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ABSTRACT
We solve a 20-year old problem posed by Yannakakis
and prove that there exists no polynomial-size linear
program (LP) whose associated polytope projects to the
traveling salesman polytope, even if the LP is not re-
quired to be symmetric. Moreover, we prove that this
holds also for the cut polytope and the stable set poly-
tope. These results were discovered through a new con-
nection that we make between one-way quantum com-
munication protocols and semidefinite programming re-
formulations of LPs.
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1. INTRODUCTION
In 1986–1987 there were attempts [42] to prove P =

NP by giving a polynomial-size LP that would solve the
traveling salesman problem (TSP). Due to the large size
and complicated structure of the proposed LP for the
TSP, it was difficult to show directly that the LP was
erroneous. In a groundbreaking effort to refute all such
attempts, Yannakakis [47] proved that every symmetric
LP for the TSP has exponential size (see [48] for the
journal version). Here, an LP is called symmetric if
every permutation of the cities can be extended to a
permutation of all the variables of the LP that preserves
the constraints of the LP. Because the proposed LP for
the TSP was symmetric, it could not possibly be correct.
In his paper, Yannakakis left as a main open prob-

lem the question of proving that the TSP admits no
polynomial-size LP, symmetric or not. We solve this
question by proving a super-polynomial lower bound on
the number of inequalities in every LP for the TSP. We
also prove such unconditional super-polynomial lower
bounds for the maximum cut and maximum stable set
problems. Therefore, it is impossible to prove P = NP
by means of a polynomial-size LP that expresses any
of these problems. Our approach is inspired by a close
connection between semidefinite programming reformu-
lations of LPs and one-way quantum communication
protocols that we introduce here.

1.1 State of the Art



Solving a Problem Through an LP.
A combinatorial optimization problem such as the

TSP comes with a natural set of binary variables. When
we say that an LP solves the problem, we mean that
there exists an LP over this set of variables plus ex-
tra variables that returns the correct objective function
value for all instances over the same set of natural vari-
ables, that is, for all choices of weights for the natural
variables.

From Problems to Polytopes.
When encoded as 0/1-points in Rd, the feasible so-

lutions of a combinatorial optimization problem yield a
polytope that is the convex hull of the resulting points
(see Appendix A for background on polytopes). Solving
an instance of the problem then amounts to optimizing
a linear objective function over this polytope.

For example, the TSP polytope TSP(n) is the convex

hull of all points x ∈ {0, 1}(
n
2) that correspond to a

Hamiltonian cycle in the complete n-vertex graph Kn.
If we want to solve a TSP instance with edge-weights
wij , the goal would be to minimize

∑
i<j wijxij for x ∈

TSP(n). This minimum is attained at a vertex of the

polytope, i.e., at an x ∈ {0, 1}(
n
2) that corresponds to a

Hamiltonian cycle.
The idea of representing the set of feasible solutions of

a problem by a polytope forms the basis of a standard
and powerful methodology in combinatorial optimiza-
tion, see, e.g., [39].

Extended Formulations and Extensions.
Even for polynomially solvable problems, the asso-

ciated polytope may have an exponential number of
facets. By working in an extended space, it is often
possible to decrease the number of constraints. In some
cases, a polynomial increase in dimension can be traded
for an exponential decrease in the number of constraints.
This is the idea underlying extended formulations.

Formally, an extended formulation (EF) of a polytope
P ⊆ Rd is a linear system

E6x+ F6y 6 g6, E=x+ F=y = g= (1)

in variables (x, y) ∈ Rd+k such that x ∈ P if and only
if there exists y such that (1) holds. The size of an EF
is defined as its number of inequalities in the system.1

Optimizing any objective function f(x) over all x ∈ P
amounts to optimizing f(x) over all (x, y) ∈ Rd+k sat-
isfying (1), provided (1) defines an EF of P .

An extension of the polytope P is another polytope2

Q ⊆ Re such that P is the image of Q under a linear

1Another possible definition of size is the sum of the
number of variables and total number of constraints
(equalities plus inequalities) defining the EF. This
makes little difference because if P ⊆ Rd has an EF
with r inequalities, then it has an EF with d + r vari-
ables, r inequalities and at most d+r equalities (see the
proof of Theorem 3 below).
2We could allow unbounded polyhedra here, but it again
makes little difference because it can be shown that ev-
ery extension of a polytope with a minimum number of
facets is also a polytope.

map. We define the size of an extensionQ as the number
of facets of Q. If P has an extension of size r, then it has
an EF of size r. Conversely, it is known that if P has an
EF of size r, then it has an extension of size at most r
(see Theorem 3 below). In this sense, the concepts of
EF and extension are essentially equivalent.

The Impact of Extended Formulations.
EFs have pervaded the areas of discrete optimization

and approximation algorithms for a long time. For in-
stance, Balas’ disjunctive programming [5], the Sherali-
Adams hierarchy [41], the Lovász-Schrijver closures [32],
lift-and-project [6], and configuration LPs are all based
on the idea of working in an extended space. Recent
surveys on EFs in the context of combinatorial opti-
mization and integer programming are [11, 43, 23, 46].

Symmetry Matters.
Yannakakis [48] proved a 2Ω(n) lower bound on the

size of any symmetric EF of the TSP polytope TSP(n)
(defined above and in Section 3.4). Although he re-
marked that he did “not think that asymmetry helps
much”, it was recently shown by Kaibel et al. [24] (see
also [35]) that symmetry is a restriction in the sense that
there exist polytopes that have polynomial-size EFs but
no polynomial-size symmetric EF. This revived Yan-
nakakis’s tantalizing question about unconditional lower
bounds. That is, bounds which apply to the extension
complexity of a polytope P , defined as the minimum size
of an EF of P .

0/1-Polytopes with Large Extension Complexity.
The strongest unconditional lower bounds so far were

obtained by Rothvoß [37]. By an elegant counting argu-
ment inspired by Shannon’s theorem [40], it was proved
that there exist 0/1-polytopes in Rd whose extension

complexity is at least 2d/2−o(d). However, Rothvoß’s
technique does not provide explicit 0/1-polytopes with
an exponential extension complexity.

The Factorization Theorem.
Yannakakis [48] discovered that the extension com-

plexity of a polytope P is determined by certain factor-
izations of an associated matrix, called the slack matrix
of P , that records for each pair (F, v) of a facet F and
vertex v, the algebraic distance of v to a hyperplane sup-
porting F . Defining the nonnegative rank of a matrix
M as the smallest natural number r such thatM can be
expressed as M = TU where T and U are nonnegative
matrices (i.e., matrices whose elements are all nonnega-
tive) with r columns (in case of T ) and r rows (in case
of U), respectively, it turns out that the extension com-
plexity of every polytope P is exactly the nonnegative
rank of its slack matrix.
This factorization theorem led Yannakakis to explore

connections between EFs and communication complex-
ity. Let S denote the slack matrix of the polytope P .
He proved that: (i) every deterministic communication
protocol of complexity k computing S gives rise to an
EF of P of size at most 2k, provided S is a 0/1-matrix;
(ii) the nondeterministic communication complexity of



the support matrix of S (i.e., the binary matrix that
has 0-entries exactly where S is 0) yields a lower bound
on the extension complexity of P , or more generally,
the nondeterministic communication complexity of the
support matrix of every nonnegative matrix M yields a
lower bound on the nonnegative rank of M .3

Tighter Communication Complexity Connection.
Faenza et al. [15] proved that the base-2 logarithm

of the nonnegative rank of a matrix equals, up to a
small additive constant, the minimum complexity of a
randomized communication protocol with nonnegative
outputs that computes the matrix in expectation. In
particular, every EF of size r can be regarded as such a
protocol of complexity log r + O(1) bits that computes
a slack matrix in expectation.

