
Quantum Computing Exercises # 7

Ronald de Wolf

Mar 15, 2011

(to be handed in before or at the start of the lecture on Mar 29)

1. Let P be the projector on a d-dimensional subspace V ⊆ R
n that is spanned by orthonormal

vectors v1, . . . , vd. This means that Pv = v for all v ∈ V , and Pw = 0 for all w that are
orthogonal to V .

(a) Show that P can be written in Dirac notation as P =
∑d

i=1
|vi〉〈vi|.

(b) Show that R = 2P − I is a reflection through the subspace corresponding to P , i.e.,
Rv = v for all v in the subspace and Rw = −w for all w that are orthogonal to the
subspace.

2. Let A, B, and C be n × n matrices with real entries. We’d like to decide whether or not
AB = C. Of course, you could multiply A and B and compare the result with C, but matrix
multiplication is expensive (the current best algorithm takes time roughly O(n2.38)).

(a) Give a classical randomized algorithm that verifies whether AB = C (with success prob-
ability at least 2/3) using O(n2) steps, using the fact that matrix-vector multiplication
can be done in O(n2) steps. Hint: Choose a uniformly random vector v ∈ {0, 1}n, calculate ABv

and Cv, and check whether these two vectors are the same.

(b) Show that if we have query-access to the entries of the matrices (i.e., oracles that map
i, j, 0 7→ i, j, Ai,j and similarly for B and C), then any classical algorithm with small
error probability needs at least n2 queries to detect a difference between AB and C.
Hint: Consider the case A = I.

(c) Give a quantum random walk algorithm that verifies whether AB = C (with success
probability at least 2/3) using O(n5/3) queries to matrix-entries. Hint: Modify the algorithm

for collision-finding: use a random walk on the Johnson graph J(n, r), where each vertex corresponds to

a set R ⊆ [n], and that vertex is marked if there are i, j ∈ R such that (AB)i,j 6= Ci,j .

3. A 3-SAT instance φ over n Boolean variables x1, . . . , xn is a formula which is the AND of a
number of clauses, each of which is an OR of 3 variables or their negations. For example,
φ(x1, . . . , x4) = (x1 ∨x2 ∨ x3)∧ (x2 ∨ x3 ∨x4) is a 3-SAT formula with 2 clauses. A satisfying
assignment is a setting of the n variables such that φ(x1, . . . , xn) = 1 (i.e, TRUE). In general
it’s NP-hard to find a satisfying assignment to such a formula. Brute force would try out all
2n possible truth-assignments, but something better can be done by a classical random walk.
Consider the following simple algorithm, which is a random walk on the set of all N = 2n

truth assignments:

1

Start with a uniformly random x ∈ {0, 1}n.
Repeat the following at most 3n times: if φ(x) = 1 then STOP, else find the leftmost
clause that is false, randomly choose one of its 3 variables and flip its value.

One can show that this algorithm has probability at least (3/4)n of finding a satisfying
assignment (if φ is satisfiable). You may assume this without proof.

(a) Use the above to give a classical algorithm that finds a satisfying assigment with high
probability in time (4/3)n · p(n), where p(n) is some polynomial factor (no need to use
the C,U, S-framework of the lecture notes here; the answer is much simpler).

(b) Give a quantum algorithm that finds one (with high probability) in time
√

(4/3)n ·p(n).
Hint: view the 3n-step random walk algorithm as a deterministic algorithm with an additional input

r ∈ {0, 1}n × {1, 2, 3}3n, where the first n bits determine x, and the last 3n entries determine which

variable of the leftmost false clauses will be flipped in the 3n steps of the random walk. Use Grover

search on the space of all such r (no need to write out complete circuits here).

2

