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Abstract

We give a new version of the adversary method for proving lower bounds on quantum query algorithms.

The new method is based on analyzing the eigenspace structure of the problem at hand. We use it to

prove a new and optimal strong direct product theorem for 2-sided error quantum algorithms computing

k independent instances of a symmetric Boolean function: if the algorithm uses significantly less than

k times the number of queries needed for one instance of the function, then its success probability is

exponentially small in k. We also use the polynomial method to prove a direct product theorem for 1-

sided error algorithms for k threshold functions with a stronger bound on the success probability. Finally,

we present a quantum algorithm for evaluating solutions to systems of linear inequalities, and use our

direct product theorems to show that the time-space tradeoff of this algorithm is close to optimal.

1 Introduction

1.1 A new adversary method

Most known quantum algorithms work in the black-box model of computation. Here one accesses the n-bit
input via queries, and our measure of complexity is the number of queries made by the algorithm. In between
the queries, the algorithm can make unitary transformations for free. This model includes for instance the
algorithms of Deutsch and Jozsa [DJ92], Simon [Sim97], Grover [Gro96], quantum counting [BHMT02], and
the recent quantum walk-based algorithms [Amb04, MSS05, MN05, BŠ06, FGG07, ACR+07]. It also includes
hidden-subgroup algorithms such as Shor’s period-finding algorithm [Sho97] (which is the quantum core of
his factoring algorithm), though there one needs the additional property that the intermediate unitaries like
the quantum Fourier transform are efficiently computable.

Much work has focused on proving lower bounds in the black-box model. The two main methods known
are the polynomial method and the adversary method. The polynomial method [NS94, FR99, BBC+01] works
by lower bounding the degree of a polynomial that in some way represents the desired success probability.

The adversary method was originally introduced by Ambainis [Amb00]. Many different versions have
since been given [HNS02, BSS03, Amb03, LM04, Zha05], but most of them are equivalent [ŠS06]. Roughly
speaking, the adversary method works as follows. Suppose we have a T -query quantum algorithm that
computes some function f with high success probability. Let |ψtx〉 denote the algorithm’s state on input x
after making the tth query. Suppose x and y are two inputs with distinct function values. At the start of
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the algorithm (t = 0), the states |ψ0
x〉 and |ψ0

y〉 are the same (the input has not been queried yet), so their

inner product is 〈ψ0
x|ψ0

y〉 = 1. But at the end of the algorithm (t = T ), the inner product 〈ψTx |ψTy 〉 must be
less than some small constant depending on the error probability, otherwise the algorithm cannot give the
correct answer for both x and y. The adversary method takes a (nonnegative weighted) sum of such inner
products (for x, y pairs with f(x) 6= f(y)) and analyzes how quickly this sum can go down after each new
query. If it cannot decrease quickly in one step, then it follows that we need many steps and we obtain a
lower bound on T . Recently, a new version of the adversary method has been published [HLŠ07] that goes
beyond this principle of distinguishability. By taking into account that the algorithm has to perform one
fixed measurement at the end of the computation to determine the answer, they have been able to extend
the domain of the adversary matrices and allow arbitrary (possibly negative) weights in the sum, resulting
in larger lower bounds.

The polynomial and adversary lower bound methods are incomparable. On the one hand, the adversary
method proves stronger bounds than the polynomial method can give for certain iterated functions [Amb03].
It also gives tight lower bounds for constant-depth AND-OR trees [Amb00, HMW03], where we do not
know how to analyze the polynomial degree. On the other hand, the polynomial method works well for
analyzing zero-error or low-error quantum algorithms [BBC+01, BCWZ99] and gives optimal lower bounds
for the collision problem and element distinctness [AS04]. The nonnegative adversary method fails for the
latter problem, because the best bound provable with it is O(

√

C0(f)C1(f)) [ŠS06, Zha05] (it is open how
the negative version of the adversary method performs for this problem). Here C0(f) and C1(f) are the
certificate complexities of f on 0-inputs and 1-inputs, respectively. In the case of element distinctness one
of these complexities is constant. Hence the nonnegative adversary method in its present form(s) can prove
at most an Ω(

√
N) bound, while the true bound is Θ(N2/3) [Amb04, AS04]. Similarly, the best known

algorithm for detecting whether an undirected n-vertex graph contains a triangle costs O(N13/20) queries to
its N =

(

n
2

)

edges [MSS05], while the best lower bound provable with the nonnegative adversary method is

about
√
N , since 1-inputs have constant certificate complexity (you can just give the triangle). We do not

know what the true bound is for triangle-finding—but if it is more than
√
N , then the nonnegative adversary

method will not be able to prove this.
A second limitation of the adversary method is that it cannot deal well with the case where there are

many different possible outputs, and a success probability much smaller than 1/2 would still be considered
good. A typical example is if there are k instead of one output bits: any success probability significantly
larger than 2−k could be considered nontrivial here.

In this paper we describe a new version of the adversary method that does not suffer from the second
limitation, and possibly also not from the first—though we have not found an example yet where the new
method breaks through the

√

C0(f)C1(f) barrier. Very roughly speaking, the new method works as follows.
We view the algorithm as acting on a 2-register state space HA⊗HI . Here the actual algorithm’s operations
take place in the first register, while the second contains (a superposition of) the inputs. In particular, the
query operation on HA is now conditioned on the basis states in HI . We start the analysis with a fixed
starting state (the all-0 string) in the first register and a superposition of 0-inputs and 1-inputs in the input
register, and then track how this input register evolves as the computation moves along. Let ρt be the
state of this register (tracing out the HA-register) after making the tth query. By employing symmetries in
the problem’s structure, such as invariances of the function under certain permutations of its input, we can
decompose the input space into orthogonal subspaces S0, . . . , Sm. We can decompose the state accordingly:

ρt =

m
∑

i=0

pt,iσi,

where σi is a density matrix in subspace Si. Thus the tth state can be fully described by a probability
distribution pt,0, . . . , pt,m that describes how the input register is distributed over the various subspaces.
Crucially, only some of the subspaces are “good”, meaning that the algorithm will only work if most of the
weight is concentrated in the good subspaces at the end of the computation. At the start of the computation,
hardly any weight will be in the good subspaces. If we can show that in each query, not too much weight
can move from the bad subspaces to the good subspaces, then we again get a lower bound on T .
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This idea was first introduced by Ambainis in [Amb05] and used there to reprove the “strong direct
product theorem” for the OR-function of [KŠW07] (we will explain in a minute what this means). In this
paper we extend it and use it to prove direct product theorems for all symmetric functions. Very recently,
this method was generalized further by one of us [Špa07] to something called the multiplicative adversary
method.

1.2 Direct product theorems for symmetric functions

Consider an algorithm that simultaneously needs to compute k independent instances of a function f (denoted
f (k)). Direct product theorems deal with the optimal tradeoff between the resources and success probability
of such algorithms. These resources could for example be time, space, ink, queries, communication, etc.
Suppose we need t units of some resource to compute a single instance f(x) with bounded error probability.
A typical (strong) direct product theorem (DPT) has the following form:1

Every algorithm with T ≤ αkt resources for computing f (k) has success probability σ ≤ 2−Ω(k)

(where α > 0 is some small constant).

This expresses our intuition that essentially the best way to compute f (k) on k independent instances is to run
separate t-resource algorithms for each of the instances. Since each of those will have success probability less
than 1, we expect that the probability of simultaneously getting all k instances right goes down exponentially
with k. DPTs can be stated for classical algorithms or quantum algorithms, and σ could measure worst-case
success probability or average-case success probability under some input distribution. DPTs are generally
hard to prove, and Shaltiel [Sha01] even gives general examples where they are just not true (with σ average
success probability), the above intuition notwithstanding. Klauck, Špalek, and de Wolf [KŠW07] recently
examined the case where the resource is query complexity and f = OR, and proved an optimal DPT both for
classical algorithms and for quantum algorithms (with σ worst-case success probability). This strengthened
a slightly earlier result of Aaronson [Aar04], who proved that the success probability goes down exponentially
with k if the number of queries is bounded by α

√
kn rather than the αk

√
n of [KŠW07].

Here we generalize their results to the case where f can be any symmetric function, i.e. a function de-
pending only on the Hamming weight |x| of its input x. In the case of classical algorithms the situation is
quite simple. Every n-bit symmetric function f has classical bounded-error query complexity R2(f) = Θ(n)
and block sensitivity bs(f) = Θ(n), hence an optimal classical DPT follows immediately from [KŠW07, The-
orem 3]. Classically, all symmetric functions essentially “cost the same” in terms of query complexity. This is
different in the quantum world. For instance, the OR function has bounded-error quantum query complexity
Q2(OR) = Θ(

√
n) [Gro96, BHMT02], while Parity needs n/2 quantum queries [BBC+01, FGGS98]. If f is

a t-threshold function (f(x) = 1 iff |x| ≥ t, with t ≤ n/2), then Q2(f) = Θ(
√
tn) [BBC+01].

Our main result is an essentially optimal quantum DPT for all symmetric functions:

There is a constant α > 0 such that for every symmetric f and every positive integer k: Every
2-sided error quantum algorithm with T ≤ αkQ2(f) queries for computing f (k) has success
probability σ ≤ 2−Ω(k).

Our new direct product theorem generalizes the polynomial-based results of [KŠW07] (which strengthened
the polynomial-based [Aar04]), but our current proof uses the above-mentioned version of the adversary
method instead of polynomials.

We have not been able to prove this result using the polynomial method. We can, however, use the
polynomial method to prove an incomparable DPT. This result is worse than our main result in applying
only to 1-sided error quantum algorithms2 for threshold functions; but it’s better in giving a much stronger
upper bound on the success probability:

1A strong direct product theorem has resource bound T ≈ kt, while a weak direct product theorem has resource bound
T ≈ t. Since this paper only deals with the strong variety, we will omit the word “strong” and just speak of a direct product
theorem (DPT) when we mean a strong one.

2The error is 1-sided if 1-bits in the k-bit output vector are always correct.
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There is a constant α > 0 such that for every t-threshold function f and every positive integer
k: Every 1-sided error quantum algorithm with T ≤ αkQ2(f) queries for computing f (k) has
success probability σ ≤ 2−Ω(kt).

A similar theorem can be proven for the k-fold t-search problem, where in each of k inputs of n bits, we
want to find at least t ones. The different error bounds 2−Ω(kt) and 2−Ω(k) for 1-sided and 2-sided error
algorithms intuitively say that imposing the 1-sided error constraint makes deciding each of the k threshold
problems as hard as actually finding t ones in each of the k inputs.

1.3 Time-Space tradeoffs for evaluating solutions to systems of linear inequali-
ties

As an application we obtain near-optimal time-space tradeoffs for evaluating solutions to systems of linear
equalities. Such tradeoffs between the two main computational resources are well known classically for
problems like sorting, element distinctness, hashing, etc. In the quantum world, essentially optimal time-
space tradeoffs were recently obtained for sorting and for Boolean matrix multiplication [KŠW07], but little
else is known.

Let A be a fixed N ×N matrix of nonnegative integers. Our inputs are column vectors x = (x1, . . . , xN )
and b = (b1, . . . , bN) of nonnegative integers. We are interested in the system

Ax ≥ b

of N linear inequalities, and want to find out which of these inequalities hold3 (we could also mix ≥, =, and
≤, but omit that for ease of notation). Note that the output is an N -bit vector. We want to analyze the
tradeoff between the time T and space S needed to solve this problem. Lower bounds on T will be in terms
of query complexity. For simplicity we omit polylogarithmic factors in the following discussion.

In the classical world, the optimal tradeoff is TS = N2, independent of the values in b. This follows
from [KŠW07, Section 7]. The upper bounds are for deterministic algorithms and the lower bounds are for
2-sided error algorithms. In the quantum world the situation is more complex. Let us put an upper bound
max{bi} ≤ t. We show here that we have two different regimes for 2-sided error quantum algorithms:

• Quantum regime. If S ≤ N/t then the optimal tradeoff is T 2S = tN3 (better than classical).

• Classical regime. If S > N/t then the optimal tradeoff is TS = N2 (same as classical).

Our lower bounds hold even for the constrained situation where b is fixed to the all-t vector, A and x are
Boolean, and A is sparse in having only O(N/S) non-zero entries in each row.

Since our DPT for 1-sided error algorithms is stronger by an extra factor of t in the exponent, we obtain
a stronger lower bound for 1-sided error algorithms:

• If t ≤ S ≤ N/t2 then the optimal tradeoff for 1-sided error algorithms is T 2S ≥ t2N3.

• If S > N/t2 then the optimal tradeoff for 1-sided error algorithms is TS = N2.

