thirdly, all symmetric functions can be computed robustly on a quantum
computer with the same asymptotic complexity as non-robustly. A function is
symmetric if its value only depends on the Hamming weight of the input. Let
I'(f) := min{|2k —n + 1| : f changes value if the Hamming weight of the input
changes from k to k + 1}. Beals et al. [1, Theorem 4.10] exhibited a bounded-
error quantum algorithm for f using O(y/n(n —T'(f)+ 1)) quantum queries,
which is optimal. We show that this upper bound remains valid also for robust
algorithms.

Theorem 4 For every symmetric function f, there is a robust quantum algo-
rithm that computes | using O(y/n(n —T(f) + 1)) quantum queries.

Proof. Note that f is constant when the Hamming weight of its input lies in
the middle interval [(n — T'(f))/2, (n + T'(f) — 2)/2]. Using two applications
of Theorem 2 with sufficiently small error probability, we robustly search for
[(n —T(f))/2] ones and n — [(n + I'(f) — 2)/2] zeros in the input. If both
of these searches succeeded (i.e., found the required zeros and ones), then we
know that our input lies in the middle interval. If the search for zeros failed
(i.e., ended with fewer zeros) then we know all zeros and hence the whole input
x. Similarly, if the search for ones failed then we know z. Either way, we can
output f(z). O

4.2 Multiple Noisy Copies

As mentioned in the introduction, the assumption that we have a bounded-error
algorithm A; for each of the input bits x; also covers the model of [11] where we

13

have a sequence y; 1, . .., ¥; m of noisy copies of z;. These we can query by means
of a mapping [i)]5}|0) — |¢)|7)|y:,;). Here we spell out this connection in some
more detail. First, by a Chernoff bound, choosing m := O(log(n)/€?) implies
that the average 7, := ZT:I Yi,;/m is close to x; with very high probability:
Pr[|y; —zi| > 2¢] < 1/(100n). By the union bound, with probability 99/100 this
closeness will hold for all ¢ € [n] simultaneously. Assuming this is the case, we
implement the following unitary mapping using one query: A; : |01°g(m)+1> —
\/—% Z;nzl |7)|yi,5). Measuring the last qubit of the resulting state gives z; with
probability at least 1 — 2e. Hence, we can run our algorithm from Section 3 and
recover z using O(n) queries to the y; ;. Similarly, all consequences mentioned
in Section 4.1 hold for this multiple-noisy-copies model as well.

5 Making Approximating Polynomials Robust
The next theorem now follows immediately from earlier results.
Theorem 5 rdeg, 5(f) = O(n) for every f:{0,1}" — {0,1}.

Proof. By Corollary 2 and the discussion in Section 4.2, f has an O(n)-query
robust quantum algorithm in the multiple-noisy-copies model that operates on
O(logn) copies. By Lemma 2 this induces a type-1 robust polynomial for f of
degree O(n). And finally, by Corollary 1 there also exists a degree-O(n) type-2
robust polynomial for f. O

In particular, this shows that for functions with approximate degree ©(n) we
can make the approximating polynomial robust at only constant factor overhead
in the degree. This case includes explicit functions like PARITY and MAJORITY,
but also random (hence almost all) functions. It is open whether approximating
polynomials can always be made robust at only a constant overhead in the
degree. The best we can do is show that a non-robust degree-d approximating
polynomial can be made robust at a cost of a factor O(logd). Our proof makes
use of the well known notion of certificate complezity.

Definition 6 An assignment C : S — {0,1} of values to some subset S C [n]
of the n wvariables is consistent with x € {0,1}" if z; = C(i) for all i € S.
For b € {0,1}, a b-certificate for f is an assignment C' such that f(z) = b
whenever x is consistent with C. The size of C is |S|, the cardinality of S. The
certificate complexity C,(f) of f on z is the size of a smallest f(x)-certificate
that is consistent with x. The certificate complexity of f is C(f) = max, C,(f).

Lemma 3 Let p be an e-approzimating polynomial for f : {0,1}™ — {0,1}, and
¢ = C(f) be the certificate complexity of f. If x € {0,1}™ and z € [0,1]™ satisfy
|zi — zi] <1/10c¢ for all i € [n], then |p(z) — f(z)| < e+ 2/15.