The Clique vs. Stable Set Problem.
When P is the stable set polytope STAB(G) of a

graph G (see Section 3.3), the slack matrix of P con-
tains an interesting row-induced 0/1-submatrix that is
the communication matrix of the clique vs. stable set
problem (also known as the clique vs. independent set
problem): its rows correspond to the cliques and its
columns to the stable sets (or independent sets) of graph
G. The entry for a clique K and stable set S equals
1 − |K ∩ S|. Yannakakis [48] gave an O(log2 n) deter-
ministic protocol for the clique vs. stable set problem,
where n denotes the number of vertices of G. This gives

a 2O(log2 n) = nO(logn) size EF for STAB(G) whenever
the whole slack matrix is 0/1, that is, whenever G is a
perfect graph.

A notoriously hard open question is to determine the
communication complexity (in the deterministic or non-
deterministic sense) of the clique vs. stable set prob-
lem. (For recent results that explain why this question
is hard, see [27, 28].) The best lower bound to this
day is due to Huang and Sudakov [22]: they obtained a
6
5
logn−O(1) lower bound.4 Furthermore, they state a

graph-theoretical conjecture that, if true, would imply
a Ω(log2 n) lower bound, and hence settle the commu-
nication complexity of the clique vs. stable set prob-
lem. Moreover it would give a worst-case nΩ(logn) lower
bound on the extension complexity of stable set poly-
topes. However, a solution to the Huang-Sudakov con-
jecture seems only a distant possibility.

1.2 Contribution
Our contribution in this paper is three-fold.

• First, inspired by earlier work [45], we define a
2n × 2n matrix M = M(n) and show that the

3The classical nondeterministic communication com-
plexity of a binary communication matrix is defined as
dlogBe, where B is the minimum number of monochro-
matic 1-rectangles that cover the matrix, see [26]. This
last quantity is also known as the rectangle covering
bound. It is easy to see that the rectangle covering
bound of the support matrix of any matrix M lower
bounds the nonnegative rank of M (see Theorem 4 be-
low).
4All logarithms in this paper are computed in base 2.

nonnegative rank ofM is 2Ω(n) because the nonde-
terministic communication complexity of its sup-
port matrix is Ω(n). The latter was proved in [45]
using the well-known disjointness lower bound of
Razborov [36]. We use the matrix M to prove a

2Ω(n) lower bound on the extension complexity of
the cut polytope CUT(n) (Section 3.2). That is,
we prove that every EF of the cut polytope has
an exponential number of inequalities. Via reduc-
tions, we infer from this: (i) an infinite family of
graphs G such that the extension complexity of
the corresponding stable set polytope STAB(G) is

2Ω(n1/2), where n denotes the number of vertices
of G (Section 3.3); (ii) that the extension com-

plexity of the TSP polytope TSP(n) is 2Ω(n1/4)

(Section 3.4).

In addition to settling simultaneously the above-
mentioned open problems of Yannakakis [48] and
Rothvoß [37], our results provide a lower bound on
the extension complexity of stable set polytopes
that goes beyond what is implied by the Huang-
Sudakov conjecture (thanks to the fact that we
consider a different part of the slack matrix). Al-
though our lower bounds are strong, unconditional
and apply to explicit polytopes that are well-
known in combinatorial optimization, they have
very accessible proofs.

• Second, we generalize the factorization theorem
to conic EFs, that is, reformulations of an LP
through a conic program. In particular, this im-
plies a factorization theorem for semidefinite EFs:
the semidefinite extension complexity of a poly-
tope equals the positive semidefinite rank (PSD
rank) of its slack matrix.

• Third, we generalize the tight connection between
linear5 EFs and classical communication complex-
ity found by Faenza et al. [15] to a tight connec-
tion between semidefinite EFs and quantum com-
munication complexity. We show that any rank-r
PSD factorization of a (nonnegative) matrix M
gives rise to a one-way quantum protocol com-
puting M in expectation that uses log r + O(1)
qubits and, vice versa, that any one-way quantum
protocol computing M in expectation that uses
q qubits results in a PSD factorization of M of
rank 2q. Via the semidefinite factorization theo-
rem, this yields a characterization of the semidef-
inite extension complexity of a polytope in terms
of the minimum complexity of quantum protocols
that compute the corresponding slack matrix in
expectation.

Then, we give a complexity log r+O(1) quantum
protocol for computing a nonnegative matrix M

5In this paragraph, and later in Sections 4 and 5, an EF
(in the sense of the previous section) is called a linear
EF. The use of adjectives such as“linear”, “semidefinite”
or “conic” will help distinguishing the different types of
EFs.



in expectation, whenever there exists a rank-r ma-
trix N such that M is the entry-wise square of N .
This implies in particular that every d-dimensional
polytope with 0/1 slacks has a semidefinite EF of
size O(d).

Finally, we obtain an exponential separation be-
tween classical and quantum protocols that com-
pute our specific matrix M = M(n) in expecta-
tion. On the one hand, our quantum protocol
gives a rank-O(n) PSD factorization of M . On

the other hand, the nonnegative rank ofM is 2Ω(n)

because the nondeterministic communication com-
plexity of the support matrix of M is Ω(n). Thus
we obtain an exponential separation between non-
negative rank and PSD rank.

We would like to point out that some of our results
in the two last sections were also obtained by Gouveia,
Parillo and Thomas. This applies to Theorem 13, Corol-
lary 15, Theorem 18 and Corollary 19. We were aware of
the fact that they had obtained Theorem 13 and Corol-
lary 15 prior to writing this paper. However, their proofs
were not yet publicly available at that time. Theorem 18
and Corollary 19 were obtained independently, and in
a different context. All their results are now publicly
available, see [21].

1.3 Related Work
Yannakakis’s paper has deeply influenced the TCS

community. In addition to the works cited above, it
has inspired a whole series of papers on the quality of
restricted approximate EFs, such as those defined by
the Sherali-Adams hierarchies and Lovász-Schrijver clo-
sures starting with [3] ([4] for the journal version), see,
e.g., [9, 38, 16, 10, 19, 18, 7].

We would also like to point out that the lower bounds
on the extension complexity of polytopes established
in Section 3 were obtained by first finding an effi-
cient PSD factorization or, equivalently, an efficient one-
way quantum communication protocol for the matrix
M = M(n). In this sense our classical lower bounds
stem from quantum considerations somewhat similar in
style to [25, 1, 2]. See [14] for a survey of this line of
work.

1.4 Organization
The discovery of our lower bounds on extension com-

plexity crucially relied on finding the right matrix M
and the right polytope whose slack matrix contains M .
In our case, we found these through a connection with
quantum communication. However, these quantum as-
pects are not strictly necessary for the resulting lower
bound proof itself. Hence, in order to make the main
results more accessible to those without background or
interest in quantum computing, we start by giving a
purely classical presentation of those lower bounds.