We do not know whether the lower bound in the first case is optimal (probably it is not), but note that it is
stronger than the optimal bounds that we have for 2-sided error algorithms. This is the first separation of
2-sided and 1-sided error algorithms in the context of quantum time-space tradeoffs.4

Remarks:
1. Klauck et al. [KŠW07] gave direct product theorems not only for quantum query complexity, but

also for 2-party quantum communication complexity, and derived some communication-space tradeoffs in
analogy to the time-space tradeoffs. This was made possible by a translation of communication protocols

3Note that if A and x are Boolean and b = (t, . . . , t), this gives N overlapping t-threshold functions.
4Strictly speaking, there’s a quadratic gap for OR [Gro96], but space log n suffices for the fastest 1-sided and 2-sided error

algorithms for OR, so there’s no real tradeoff in that case.
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to polynomials due to Razborov [Raz03], and the fact that the DPTs of [KŠW07] were polynomial-based.
Some of the results in this paper can similarly be ported to a communication setting, though only the ones
that use the polynomial method.

2. The time-space tradeoffs for 2-sided error algorithms for Ax ≥ b similarly hold for a system of N
equalities, Ax = b. The upper bound clearly carries over, while the lower holds for equalities as well, because
our DPT holds even under the promise that the input has weight t or t−1. In contrast, the stronger 1-sided
error time-space tradeoff does not automatically carry over to systems of equalities, because we do not know
how to prove the DPT with bound 2−Ω(kt) under this promise.

2 Preliminaries

2.1 Quantum query complexity

We assume familiarity with quantum computing [NC00] and sketch the model of quantum query complexity.
We refer to [BW02] for more details, also on the close relation between query complexity and degrees of
multivariate polynomials. As with the classical model of decision trees, in the quantum query model we wish
to compute some function f and we access the input through queries. The complexity of f is the number of
queries needed to compute f on a worst-case input x. Unlike the classical case, however, we can now make
queries in superposition.

The memory of a quantum query algorithm is described by three registers.

• The input register, HI , which holds the input x ∈ {0, 1}n.

• The query register, HQ, which holds an integer 0 ≤ i ≤ n.

• The working memory, HW , which holds an arbitrary value w.

The query register and working memory together form the accessible memory, denoted HA. Thus the state
of the algorithm is described by a vector

|ψ〉 =
∑

x,i,w

αx,i,w|x, i, w〉

where
∑

x,i,w |αx,i,w|2 = 1.
The accessible memory of a quantum query algorithm A is initialized to a fixed state. For convenience,

on input x we assume the state of the algorithm is |x, 0, 0〉 where all qubits in the accessible memory are
initialized to 0. The state of the algorithm then evolves through queries, which depend on the input register,
and accessible memory operators which do not. We now describe these operations.

There are two common ways to generalize the notion of a query to the quantum setting, where it must
be a unitary operation. We will use the model where the oracle answer is given in the phase. This model is
a unitary operator O that is defined by its action on basis states |x〉|i〉|w〉 as

O|x〉|i〉|w〉 = (−1)xi |x〉|i〉|w〉.

For every x = x1 . . . xn, we additionally define x0 = 0. Hence querying i = 0 is the identity operation or
“null query”. This is needed to make the above “phase”-query equivalent to the alternative model of a query,
which is as a map

O′|x〉|i〉|b〉|w〉 = |x〉|i〉|b ⊕ xi〉|w〉,
where b ∈ {0, 1}.

An accessible memory operator is an arbitrary unitary operation U on the accessible memory HA. This
operation is extended to act on the whole space by interpreting it as Iinput ⊗ U , where Iinput is the identity
operation on the input space HI . Thus the state of the algorithm on input x after t queries can be written
as

|φtx〉 = UtOUt−1 · · ·U1OU0|x, 0, 0〉.
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As the input register is left unchanged by the algorithm, we can decompose |φtx〉 as |φtx〉 = |x〉|ψtx〉, where
|ψtx〉 is the state of the accessible memory after t queries.

The output of a T -query algorithm A on input x is chosen according to a probability distribution which
depends on the final state of the accessible memory |ψTx 〉. Namely, the probability that the algorithm
outputs the bit b ∈ {0, 1} on input x is ‖Πb|ψTx 〉‖2, for a fixed set of projectors {Πb} which are orthogonal
and complete, that is, sum to the identity. More general POVM measurement schemes can be considered,
but these are essentially equivalent in power—see the discussion in [BSS03]. The ǫ-error quantum query
complexity of a function f , denoted Qǫ(f), is the minimum number of queries made by an algorithm which
outputs f(x) with probability at least 1− ǫ for every x. Q2(f) is the query complexity for the standard value
ǫ = 1

3 . The subscript ‘2’ here refers to the 2-sided nature of the errors, which can occur on 1-inputs as well
as on 0-inputs.

2.2 Some quantum algorithms

We mention some well known quantum algorithms that we will use as subroutines.

• Quantum search. Grover’s search algorithm [Gro96, BBHT98] can find an index of a 1-bit in an
n-bit input in expected number of O(

√

n/(|x| + 1)) queries, where |x| is the Hamming weight (num-
ber of ones) in the input. If |x| is known, the algorithm can be made to find the index in exactly
O(
√

n/(|x| + 1)) queries, instead of the expected number [BHMT02]. By repeated Grover search, we

can find t ones in an n-bit input with |x| ≥ t, using
∑|x|

i=|x|−t+1O(
√

n/(i+ 1)) = O(
√
tn) queries.

• Quantum counting [BHMT02, Theorem 13]. For every integer M ≥ 1, there is a quantum algorithm
that uses M queries to n-bit x to compute an estimate w of |x| such that with probability at least 8/π2

|w − |x|| ≤ 2π

√

|x|(n− |x|)
M

+ π2 n

M2
.

For investigating time-space tradeoffs we use a variant of the circuit model. We fix a universal set of
elementary gates (for instance CNOT and all 1-qubit unitaries and measurements), and consider larger
operations to be built up from these elementary gates. A circuit accesses its input via an oracle like a query
algorithm. The oracle is also considered an elementary gate. Time corresponds to the number of elementary
gates in the circuit. We often, however, only consider the number of queries to the input, which is obviously
a lower bound on time. A circuit uses space S if it works with S bits/qubits only. We require that the
outputs are made at predefined gates in the circuit, by writing their value to some extra bits/qubits that
may not be used later on and that are not part of the workspace.

3 Direct Product Theorem for Symmetric Functions (2-sided)

The main result of this paper is the following theorem. In this section we first give an outline of the proof.
Most of the proofs of technical claims are deferred to later subsections.

Theorem 1 There is a constant α > 0 such that for every symmetric f and every positive integer k:
Every 2-sided error quantum algorithm with T ≤ αkQ2(f) queries for computing f (k) has success probability
σ ≤ 2−Ω(k).

Implicit threshold. Let us first say something about Q2(f) for a symmetric function f : {0, 1}n → {0, 1}.
Let t denote the smallest non-negative integer such that f is constant on the interval |x| ∈ [t, n − t].
We call this value t the implicit threshold of f . For instance, functions like OR and AND have t = 1,
while parity and majority have t = n

2 . If f is the t-threshold function with t ≤ n
2 , then the implicit

threshold is just the threshold t. The implicit threshold is related to the parameter Γ(f) introduced by

Paturi [Pat92] via t = n
2 − Γ(f)

2 ± 1. It characterizes the bounded-error quantum query complexity of f :
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Q2(f) = Θ(
√
tn) [BBC+01]. Hence our resource bound in the above theorem will be αk

√
tn for some small

constant α > 0.
We actually prove a stronger statement, applying to any Boolean function f (total or partial) for which

f(x) = 0 if |x| = t− 1 and f(x) = 1 if |x| = t.

Input register. Let A be an algorithm that computes k instances of this weight-(t − 1) versus weight-t
problem. Let HA be the accessible memory of A. Let HI be an (

(

n
t−1

)

+
(

n
t

)

)k-dimensional Hilbert space

whose basis states correspond to inputs (x1, . . . , xk) with Hamming weights |x1| ∈ {t − 1, t}, . . . , |xk| ∈
{t − 1, t}. The algorithm A is thus a sequence of transformations on a Hilbert space H = HI ⊗ HA, as
described in Section 2.1. The starting state of the algorithm is

|ϕ0〉 = |ψstart〉A ⊗ |ψ0〉I

where |ψstart〉 is the fixed starting state of A as an algorithm acting on HA (the all-0 state). The state
|ψ0〉 = |ψone〉⊗k in the input register is a tensor product of k copies of the state |ψone〉 in which half of the
weight is on |x〉 with |x| = t, the other half is on |x〉 with |x| = t− 1, and any two states |x〉 with the same
|x| have equal amplitudes:

|ψone〉 =
1

√

2
(

n
t

)

∑

x:|x|=t
|x〉 +

1
√

2
(

n
t−1

)

∑

x:|x|=t−1

|x〉 .

Let |ϕd〉 ∈ H be the state of the algorithm A after the dth query. Let ρd be the mixed state in HI obtained
from |ϕd〉 by tracing out the HA register.

Subspaces of the input register. We define two decompositions of HI into a direct sum of subspaces.
We have HI = (Hone)

⊗k where Hone is the input Hilbert space for one instance, with basis states |x〉,
x ∈ {0, 1}n, |x| ∈ {t− 1, t}. Let

|ψ0
i1,...,ij 〉 =

1
√

(

n−j
t−1−j

)

∑

x1,...,xn:
x1+···+xn=t−1,
xi1=···=xij

=1

|x1 . . . xn〉

and let |ψ1
i1,...,ij 〉 be a similar state with x1 + · · ·+xn = t instead of x1 + · · ·+xn = t−1. Let Tj,0 (resp. Tj,1)

be the space spanned by all states |ψ0
i1,...,ij

〉 (resp. |ψ1
i1,...,ij

〉) and let Sj,a = Tj,a ∩ T⊥
j−1,a. For a subspace

S, we use ΠS to denote the projector onto S. Let |ψ̃ai1,...,ij 〉 = ΠT⊥
j−1,a

|ψai1,...,ij 〉. For j < t, let Sj,+ be the

subspace spanned by the states
|ψ̃0
i1,...,ij

〉
‖ψ̃0

i1,...,ij
‖

+
|ψ̃1
i1,...,ij

〉
‖ψ̃1

i1,...,ij
‖

and Sj,− be the subspace spanned by the states

|ψ̃0
i1,...,ij

〉
‖ψ̃0

i1,...,ij
‖
−

|ψ̃1
i1,...,ij

〉
‖ψ̃1

i1,...,ij
‖
.

For j = t, we define St,− = St,1 and there is no subspace St,+. Thus Hone =
⊕t−1

j=0(Sj,+ ⊕ Sj,−) ⊕ St,−. Let
us try to give some intuition. In the spaces Sj,+ and Sj,−, we may be said to “know” j positions of ones. In
the good subspaces Sj,− we have distinguished the zero-inputs from one-inputs by the relative phase, while
in the bad subspaces Sj,+ we have not distinguished them. Accordingly, the algorithm is doing well on this
one instance if most of the state sits in the good subspaces Sj,−.
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First decomposition. For the space HI (representing k independent inputs) and r1, . . . , rk ∈ {+,−}, we
define

Sj1,...,jk,r1,...,rk
= Sj1,r1 ⊗ Sj2,r2 ⊗ · · · ⊗ Sjk,rk

.

Let Sm− be the direct sum of all Sj1,...,jk,r1,...,rk
such that exactly m of the signs r1, . . . , rk are equal to −.

Then HI =
⊕

m Sm−. This is the first decomposition.
The above intuition for one instance carries over to k instances: the more minuses the better for the

algorithm. Conversely, if most of the input register sits in Sm− for low m, then its success probability will
be small. More precisely, in Section 3.1 we prove the following lemma.

Lemma 2 (Measurement in bad subspaces) Let ρ be the reduced density matrix of HI . If the support
of ρ is contained in S0− ⊕S1− ⊕ · · · ⊕ Sm−, then the probability that measuring HA gives the correct answer

is at most

∑m
m′=0

(

k
m′

)

2k
.

Note that this probability is exponentially small in k for, say, m = k
3 . The following consequence of this

lemma is proven in Section 3.2.

Corollary 3 (Total success probability) Let ρ be the reduced density matrix of HI . The probability that
measuring HA gives the correct answer is at most

∑m
m′=0

(

k
m′

)

2k
+ 4
√

TrΠ(S0−⊕S1−⊕···⊕Sm−)⊥ρ .

Second decomposition. The first decomposition, described above, bounds the probability of success for
the measurement on the final state of the algorithm. Our second decomposition will bound the probability
of success of an algorithm, if the algorithm can still perform more queries before the final measurement.

