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tWe exhibit two bla
k-box problems, both of whi
h have an eÆ
ient quantum algorithm withzero-error, yet whose 
omposition does not have an eÆ
ient quantum algorithm with zero-error.This shows that quantum zero-error algorithms 
annot be 
omposed. In ora
le terms, we givea relativized world where ZQPZQP 6= ZQP, while 
lassi
ally we always have ZPPZPP = ZPP.Keywords: Analysis of algorithms. Quantum 
omputing. Zero-error 
omputation.1 Introdu
tionWe 
an de�ne a \zero-error" algorithm of 
omplexity T in two di�erent but essentially equivalentways: either as an algorithm that always outputs the 
orre
t value with expe
ted 
omplexity T(expe
tation taken over the internal randomness of the algorithm), or as an algorithm that outputsthe 
orre
t value with probability at least 1=2, never outputs an in
orre
t value, and runs in worst-
ase 
omplexity T . Expe
tation is linear, so we 
an 
ompose two 
lassi
al algorithms that havean eÆ
ient expe
ted 
omplexity to get another algorithm with eÆ
ient expe
ted 
omplexity. Ifalgorithm A uses an expe
ted number of a appli
ations of B and an expe
ted number of a0 otheroperations, then using a subroutine for B that has an expe
ted number of b operations gives A anexpe
ted number of a � b+ a0 operations. In terms of 
omplexity 
lasses, we haveZPPZPP = ZPP;where ZPP is the 
lass of problems that 
an be solved by a polynomial-time 
lassi
al zero-erroralgorithm. This equality 
learly relatives, i.e., it holds relative to any ora
le A.In this paper we show that this seemingly obvious 
omposition fa
t does not hold in the quantumworld. We exhibit bla
k-box (query 
omplexity) problems g and h that are both easy to quantum
ompute in the expe
ted sense, yet whose 
omposition f = g(h; : : : ; h) requires a very large expe
tednumber of queries. In 
omplexity terms, we exhibit an ora
le A whereZQPZQPA 6= ZQPA;where ZQP is the 
lass of problems that 
an be solved by a polynomial-time quantum zero-erroralgorithm. This result is somewhat surprising, be
ause exa
t quantum algorithms 
an easily be
omposed, and so 
an bounded-error quantum algorithms. Moreover, it is also easy to use aquantum zero-error algorithm as a subroutine in a 
lassi
al zero-error algorithm. That isEQPEQP = EQP and BQPBQP = BQP and ZPPZQP = ZQP;relativized as well as unrelativized.�Partially funded by proje
ts QAIP (IST{1999{11234) and RESQ (IST-2001-37559) of the IST-FET programmeof the EC. 1



2 PreliminariesWe assume familiarity with 
omputational 
omplexity theory [9℄ and quantum 
omputing [8℄. Inthis se
tion we brie
y introdu
e the \modes of 
omputation" that we are 
onsidering. Let f besome (possibly partial) Boolean fun
tion with set of inputs X = X0 [ X1, where f(X0) = 0 andf(X1) = 1. Let Pb(x) be the probability that algorithm A outputs bit b on input x. We de�ne fourmodes of 
omputation:1. A is an exa
t algorithm for f if P1(x) = 1 for all x 2 X1 and P0(x) = 1 for all x 2 X02. A is a zero-error algorithm for f if P1(x) � 1=2 and P0(x) = 0 for all x 2 X1 (assume thereis a third possible output \don't know"), and P0(x) � 1=2 and P1(x) = 0 for all x 2 X03. A is a bounded-error algorithm for f if P1(x) � 2=3 for all x 2 X1, and P0(x) � 2=3 for allx 2 X04. A is a nondeterministi
 algorithm for f if P1(x) > 0 for all x 2 X1, and P1(x) = 0 for allx 2 X0Note that an exa
t algorithm is a zero-error algorithm, and a zero-error algorithm is a bounded-erroralgorithm as well as a non-deterministi
 algorithm.In the setting of query 
omplexity, f is an N -bit Boolean fun
tion, so X0 [ X1 � f0; 1gN . We
an only a

ess the input x 2 f0; 1gN by making queries to its bits. A query is the appli
ation ofthe unitary transformation Ox that mapsOx : ji; b; zi 7! ji; b� xi; zi;where i 2 [N ℄ and b 2 f0; 1g. The z-part 
orresponds to the workspa
e, whi
h is not a�e
ted bythe query. A T -query quantum algorithm has the form A = UTOxUT�1 � � �OxU1OxU0, where theUk are �xed unitary transformations independent of x. The �nal state Aj0i depends on x via theT appli
ations of Ox. The output of the algorithm is determined by measuring the two rightmostqubits of the �nal state. Let's say that if the rightmost bit is 1 then the algorithm 
laims ignoran
e(\don't know"), and if it is 0 then the next-to-rightmost bit is the output bit. We refer to thesurvey [3℄ for more details about 
lassi
al and quantum query 
omplexity.We will use QE(f), Q0(f), Q2(f), NQ(f) to denote the minimal query 
omplexity of a quantumalgorithm for f in the four above modes, respe
tively. A