In Section 2 we define our matrixM and lower bound
the nondeterministic communication complexity of its
support matrix. In Section 3 we embed M in the slack
matrix of the cut polytope in order to lower bound its
extension complexity; further reductions then give lower
bounds on the extension complexities of the stable set,

and TSP polytopes. In Section 4 we state and prove the
factorization theorem for arbitrary closed convex cones.
In Section 5 we establish the equivalence of PSD factor-
izations of a (nonnegative) matrixM and one-way quan-
tum protocols that computeM in expectation, and give
an efficient quantum protocol in the case where some
entry-wise square root of M has small rank. This is
then used to provide an exponential separation between
quantum and classical protocols for computing a matrix
in expectation (equivalently, an exponential separation
between nonnegative rank and PSD rank). Concluding
remarks are given in Section 6.

2. A SIMPLE MATRIX WITH LARGE
RECTANGLE COVERING BOUND

In this section we consider the following 2n×2n matrix
M = M(n) with rows and columns indexed by n-bit
strings a and b, and real nonnegative entries:

Mab := (1− aᵀb)2.

Note for later reference that Mab can also be written as

Mab = 1− 〈2 diag(a)− aaᵀ, bbᵀ〉, (2)

where 〈·, ·〉 denotes Frobenius inner product6 and
diag(a) is the n × n diagonal matrix with the entries
of a on its diagonal. Let us verify this identity, using
a, b ∈ {0, 1}n:

1−〈2 diag(a)− aaᵀ, bbᵀ〉
= 1− 2〈diag(a), bbᵀ〉+ 〈aaᵀ, bbᵀ〉
= 1− 2aᵀb+ (aᵀb)2 = (1− aᵀb)2.

Let suppmat(M) be the binary support matrix of M ,
so

suppmat(M)ab =

{
1 if Mab 6= 0,
0 otherwise.

De Wolf [45] proved that an exponential number of
(monochromatic) rectangles are needed to cover all the
1-entries of the support matrix of M . Equivalently,
the corresponding function f : {0, 1}n × {0, 1}n →
{0, 1} has nondeterministic communication complexity
of Ω(n) bits. For the sake of completeness we repeat the
proof here:

Theorem 1 ([45]). Every 1-monochromatic rect-

angle cover of suppmat(M) has size 2Ω(n).

Proof. Let R1, . . . , Rk be a 1-cover for f , i.e., a set
of (possibly overlapping) 1-monochromatic rectangles in
the matrix suppmat(M) that together cover all 1-entries
in suppmat(M).
We use the following result from [26, Exam-

ple 3.22 and Section 4.6], which is essentially due to
Razborov [36]:

There exist sets A,B ⊆ {0, 1}n×{0, 1}n and
probability distribution µ on {0, 1}n×{0, 1}n

6The Frobenius inner product is the component-wise in-
ner product of two matrices. For matrices X and Y of
the same dimensions, this equals Tr [XᵀY ]. When X is
symmetric this can also be written Tr [XY ].



such that all (a, b) ∈ A have aᵀb = 0, all
(a, b) ∈ B have aᵀb = 1, µ(A) = 3/4, and
there are constants α, δ > 0 (independent
of n) such that for all rectangles R,

µ(R ∩B) > α · µ(R ∩A)− 2−δn.

(For sufficiently large n, α = 1/135 and δ =
0.017 will do.)

Since the Ri are 1-rectangles, they cannot contain ele-
ments from B. Hence µ(Ri ∩ B) = 0 and µ(Ri ∩ A) 6
2−δn/α. However, since all elements of A are covered
by the Ri, we have

3

4
= µ(A) = µ

(
k⋃

i=1

(Ri ∩A)

)
6

k∑
i=1

µ(Ri∩A) 6 k·2
−δn

α
.

Hence k > 2Ω(n).

3. STRONG LOWER BOUNDS ON EX-
TENSION COMPLEXITY

Here we use the matrix M = M(n) defined in the
previous section to prove that the (linear) extension
complexity of the cut polytope of the n-vertex complete
graph is 2Ω(n), i.e., every (linear) EF of this polytope
has an exponential number of inequalities. Then, via
reductions, we prove super-polynomial lower bounds for
the stable set polytopes and the TSP polytopes. To
start, let us define more precisely the slack matrix of a
polytope. For a matrix A, let Ai denote the ith row of
A and Aj to denote the jth column of A.

Definition 2. Let P = {x ∈ Rd | Ax 6 b} =
conv(V ) be a polytope, with A ∈ Rm×d, b ∈ Rm and
V ⊆ Rd, V = {v1, . . . , vn}. Then S ∈ Rm×n

+ defined
as Sij := bi − Aivj with i ∈ [m] := {1, . . . ,m} and
j ∈ [n] := {1, . . . , n} is the slack matrix of P w.r.t.
Ax 6 b and V . We sometimes refer to the subma-
trix of the slack matrix induced by rows corresponding
to facets and columns corresponding to vertices simply
as the slack matrix of P , denoted by S(P ).

Let P ⊆ Rd be a polytope. Recall that:

1. an EF of P is a linear system in variables (x, y)
such that x ∈ P if and only if there exists y satis-
fying the system;

2. an extension of P is a polytope Q ⊆ Re such that
there is a linear map π : Re → Rd with π(Q) = P ;

3. the extension complexity of P is the minimum size
(i.e., number of inequalities) of an EF of P .

We denote the extension complexity of P by xc(P ).

3.1 The Factorization Theorem
A rank-r nonnegative factorization of a (nonnegative)

matrix M is a factorization M = TU where T and U
are nonnegative matrices with r columns (in case of T )
and r rows (in case of U), respectively. The nonnega-
tive rank of M (denoted by: rank+(M)) is thus simply
the minimum rank of a nonnegative factorization of M .

Note that rank+(M) is also the minimum r such that
M is the sum of r nonnegative rank-1 matrices. In par-
ticular, the nonnegative rank of a matrix M is at least
the nonnegative rank of any submatrix of M .
The following factorization theorem was proved by

Yannakakis (see also [17]). It can be stated succinctly
as: xc(P ) = rank+(S) whenever P is a polytope and S
a slack matrix of P . We include a sketch of the proof
for completeness.

Theorem 3 ([48]). Let P = {x ∈ Rd | Ax 6 b} =
conv(V ) be a polytope with dim(P ) > 1, and let S denote
the slack matrix of P w.r.t. Ax 6 b and V . Then the
following are equivalent for all positive integers r:

(i) S has nonnegative rank at most r;

(ii) P has an extension of size at most r;

(iii) P has an EF of size at most r.

Proof (sketch). It should be clear that (ii) implies
(iii). We prove that (i) implies (ii), and then that (iii)
implies (i).
First, consider a rank-r nonnegative factorization S =

TU of the slack matrix of P . Notice that we may assume
that no column of T is zero, because otherwise r can be
decreased. We claim that P is the image of

Q := {(x, y) ∈ Rd+r | Ax+ Ty = b, y > 0}

under the projection πx onto the x-space. We see im-
mediately that πx(Q) ⊆ P since Ty > 0. To prove the
inclusion P ⊆ πx(Q), it suffices to remark that for each
point vj ∈ V the point (vj , U

j) is in Q since

Avj + TU j = Avj + b−Avj = b and U j > 0.