To define the second decomposition into subspaces, we express Hone =
⊕t/2

j=0 Rj with Rj = Sj,+ for
j < t/2 and

Rt/2 =
⊕

j≥t/2
Sj,+ ⊕

⊕

j≥0

Sj,− .

Intuitively, all subspaces except for Rt/2 are bad for the algorithm, since they equal the bad subspaces Sj,+.
(Unlike in the first decomposition, we have included Sj,+ for j ≥ t/2 in the good subspace Rt/2. The reason
for this distinction is that, when j is sufficiently large, it is possible to move from Sj,+ to the good subspaces
Sj,− with relatively few queries.)

Let Rℓ be the direct sum of all Rj1 ⊗ · · · ⊗Rjk satisfying j1 + · · · + jk = ℓ. Then HI =
⊕tk/2

ℓ=0 Rℓ. This
is the second decomposition.

Intuitively, the algorithm can only have good success probability if for most of the k instances, most of
the input register sits in Rt/2. Aggregated over all k instances, this means that the algorithm will only work
well if most of the k-input register sits in Rℓ for ℓ large, meaning fairly close to kt/2. Our goal below is to
show that this cannot happen if the number of queries is small.

Let R′
j =

⊕tk/2
ℓ=j Rℓ. Note that Sm− ⊆ R′

tm/2 for every m: Sm− is the direct sum of subspaces S =
Sj1,r1 ⊗ · · · ⊗ Sjk,rk

having m minuses among r1, . . . , rk; each such minus-subspace sits in the corresponding
Rt/2 and hence S ⊆ R′

tm/2. This implies

(S0− ⊕ S1− ⊕ · · · ⊕ S(m−1)−)⊥ ⊆ R′
tm/2 .

Accordingly, if we prove an upper bound on TrΠR′
tm/2

ρT , where T is the total number of queries, this bound

together with Corollary 3 implies an upper bound on the success probability of A.
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|ψai1,...,ij 〉 uniform superposition of states with |x| = t− 1 + a

and with j fixed bits set to 1
Tj,a spanned by |ψai1,...,ij 〉 for all j-tuples i

Sj,a = Tj,a ∩ T⊥
j−1,a we remove the subspace Tj−1,a from Tj,a

|ψ̃ai1,...,ij 〉 projection of |ψai1,...,ij 〉 onto Sj,a

Sj,± spanned by |ψ̃0〉
‖ψ̃0‖ ± |ψ̃1〉

‖ψ̃1‖
Rj = Sj,+ for j < t

2 . . . bad subspaces
Rt/2 direct sum of Sj,+ for j ≥ t/2, and all Sj,− . . . good subspaces

Sm− =
⊕

|r|=m
j1,...,jk

k
⊗

i=1

Sji,ri where |r| is the number of minuses in r = r1, . . . , rk

Rℓ =
⊕

|j|1=ℓ

k
⊗

i=1

Rji where |j|1 is the sum of all entries in j = j1, . . . , jk

R′
j =

⊕

ℓ≥j
Rℓ

|ψa,bi1,...,ij 〉 uniform superposition of states with |x| = t− 1 + a,

with j fixed bits set to 1, and x1 = b

Tj,a,b spanned by |ψa,bi1,...,ij 〉 for all j-tuples i

Sj,a,b = Tj,a,b ∩ T⊥
j−1,a,b we remove the subspace Tj−1,a,b from Tj,a,b

|ψ̃a,bi1,...,ij 〉 projection of |ψa,bi1,...,ij 〉 into Sj,a,b

Sα,βj,a spanned by α |ψ̃a,0〉
‖ψ̃a,0‖ + β |ψ̃a,1〉

‖ψ̃a,1‖

Table 1: States and subspaces used in the proof

Potential function. To bound TrΠR′
tm/2

ρT , we consider the following potential function

P (ρ) =

tk/2
∑

ℓ=0

qℓ Tr ΠRℓ
ρ ,

where q = 1 + 1
t . Then for every d we have

TrΠR′
tm/2

ρd =

tk/2
∑

ℓ=tm/2

Tr ΠRℓ
ρd ≤ q−tm/2

tk/2
∑

ℓ=tm/2

qℓ TrΠRℓ
ρd ≤ P (ρd)q

−tm/2 = P (ρd)e
−(1+o(1))m/2 . (1)

We have P (ρ0) = 1, because the initial state |ψ0〉 is a tensor product of the states |ψone〉 on each copy of
Hone and |ψone〉 belongs to S0,+, hence |ψ0〉 belongs to R0. In Section 3.5 we prove

Lemma 4 (Bounding the growth of the potential) There is a constant C such that

P (ρj+1) ≤
(

1 +
C√
tn

(qt/2 − 1) +
C
√
t√
n

(q − 1)

)

P (ρj) .

Since q = 1 + 1
t , Lemma 4 means that P (ρj+1) ≤ (1 + C

√
e√
tn

)P (ρj) and P (ρj) ≤ (1 + C
√
e√
tn

)j ≤ e
2Cj√

tn . By

equation (1), for the final state after T queries we have

TrΠR′
tm/2

ρT ≤ e
2CT√

tn
−(1+o(1)) m

2 .

We takem = k
3 . Then if T ≤ 1

8Cm
√
tn, this expression is exponentially small in k. Together with Corollary 3,

this implies Theorem 1 for α = 1
24C .
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3.1 Measurement in bad subspaces

In this section we prove Lemma 2.
The measurement of HA decomposes the state in the HI register as follows:

ρ =
∑

a1,...,ak∈{0,1}
pa1,...,ak

σa1,...,ak
,

with pa1,...,ak
being the probability of the measurement giving (a1, . . . , ak) (where aj = 1 means the algorithm

outputs—not necessarily correctly—that |xj | = t, and aj = 0 means |xj | = t − 1) and σa1,...,ak
being the

density matrix of HI , conditional on this outcome of the measurement. Since the support of ρ is contained
in S0− ⊕ · · · ⊕ Sm−, the support of the states σa1,...,ak

is also contained in S0− ⊕ · · · ⊕ Sm−. The probability
that the answer (a1, . . . , ak) is correct is equal to

TrΠ⊗k
j=1

⊕t−1+aj
l=0

Sl,aj

σa1,...,ak
. (2)

We show that, for any σa1,...,ak
with support contained in S0− ⊕ · · · ⊕ Sm−, (2) is at most

Pm
m′=0 ( k

m′)
2k .

For brevity, we now write σ instead of σa1,...,ak
. A measurement with respect to ⊗kj=1 ⊕l Sl,aj and its

orthogonal complement commutes with a measurement with respect to the collection of subspaces

⊗kj=1(Slj ,0 ⊕ Slj ,1) ,

where l1, . . . , lk range over {0, . . . , t}. Therefore

TrΠ⊗k
j=1

⊕lSl,aj
σ =

∑

l1,...,lk

Tr Π⊗k
j=1

⊕lSl,aj
Π⊗k

j=1
(Slj ,0⊕Slj ,1)σ .

Hence to bound (2) it suffices to prove the same bound with

σ′ = Π⊗k
j=1

(Slj ,0⊕Slj ,1)σ

instead of σ. Since
(

⊗kj=1(Slj ,0 ⊕ Slj ,1)
)

∩
(

⊗kj=1(⊕lSl,aj )
)

= ⊗kj=1Slj ,aj ,

we have
TrΠ⊗k

j=1
(⊕lSl,aj

)σ
′ = Tr Π⊗k

j=1
Slj ,aj

σ′ . (3)

We prove this bound for the case when σ′ is a pure state: σ′ = |ψ〉〈ψ|. Then equation (3) is equal to

‖Π⊗k
j=1

Slj ,aj
ψ‖2 . (4)

The bound for mixed states σ′ follows by decomposing σ′ as a mixture of pure states |ψ〉, bounding (4) for
each of those states and then summing up the bounds.

We have

(S0− ⊕ · · · ⊕ Sm−) ∩
k
⊗

j=1

(Slj ,0 ⊕ Slj,1) =
⊕

r1,...,rk∈{+,−},
|{i:ri=−}|≤m

k
⊗

j=1

Slj,rj .

We express

|ψ〉 =
∑

r1,...,rk∈{+,−},
|{i:ri=−}|≤m

αr1,...,rk
|ψr1,...,rk

〉 ,

10



with |ψr1,...,rk
〉 ∈ ⊗kj=1Slj ,rj . Therefore

‖Π⊗k
j=1

Slj ,aj
ψ‖2 ≤

(

∑

r1,...,rk

|αr1,...,rk
| · ‖Π⊗k

j=1
Slj ,aj

ψr1,...,rk
‖
)2

≤
∑

r1,...,rk

‖Π⊗k
j=1

Slj ,aj
ψr1,...,rk

‖2 , (5)

where the second inequality uses Cauchy-Schwarz and the fact that

‖ψ‖2 =
∑

r1,...,rk

|αr1,...,rk
|2 = 1 .

Claim 5 ‖Π⊗k
j=1

Slj,aj
ψr1,...,rk

‖2 ≤ 1

2k
.

Proof. Let |ϕj,0i 〉, i ∈ [dimSlj ,0] form an orthonormal basis for the subspace Slj,0. Define a map Uj : Slj ,0 →
Slj ,1 by Uj |ψ̃0

i1,...,ilj
〉 = |ψ̃1

i1,...,ilj
〉. Then Uj is a multiple of a unitary transformation: Uj = cjU

′
j for some

unitary U
′
j and a constant cj . (This follows from Claim 8 below.)

Let |ϕj,1i 〉 = U
′
j |ϕj,0i 〉. Since U

′
j is a unitary transformation, the states |ϕj,1i 〉 form a basis for Slj ,1.

Therefore the set of states
k
⊗

j=1

|ϕj,aj

ij
〉 (6)

is a basis for ⊗kj=1Slj ,aj . Moreover, the states

|ϕj,+i 〉 =
1√
2
|ϕj,0i 〉 +

1√
2
|ϕj,1i 〉, |ϕj,−i 〉 =

1√
2
|ϕj,0i 〉 − 1√

2
|ϕj,1i 〉

are a basis for Slj ,+ and Slj ,−, respectively. Therefore there exist αi1,...,ik such that

|ψr1,...,rk
〉 =

∑

i1,...,ik

αi1,...,ik

k
⊗

j=1

|ϕj,rj

ij
〉 . (7)

The inner product between ⊗ki=1|ϕ
j,aj

i′j
〉 and ⊗kj=1|ϕ

j,rj

ij
〉 is

k
∏

j=1

〈ϕj,rj

ij
|ϕj,aj

i′j
〉 .

Note that rj ∈ {+,−} and aj ∈ {0, 1}. The terms in this product are ± 1√
2

if i′j = ij and 0 otherwise.

This means that ⊗kj=1|ϕ
j,rj

ij
〉 has inner product ± 1

2k/2 with ⊗ki=1|ϕ
j,aj

ij
〉 and inner product 0 with all other

basis states of the form (6). Therefore,

Π⊗k
j=1

Slj ,aj
⊗kj=1 |ϕ

j,rj

ij
〉 = ± 1

2k/2
⊗ki=1 |ϕ

j,aj

ij
〉 .

Together with equation (7), this means that

‖Π⊗k
j=1

Slj ,aj
ψr1,...,rk

‖ ≤ 1

2k/2
‖ψr1,...,rk

‖ =
1

2k/2
.

Squaring both sides completes the proof of the claim. 2

Since there are
(

k
m′

)

tuples (r1, . . . , rk) with r1, . . . , rk ∈ {+,−} and |{i : ri = −}| = m′, Claim 5 together
with equation (5) implies

‖Π⊗k
j=1

Slj ,aj
ψ‖2 ≤

∑m
m′=0

(

k
m′

)

2k
.
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3.2 Total success probability

In this section we prove Corollary 3.
Let |ψ〉 be a purification of ρ in HI ⊗HA. Let

|ψ〉 =
√

1 − δ|ψ′〉 +
√
δ|ψ′′〉 ,

where |ψ′〉 is in the subspace HA⊗ (S0− ⊕S1− ⊕ · · · ⊕Sm−) and |ψ′′〉 is in the subspace HA⊗ (S0− ⊕S1− ⊕
· · · ⊕ Sm−)⊥. Then δ = Tr Π(S0−⊕···⊕Sm−)⊥ρ.

The success probability of A is the probability that, if we measure both the register HA containing the
result of the computation and HI , then we get a1, . . . , ak and x1, . . . , xk such that xj contains t − 1 + aj
ones for every j ∈ {1, . . . , k}.