Proof. Consider a certificate C for z of size ¢. We will use zC and 2€ to denote

the parts of x corresponding to C' and to its complement, respectively, and write

14

z =2%C. If y € {0,1}" is chosen according to the z-distribution (y; = 1 with
probability z;), then

p(=) = Bylp(v)] = 3 Prly I PrlyClp(u”y) = 3 Prly®] - Byelp(y“y)] -

yCyC

Now consider the expectation E,c [p(yCy°)], where y© € {0,1}" ¢ is fixed,
while the y©-bits are still chosen according to the z-distribution. Consider the c-
variate polynomial obtained from p by fixing the bits in 4. Since the “error” in
the z%-variables is at most 1/10¢, we have Pr[y®¢ = 2] > (1 — 1/10¢)¢ > 9/10,
so |Byelp(y“y?)] — p“y)| < (1/10)(4/3) = 2/15. But f(z“y“) = f(),
because the input 9y satisfies the same certificate as x. Hence

|Eye[p(yCyO)]—f(2)] < | ByelpyCyS)]—p(2Cy)|+Ip(zyC)~ f(z)] < 2/15+e,
and also |p(z) — f(z)] <e+2/15. O

This lemma implies that we can make a non-robust approximating polynomial
robust at the cost of a factor of O(log C(f)) in the degree (replace each variable
by a O(log C(f))-degree error-reducing polynomial). Since C(f) and agé(f) are
polynomially related (C(f) = O(aje/g(f)‘l), see [2]), we obtain:

Theorem 6 rdeg, ,(f) = O(deg(f) - log deg(f)).

6 Summary and Open Problems

The main results of this paper are as follows:

e For every n-bit Boolean function f there is an n-variate polynomial p of
degree O(n) that robustly approximates it, i.e., p(z) remains close to f(x)
if we slightly vary the n inputs.

e There is an O(n)-query quantum algorithm that robustly recovers n noisy
input bits. Hence every n-bit function can be quantum computed with
O(n) queries in the presence of noise. This contrasts with the classical
case, where most functions need ©(nlogn) queries.

We mention some open problems. First, in contrast to the classical case (PARITY)
we do not know of any function where making a quantum algorithm robust costs
more than a constant factor. Such a constant overhead suffices in the case of
symmetric functions and functions whose approximate degree is Q(n). It is
conceivable that quantum algorithms (and polynomials) can always be made
robust at a constant factor overhead. Proving or disproving this would be very
interesting. We are not aware of a direct “closed form” or other natural way
to describe a robust degree-n polynomial for the parity of n bits, but can only
infer its existence from the existence of a robust quantum algorithm. Given

15

the simplicity of the non-robust representing polynomial for PARITY, one would
hope for a simple closed form for robust polynomials for PARITY as well.

Finally, we have chosen our model of a noisy query such that we can coher-
ently make a query and reverse it. It is not clear to what extent non-robust
quantum algorithms can be made resilient against decohering queries, since the
usual transformations to achieve fault-tolerant quantum computation do not
immediately apply to the query gate, which acts on a non-constant number of
quantum bits simultaneously.

Acknowledgments. We thank Peter Hgyer for inspiring initial discussions
that led to our main result, and Michele Mosca for sending us a version of [6].
Oded Regev pointed out that when recovering all input bits, the quantum-search
subroutine does not need to be robust.

References

[1] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum
lower bounds by polynomials. Journal of the ACM, 48(4):778-797, 2001.
Earlier version in FOCS 98.

[2] H. Buhrman and R. de Wolf. Complexity measures and decision tree com-
plexity: A survey. Theoretical Computer Science, 288(1):21-43, 2002.

[3] U. Feige, P. Raghavan, D. Peleg, and E. Upfal. Computing with noisy
information. SIAM Journal on Computing, 23(5):1001-1018, 1994.

[4] L. K. Grover. A fast quantum mechanical algorithm for database search.
In Proceedings of 28th ACM STOC, pages 212-219, 1996.

[5] P. Hgyer, M. Mosca, and R. de Wolf. Quantum search on bounded-error
inputs. In Proceedings of 30th ICALP, volume 2719 of Lecture Notes in
Computer Science, pages 291-299. Springer, 2003.

[6] K. Iwama, R. Putra, and S. Yamashita. Quantum query complexity of
biased oracles. Unpublished manuscript and talk at EQIS conference,
September 2003.

[7] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge
University Press, 1997.

[8] G.L.Long,Y.S.Li, W. L. Zhang, and C. C. Tu. Dominant gate imperfec-
tion in Grover’s quantum search algorithm. Physical Review A, 61:042305,
2000.

[9] N. Nisan and M. Szegedy. On the degree of Boolean functions as real poly-
nomials. Computational Complexity, 4(4):301-313, 1994. Earlier version in
STOC92.

16

[10] N. Shenvi, K. R. Brown, and K. B. Whaley. Effects of a random noisy oracle
on search algorithm complexity. Physical Review A, 68:052313, 2003.

[11] M. Szegedy and X. Chen. Computing Boolean functions from multiple
faulty copies of input bits. In Proceedings of 5th LATIN, volume 2286 of
Lecture Notes in Computer Science, pages 539-553, 2002.

17