Since no column of T is zero, Q is a polytope. Moreover,
Q has at most r facets, and is thus an extension of P of
size at most r. This proves that (i) implies (ii).
Second, suppose that the system

E6x+ F6y 6 g6, E=x+ F=y = g=

with (x, y) ∈ Rd+k defines an EF of P with r inequal-
ities. Let Q ⊆ Rd+k denote the set of solutions to this
system. Thus Q is a (nonnecessarily bounded) polyhe-
dron. For each point vj ∈ V , pick wj ∈ Rk such that
(vj , wj) ∈ Q. Because

Ax 6 b ⇐⇒ ∃y : E6x+F6y 6 g6, E=x+F=y = g=,

each inequality in Ax 6 b is valid for all points of Q. Let
SQ be the nonnegative matrix that records the slacks of
the points (vj , wj) with respect to the inequalities of
E6x+F6y 6 g6, and then of Ax 6 b. By construction,
the submatrix obtained from SQ by deleting the r first
rows is exactly S, thus rank+(S) 6 rank+(SQ). Fur-
thermore, it follows from Farkas’s lemma (here we use
dim(P ) > 1) that every row of SQ is a nonnegative com-
bination of the first r rows of SQ. Thus, rank+(SQ) 6 r.
Therefore, rank+(S) 6 r. Hence (iii) implies (i).

We will prove a generalization of Theorem 3 for arbi-
trary closed convex cones in Section 4, but for now this
special case is all we need.



We would like to emphasize that we will not restrict
the slack matrix to have rows corresponding only to the
facet-defining inequalities. This is not an issue since ap-
pending rows corresponding to redundant7 inequalities
does not change the nonnegative rank of the slack ma-
trix. This fact was already used in the second part of
the previous proof (see also Lemma 14 below).

Theorem 3 shows in particular that we can lower
bound the extension complexity of P by lower bound-
ing the nonnegative rank of its slack matrix S; in fact it
suffices to lower bound the nonnegative rank of any sub-
matrix of the slack matrix S corresponding to an implied
system of inequalities. To that end, Yannakakis made
the following connection with nondeterministic commu-
nication complexity. Again, we include the (easy) proof
for completeness.

Theorem 4 ([48]). LetM be any matrix with non-
negative real entries and suppmat(M) its support ma-
trix. Then rank+(M) is lower bounded by the rectangle
covering bound for suppmat(M).

Proof. If M = TU is a rank-r nonnegative factor-
ization of M , then S can be written as the sum of r
nonnegative rank-1 matrices:

S =

r∑
k=1

T kUk.

Taking the support on each side, we find

supp(S) =

r⋃
k=1

supp(T kUk)

=
r⋃

k=1

supp(T k)× supp(Uk).

Therefore, suppmat(M) has a 1-monochromatic rectan-
gle cover with r rectangles.

3.2 Cut Polytopes
Let Kn = (Vn, En) denote the n-vertex complete

graph. For a set X of vertices of Kn, we let δ(X) denote
the set of edges of Kn with one endpoint in X and the
other in its complement X̄. This set δ(X) is known as
the cut defined by X. For a subset F of edges of Kn,
we let χF ∈ REn denote the characteristic vector of F ,
with χF

e = 1 if e ∈ F and χF
e = 0 otherwise. The cut

polytope CUT(n) is defined as the convex hull of the
characteristic vectors of all cuts in the complete graph
Kn = (Vn, En). That is,

CUT(n) := conv{χδ(X) ∈ REn | X ⊆ Vn}.

We will not deal with the cut polytopes directly, but
rather with 0/1-polytopes that are linearly isomorphic
to them. The correlation polytope (or boolean quadric
polytope) COR(n) is defined as the convex hull of all the
rank-1 binary symmetric matrices of size n×n. In other
words,

COR(n) := conv{bbᵀ ∈ Rn×n | b ∈ {0, 1}n}.
7An inequality of a linear system is called redundant
if removing the inequality from the system does not
change the set of solutions.

We use the following known result:

Theorem 5 ([12]). For all n, COR(n) is linearly
isomorphic to CUT(n+ 1).

Because M is nonnegative, Eq. (2) gives us a linear
inequality that is satisfied by all vertices bbᵀ of COR(n),
and hence (by convexity) is satisfied by all points of
COR(n):

Lemma 6. For all a ∈ {0, 1}n, the inequality

〈2 diag(a)− aaᵀ, x〉 6 1 (3)

is valid for COR(n). Moreover, the slack of vertex x =
bbᵀ with respect to (3) is precisely Mab.

We remark that (3) is weaker than the hypermetric
inequality [13] 〈diag(a) − aaᵀ, x〉 6 0, in the sense that
the face defined by the former is strictly contained in
the face defined by the latter. Nevertheless, we persist
in using (3). Now, we prove the main result of this
section.

Theorem 7. There exists some constant C > 0 such
that, for all n,

xc(CUT(n+ 1)) = xc(COR(n)) > 2Cn .

In particular, the extension complexity of CUT(n) is

2Ω(n).

Proof. The equality is implied by Theorem 5. Now,
consider any system of linear inequalities describing
COR(n) starting with the 2n inequalities (3), and a
slack matrix S w.r.t. this system and {bbᵀ | b ∈ {0, 1}n}.
Next delete from this slack matrix all rows except the
2n first rows. By Lemma 6, the resulting 2n×2n matrix
isM . Using Theorems 3, 4, and 1, and the fact that the
nonnegative rank of a matrix is at least the nonnegative
rank of any of its submatrices, we have

xc(COR(n)) = rank+(S)

> rank+(M)

> 2Cn

for some positive constant C.

3.3 Stable Set Polytopes
A stable set S (also called an independent set) of a

graph G = (V,E) is a subset S ⊆ V of the vertices such
that no two of them are adjacent. For a subset S ⊆ V ,
we let χS ∈ RV denote the characteristic vector of S,
with χS

v = 1 if v ∈ S and χS
v = 0 otherwise. The stable

set polytope, denoted STAB(G), is the convex hull of
the characteristic vectors of all stable sets in G, i.e.,

STAB(G) := conv{χS ∈ RV | S stable set of G}.

Recall that a polytope Q is an extension of a polytope
P if P is the image of Q under a linear projection.

Lemma 8. For each n, there exists a graph Hn with
O(n2) vertices such that STAB(Hn) contains a face that
is an extension of COR(n) ∼= CUT(n+ 1).



Proof. Consider the complete graph Kn with vertex
set Vn := [n]. For each vertex i of Kn we create two
vertices labeled ii, ii in Hn and an edge between them.
For each edge ij of Kn, we add to Hn four vertices
labeled ij, ij, ij, ij and all possible six edges between
them. We further add the following eight edges to Hn:

{ij, ii}, {ij, jj}, {ij, ii}, {ij, jj},
{ij, ii}, {ij, jj}, {ij, ii}, {ij, jj}.

See Fig. 1 for an illustration. The number of vertices in
Hn is 2n+ 4

(
n
2

)
.

ii ii

ij ij ij ij

jj jj

Figure 1: The edges and vertices of Hn corre-
sponding to vertices i, j and edge ij of Kn.