Consider the probability of getting a1, . . . , ak ∈ {0, 1} and x1, . . . , xk ∈ {0, 1}n with this property, when

measuring |ψ′〉 (instead of |ψ〉). By Lemma 2, this probability is at most
Pm

m′=0 ( k
m′)

2k . We have

‖ψ − ψ′‖ ≤ (1 −
√

1 − δ)‖ψ′‖ +
√
δ‖ψ′′‖ = (1 −

√
1 − δ) +

√
δ ≤ 2

√
δ .

We now apply the following lemma by Bernstein and Vazirani.

Lemma 6 ([BV97]) For any states |ψ〉 and |ψ′〉 and any measurement M , the variational distance between
the probability distributions obtained by applying M to |ψ〉 and |ψ′〉 is at most 2‖ψ − ψ′‖.

Hence the success probability of A is at most

∑m
m′=0

(

k
m′

)

2k
+ 4

√
δ =

∑m
m′=0

(

k
m′

)

2k
+ 4
√

TrΠ(S0−⊕···⊕Sm−)⊥ρ .

3.3 Subspaces when asking one query

Let |ψd〉 be the state of HA ⊗HI after d queries. Write

|ψd〉 =

kn
∑

i=0

ai|ψd,i〉 ,

with |ψd,i〉 being the part in which the query register contains |i〉. Let ρd,i = TrHA |ψd,i〉〈ψd,i|. Then

ρd =

kn
∑

i=0

a2
i ρd,i . (8)

Because of

TrΠRmρd =

kn
∑

i=0

a2
i TrΠRmρd,i ,

we have P (ρd) =
∑kn

i=0 a
2
iP (ρd,i). Let ρ′d be the state after the (d+ 1)st query and let ρ′d =

∑kn
i=0 a

2
i ρ

′
d,i be

a decomposition similar to equation (8). Lemma 4 follows by showing

P (ρ′d,i) ≤
(

1 +
C√
tn

(qt/2 − 1) +
C
√
t√
n

(q − 1)

)

P (ρd,i) (9)

for each i. For i = 0, the query does not change the state if the query register contains |i〉. Therefore,
ρ′d,0 = ρd,0 and P (ρ′d,0) = P (ρd,0). This means that equation (9) is true for i = 0. To prove the i ∈ {1, . . . , kn}
case, it suffices to prove the i = 1 case (because of symmetry).
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Subspaces of ρd,1. We now define analogues of the spaces Tj,a, Sj,a, etc., but treating x1 separately.

Let |ψa,bi1,...,ij 〉 (with a, b ∈ {0, 1} and i1, . . . , ij ∈ {2, . . . , n}) be the uniform superposition over basis states

|b, x2, . . . , xn〉 (of Hone) with b + x2 + · · · + xn = t − 1 + a and xi1 = · · · = xij = 1. Let Tj,a,b be the space

spanned by all states |ψa,bi1,...,ij 〉 and let Sj,a,b = Tj,a,b ∩ T⊥
j−1,a,b. Let |ψ̃a,bi1,...,ij 〉 = ΠT⊥

j−1,a,b
|ψa,bi1,...,ij 〉.

Let Sα,βj,a be the subspace spanned by all states

α
|ψ̃a,0i1,...,ij 〉
‖ψ̃a,0i1,...,ij‖

+ β
|ψ̃a,1i1,...,ij 〉
‖ψ̃a,1i1,...,ij‖

. (10)

Claim 7 Let αa =
√

n−(t−1+a)
n−j ‖ψ̃a,0i1,...,ij‖ and βa =

√

(t−1+a)−j
n−j ‖ψ̃a,1i1,...,ij‖. Then (i) Sαa,βa

j,a ⊆ Sj,a and (ii)

Sβa,−αa

j,a ⊆ Sj+1,a.

Proof. For part (i), consider the states |ψai1,...,ij 〉 in Tj,a, for 1 6∈ {i1, . . . , ij}. We have

|ψai1,...,ij 〉 =
√

n−(t−1+a)
n−j |ψa,0i1,...,ij 〉 +

√

(t−1+a)−j
n−j |ψa,1i1,...,ij 〉, (11)

because among the states |x1 . . . xn〉 with |x| = t− 1 + a and xi1 = · · · = xij = 1, a n−(t−1+a)
n−j fraction have

x1 = 0 and the rest have x1 = 1. The projections of these states to T⊥
j−1,a,0 ∩ T⊥

j−1,a,1 are

√

n−(t−1+a)
n−j |ψ̃a,0i1,...,ij 〉 +

√

(t−1+a)−j
n−j |ψ̃a,1i1,...,ij 〉.

By equation (10), these are exactly the states spanning Sαa,βa

j,a . Furthermore, we claim that

Tj−1,a ⊆ Tj−1,a,0 ⊕ Tj−1,a,1 ⊆ Tj,a . (12)

The first containment is true because Tj−1,a is spanned by the states |ψai1,...,ij−1
〉. These states either

belong to Tj−2,a,1 ⊆ Tj−1,a,1 (if 1 ∈ {i1, . . . , ij−1}), or they are a linear combination of states |ψa,0i1,...,ij−1
〉

and |ψa,1i1,...,ij−1
〉 (by equation (11)), which belong to Tj−1,a,0 and Tj−1,a,1. The second containment follows

because the states |ψa,1i1,...,ij−1
〉 spanning Tj−1,a,1 are the same as the states |ψa1,i1,...,ij−1

〉 which belong to

Tj,a, and the states |ψa,0i1,...,ij−1
〉 spanning Tj−1,a,0 can be expressed as linear combinations of |ψai1,...,ij−1

〉 and

|ψa1,i1,...,ij−1
〉 which both belong to Tj,a.

The first part of (12) now implies

Sαa,βa

j,a ⊆ T⊥
j−1,a,0 ∩ T⊥

j−1,a,1 ⊆ T⊥
j−1,a .

Also, Sαa,βa

j,a ⊆ Tj,a, because Sαa,βa

j,a is spanned by the states

ΠT⊥
j−1,a,0∩T⊥

j−1,a,1
|ψai1,...,ij 〉 = |ψai1,...,ij 〉 − ΠTj−1,a,0⊕Tj−1,a,1 |ψai1,...,ij 〉

and |ψai1,...,ij 〉 belongs to Tj,a by the definition of Tj,a, and ΠTj−1,a,0⊕Tj−1,a,1 |ψai1,...,ij 〉 belongs to Tj,a because

of the second part of (12). Therefore, Sαa,βa

j,a ⊆ Tj,a ∩ T⊥
j−1,a = Sj,a.

For part (ii), we have

Sβa,−αa

j,a ⊆ Sj,a,0 ⊕ Sj,a,1 ⊆ Tj,a,0 ⊕ Tj,a,1 ⊆ Tj+1,a .

Here the first containment is true because Sβa,−αa

j,a is spanned by linear combinations of vectors |ψ̃a,0i1,...,ij 〉
(which belong to Sj,a,0) and vectors |ψ̃a,1i1,...,ij 〉 (which belong to Sj,a,1). The last containment is true because

of the second part of equation (12). Now let

|ψ〉 = βa
|ψ̃a,0i1,...,ij 〉
‖ψ̃a,0i1,...,ij‖

− αa
|ψ̃a,1i1,...,ij 〉
‖ψ̃a,1i1,...,ij‖

(13)
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be one of the vectors spanning Sβa,−αa

j,a . To prove that |ψ〉 is in Sj+1,a = Tj+1,a ∩ T⊥
j,a, it remains to prove

that |ψ〉 is orthogonal to Tj,a. This is equivalent to proving that |ψ〉 is orthogonal to each of the vectors
|ψai′

1
,...,i′j

〉 spanning Tj,a. We distinguish two cases (note that 1 6∈ {i1, . . . , ij}):

1. 1 ∈ {i′1, . . . , i′j}.
For simplicity, assume 1 = i′j. Then |ψai′

1
,...,i′j

〉 is the same as |ψa,1i′
1
,...,i′j−1

〉, which belongs to Tj−1,a,1. By

definition, the vector |ψ〉 belongs to T⊥
j−1,a,0 ∩ T⊥

j−1,a,1 and is therefore orthogonal to |ψa,1i′
1
,...,i′j−1

〉.

2. 1 6∈ {i′1, . . . , i′j}.
We will prove this case by induction on ℓ = |{i′1, . . . , i′j} − {i1, . . . , ij}|.
In the base step (ℓ = 0), we have {i′1, . . . , i′j} = {i1, . . . , ij}. Since |ψ〉 belongs to T⊥

j−1,a,0 ∩ T⊥
j−1,a,1,

it suffices to prove |ψ〉 is orthogonal to the projection of |ψai1,...,ij 〉 to T⊥
j−1,a,0 ∩ T⊥

j−1,a,1 which, by the

discussion after equation (11), equals

αa
|ψ̃a,0i1,...,ij 〉
‖ψ̃a,0i1,...,ij‖

+ βa
|ψ̃a,1i1,...,ij 〉
‖ψ̃a,1i1,...,ij‖

. (14)

From equations (13) and (14), we see that the inner product of the two states is αaβa − βaαa = 0.

For the inductive step (ℓ ≥ 1), assume i′j 6∈ {i1, . . . , ij}. Up to a constant multiplicative factor, we
have

|ψai′
1
,...,i′j−1

〉 =
∑

i′ /∈{i′
1
,...,i′j−1

}
|ψai′

1
,...,i′j−1

,i′〉 .

Because |ψai′
1
,...,i′j−1

〉 is in Tj−1,a,0 ⊕ Tj−1,a,1, we have

∑

i′ /∈{i′
1
,...,i′j−1

}
〈ψai′

1
,...,i′j−1

,i′ |ψ〉 = 〈ψai′
1
,...,i′j−1

|ψ〉 = 0 . (15)

As proven in the previous case, 〈ψai′
1
,...,i′j−1

,1|ψ〉 = 0. Moreover, by the induction hypothesis we have

〈ψai′
1
,...,i′j−1

,i′ |ψ〉 = 0 whenever i′ ∈ {i1, . . . , ij}. Therefore equation (15) reduces to

∑

i′ /∈{i′
1
,...,i′j−1

,i1,...,ij ,1}
〈ψai′

1
,...,i′j−1

,i′ |ψ〉 = 0 . (16)

By symmetry, the inner products in this sum are the same for every i′. Hence they are all 0, in
particular for i′ = i′j.

We conclude that |ψ〉 is orthogonal to the subspace Tj,a and therefore |ψ〉 is in Sj+1,a = Tj+1,a ∩ T⊥
j,a. 2

Claim 8 The maps U01 : Sj,0,0 → Sj,0,1, U10 : Sj,0,0 → Sj,1,0 and U11 : Sj,0,0 → Sj,1,1 defined by

Uab|ψ̃0,0
i1,...,ij

〉 = |ψ̃a,bi1,...,ij 〉 are multiples of unitary transformations: Uab = cabU
′
ab for some unitary U

′
ab

and some constant cab.

Proof. We define M : Tj,0,0 → Tj,0,1 by

M|0x2 . . . xn〉 =
∑

ℓ:xℓ=1

|1x2 . . . xℓ−10xℓ+1 . . . xn〉 .
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Note that M does not depend on j. We claim

M|ψ̃0,0
i1,...,ij

〉 = c|ψ̃0,1
i1,...,ij

〉 (17)

M
†|ψ̃0,1

i1,...,ij
〉 = c′|ψ̃0,0

i1,...,ij
〉

for some constants c and c′ that may depend on n, t and j but not on i1, . . . , ij.
To prove that, we need to prove two things. First, we claim that

M|ψ0,0
i1,...,ij

〉 = c|ψ0,1
i1,...,ij

〉 + |ψ′〉 , (18)

where |ψ′〉 ∈ Tj−1,0,1 (note that 1 6∈ {i1, . . . , ij}). Equation (18) follows by

M|ψ0,0
i1,...,ij

〉 =
1

√

(

n−j−1
t−1−j

)

∑

x:|x|=t−1,x1=0
xi1=···=xij

=1

M|x〉

=
1

√

(

n−j−1
t−1−j

)

∑

x:|x|=t−1,x1=0
xi1=···=xij

=1

∑

ℓ:xℓ=1

|1x2 . . . xℓ−10xℓ+1 . . . xn〉

=
n− t+ 1
√

(

n−j−1
t−1−j

)

∑

y:|y|=t−1,y1=1
yi1=···=yij

=1

|y〉 +
1

√

(

n−j−1
t−1−j

)

j
∑

ℓ=1

∑

y:|y|=t−1,y1=1,yiℓ
=0

yi1=···=yij
=1

|y〉

=
n− t− j + 1
√

(

n−j−1
t−1−j

)

∑

y:|y|=t−1,y1=1
yi1=···=yij

=1

|y〉 +
1

√

(

n−j−1
t−1−j

)

j
∑

ℓ=1

∑

y:|y|=t−1,y1=1
yi1=···=yiℓ−1

=1

yiℓ+1
=···=yij

=1

|y〉

= (n− t− j + 1)
√

t−1−j
n−t+1 |ψ

0,1
i1,...,ij

〉 +
√

n−j
n−t+1

j
∑

ℓ=1

|ψ0,1
i1,...,iℓ−1,iℓ+1,...,ij

〉 .