ordingly, QE(f) is the exa
t quantumquery 
omplexity of f , Q0(f) is zero-error quantum query 
omplexity, Q2(f) is bounded-errorquantum query 
omplexity, and NQ(f) is nondeterministi
 quantum query 
omplexity. Note thatby de�nition we immediately haveQ2(f) � Q0(f) � QE(f) and NQ(f) � Q0(f) � QE(f):Our proofs will use the 
lose 
onne
tion between quantum query 
omplexity and polynomials [2℄.An N -variate multilinear polynomial p is a fun
tion of the form p(x) = PS�[N ℄ aSxS , where aSis real and xS = Qi2S xi. Its degree deg(p) = maxfjSj : aS 6= 0g is the largest degree among itsmonomials. The next lemma [6, 11℄ 
onne
ts nondeterministi
 
omplexity with polynomials:Lemma 1 The nondeterministi
 quantum query 
omplexity NQ(f) of f equals the minimal degreeamong all multilinear polynomials p su
h that1. p(x) 6= 0 for all x 2 X1 2



2. p(x) = 0 for all x 2 X0This lemma improves the query 
omplexity lower bound by a fa
tor of 2, 
ompared to the\standard" polynomial method [2℄.The setting of 
omputational 
omplexity 
an be de�ned either in terms of Turing ma
hines or ofuniform 
ir
uit families. Here we de�ne EQP, ZQP, BQP, and NQP to be the 
lasses of languagesfor whi
h there exist polynomial-time quantum algorithms in the above four modes, respe
tively.We restri
t attention to algebrai
 amplitudes for these 
lasses.For example, NQP (\quantum NP") is taken to be the 
lass of languages L for whi
h there existsan eÆ
ient quantum algorithm that has positive a

eptan
e probability on input x i� x 2 L [1℄. This
lass was shown to be equal to the 
lassi
al 
ounting 
lass 
oC=P [5, 12℄. There is an alternativede�nition of quantum NP based on veri�
ation of quantum 
erti�
ates [7, Chapter 14℄ whi
h wewill not dis
uss here. We similarly de�ne the 
lasses EQPA, et
., when we have a

ess to an ora
leA for some language, and EQPS = [A2SEQPA, et
., when S is a set of ora
les. By de�nition weimmediately have EQP � ZQP � BQP and EQP � ZQP � NQP;and these in
lusions also hold relative to any ora
le A.3 The problemLet m and n be even numbers. We �rst de�ne the partial Boolean fun
tions g on n bits and h on2m bits, and then their 
omposition f on N = 2mn bits.The fun
tion g is just the 
onstant vs. balan
ed problem of Deuts
h and Jozsa [4℄. Using w(x)to denote the Hamming weight of x 2 f0; 1gn, we de�ne:g(x) = 8<: 1; if w(x) = 0 (
onstant)0; if w(x) = n=2 (balan
ed)unde�ned otherwiseIt is well known that there exists an exa
t 1-query quantum algorithm for this problem [4℄, whileany 
lassi
al deterministi
 or even zero-error algorithm needs n=2 + 1 queries.The fun
tion h is a zero-error sampling problem. LetA1 = f0mx : x 2 f0; 1gm;m=2 � w(x) � mgA0 = fx0m : x 2 f0; 1gm;m=2 � w(x) � mgh(x) = 8<: 1; if x 2 A10; if x 2 A0unde�ned otherwiseClearly h has a 
lassi
al algorithm that always outputs the 
orre
t answer and whose expe
tednumber of queries is small. The algorithm just queries a random point in the �rst m bits of itsinput and one in the se
ond m bits, and outputs where it �nds a 1 (if it does so). With probability� 1=2 it will indeed �nd a 1, so the expe
ted number of repetitions before termination is � 2.Let f on 2mn bits be the partial Boolean fun
tion that is the 
omposition of g and h. In otherwords, de�ning the set of promise inputs byX1 = A0 � � � � � A0| {z }n timesX0 = [fAy1 � � � � � Ayn : y = y1 : : : yn 2 f0; 1gn; w(y) = n=2g3