Thus the vertices and edges of Kn are represented by
cliques of size 2 and 4 respectively in Hn. We will refer
to these as vertex-cliques and edge-cliques respectively.
Consider the face F = F (n) of STAB(Hn) whose ver-
tices correspond to the stable sets containing exactly
one vertex in each vertex-clique and each edge-clique.
(The vertices in this face correspond exactly to stable
sets of Hn with maximum cardinality.)

Consider the linear map π : RV (Hn) → Rn×n mapping
a point x ∈ RV (Hn) to the point y ∈ Rn×n such that
yij = yji = xij for i 6 j. In this equation, the subscripts
in yij and yji refer to an ordered pair of elements in [n],
while the subscript in xij refers to a vertex of Hn that
corresponds either to a vertex of Kn (if i = j) or to an
edge of Kn (if i 6= j).

We claim that the image of F under π is COR(n),
hence F is an extension of COR(n). Indeed, pick an
arbitrary stable set S of Hn such that x := χS is on
face F . Then define b ∈ {0, 1}n by letting bi := 1 if
ii ∈ S and bi := 0 otherwise (i.e., ii ∈ S). Notice that
for the edge ij of Kn we have ij ∈ S if and only if both
vertices ii and jj belong to S. Hence, π(x) = y = bbᵀ

is a vertex of COR(n). This proves π(F ) ⊆ COR(n).
Now pick a vertex y := bbᵀ of COR(n) and consider the
unique maximum stable set S that contains vertex ii if
bi = 1 and vertex ii if bi = 0. Then x := χS is a vertex
of F with π(x) = y. Hence, π(F ) ⊇ COR(n). Thus
π(F ) = COR(n). This concludes the proof.

Our next lemma establishes simple monotonicity

properties of the extension complexity used in our re-
duction.

Lemma 9. Let P , Q and F be polytopes. Then the
following hold:

(i) if F is an extension of P , then xc(F ) > xc(P );

(ii) if F is a face of Q, then xc(Q) > xc(F ).

Proof. The first part is obvious because every ex-
tension of F is in particular an extension of P . For the
second part, notice that a slack matrix of F can be ob-
tained from the (facet-vs-vertex) slack matrix of Q by
deleting columns corresponding to vertices not in F .

Using previous results, we can prove the following re-
sult about the worst-case extension complexity of the
stable set polytope.

Theorem 10. For all n, one can construct a graph
Gn with n vertices such that the extension complexity of

the stable set polytope STAB(Gn) is 2Ω(n1/2).

Proof. W.l.o.g., we may assume n > 18. For an in-
teger p > 3, let f(p) := |V (Hp)| = 2p + 4

(
p
2

)
. Given

n > 18, we define p as the largest integer with f(p) 6 n.
Now let Gn be obtained from Hp by adding n−f(p) iso-
lated vertices. Then STAB(Hp) is linearly isomorphic to
a face of STAB(Gn). Using Theorem 7 in combination
with Lemmas 8 and 9, we find that

xc(STAB(Gn)) > xc(STAB(Hp))

> xc(COR(p))

= 2Ω(p)

= 2Ω(n1/2).

3.4 TSP Polytopes
Recall that TSP(n), the traveling salesman polytope

or TSP polytope of Kn = (Vn, En), is defined as the
convex hull of the characteristic vectors of all subsets
F ⊆ En that define a tour of Kn. That is,

TSP(n) := conv{χF ∈ REn | F ⊆ En is a tour of Kn}.

It is known that for every p-vertex graph G, STAB(G) is
the linear projection of a face of TSP(n) with n = O(p2),
see [48, Theorem 6]. Combining with Theorem 10 gives:

Theorem 11. The extension complexity of the TSP

polytope TSP(n) is 2Ω(n1/4).

4. CONIC AND SEMIDEFINITE EFs
In this section we extend Yannakakis’s factorization

theorem (Theorem 3) to arbitrary closed convex cones.
The proof of that theorem shows that, in the linear case,
any EF can be brought in the form Ex+Fy = g, y > 0
without increasing its size. This form is the basis of our
generalization: we replace the nonnegativity constraint
y > 0 by a general conic constraint y ∈ C.
Let Q = {(x, y) ∈ Rd+k | Ex + Fy = g, y ∈ C} for

an arbitrary closed convex cone C ⊆ Rk, where E ∈



Rp×d, F ∈ Rp×k, and g ∈ Rp. Let C∗ := {z ∈ Rk |
zᵀy > 0,∀y ∈ C} denote the dual cone of C. We define
the projection cone of Q as

CQ := {µ ∈ Rp | F ᵀµ ∈ C∗}

and

projx(Q) := {x ∈ Rd | µᵀEx 6 µᵀg, ∀µ ∈ CQ}.

In a first step we show that projx(Q) equals

πx(Q) := {x ∈ Rd | ∃y ∈ Rk : (x, y) ∈ Q},

the projection of Q to the x-space.

Lemma 12. With the above notation, we have
πx(Q) = projx(Q).

Proof. Let α ∈ πx(Q). Then there exists y ∈ C with
Eα+Fy = g. Pick any µ ∈ CQ. Then, µ

ᵀEα+µᵀFy =
µᵀg holds. Since F ᵀµ ∈ C∗ and y ∈ C we have that
(F ᵀµ)ᵀy = µᵀFy > 0. Therefore µᵀEα 6 µᵀg holds for
all µ ∈ CQ. We conclude α ∈ projx(Q) and as α was
arbitrary πx(Q) ⊆ projx(Q) follows.

Now suppose πx(Q) 6= projx(Q). Then there exists
α such that α ∈ projx(Q) but α /∈ πx(Q). In other
words there is no y ∈ C such that Fy = g − Eα or,
equivalently, the convex cone F (C) := {Fy | y ∈ C}
does not contain the point g − Eα. Since C is a closed
cone, so is F (C). Therefore, by the Strong Separation
Theorem there exists µ ∈ Rp such that µᵀz > 0 is valid
for F (C) but µᵀ(g − Eα) < 0. Then µᵀz = µᵀ(Fy) =
(µᵀF )y > 0 is valid for C, i.e., (µᵀF )y > 0 holds for
all y ∈ C, implying F ᵀµ ∈ C∗. Because µᵀ(g − Eα) <
0 we have µᵀEα > µᵀg. On the other hand we have
F ᵀµ ∈ C∗ so that µ ∈ CQ implying µᵀEα 6 µᵀg; a
contradiction. Hence, πx(Q) = projx(Q) follows.

Let P = {x ∈ Rd | Ax 6 b} = conv(V ) be a polytope,
with A ∈ Rm×d, b ∈ Rm and V = {v1, . . . , vn} ⊆ Rd.
Then Ex+Fy = g, y ∈ C is a conic EF of P whenever
x ∈ P if and only if there exists y ∈ C such that Ex +
Fy = g. The set Q = {(x, y) ∈ Rd+k | Ex + Fy =
g, y ∈ C} is then called a conic extension of P w.r.t.
C.

We now prove a factorization theorem for the slack
matrix of polytopes that generalizes Yannakakis’s fac-
torization theorem in the linear case. Yannakakis’s re-
sult can be obtained as a corollary of our result by taking
C = Rk

+, and using Theorem 13 together with the fact
that (Rk

+)
∗ = Rk

+.