This proves (18), with |ψ′〉 equal to the second term.
Second, for every j, M(Tj,0,0) ⊆ Tj,0,1 and M(T⊥

j,0,0) ⊆ T⊥
j,0,1. The first statement follows from equation

(18), because the subspaces Tj,0,0, Tj,0,1 are spanned by the states |ψ0,0
i1,...,ij

〉 and |ψ0,1
i1,...,ij

〉, respectively, and

Tj−1,0,1 ⊆ Tj,0,1. To prove the second statement, let |ψ〉 ∈ T⊥
j,0,0, |ψ〉 =

∑

x ax|x〉. We would like to prove

M|ψ〉 ∈ T⊥
j,0,1. This is equivalent to 〈ψ0,1

i1,...,ij
|M|ψ〉 = 0 for all i1, . . . , ij . We have

〈ψ0,1
i1,...,ij

|M|ψ〉 =
1

√

(

n−j−1
t−j−2

)

∑

y:|y|=t−1,y1=1
yi1=···=yij

=1

〈y|M|ψ〉

=
1

√

(

n−j−1
t−j−2

)

∑

x:|x|=t−1,x1=0
xi1=···=xij

=1

∑

ℓ:xℓ=1
ℓ/∈{i1,...,ij}

ax

=
t− 1 − j
√

(

n−j−1
t−j−2

)

∑

x:|x|=t−1,x1=0
xi1=···=xij

=1

ax = 0 .

The first equality follows by writing out 〈ψ0,1
i1,...,ij

|, the second equality follows by writing out M. The

third equality follows because, for every x with |x| = t − 1 and xi1 = · · · = xij = 1, there are t − 1 − j
more ℓ ∈ [n] satisfying xℓ = 1. The fourth equality follows because

∑

x:|x|=t−1,x1=0
xi1=···=xij

=1

ax is a constant times

〈ψ0,0
i1,...,ij

|ψ〉, and 〈ψ0,0
i1,...,ij

|ψ〉 = 0 because |ψ〉 ∈ T⊥
j,0,0.
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To deduce equation (17), we write

|ψ0,0
i1,...,ij

〉 = |ψ̃0,0
i1,...,ij

〉 + ΠTj−1,0,0 |ψ0,0
i1,...,ij

〉 .

Since M(Tj−1,0,0) ⊆ Tj−1,0,1 and M(T⊥
j−1,0,0) ⊆ T⊥

j−1,0,1,

M|ψ̃0,0
i1,...,ij

〉 = ΠT⊥
j−1,0,1

M|ψ0,0
i1,...,ij

〉 = cΠT⊥
j−1,0,1

|ψ0,1
i1,...,ij

〉 = c|ψ̃0,1
i1,...,ij

〉 ,

with the second equality following from (18) and |ψ′〉 ∈ Tj−1,0,1. This proves the first half of (17). The
second half follows similarly. Therefore

〈ψ̃0,0
i1,...,ij

|M†
M|ψ̃0,0

i′
1
,...,i′j

〉 = c · c′〈ψ̃0,0
i1,...,ij

|ψ̃0,0
i′
1
,...,i′j

〉 .

Hence M is a multiple of a unitary transformation. By equation (17), U01 = M/c and, therefore, U01 is
also a multiple of a unitary transformation.

Next, we define M by M|0x2 . . . xn〉 = |1x2 . . . xn〉. Then M is a unitary transformation from the space
spanned by |0x2 . . . xn〉, x2 + · · · + x2 = t − 1, to the space spanned by |1x2 . . . xn〉, 1 + x2 + · · · + xn = t.
We claim that U11 = M. To prove that, we first observe that

M|ψ0,0
i1,...,ij

〉 =
1

√

(

n−j−1
t−j−1

)

∑

x2,...,xn:
xi1=···=xij

=1

x2+···xn=t−1

M|0x2 . . . xn〉

=
1

√

(

n−j−1
t−j−1

)

∑

x2,...,xn:
xi1=···=xij

=1

x2+···xn=t−1

|1x2 . . . xn〉 = |ψ1,1
i1,...,ij

〉 .

Since Tj,a,b is defined as the subspace spanned by all |ψa,bi1,...,ij 〉, this means that M(Tj,0,0) = Tj,1,1 and

similarly M(Tj−1,0,0) = Tj−1,1,1. Since M is unitary, this implies M(T⊥
j−1,0,0) = T⊥

j−1,1,1 and

M|ψ̃0,0
i1,...,ij

〉 = MΠT⊥
j−1,0,0

|ψ0,0
i1,...,ij

〉 = ΠT⊥
j−1,1,1

|ψ1,1
i1,...,ij

〉 = |ψ̃1,1
i1,...,ij

〉 .

Finally, we have U10 = U
′′
10U11, where U

′′
10 is defined by U

′′
10|ψ̃1,1

i1,...,ij
〉 = |ψ̃1,0

i1,...,ij
〉. Since U11 is unitary, it

suffices to prove that U
′′
10 is a multiple of a unitary transformation and this follows similarly to U01 being a

multiple of a unitary transformation. 2

Claim 9 Let |ψ00〉 be an arbitrary state in Sj,0,0 for some j ∈ {0, . . . , t − 1}. Define |ψab〉 = U
′
ab|ψ00〉 for

ab ∈ {01, 10, 11}. Let α′
a =

√

n−(t−1+a)
n−j ‖ψ̃a,0i1,...,ij‖, β′

a =
√

(t−1+a)−j
n−j ‖ψ̃a,1i1,...,ij‖,

αa =
α′

a√
(α′

a)2+(β′
a)2

, βa =
β′

a√
(α′

a)2+(β′
a)2

. Then

1. |φ1〉 = α0|ψ00〉 + β0|ψ01〉 + α1|ψ10〉 + β1|ψ11〉 belongs to Sj,+;

2. |φ2〉 = β0|ψ00〉 − α0|ψ01〉 + β1|ψ10〉 − α1|ψ11〉 belongs to Sj+1,+;

3. Any linear combination of |ψ00〉, |ψ01〉, |ψ10〉 and |ψ11〉 which is orthogonal to |φ1〉 and |φ2〉 belongs to
S− =

⊕t
j=0 Sj,−.
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Proof. Let i1, . . . , ij be j distinct elements of {2, . . . , n}. As shown in the beginning of the proof of Claim 7,

|ψ̃ai1,...,ij 〉 =
√

n−(t−1+a)
n−j |ψ̃a,0i1,...,ij 〉 +

√

(t−1+a)−j
n−j |ψ̃a,1i1,...,ij 〉

= α′
a

|ψ̃a,0i1,...,ij 〉
‖ψ̃a,0i1,...,ij‖

+ β′
a

|ψ̃a,1i1,...,ij 〉
‖ψ̃a,1i1,...,ij‖

.

This means that ‖ψ̃ai1,...,ij‖ =
√

(α′
a)

2 + (β′
a)

2 and

|ψ̃ai1,...,ij 〉
‖ψ̃ai1,...,ij‖

= αa
|ψ̃a,0i1,...,ij 〉
‖ψ̃a,0i1,...,ij‖

+ βa
|ψ̃a,1i1,...,ij 〉
‖ψ̃a,1i1,...,ij‖

.

Since the states |ψ̃0,0
i1,...,ij

〉 span Sj,0,0, |ψ00〉 is a linear combination of states
|ψ̃0,0

i1,...,ij
〉

‖ψ̃0,0
i1,...,ij

‖ . By Claim 8,

the states |ψab〉 are linear combinations of
|ψ̃a,b

i1,...,ij
〉

‖ψ̃a,b
i1,...,ij

‖ with the same coefficients. Therefore, |φ1〉 is a linear

combination of

α0

|ψ̃0,0
i1,...,ij

〉
‖ψ̃0,0

i1,...,ij
‖

+ β0

|ψ̃0,1
i1,...,ij

〉
‖ψ̃0,1

i1,...,ij
‖

+ α1

|ψ̃1,0
i1,...,ij

〉
‖ψ̃1,0

i1,...,ij
‖

+ β1

|ψ̃1,1
i1,...,ij

〉
‖ψ̃1,1

i1,...,ij
‖

=
|ψ̃0
i1,...,ij

〉
‖ψ̃0

i1,...,ij
‖

+
|ψ̃1
i1,...,ij

〉
‖ψ̃1

i1,...,ij
‖
,

each of which, by definition, belongs to Sj,+. This establishes the first part of the claim.
In order to prove the second part, let i1, . . . , ij be distinct elements of {2, . . . , n}. We claim

|ψ̃a1,i1,...,ij 〉
‖ψ̃a1,i1,...,ij‖

= βa
|ψ̃a,0i1,...,ij 〉
‖ψ̃a,0i1,...,ij‖

− αa
|ψ̃a,1i1,...,ij 〉
‖ψ̃a,1i1,...,ij‖

. (19)

By Claim 7, the right hand side of (19) belongs to Sj+1,a. We need to show it equals |ψ̃a1,i1,...,ij 〉. We have

|ψ̃a1,i1,...,ij 〉 = ΠT⊥
j,a

|ψa1,i1,...,ij 〉 = ΠT⊥
j,a

|ψa,1i1,...,ij 〉
= ΠT⊥

j,a
ΠT⊥

j−1,a,1
|ψa,1i1,...,ij 〉 = ΠT⊥

j,a
|ψ̃a,1i1,...,ij 〉 ,

where the third equality follows from Tj−1,a,1 ⊆ Tj,a. This is because the states |ψa,1i1,...,ij−1
〉 spanning Tj−1,a,1

are the same as the states |ψa1,i1,...,ij−1
〉 in Tj,a. Write

|ψ̃a,1i1,...,ij 〉 = c1|δ1〉 + c2|δ2〉 ,

where

|δ1〉 = αa
|ψ̃a,0i1,...,ij 〉
‖ψ̃a,0i1,...,ij‖

+ βa
|ψ̃a,1i1,...,ij 〉
‖ψ̃a,1i1,...,ij‖

,

|δ2〉 = βa
|ψ̃a,0i1,...,ij 〉
‖ψ̃a,0i1,...,ij‖

− αa
|ψ̃a,1i1,...,ij 〉
‖ψ̃a,1i1,...,ij‖

.

By Claim 7, we have |δ1〉 ∈ Sj,a ⊆ Tj,a, |δ2〉 ∈ Sj+1,a ⊆ T⊥
j,a. Therefore, ΠT⊥

j,a
|ψ̃a,1i1,...,ij 〉 = c2|δ2〉 and

|ψ̃a1,i1,...,ij 〉
‖ψ̃a1,i1,...,ij‖

= |δ2〉 = βa
|ψ̃a,0i1,...,ij 〉
‖ ˜
ψa,0i1,...,ij‖

− αa
|ψ̃a,1i1,...,ij 〉
‖ψ̃a,1i1,...,ij‖

,
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proving (19).
Similarly to the argument for |φ1〉, equation (19) implies that |φ2〉 is a linear combination of

β0

|ψ̃0,0
i1,...,ij

〉
‖ψ̃0,0

i1,...,ij
‖
− α0

|ψ̃0,1
i1,...,ij

〉
‖ψ̃0,1

i1,...,ij
‖

+ β1

|ψ̃1,0
i1,...,ij

〉
‖ψ̃1,0

i1,...,ij
‖
− α1

|ψ̃1,1
i1,...,ij

〉
‖ψ̃1,1

i1,...,ij
‖

=
|ψ̃0

1,i1,...,ij 〉
‖ψ̃0

1,i1,...,ij
‖

+
|ψ̃1

1,i1,...,ij 〉
‖ψ̃1

1,i1,...,ij
‖

and each of those states belongs to Sj+1,+.
To prove the third part of Claim 9, we observe that any vector orthogonal to |φ1〉 and |φ2〉 is a linear

combination of vectors of the form

|φ3〉 = α0|ψ00〉 + β0|ψ01〉 − α1|ψ10〉 − β1|ψ11〉 ,

and
|φ4〉 = β0|ψ00〉 − α0|ψ01〉 − β1|ψ10〉 + α1|ψ11〉 .

A vector of the form |φ3〉 is a linear combination of vectors

|ψ̃0
i1,...,ij 〉

‖ψ̃0
i1,...,ij

‖
−

|ψ̃1
i1,...,ij 〉

‖ψ̃1
i1,...,ij

‖
.