we have f(x) = 8<: 1; if x 2 X1 (
onstant)0; if x 2 X0 (balan
ed)unde�ned otherwiseFor later referen
e, we will give names to the various parts of the 2mn-bit input x:x = input for gz }| {input for hz }| {x(0;1)| {z }mbits x(1;1)| {z }mbits input for hz }| {x(0;2)| {z }mbits x(1;2)| {z }mbits � � � � � � � � � input for hz }| {x(0;n)| {z }mbits x(1;n)| {z }mbitsIn words, f 
ontains n di�erent h-fun
tions, ea
h with its own 2m-bit input. Here x(0;i) and x(1;i)are two m-bit strings that together 
onstitute the input to the ith h-fun
tion. The promise saysthat the 2m-bit input x(0;i)x(1;i) always lies in A0 or A1. The n bits h(x(0;i)x(1;i)), i = 1; : : : ; n,
oming out of the n h-fun
tions are then plugged into g to give the value for f . The promise saysthat these n bits are either all 0 (
onstant) or half 0 and half 1 (balan
ed).Our fun
tion f is just the 
omposition of the problems g and h, ea
h of whi
h needs just a smallexpe
ted number of queries. Yet below we will show that any quantum zero-error algorithm for fwill need to make many queries. Even stronger, also a nondeterministi
 quantum algorithm for frequires many queries.4 Lower bound for quantum zero-error algorithmsThe next lemma is our main te
hni
al tool:Lemma 2 Let p be a 2mn-variate multilinear polynomial su
h that1. p(x) 6= 0 for all x 2 X12. p(x) = 0 for all x 2 X0Then deg(p) � min(n=2;m=2) + 1.Proof. We use the names for the various subparts of the 2mn-bit input that we introdu
ed inSe
tion 3. We assume without loss of generality that for every i 2 [n℄ and every non-zero monomialaSxS in p, the set S does not simultaneously 
ontain variables from x(0;i) and from x(1;i). Sin
e thepromise on the inputs sets either x(0;i) or x(1;i) to 0m, a monomial 
ontaining variables from bothx(0;i) and x(1;i) evaluates to 0 anyway, so removing it from p will not a�e
t the two properties of p.Suppose, by way of 
ontradi
tion, that d = deg(p) � min(n=2;m=2). By the �rst property ofthe lemma, p 
annot be identi
ally zero, so it has to 
ontain at least one monomial. Consider amonomial M = aSxS in p with maximal degree, so jSj = d. Consider some i 2 [n℄ su
h that S
ontains variables from x(1;i) (and hen
e, by the above assumption, no variables from x(0;i)). Wenow �x x(0;i) to 0m and �x all non-S variables in x(1;i) to 1. Sin
e there are at most m=2 S-variablesin total, this already sets at least m=2 bits in x(1;i) to 1. A

ordingly, we have x(0;i)x(1;i) 2 A1for every setting of the S-variables. This for
es the ith h-fun
tion to value 1, without �xing theS-variables. Similarly we for
e the other h-fun
tions whose variables interse
t with S: if S hasvariables from x(1;j) then we for
e the jth h-fun
tion to 1, and if S has variables from x(0;j) thenwe for
e it to 0. Sin
e jSj � n=2, this for
es at most n=2 of the h-fun
tions. A