Theorem 13. Let P = {x ∈ Rd | Ax 6 b} =
conv(V ) be a polytope with dim(P ) > 1 defined by m
inequalities and n points respectively, and let S be the
slack matrix of P w.r.t. Ax 6 b and V . Also, let C ⊆ Rk

be a closed convex cone. Then, the following are equiv-
alent:

(i) There exist T,U such that (the transpose of) each
row of T is in C∗, each column of U is in C, and
S = TU .

(ii) There exists a conic extension Q = {(x, y) ∈
Rd+k | Ex+ Fy = g, y ∈ C} with P = πx(Q).

Before proving the theorem, we prove a lemma which
will allow us to get rid of rows of a slack matrix that
correspond to redundant inequalities. Below, we call a
factorization as in (i) a factorization of S w.r.t. C.

Lemma 14. Let P ⊆ Rd be a polytope with dim(P ) >
1, let S and S′ be two slack matrices of P , and let C ⊆
Rk be a closed convex cone. Then S has a factorization
w.r.t. C iff S′ has a factorization w.r.t. C.

Proof. It suffices to prove the theorem when S′ is
the submatrix of S induced by the rows corresponding to
facet-defining inequalities and the columns correspond-
ing to vertices, that is, when S′ = S(P ). One implica-
tion is clear: if S has a factorization w.r.t. C, then S′

also because S′ is a submatrix of S.
For the other implication, consider a system Ax 6 b

of m inequalities and a set V = {v1, . . . , vn} of n points
such that P = {x ∈ Rd | Ax 6 b} = conv(V ). Assume
that the f first inequalities of Ax 6 b are facet-defining,
while the remaining m− f are not, and that the v first
points of V are vertices, while the remaining n − v are
not.
Consider an inequality Aix 6 bi with i > f . Sup-

pose first that the inequality is redundant. By Farkas’s
lemma (using dim(P ) > 1), there exist nonnegative co-
efficients µi,k (k ∈ [f ]) such that Ai =

∑
k∈[f ] µi,kAk

and bi =
∑

k∈[f ] µi,kbk as P is a polytope. If the in-
equality is not redundant, since it is not facet-defining,
it is satisfied with equality by all points of P . In this
case, we let µi,k := 0 for all k ∈ [f ]. Finally, for i 6 f
we let µi,k := 1 if i = k and µi,k := 0 otherwise.
Next, consider a point vj with j > v. Because vj is in

P , it can be expressed as a convex combination of the
vertices of P : vj =

∑
`∈[v] λj,`v`, where λj,` (` ∈ [v]) are

nonnegative coefficients that sum up to 1. Similarly as
above, for j 6 v we let λj,` := 1 if j = ` and µj,` := 0
otherwise.
Now, let S′ = TU be a factorization of S′ w.r.t. C.

That is, we have row vectors T1, . . . , Tf with (Tk)
ᵀ ∈

C∗ (for k ∈ [f ]) and column vectors U1, . . . , Uv with
U ` ∈ C (for ` ∈ [v]) such that bk − Akv` = S′

k` = TkU
`

for k ∈ [f ], ` ∈ [v].
We extend the factorization of S′ into a factoriza-

tion of S by letting Ti :=
∑

k∈[f ] µi,kTk and U j :=∑
`∈[v] λj,`U

` for i > f and j > v. Given our choice

of coefficients, these equations also hold for i 6 f and
j 6 v. Clearly, each Ti (transposed) is in C∗ and each
U j is in C. A straightforward computation then shows
TiU

j = Sij for all i ∈ [m], j ∈ [n]. Therefore, Ti

(i ∈ [m]) and U j (j ∈ [n]) define a factorization of S
w.r.t. C.

Proof of Theorem 13. We first show that a fac-
torization induces a conic extension. Suppose there
exist matrices T,U as above. We claim that Q with
E := A, F := T and g := b has the desired properties.
Let vj ∈ V , then Sj = TU j = b−Avj and so it follows
that (vj , U

j) ∈ Q and vj ∈ πx(Q). Now let x ∈ πx(Q).
Then, there exists y ∈ C such that Ax+ Ty = b. Since
Tiy > 0 for all i ∈ [m], we have that x ∈ P . This proves
the first implication.



For the converse, suppose P = πx(Q) with Q being
a conic extension of P . By Lemma 12, πx(Q) = {x ∈
Rd | µᵀEx 6 µᵀg, ∀µ ∈ CQ}, where CQ = {µ ∈ Rp |
F ᵀµ ∈ C∗}. By Lemma 14, it suffices to prove that the
submatrix of S induced by the rows corresponding to
the inequalities of Ax 6 b that define facets of P admits
a factorization w.r.t. C. Thus, we assume for the rest
of the proof that all rows of S correspond to facets of
P . Then, for any facet-defining inequality Aix 6 bi of
P there exists µi ∈ CQ such that µᵀ

iEx 6 µᵀ
i g defines

the same facet as Aix 6 bi. (This follows from the fact
that CQ is closed; see also [29, Theorem 4.3.4].) Scaling
µi if necessary, this means that µᵀ

iE = Ai + cᵀ and
µᵀ
i g = bi + δ, where cᵀx = δ is satisfied for all points of
P . We define Ti := µᵀ

iF for all i; in particular (Ti)
ᵀ ∈

C∗ as µi ∈ CQ. Now let vj ∈ V . Since P = πx(Q),
there exists a yj ∈ C such that Evj + Fyj = g and
so µᵀ

iEvj + µᵀ
iFyj = µᵀ

i g. With the above we have
Aivj + cᵀvj + Tiyj = bi + δ, hence Aivj + Tiyj = bi and
as vj ∈ πx(Q) we deduce Tiyj > 0. The slack of vj w.r.t.
Aix 6 bi is bi − Aivj = µᵀ

i g − µᵀ
iEvj = µᵀ

iFyj = Tiyj .
This implies the factorization S = TU with Ti = µᵀ

iF
and U j = yj .

For a positive integer r, we let Sr
+ denote the cone of

r × r symmetric positive semidefinite matrices embed-
ded in Rr(r+1)/2 in such a way that, for all y, z ∈ Sr

+, the
scalar product zᵀy is the Frobenius product of the corre-
sponding matrices. A semidefinite EF (resp. extension)
of size r is simply a conic EF (resp. extension) w.r.t.
C = Sr

+. The semidefinite extension complexity of poly-
tope P , denoted by xcSDP (P ), is the minimum r such
that P has a semidefinite EF of size r. Observe that
(Sr

+)
∗ = Sr

+. Hence, taking C := Sk
+ and k := r(r+1)/2

in Theorem 13, we obtain the following factorization
theorem for semidefinite EFs.

Corollary 15. Let P = {x ∈ Rd | Ax 6 b} =
conv(V ) be a polytope. Then the slack matrix S of P
w.r.t. Ax 6 b and V has a factorization S = TU so that
(Ti)

ᵀ, U j ∈ Sr
+ if and only if there exists a semidefinite

extension Q = {(x, y) ∈ Rd+r(r+1)/2 | Ex+Fy = g, y ∈
Sr
+} with P = πx(Q).