A vector of the form |φ4〉 is a linear combination of vectors

|ψ̃0
1,i1,...,ij 〉

‖ψ̃0
1,i1,...,ij

‖
−

|ψ̃1
1,i1,...,ij 〉

‖ψ̃1
1,i1,...,ij

‖
.

This means that we have |φ3〉 ∈ Sj,− and |φ4〉 ∈ Sj+1,−, and the third part of the claim follows. 2

3.4 Norms of projected basis states

We use the notation xj = x(x− 1) · · · (x− j + 1).

Claim 10 The norms of the various projected basis states are as follows

1. ‖ψ̃a,bi1,...,ij‖ =

√

(n− t− a+ b)j

(n− j)j
.

2. ‖ψ̃a,0i1,...,ij‖ =
√

n−ta−j
n−ta ‖ψ̃a,1i1,...,ij‖ .

3.
‖ψ̃0,0

i1,...,ij
‖ · ‖ψ̃1,1

i1,...,ij
‖

‖ψ̃0,1
i1,...,ij

‖ · ‖ψ̃1,0
i1,...,ij

‖
=
√

(n−t)(n−t−j+1)
(n−t+1)(n−t−j) .

Proof. Define ta = t− 1 + a. We calculate the vector

|ψ̃a,bi1,...,ij 〉 = ΠT⊥
j−1,a,b

|ψa,bi1,...,ij 〉 .

Both vector |ψa,bi1,...,ij 〉 and subspace Tj−1,a,b are fixed by

Uπ|x〉 = |xπ(1) . . . xπ(n)〉

18



for any permutation π that fixes 1 and maps {i1, . . . , ij} to itself. Thus |ψ̃a,bi1,...,ij 〉 is fixed by any such Uπ as

well. Therefore, the amplitude of |x〉 with |x| = ta, x1 = b in |ψ̃a,bi1,...,ij 〉 only depends on |{i1, . . . , ij} ∩ {i :

xi = 1}|. Hence there exist numbers κ0, . . . , κj such that |ψ̃a,bi1,...,ij 〉 is of the form

|υa,b〉 =

j
∑

m=0

κm
∑

x:|x|=ta,x1=b
|{i1,...,ij}∩{i:xi=1}|=m

|x〉 .

To simplify the following calculations, we multiply κ0, . . . , κj by the same constant so that κj = 1/
√

(

n−j−1
ta−j−b

)

.

Then |υa,b〉 remains a multiple of |ψ̃a,bi1,...,ij 〉 but may no longer be equal to |ψ̃a,bi1,...,ij 〉.
The numbers κ0, . . . , κj−1 should be such that the state |υa,b〉 is orthogonal to Tj−1,a,b and, in particular,

orthogonal to the states |ψa,bi1,...,iℓ〉 for all ℓ ∈ {0, . . . , j − 1}. By writing out 〈υa,b|ψa,bi1,...,iℓ〉 = 0, we get

j
∑

m=ℓ

κm

(

n− j − 1

ta −m− b

)(

j − ℓ

m− ℓ

)

= 0 . (20)

To show that, we first note that |ψa,bi1,...,iℓ〉 is a uniform superposition of all |x〉 with |x| = ta, x1 = b,
xi1 = · · · = xiℓ = 1. If we want to choose x subject to those constraints and also satisfying |{i1, . . . , ij}∩{i :
xi = 1}| = m, then we have to set xi = 1 for m − ℓ different i ∈ {iℓ+1, . . . , ij} and for ta −m− b different

i /∈ {1, i1, . . . , ij}. This can be done in
(

j−ℓ
m−ℓ

)

and
(

n−j−1
ta−m−b

)

different ways, respectively.
By solving the system of equations (20), starting from ℓ = j − 1 and going down to ℓ = 0, we get that

the only solution is

κm = (−1)j−m
(

n−j−1
ta−j−b

)

(

n−j−1
ta−m−b

)κj . (21)

Let |υ′a,b〉 =
|υa,b〉
‖υa,b‖ be the normalized version of |υa,b〉. Then

|ψ̃a,bi1,...,ij 〉 = 〈υ′a,b|ψa,bi1,...,ij 〉|υ
′
a,b〉 ,

‖ψ̃a,bi1,...,ij‖ = 〈υ′a,b|ψa,bi1,...,ij 〉 =
〈υa,b|ψa,bi1,...,ij 〉

‖υa,b‖
. (22)

We have
〈υa,b|ψa,bi1,...,ij 〉 = 1 , (23)

because |ψa,bi1,...,ij 〉 consists of
(

n−j−1
ta−j−b

)

basis states |x〉, x1 = b, xi1 = · · · = xij = 1, each having amplitude

1/
√

(

n−j−1
ta−j−b

)

in both |υa,b〉 and |ψa,bi1,...,ij 〉. Furthermore,

‖υa,b‖2 =

j
∑

m=0

(

j

m

)(

n− j − 1

ta −m− b

)

κ2
m

=

j
∑

m=0

(

j

m

)

(

n−j−1
ta−j−b

)2

(

n−j−1
ta−m−b

)κ2
j

=

j
∑

m=0

(

j

m

)

(

n−j−1
ta−j−b

)

(

n−j−1
ta−m−b

)

=

j
∑

m=0

(

j

m

)

(ta −m− b)!(n− ta +m− j − 1 + b)!

(ta − j − b)!(n− ta − 1 + b)!
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=

j
∑

m=0

(

j

m

)

(ta −m− b)j−m

(n− ta − 1 + b)j−m
. (24)

Here the first equality follows because there are
(

j
m

)(

n−j−1
ta−m−b

)

vectors x such that |x| = ta, x1 = b, xi = 1 for
m different i ∈ {i1, . . . , ij} and ta −m different i /∈ {1, i1, . . . , ij}, the second equality follows from equation

(21) and the third equality follows from our choice κj = 1/
√

(

n−j−1
ta−j−b

)

.

From equations (22), (23), and (24), we have

‖ψ̃a,bi1,...,ij‖ =
1

√

Aa,b
,

where

Aa,b =

∞
∑

m=0

Ca,b(m) and Ca,b(m) =

(

j

m

)

(ta −m− b)j−m

(n− ta − 1 + b)j−m
.

The terms with m > j are zero because
(

j
m

)

= 0 for m > j.
We compute the combinatorial sum Aa,b using hyper-geometric series [GKP94, Section 5.5]. Since

Ca,b(m+ 1)

Ca,b(m)
=

(m− j)(m+ n− ta − j + b)

(m+ 1)(m− ta + b)

is a rational function of m, Aa,b is a hyper-geometric series and its value is

Aa,b =
∞
∑

m=0

Ca,b(m) = Ca,b(0) · F
(−j, n− ta − j + b

−ta + b

∣

∣

∣
1
)

.

We apply Vandermonde’s convolution F (−j, xy |1) = (x− y)j/(−y)j [GKP94, Equation 5.93 on page 212],
which holds for every integer j ≥ 0, and obtain

Aa,b =
(ta − b)j

(n− ta − 1 + b)j
· (n− j)j

(ta − b)j
=

(n− j)j

(n− ta − 1 + b)j
.

This proves the first part of the claim, that ‖ψ̃a,bi1,...,ij‖ =

√

(n−ta−1+b)j

(n−j)j .

The second part of the claim follows because

‖ψ̃a,0i1,...,ij‖
‖ψ̃a,1i1,...,ij‖

=

√

(n− ta − 1)j

(n− ta)
j =

√

n− ta − j

n− ta
.

The expression in the third part of the claim is the square root of the following value:

A1,0A0,1

A0,0A1,1
=

((n− t)j)2

(n− t+ 1)j(n− t− 1)j
=

(n− t)(n− t− j + 1)

(n− t+ 1)(n− t− j)
.

2

Claim 11 αa =

√

n− ta − j

n− 2j
and βa =

√

ta − j

n− 2j
.

Proof. Define ta = t− 1 + a. By Claim 10, ‖ψ̃a,0i1,...,ij‖ =
√

n−ta−j
n−ta ‖ψ̃a,1i1,...,ij‖. That implies

α′
a =

√
n− ta√
n− j

‖ψ̃a,0i1,...,ij‖ =

√

n− ta
n− j

√

n− ta − j

n− ta
‖ψ̃a,1i1,...,ij‖ =

√

n− ta − j

ta − j
β′
a
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and hence
√

(α′
a)

2 + (β′
a)

2 = β′
a

√

n− ta − j

ta − j
+ 1 = β′

a

√

n− 2j

ta − j
.

Then,

βa =
β′
a

√

(α′
a)

2 + (β′
a)

2
=

√

ta − j

n− 2j

and αa =
√

1 − β2
a. 2

Claim 12 If t ≤ n
2 and j < t− 1, then α0β1 − α1β0 ≤ 1

2
√

(t−1−j)(n−t−j)
. This is O( 1√

tn
) if j ≤ t

2 .

Proof. By the definition from Claim 9 and by Claim 10, we have

α0β1

α1β0
=
α′

0β
′
1

α′
1β

′
0

=

√

(n− t+ 1)(t− j)
√

(n− t)(t− 1 − j)
·
‖ψ̃0,0

i1,...,ij
‖‖ψ̃1,1

i1,...,ij
‖

‖ψ̃1,0
i1,...,ij

‖‖ψ̃0,1
i1,...,ij

‖

=

√

(n− t+ 1)(t− j)
√

(n− t)(t− 1 − j)
·
√

(n− t)(n− t− j + 1)

(n− t+ 1)(n− t− j)

=

√

(t− j)(n− t− j + 1)

(t− 1 − j)(n− t− j)

=

√

1 +
n− 2j

(t− 1 − j)(n− t− j)

≤ 1 +
n− 2j

2(t− 1 − j)(n− t− j)
.

We thus have

α0β1 − β0α1 =

(

α0β1

β0α1
− 1

)

β0α1

≤ n− 2j

2(t− 1 − j)(n− t− j)

√

t− 1 − j

n− 2j

√

n− t− j

n− 2j

=
1

2
√

(t− 1 − j)(n− t− j)
,

thanks to Claim 11. 2

3.5 Bounding the growth of the potential

Proof of Lemma 4. We first analyze the case when ρd,1 belongs to the subspace H4 spanned by
|ψab〉⊗|ψ2〉⊗· · ·⊗|ψk〉, where |ψ2〉, . . . , |ψk〉 are some vectors from subspaces Rj2 , . . . , Rjk for some j2, . . . , jk,
|ψ00〉 is an arbitrary state in Sj,0,0 for some j ∈ {0, . . . , t − 1}, |ψab〉 = U

′
ab|ψ00〉 for ab ∈ {01, 10, 11}, and

U
′
ab are the unitaries from Claim 8.

We pick an orthonormal basis for H4 that has |φ1〉 and |φ2〉 from Claim 9 as its first two vectors. Let
|φ3〉 and |φ4〉 be the other two basis vectors. We define

|χi〉 = |φi〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψk〉 . (25)
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By Claim 9, |χ1〉 belongs to Sj,+ ⊗Rj2 ⊗ · · ·⊗Rjk which is contained in Rmin(j,t/2)+j2+···+jk . Similarly, |χ2〉
belongs to Rmin(j+1,t/2)+j2+···+jk and |χ3〉, |χ4〉 belong to Rt/2+j2+···+jk . If j < t/2, this means that

P (ρd,1) = qj2+···+jk ·
(

qj〈χ1|ρd,1|χ1〉 + qj+1〈χ2|ρd,1|χ2〉 + q
t
2 〈χ3|ρd,1|χ3〉 + q

t
2 〈χ4|ρd,1|χ4〉

)

. (26)

If j ≥ t/2, then |χ1〉, |χ2〉, |χ3〉, |χ4〉 are all in Rt/2+j2+···+jk . This means that P (ρd,1) = qt/2+j2+···+jk and
it remains unchanged by a query.

We define γℓ = 〈χℓ|ρd,1|χℓ〉. Since the support of ρd,1 is contained in the subspace spanned by |χℓ〉, we
have γ1 + γ2 + γ3 + γ4 = Tr ρd,1 = 1. This means that equation (26) can be rewritten as

P (ρd,1) = qj+j2+···+jkγ1 + qj+j2+···+jk+1γ2 + qt/2+j2+···+jk(γ3 + γ4)

= qt/2+j2+···+jk + qj2+···+jk(qj+1 − qt/2)(γ1 + γ2) + qj2+···+jk(qj − qj+1)γ1 . (27)

P (ρ′d,1) can be also expressed in a similar way, with γ′j = 〈χj |ρ′d,1|χj〉 instead of γj . By combining equations
(27) for P (ρd,1) and P (ρ′d,1), we get

P (ρ′d,1) − P (ρd,1) = qj+j2+···+jk(qt/2−j − q)(γ1 + γ2 − γ′1 − γ′2) +qj+j2+···+jk(q − 1)(γ1 − γ′1) .