ordingly, we 
an4



extend our setting to the other h-fun
tions (whose variables don't interse
t with S at all) to 
reatea setting of the overall 2mn-bit input that is in X0 (balan
ed), without �xing the S-variables.Let q be the remaining polynomial in the d S-variables. No matter how we vary the S-variables,the overall input to p remains in X0 (balan
ed). Hen
e q must be zero on all Boolean settings ofits variables. It is easy to see that the only polynomial satisfying this 
onstraint is the one withoutany monomials. But q still 
ontains the monomial M , be
ause being of degree d, M 
annot 
an
elagainst other monomials when we �x the non-S variables. This is a 
ontradi
tion. 2This lemma is exa
tly tight. First, there is a polynomial with the above properties of degreen=2 + 1. For T a set of n=2 + 1 variables, ea
h from a di�erent x(0;i), de�ne qT to be the degree-(n=2 + 1) polynomial that is the AND of these variables. If x 2 X0 then qT will be 0 for all T ,and if x 2 X1 then for at least one T we have qT = 1. Hen
e summing qT over all su
h T gives apolynomial p of degree n=2 + 1 su
h that p(x) = 0 for x 2 X0 and p(x) > 0 for x 2 X1.Se
ond, there also is an appropriate polynomial of degreem=2+1. Let qi be the degree-(m=2+1)polynomial that is the OR of the �rst m=2 + 1 bits of x(1;i). Then qi = 1 if x(0;i)x(1;i) 2 A1 andqi = 0 if x(0;i)x(1;i) 2 A0. De�ning p to be the degree-(m=2+1) polynomial n=2�Pni=1 qi, we havep(x) = 0 for x 2 X0 and p(x) = n=2 for x 2 X1.Combining the previous lemma with Lemma 1 gives our main theorem:Theorem 1 NQ(f) = min(n=2;m=2) + 1.Sin
e nondeterministi
 query 
omplexity lower bounds zero-error 
omplexity, we also obtain thezero-error lower bound Q0(f) � min(n=2;m=2)+1. The best upper bound on Q0(f) that we know,is min(2n;m) so the lower bound is tight up to small 
onstant fa
tors. First, we know there is a
lassi
al zero-error algorithm that 
omputes an h-fun
tion using an expe
ted number of 2 queries;we 
an use this to 
ompute the �rst n=2 h-fun
tions in an expe
ted number of n queries, whi
hsuÆ
es to 
ompute f . Terminating this algorithm after 2n steps gives us an algorithm that �ndsthe 
orre
t output with probability � 1=2 (Markov's inequality), and 
laims ignoran
e otherwise.Se
ond, there exists an exa
t quantum algorithm for f that uses m queries. By querying the�rst m=2 bits in an h-input we 
an de
ide whether that h takes value 0 or 1. By 
opying the outputand reversing the 
omputation we 
an do this exa
t 
omputation 
leanly (resetting all workspa
eto 0) using m queries. Putting the Deuts
h-Jozsa algorithm on top of this gives an m-query exa
tquantum algorithm for f .Using a standard translation of query 
omplexity results to ora
les, we obtainTheorem 2 There exists an ora
le A su
h thatEQPZPPA 6� NQPA;hen
e in parti
ular ZQPZQPA 6� ZQPA:Proof. For a set A � f0; 1g�, we use A=n to denote the set of all n-bit strings in A, and weidentify this with its 2n-bit 
hara
teristi
 ve
tor. We will 
onstru
t a set A su
h that, for every nwhere 2n = 2m2 for some m (i.e. for every odd n), A=n is a valid input to f (word of warning: the`n' used here is not the `n' used earlier, but the `m' is; the input length of f is now 2m2). This Aindu
es a language L = f0n j 2n = 2m2 for some m and f(A=n) = 1g:5



Let M1;M2; : : : be an enumeration of all ora
le NQP-ma
hines, with in
reasing polynomial timebounds (say, Mi has time bound pi(n) = ni + i). Su
h an enumeration exists be
ause we 
anassume without loss of generality that the ma
hines only use algebrai
 amplitudes [1, 5, 12℄. Atthe start of our 
onstru
tion, A is the empty set. Going along i = 1; 2; : : :, for ea
h Mi we will pi
ka spe
i�
 input length ni and de�ne A=ni in su
h a way that MAi will err on 0ni , and hen
e it willnot a

ept L.Consider Mi. Its running time is bounded by the polynomial pi(n) in the input length. Let nibe the smallest input length su
h that (1) 2ni = 2m2 for some m, (2) pi(ni) � m=2, and (3) ni isso large that for all j < i we have pj(nj) < ni.1 Sin
e Mi makes at most p(ni) < m=2+1 = NQ(f)queries to the bits of x = A=ni , Theorem 1 implies that Mi 
annot be a nondeterministi
 algorithmfor f . Hen
e there exists some x 2 X0 [ X1 where Mi errs: either x 2 X0 while Mi has positivea

eptan
e probability when A=n = x; or x 2 X1 while Mi has zero a

eptan
e probability whenA=ni = x. De�ne A=ni to be that x. This ensures that MAi does not a

ept L.Doing this for all Mi and �lling the yet-unde�ned levels A=n by arbitrary promise-inputs to f ,we now have a language L that is a

epted by none of the MAi , hen
e L 62 NQPA. On the otherhand, the Deuts
h-Jozsa algorithm implies L 2 EQPZPPA , so we have our separation. 25 Con
lusionWe proved that the 
omposition of two problems that are easy for zero-error quantum 
omputingneed not be easy itself. This 
ontrasts strongly with the 
ase of 
lassi
al algorithms, and showsthat our 
lassi
al intuition about expe
ted running time does not 
arry over very well to quantumalgorithms. The problem in using a zero-error algorithm as a subroutine in a quantum algorithmseems to be that we 
annot reverse the 
omputation to obtain an answer without additional non-zero workspa
e. This remaining non-zero workspa
e then messes up later quantum interferen
ein the main program. Being able to 
ompose zero-error algorithms is a desirable property thatobviously holds in the 
lassi
al world. Unfortunately, this property does not hold in the quantumworld.Referen
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