Analogous to nonnegative factorizations and nonneg-
ative rank, we can define PSD factorizations and PSD
rank. A rank-r PSD factorization of an m × n matrix
M is a collection of r × r symmetric positive semidefi-
nite matrices T1, . . . , Tm and U1, . . . , Un such that the
Frobenius product 〈Ti, U

j〉 = Tr
[
(Ti)

ᵀU j
]
= Tr

[
TiU

j
]

equals Mij for all i ∈ [m], j ∈ [n]. The PSD rank of M
is the minimum r such thatM has a rank-r PSD factor-
ization. We denote this rankPSD(M). By Corollary 15
(and also Lemma 14), the semidefinite extension com-
plexity of a polytope P is equal to the PSD rank of
any slack matrix of P : xcSDP (P ) = rankPSD(S) when-
ever S is a slack matrix of P . In the next section we
will show that rankPSD(M) can be expressed in terms
of the amount of communication needed by a one-way
quantum communication protocol for computing M in
expectation (Corollary 17).

5. QUANTUM COMMUNICATION
AND PSD FACTORIZATIONS

In this section we explain the connection with quan-
tum communication. This yields results that are inter-
esting in their own right, and also clarifies where the
matrix M of Section 2 came from.
For a general introduction to quantum computation

we refer to [34, 33], and for quantum communication
complexity we refer to [44, 8]. For our purposes, an
r-dimensional quantum state ρ is an r × r PSD ma-
trix of trace 1.8 A k-qubit state is a state in dimen-
sion r = 2k. If ρ has rank 1, it can be written as an
outer product |φ〉〈φ| for some unit vector |φ〉, which is
sometimes called a pure state. We use |i〉 to denote the
pure state vector that has 1 at position i and 0s else-
where. A quantum measurement (POVM) is described
by a set of PSD matrices {Eθ}θ∈Θ, each labeled by a real
number θ, and summing to the r-dimensional identity:∑

θ∈ΘEθ = I. When measuring state ρ with this mea-
surement, the probability of outcome θ equals Tr [Eθρ].
Note that if we define the PSD matrix E :=

∑
θ∈Θ θEθ,

then the expected value of the measurement outcome is∑
θ∈Θ θTr [Eθρ] = Tr [Eρ].

5.1 Quantum Protocols
A one-way quantum protocol with r-dimensional mes-

sages can be described as follows. On input i, Alice
sends Bob an r-dimensional state ρi. On input j, Bob
measures the state he receives with a POVM {Ej

θ} for
some nonnegative values θ, and outputs the result. We
say that such a protocol computes a matrix M in expec-
tation, if the expected value of the output on respective
inputs i and j, equals the matrix entry Mij . Analogous
to the equivalence between classical protocols and non-
negative factorizations of M established by Faenza et
al. [15], such quantum protocols are essentially equiva-
lent to PSD factorizations of S:

Theorem 16. Let M ∈ Rm×n
+ be a matrix. Then the

following holds:

(i) A one-way quantum protocol with r-dimensional
messages that computes M in expectation, gives a
rank-r PSD factorization of M .

(ii) A rank-r PSD factorization of M gives a one-way
quantum protocol with (r + 1)-dimensional mes-
sages that computes M in expectation.

Proof. The first part is straightforward. Given a
quantum protocol as above, define Ej :=

∑
θ∈Θ θE

j
θ .

Clearly, on inputs i and j the expected value of the
output is Tr

[
ρiE

j
]
=Mij .

For the second part, suppose we are given a PSD fac-
torization of a matrix M , so we are given PSD matri-
ces T1, . . . , Tm and U1, . . . , Un satisfying Tr

[
TiU

j
]
=

Mij for all i, j. In order to turn this into a quan-
tum protocol, define τ = maxi Tr [Ti]. Let ρi be the
(r + 1)-dimensional quantum state obtained by adding
a (r + 1)st row and column to Ti/τ , with 1− Tr [Ti] /τ

8For simplicity we restrict to real rather than complex
entries, which doesn’t significantly affect the results.



as (r+1)st diagonal entry, and 0s elsewhere. Note that
ρi is indeed a PSD matrix of trace 1, so it is a well-
defined quantum state. For input j, derive Bob’s (r+1)-
dimensional POVM from the PSD matrix U j as follows.
Let λ be the largest eigenvalue of U j , and define Ej

τλ

to be U j/λ, extended with a (d+ 1)st row and column
of 0s. Let Ej

0 = I − Ej
τλ. These two operators together

form a well-defined POVM. The expected outcome (on
inputs i, j) of the protocol induced by the states and
POVMs that we just defined, is

τλTr
[
Ej

τλρi
]
= Tr

[
TiU

j
]
=Mij ,

so the protocol indeed computes M in expectation.

We obtain the following corollary which summarizes
the characterization of semidefinite EFs:

Corollary 17. For a polytope P with slack matrix
S, the following are equivalent:

(i) P has a semidefinite extension Q = {(x, y) ∈
Rd+r(r+1)/2 | Ex+ Fy = g, y ∈ Sr

+};

(ii) the slack matrix S has a rank-r PSD factorization;

(iii) there exists a one-way quantum communication
protocol with (r + 1)-dimensional messages (i.e.,
using dlog(r+1)e qubits) that computes S in expec-
tation (for the converse we consider r-dimensional
messages).

5.2 A General Upper Bound on Quantum
Communication

Now, we provide a quantum protocol that efficiently
computes a nonnegative matrix M in expectation,
whenever there exists a low rank matrix N whose entry-
wise square is M . The quantum protocol is inspired
by [45, Section 3.3].

Theorem 18. Let M be a matrix with nonnegative
real entries, N be a rank-r matrix of the same dimen-
sions such that Mij = N2

ij. Then there exists a one-way
quantum protocol using (r + 1)-dimensional pure-state
messages that computes M in expectation.

Proof. Let Nᵀ = UΣV be the singular value decom-
position of the transpose of N ; so U and V are unitary,
Σ is a matrix whose first r diagonal entries are nonzero
while its other entries are 0, and 〈j|UΣV |i〉 = Nij . De-
fine |φi〉 = ΣV |i〉. Since only its first r entries can be
nonzero, we will view |φi〉 as an r-dimensional vector.
Let ∆i = ‖φi‖ and ∆ = maxi ∆i. Add one additional
dimension and define the normalized (r+1)-dimensional

pure quantum states |ψi〉 = (|φi〉/∆,
√

1−∆2
i /∆

2).
Given input i, Alice sends |ψi〉 to Bob. Given input j,
Bob applies a 2-outcome POVM {Ej

∆2 , E
j
0 = I − Ej

∆2}
where Ej

∆2 is the projector on the pure state U∗|j〉
(which has no support in the last dimension of |ψi〉).
If the outcome of the measurement is Ej

∆2 then Bob

outputs ∆2, otherwise he outputs 0. Accordingly, the
expected output of this protocol on input (i, j) is

∆2 Pr[outcome Ej

∆2 ] = ∆2〈ψi|Ej

∆2 |ψi〉 = 〈φi|Ej

∆2 |φi〉

= |〈j|U |φi〉|2 = |〈j|UΣV |i〉|2 = N2
ij =Mij .

The protocol only has two possible outputs: 0 and ∆2,
both nonnegative. Hence it computes M in expectation
with an (r + 1)-dimensional quantum message.