Therefore, it suffices to bound |γ1 + γ2 − γ′1 − γ′2| and |γ1 − γ′1|. Without loss of generality we can assume
that ρd,1 is a pure state |ϕ〉〈ϕ|. Let

|ϕ〉 = (a|ψ00〉 + b|ψ01〉 + c|ψ10〉 + d|ψ11〉) ⊗ |ψ2〉 ⊗ · · · ⊗ |ψk〉 .
Then the state after a query is

|ϕ′〉 = (a|ψ00〉 − b|ψ01〉 + c|ψ10〉 − d|ψ11〉) ⊗ |ψ2〉 ⊗ · · · ⊗ |ψk〉
and we have to bound

γℓ − γ′ℓ = |〈χℓ|ϕ〉|2 − |〈χℓ|ϕ′〉|2

for ℓ ∈ {1, 2}. For ℓ = 1, we have

〈χ1|ϕ〉 = aα0 + bβ0 + cα1 + dβ1 .

The expression for ϕ′ is similar, with minus signs in front of bβ0 and dβ1. Therefore,
∣

∣|〈χ1|ϕ〉|2 − |〈χ1|ϕ′〉|2
∣

∣ ≤ 4|a||b|α0β0 + 4|c||d|α1β1 + 4|a||d|α0β1 + 4|b||c|α1β0 . (28)

Since |a|, |b|, |c|, |d| are all at most ‖ϕ‖ = 1 and α0, α1 are less than 1, equation (28) is at most 8β0 +8β1.
By Claim 11, we have

|γ1 − γ′1| ≤ 8β0 + 8β1 ≤ 16

√

2t

n
.

We also have

|γ1 + γ2 − γ′1 − γ′2| =
∣

∣|〈χ1|ϕ〉|2 + |〈χ2|ϕ〉|2 − |〈χ1|ϕ′〉|2 − |〈χ2|ϕ′〉|2
∣

∣

≤ 4|a||d||α0β1 − α1β0| + 4|b||c||α1β0 − α0β1|

≤ 8|α0β1 − α1β0| ≤
8C√
tn

,

where C is the big-O constant from Claim 12. By taking into account that P (ρd,1) ≥ qj+j2+···+jk ,

P (|ϕ′〉〈ϕ′|) − P (|ϕ〉〈ϕ|) ≤
(

(qt/2−j − q)
8C√
tn

+ (q − 1)
16

√
2t√
n

)

P (|ϕ〉〈ϕ|)

≤
(

(qt/2 − 1)
8C√
tn

+ (q − 1)
16

√
2t√
n

)

P (|ϕ〉〈ϕ|) . (29)
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This proves Lemma 4 for the case when the support of ρd,1 is contained in H4. (If ρd,1 is a mixed state,
we just express it as a mixture of pure states |ϕ〉. The bound for ρd,1 follows by summing equations (29) for
every |ϕ〉.)

For the general case, we divide the entire state space HI into 4-dimensional subspaces. To do that, we
first subdivide HI into subspaces

(Sj,0,0 ⊕ Sj,0,1 ⊕ Sj,1,0 ⊕ Sj,1,1) ⊗Rj2 ⊗ · · · ⊗Rjk . (30)

Let states |ψ0,0
1,i 〉, i ∈ [dimSj,0,0] form a basis for Sj,0,0 and let |ψa,b1,i 〉 = U

′
ab|ψ0,0

1,i 〉 for (a, b) ∈ {(0, 1), (1, 0), (1, 1)},
where the U

′
ab are the unitaries from Claim 8. Then the |ψa,b1,i 〉 form a basis for Sj,a,b.

Let |ψl,i〉, i ∈ [dimRjl ], form a basis for Rjl , l ∈ {2, . . . , k}. We subdivide (30) into 4-dimensional
subspaces Hi1,...,ik spanned by

|ψa,b1,i1
〉 ⊗ |ψ2,i2〉 ⊗ · · · ⊗ |ψk,ik〉 ,

where a, b range over {0, 1}. Let Hall be the collection of all Hi1,...,ik obtained by subdividing all subspaces
(30). We claim that

P (ρ) =
∑

H∈Hall

P (ΠHρ) . (31)

Equation (31) together with equation (29) implies Lemma 4. Since P (ρ) is defined as a weighted sum of
traces TrΠRmρ, we can prove equation (31) by showing

Tr ΠRmρd,1 =
∑

H∈Hall

Tr ΠRmΠHρd,1 . (32)

To prove (32), we define a basis for HI by first decomposing HI into subspaces H ∈ Hall, and then for each
subspace, taking the basis consisting of |χ1〉, |χ2〉, |χ3〉 and |χ4〉 defined by equation (25). By Claim 9, each
of the basis states belongs to one of the subspaces Rm. This means that each Rm is spanned by some subset
of this basis.

The left hand side of (32) is equal to the sum of squared projections of ρd,1 to basis states |χj〉 that belong
to Rm. Each of the terms TrΠRmΠHρd,1 on the right hand side is equal to the sum of squared projections
to basis states |χj〉 that belong to Rm ∩H . Summing over all H gives the sum of squared projections of ρd,1
to all |χj〉 that belong to Rm. Therefore, the two sides of (32) are equal. 2

4 Direct Product Theorem for Threshold Functions (1-sided)

The previous section used the adversary method to prove a direct product theorem for 2-sided error algo-
rithms computing k instances of some symmetric function. In this section we use the polynomial method to
obtain stronger direct product theorems for 1-sided error algorithms for threshold functions. An algorithm
for f (k) is said to have 1-sided error if the 1’s in its k-bit output vector are always correct.

Our use of polynomials is a relatively small extension of the argument in [KŠW07]. We use three results
about polynomials, also used in [BCWZ99, KŠW07]. The first is by Coppersmith and Rivlin [CR92, p. 980]
and gives a general bound for polynomials bounded by 1 at integer points:

Theorem 13 (Coppersmith & Rivlin [CR92]) Every polynomial p that has degree d ≤ n and absolute
value

|p(i)| ≤ 1 for all integers i ∈ [0, n] ,

satisfies

|p(x)| < aebd
2/n for all real x ∈ [0, n] ,

where a, b > 0 are universal constants (no explicit values for a and b are given in [CR92]).
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The other two results concern the Chebyshev polynomials Td, defined by (see for example [Riv90]):

Td(x) =
1

2

(

(

x+
√

x2 − 1
)d

+
(

x−
√

x2 − 1
)d
)

.

This Td has degree d and its absolute value |Td(x)| is bounded by 1 if x ∈ [−1, 1]. On the interval [1,∞), Td
exceeds all others polynomials with those two properties ([Riv90, p.108] and [Pat92, Fact 2]).

Theorem 14 If q is a polynomial of degree d such that |q(x)| ≤ 1 for all x ∈ [−1, 1], then |q(x)| ≤ |Td(x)|
for all x ≥ 1.

Paturi [Pat92, before Fact 2] proved the following:

Lemma 15 (Paturi [Pat92]) Td(1 + µ) ≤ e2d
√

2µ+µ2

for all µ ≥ 0.

Proof. For x = 1 + µ: Td(x) ≤ (x +
√

x2 − 1)d = (1 + µ+
√

2µ+ µ2)d ≤ (1 + 2
√

2µ+ µ2)d ≤ e2d
√

2µ+µ2

(using that 1 + z ≤ ez for all real z). 2

Key lemma. The following lemma is the key. It analyzes polynomials that are 0 on the first m integer
points, and that significantly “jump” a bit later.

Lemma 16 Suppose E,N,m are integers satisfying 10 ≤ E ≤ N
2m , and let p be a degree-D polynomial such

that

p(i) = 0 for all i ∈ {0, . . . ,m− 1}
p(8m) = σ

p(i) ∈ [0, 1] for all i ∈ {0, . . . , N} .

Then σ ≤ 2O(D2/N+D
√
Em/N−m logE).

Proof. Divide p by
∏m−1
j=0 (x− j) to obtain

p(x) = q(x)

m−1
∏

j=0

(x− j) ,

where d = deg(q) = D −m. This implies the following about the values of the polynomial q:

|q(8m)| =
σ

∏m−1
j=0 (8m− j)

≥ σ

(8m)m
,

|q(i)| ≤ 1
∏m−1
j=0 (i− j)

≤ 1

((E − 1)m)m
for i ∈ {Em, . . . , N} .

Theorem 13 implies that there are constants a, b > 0 such that

|q(x)| ≤ a

((E − 1)m)m
ebd

2/(N−Em) = B for all real x ∈ [Em,N ] .

We now divide q by B to normalize it, and re-scale the interval [Em,N ] to [1,−1] to get a degree-d polynomial
t satisfying

|t(x)| ≤ 1 for all x ∈ [−1, 1] ,

t(1 + µ) =
q(8m)

B
for µ =

2(E − 8)m

N − Em
.
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Since t cannot grow faster than the degree-d Chebyshev polynomial, Theorem 14 and Lemma 15 imply

t(1 + µ) ≤ e2d
√

2µ+µ2

.

Combining our upper and lower bounds on t(1 + µ) gives

σ

(8m)m
· ((E − 1)m)m

aeO(d2/N)
≤ eO(d

√
Em/N) ,

which implies the lemma. 2

Theorem 17 There exists α > 0 such that for every threshold function Tt and positive integer k: Every

1-sided error quantum algorithm with T ≤ αkQ2(Tt) queries for computing T
(k)
t has success probability

σ ≤ 2−Ω(kt).

Proof. We assume without loss of generality that t ≤ n
20 , the other cases can easily be reduced to this. We

know that Q2(Tt) = Θ(
√
tn) [BBC+01]. Consider a quantum algorithm A with T ≤ αk

√
tn queries that

computes f (k) with success probability σ. Roughly speaking, below we use A to solve one big threshold
problem on the total input, and then invoke the polynomial lemma to upper bound the success probability.

Define a new quantum algorithm B on an input x of N = kn bits as follows. Algorithm B runs A on a
random permutation π(x), and then outputs 1 if and only if the k-bit output vector has at least k

2 ones.

Let m = kt
2 . Note that if |x| < m, then B always outputs 0 because the 1-sided error output vector

must have fewer than k
2 ones. Now suppose |x| = 8m = 4kt. Call an n-bit input block full if π(x) contains

at least t ones in that block. Let F be the random variable counting how many of the k blocks are full.
We claim that Pr[F ≥ k

2 ] ≥ 1
9 . To prove this, observe that the number B of ones in one fixed block is a

random variable distributed according to a hyper-geometric distribution (4kt balls into N boxes, n of which
count as success) with expectation µ = 4t and variance V ≤ 4t. Using Chebyshev’s inequality we bound the
probability that this block is not full:

Pr[B < t] ≤ Pr[|B − µ| > 3t] ≤ Pr

[

|B − µ| > 3
√
t

2

√
V

]

<
1

(3
√
t/2)2

≤ 4

9
.

Hence the probability that the block is full (B ≥ t) is at least 5
9 . This is true for each of the k blocks, so

using linearity of expectation we have

5k

9
≤ Exp[F ] ≤ Pr[F ≥ k

2 ] · k + (1 − Pr[F ≥ k
2 ]) · k

2
.

This implies Pr[F ≥ k
2 ] ≥ 1

9 , as claimed. But then on all inputs with |x| = 8m, B outputs 1 with probability
at least σ

9 .

Algorithm B uses αk
√
tn queries. By [BBC+01] and symmetrization, the acceptance probability of B is

a single-variate polynomial p of degree D ≤ 2αk
√
tn such that

p(i) = 0 for all i ∈ {0, . . . ,m− 1}
p(8m) ≥ σ

9

p(i) ∈ [0, 1] for all i ∈ {0, . . . , N} .

The result now follows by applying Lemma 16 with N = kn, m = kt
2 , E = 10, and α a sufficiently small

positive constant. 2
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Figure 1: Parallel computation of S′ rows in a matrix-vector product

5 Time-Space Tradeoff for Systems of Linear Inequalities

Let A be a fixed N ×N matrix of non-negative integers and let x, b be two input vectors of N non-negative
integers smaller or equal to t. A matrix-vector product with upper bound, denoted by y = (Ax)≤b, is a vector
y such that yi = min((Ax)[i], bi). An evaluation of a system of linear inequalities Ax ≥ b is the N -bit vector
of the truth values of the individual inequalities. Here we present a quantum algorithm for matrix-vector
product with upper bound that satisfies time-space tradeoff T 2S = O(tN3(logN)5). We then use our direct
product theorems to show this is close to optimal.