Note that if M is a 0/1-matrix then we may take
N = M , hence any low-rank 0/1-matrix can be com-
puted in expectation by an efficient quantum protocol.
We obtain the following corollary (implicit in Theorem
4.2 of [20]) which also implies a compact (i.e., polyno-
mial size) semidefinite EF for the stable set polytope
of perfect graphs, reproving the previously known re-
sult by [30, 31]. We point out that the result still holds
when dim(P ) + 2 is replaced by dim(P ) + 1, see [21].
(This difference is due to normalization.)

Corollary 19. Let P be a polytope such that S(P )
is a 0/1 matrix. Then xcSDP (P ) 6 dim(P ) + 2.

5.3 Quantum vs Classical Communica-
tion, and PSD vs Nonnegative Factor-
izations

We now give an example of an exponential separa-
tion between quantum and classical communication in
expectation, based on the matrix M of Section 2. This
result actually preceded and inspired the results in Sec-
tion 3.

Theorem 20. For each n, there exists a nonnegative
matrix M ∈ R2n×2n that can be computed in expecta-
tion by a quantum protocol using logn + O(1) qubits,
while any classical randomized protocol needs Ω(n) bits
to compute M in expectation.

Proof. Consider the matrix N ∈ R2n×2n whose
rows and columns are indexed by n-bit strings a and
b, respectively, and whose entries are defined as Nab =
1 − aᵀb. Define M ∈ R2n×2n

+ by Mab = N2
ab. This M

is the matrix from Section 2. Note that N has rank
r 6 n+ 1 because it can be written as the sum of n+ 1
rank-1 matrices. Hence Theorem 18 immediately im-
plies a quantum protocol with (n+2)-dimensional mes-
sages that computes M in expectation.
For the classical lower bound, note that a protocol

that computesM in expectation has positive probability
of giving a nonzero output on input a, b iff Mab > 0.
With a message m in this protocol we can associate a
rectangleRm = A×B whereA consists of all inputs a for
which Alice has positive probability of sendingm, and B
consists of all inputs b for which Bob, when he receives
message m, has positive probability of giving a nonzero
output. Together these rectangles will cover exactly the
nonzero entries ofM . Accordingly, a c-bit protocol that
computes M in expectation induces a rectangle cover
for the support matrix of M of size 2c. Theorem 1
lower bounds the size of such a cover by 2Ω(n), hence
c = Ω(n).

Together with Theorem 16 and the equivalence of
randomized communication complexity (in expectation)
and nonnegative rank established in [15], we immedi-
ately obtain an exponential separation between the non-
negative rank and the PSD rank.



Corollary 21. For each n, there exists M ∈
R2n×2n

+ , with rank+(M) = 2Ω(n) and rankPSD(M) =
O(n).

In fact a simple rank-(n+ 1) PSD factorization of M
is the following: let Ta :=

(
1

−a

)(
1

−a

)ᵀ
and Ub :=

(
1
b

)(
1
b

)ᵀ
,

then Tr[(Ta)
ᵀUb] = (1− aᵀb)2 =Mab.

6. CONCLUDING REMARKS
In addition to proving the first unconditional super-

polynomial lower bounds on the size of linear EFs for
the cut polytope, stable set polytope and TSP polytope,
we demonstrate that the rectangle covering bound can
prove strong results in the context of EFs. In partic-
ular, it can be super-polynomial in the dimension and
the logarithm of the number of vertices of the polytope,
settling an open problem of Fiorini et al. [17].

The exponential separation between nonnegative rank
and PSD rank that we prove here (Theorem 20) actually
implies more than a super-polynomial lower bound on
the extension complexity of the cut polytope. As noted
in Theorem 5, the polytopes CUT(n) and COR(n − 1)
are affinely isomorphic. Let Q(n) denote the polyhedron
isomorphic (under the same affine map) to the polyhe-
dron defined by (3) for a ∈ {0, 1}n. Then (i) every
polytope (or polyhedron) that contains CUT(n) and is
contained in Q(n) has exponential extension complex-
ity; (ii) there exists a low complexity spectrahedron that
contains CUT(n) and is contained in Q(n). (A spec-
trahedron is an intersection of the positive semidefinite
cone with an affine subspace, or any projection of such
convex set.)

An important problem also left open in [48] is whether
the perfect matching polytope has a polynomial-size lin-
ear EF. Yannakakis proved that every symmetric EF
of this polytope has exponential size, a striking result
given the fact that the perfect matching problem is solv-
able in polynomial time. He conjectured that asym-
metry also does not help in the case of the perfect
matching polytope. Because it is based on the rect-
angle covering bound, our argument would not yield a
super-polynomial lower bound on the extension com-
plexity of the perfect matching polytope. Even though
a polynomial-size linear EF of the matching polytope
would not prove anything as surprising as P=NP, the
existence of a polynomial-size EF or an unconditional
super-polynomial lower bound for it remains open.

We hope that the new connections developed here will
inspire more research, in particular about approximate
EFs. Here are two concrete questions left open for fu-
ture work: (i) find a slack matrix that has an expo-
nential gap between nonnegative rank and PSD rank;
(ii) prove that the cut polytope has no polynomial-size
semidefinite EF (that would rule out SDP-based algo-
rithms for optimizing over the cut polytope, in the same
way that this paper ruled out LP-based algorithms).
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APPENDIX
A. BACKGROUND ON POLYTOPES

A (convex) polytope is a set P ⊆ Rd that is the convex
hull conv(V ) of a finite set of points V . Equivalently, P
is a polytope if and only if P is bounded and the inter-
section of a finite collection of closed halfspaces. This
is equivalent to saying that P is bounded and the set
of solutions of a finite system of linear inequalities and
possibly equalities (each of which can be represented by
a pair of inequalities).

Let P ⊆ Rd be a polytope. A closed halfspace H+

that contains P is said to be valid for P . In this case the
hyperplane H that bounds H+ is also said to be valid
for P . A face of P is either P itself or the intersection of
P with a valid hyperplane. Every face of a polytope is
again a polytope. A face is called proper if it is not the
polytope itself. A vertex is a minimal nonempty face.
A facet is a maximal proper face. An inequality cᵀx 6 δ
is said to be valid for P if it is satisfied by all points of
P . The face it defines is F := {x ∈ P | cᵀx = δ}. The
inequality is called facet-defining if F is a facet. The
dimension of a polytope P is the dimension of its affine
hull aff(P ).

Every (finite or infinite) set V such that P = conv(V )
contains all the vertices of P . Conversely, letting
vert(P ) denote the vertex set of P , we have P =
conv(vert(P )). Suppose now that P is full-dimensional,
i.e., dim(P ) = d. Then, every (finite) system Ax 6 b
such that P = {x ∈ Rd | Ax 6 b} contains all the
facet-defining inequalities of P , up to scaling by posi-
tive numbers. Conversely, P is described by its facet-
defining inequalities.

If P is not full-dimensional, these statements have to
be adapted as follows. Every (finite) system describing
P contains all the facet-defining inequalities of P , up
to scaling by positive numbers and adding an inequality
that is satisfied with equality by all points of P . Con-
versely, a linear description of P can be obtained by
picking one inequality per facet and adding a system of
equalities describing aff(P ).

A 0/1-polytope in Rd is simply the convex hull of a
subset of {0, 1}d.

A (convex) polyhedron is a set P ⊆ Rd that is the
intersection of a finite collection of closed halfspaces. A
polyhedron P is a polytope if and only if it is bounded.

For more background on polytopes and polyhedra, see
the standard reference [49].