5.1 Upper bound

Classical algorithm. It is easy to show that matrix-vector products with upper bound t can be computed
by a classical algorithm with TS = O(N2 log t), as follows. Let S′ = S

log t and divide the matrix A into (NS′ )
2

blocks of size S′ × S′ each. The output vector is evaluated S′ rows at a time, as follows:

1. Clear S′ counters, one for each of the S′ rows considered at this time, and read the upper bounds bi
corresponding to these rows.

2. For each block, read the corresponding S′ input variables from x, multiply them by the corresponding
sub-matrix of A, and update the counters, but do not let them grow larger than bi.

3. Output the S′ counters.

The space used is O(S′ log t) = O(S) and the total query complexity is T = O(NS′ · NS′ ·S′) = O(N2(log t)/S).

Quantum algorithm. The quantum algorithm Bounded Matrix Product works in a similar way
and it is outlined in Table 2. We compute the matrix product in groups of S′ = S

logN rows, read input
variables, and update the counters accordingly. The advantage over the classical algorithm is that we use
faster quantum search and quantum counting for finding nonzero entries. The two algorithms are compared
in Figure 1.

The uth row is called open if its counter has not yet reached bu. The subroutine Small Matrix Product

maintains a set of open rows U ⊆ {1, . . . , S′} and counters 0 ≤ yu ≤ bu for all u ∈ U . We process the input
x in blocks, each containing between S′ − O(

√
S′) and 2S′ + O(

√
S′) nonzero numbers at the positions j

where A[u, j] 6= 0 for some u ∈ U . See Figure 2—the dashed vertical lines correspond to these numbers. The
length ℓ of such a block is first found by quantum counting and the nonzero input numbers are then found
by a Grover search. For each such number, we update all counters yu and close all rows that have exceeded
their threshold bu.

Theorem 18 Bounded Matrix Product has bounded error, space complexity O(S), and query complex-
ity T = O(N3/2

√
t · (logN)5/2/

√
S).
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p ℓ
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Figure 2: Nonzero numbers in the input string are only searched for at certain positions

Proof. The space complexity of Small Matrix Product is O(S′ logN) = O(S), because it stores a
subset U ⊆ {1, . . . , S′}, integer vectors y, b of dimension S′ with numbers at most t ≤ N , the set J of size
O(S′) with numbers at most N , and a few counters. Let us estimate its query complexity.

Consider the ith block found by Small Matrix Product; let pi be its left column, let ℓi be its length,
and let Ui be the set of open rows at the beginning of processing of this block. The scalar product cpi,ℓi

is estimated by quantum counting with
√
ℓi queries. Finding a proper ℓi requires O(log ℓi) iterations. Let

ri be the number of rows closed during processing of this block and let si be the total number added to
the counters for other (still open) rows in this block. The numbers ℓi, ri, si are random variables. If we
instantiate them at the end of the quantum subroutine, the following inequalities hold:

∑

i

ℓi ≤ N,
∑

i

ri ≤ S′, and
∑

i

si ≤ tS′ .

The iterated Grover search finds ones for two purposes: closing rows and increasing counters. Since each bi
is at most t, the total cost in the ith block is at most

∑rit
j=1O(

√

ℓi/j)+
∑si

j=1O(
√

ℓi/j) = O(
√
ℓirit+

√
ℓisi) .

By the Cauchy-Schwarz inequality, the total number of queries that Small Matrix Product spends in
the Grover searches is at most

#blocks
∑

i=1

(
√

ℓirit+
√

ℓisi) ≤
√

∑

i

ℓi

√

t
∑

i

ri +

√

∑

i

ℓi

√

∑

i

si ≤
√
N
√
tS′ +

√
N
√
tS′ = O(

√
NS′t) .

The error probability of the Grover searches can be made polynomially small in N , at the cost of a factor
of O(logN) in time. It remains to analyze the outcome and error probability of quantum counting. Let
ci = cpi,ℓi ∈ [S′, 2S′]. One quantum counting call with M =

√
ℓi queries gives an estimate w such that

|w − ci| = O





√

ci(ℓi − ci)

ℓi
+
ℓi
ℓi



 = O(
√
ci) = O(

√
S′)

with probability at least 8
π2 ≈ 0.8 (see page 6). We do this O(logN) times and take the median, thus

obtaining an estimate c̃ of ci with accuracy O(
√
S′) with polynomially small error probability. The result of

quantum counting is compared with the given threshold, that is with S′ or 2S′. Binary search for ℓ ∈ [k2 , k]
costs another factor of log k ≤ logN . By a Cauchy-Schwarz inequality, the total number of queries spent in
the quantum counting is at most (logN)2 times

∑

i

√

ℓi ≤
√

∑

i

ℓi

√

∑

i

1 ≤
√
N
√

#blocks ≤
√
N
√
S′ + t ≤

√
NS′t,

because in every block the algorithm closes a row or adds Θ(S′) in total to the counters. The number of
closed rows is at most S′ and the number S′ can be added at most t times.

The total query complexity of Small Matrix Product is thus O(
√
NS′t · (logN)2) and the query

complexity of Bounded Matrix Product is N
S′ -times bigger. By the union bound, the overall error
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Bounded Matrix Product (fixed matrix AN×N , threshold t, input vectors x and b of dimension N)
returns output vector y = (Ax)≤b.

For i = 1, 2, . . . , NS′ , where S′ = S
logN :

1. Run Small Matrix Product on the ith block of S′ rows of A.

2. Output the S′ obtained results for those rows.

Small Matrix Product (fixed matrix AS′×N , input vectors xN×1 and bS′×1) returns yS′×1 = (Ax)≤b.

3. Initialize y := (0, 0, . . . , 0), p := 1, U := {1, . . . , S′}, and read b. Let a1×N denote an on-line computed
N -bit row-vector with aj = 1 if A[u, j] = 1 for some u ∈ U , and aj = 0 otherwise.

4. While p ≤ N and U 6= ∅, do the following:

(a) Let c̃p,k denote an estimate of cp,k =
∑p+k−1
j=p ajxj ; we estimate it by computing the median of

O(logN) calls to Quantum Counting ((apxp) . . . (ap+k−1xp+k−1),
√
k).

• Initialize k = S′.

• While p+ k − 1 < N and c̃p,k < S′, double k.

• Find by binary search the maximal ℓ ∈ [k2 , k] for which p+ ℓ− 1 ≤ N and c̃p,ℓ ≤ 2S′.

(b) Use repeated Grover search to find the set J of all positions j ∈ [p, p+ ℓ− 1] such that ajxj > 0.

(c) For all j ∈ J , read xj , and then do the following for all u ∈ U :

• Increase yu by A[u, j]xj .

• If yu ≥ bu, then set yu := bu and remove u from U .

(d) Increase p by ℓ.

5. Return y.

Table 2: Algorithm Bounded Matrix Product

probability is at most the sum of the polynomially small error probabilities of the different subroutines,
hence it can be kept below 1

3 . 2

5.2 Matching quantum lower bound

Here we use our direct product theorems to lower bound the quantity T 2S for T -query, S-space quantum
algorithms for systems of linear inequalities. The lower bound even holds if we fix b to the all-t vector ~t and
let A and x be Boolean.

Theorem 19 Let S ≤ min(O(Nt ), o( N
logN )). There exists an N × N Boolean matrix A such that every

2-sided error quantum algorithm for evaluating a system Ax ≥ ~t of N inequalities that uses T queries and
space S satisfies T 2S = Ω(tN3).

Proof. The proof is a modification of Theorem 22 of [KŠW07] (quant-ph version). They use the probabilistic
method to establish the following

Fact: For every k = o(N/ logN), there exists an N × N Boolean matrix A, such that all rows of A have
weight N/2k, and every set of k rows of A contains a set R of k/2 rows with the following property: each
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row in R contains at least n = N/6k ones that occur in no other row of R.

Fix such a matrix A for k = cS, for some constant c to be chosen later. Consider a quantum circuit with
T queries and space S that solves the problem with success probability at least 2

3 . We slice the quantum

circuit into disjoint consecutive slices, each containing Q = α
√
tNS queries, where α is the constant from

our direct product theorem (Theorem 1). The total number of slices is L = T
Q . Together, these disjoint slices

contain all N output gates. Our aim below is to show that with sufficiently small constant α and sufficiently
large constant c, no slice can produce more than k outputs. This will imply that the number of slices is
L ≥ N

k , hence

T = LQ ≥ αN3/2
√
t

c
√
S

.

Now consider any slice. It starts with an S-qubit state that is delivered by the previous slice and that
depends on the input, then it makes Q queries and outputs some ℓ results that are jointly correct with
probability at least 2

3 . Suppose, by way of contradiction, that ℓ ≥ k. Then there exists a set of k rows of
A such that our slice produces the k corresponding results (t-threshold functions) with probability at least
2
3 . By the above Fact, some set R of k

2 of those rows has the following property: each row from R contains

a set of n = N
6k = Θ(NS ) ones that do not occur in any of the k

2 − 1 other rows of R. By setting all other

N − kn
2 bits of x to 0, we naturally get that our slice, with the appropriate S-qubit starting state, solves

k
2 independent t-threshold functions Tt on n bits each. (Note that we need t ≤ n

2 = O(NS ); this follows

from our assumption S = O(Nt ) with appropriately small constant in the O(·).) Now we replace the initial
S-qubit state by the completely mixed state, which has overlap 2−S with every S-qubit state. This turns

the slice into a stand-alone algorithm solving T
(k/2)
t with success probability

σ ≥ 2

3
· 2−S .

But this algorithm uses only Q = α
√
tNS = O(αk

√
tn) queries, so our direct product theorem (Theo-

rem 1) with sufficiently small constant α implies

σ ≤ 2−Ω(k/2) = 2−Ω(cS/2) .

Choosing c a sufficiently large constant (independent of this specific slice), our upper and lower bounds
on σ contradict. Hence the slice must produce fewer than k outputs. 2

It is easy to see that the case S ≥ N
t (equivalently, t ≥ N

S ) is at least as hard as the S = N
t case, for

which we have the lower bound T 2S = Ω(tN3) = Ω(N4/S), hence TS = Ω(N2). But that lower bound
matches the classical deterministic upper bound up to a logarithmic factor and hence is essentially tight also
for quantum. We thus have two different regimes for space: for small space, a quantum computer is faster
than a classical one in evaluating solutions to systems of linear inequalities, while for large space it is not.

A similar slicing proof using Theorem 17 (with each slice of Q = α
√
NS queries producing at most S

t
outputs) gives the following lower bound on time-space tradeoffs for 1-sided error algorithms.

Theorem 20 Let t ≤ S ≤ min(O(Nt2 ), o( N
logN )). There exists an N ×N Boolean matrix A such that every

1-sided error quantum algorithm for evaluating a system Ax ≥ ~t of N inequalities that uses T queries and
space S satisfies T 2S = Ω(t2N3).

Note that our lower bound Ω(t2N3) for 1-sided error algorithms is higher by a factor of t than the best
upper bound for 2-sided error algorithms. This lower bound is probably not optimal. If S > N

t2 , then the
essentially optimal classical tradeoff TS = Ω(N2) takes over.
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6 Summary

In this paper we described a new version of the adversary method for quantum query lower bounds, based
on analyzing the eigenspace structure of the problem we want to lower bound. We proved two new quantum
direct product theorems, the first using the new adversary method, the second using the polynomial method:

• For every symmetric function f , every 2-sided error quantum algorithm for f (k) using fewer than
αkQ2(f) queries has success probability at most 2−Ω(k).

• For every t-threshold function f , every 1-sided error quantum algorithm for f (k) using fewer than
αkQ2(f) queries has success probability at most 2−Ω(kt).

Both results are tight up to constant factors. From these results we derived the following time-space tradeoffs
for quantum algorithms that evaluate a system Ax ≥ b of N linear inequalities (where A is a fixed N ×N
matrix of nonnegative integers, x, b are variable, bi ≤ t for all i, and the algorithm has to determine the
truth-value for each of the N inequalities):

• Every T -query, S-space 2-sided error quantum algorithm for evaluating Ax ≥ b satisfies T 2S = Ω(tN3)
if S ≤ N/t, and satisfies TS = Ω(N2) if S > N/t. We gave an algorithm matching these bounds up to
polylogarithmic factors.

• Every T -query, S-space 1-sided error quantum algorithm for evaluating Ax ≥ b satisfies T 2S = Ω(t2N3)
if t ≤ S ≤ N/t2, and satisfies TS = Ω(N2) if S > N/t2. We do not have a matching algorithm in the
first case and conjecture that this bound is not tight.
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