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(to be handed in before or at the start of the lecture on Apr 12)

1. The following problem is a decision version of the factoring problem:

Given positive integers N and k, decide if N has a prime factor p ∈ {k, . . . , N − 1}.

Show that if you can solve this decision problem efficiently (i.e., in time polynomial in the
input length n = dlogNe), then you can also find the prime factors of N efficiently. Hint: use

binary search, running the algorithm with different choices of k to “zoom in” on the largest prime factor.

2. (a) Let U be an S-qubit unitary which applies a Hadamard gate to the kth qubit, and
identity gates to the other S − 1 qubits. Let i, j ∈ {0, 1}S . Show an efficient way to
calculate the matrix-entry Ui,j = 〈i|U |j〉 (note: even though U is a tensor product of
2× 2 matrices, it’s still a 2S × 2S matrix, so calculating U completely isn’t efficient).

(b) Let U be an S-qubit unitary which applies a CNOT gate to the kth and `th qubits, and
identity gates to the other S − 2 qubits. Let i, j ∈ {0, 1}S . Show an efficient way to
calculate the matrix-entry Ui,j = 〈i|U |j〉.

3. Consider a circuit C with T = poly(n) elementary gates (only Hadamards and Toffolis) acting
on S = poly(n) qubits. Suppose this circuit computes f : {0, 1}n → {0, 1} with bounded error
probability: for every x ∈ {0, 1}n, when we start with basis state |x, 0S−n〉, run the circuit
and measure the first qubit, then the result equals f(x) with probability at least 99/100.

(a) Consider the following quantum algorithm: start with basis state |x, 0S−n〉, run the
above circuit C without the final measurement, apply a Z gate to the first qubit, and
reverse the circuit C. Denote the resulting final state by |ψx〉. Show that if f(x) = 0
then the amplitude of basis state |x, 0S−n〉 in |ψx〉 is in the interval [1/2, 1], while if
f(x) = 1 then the amplitude of |x, 0S−n〉 in |ψx〉 is in [−1,−1/2].

(b) PP is the class of computational decision problems that can be solved by classical
randomized polynomial-time computers with success probability > 1/2 (however, the
success probability could be exponentially close to 1/2, i.e., PP is BPP without the ‘B’
for bounded-error). Show that BQP ⊆ PP.
Hint: use part (a). Analyze the amplitude of |x, 0S−n〉 in the final state |ψx〉, using ideas from the proof

of BQP ⊆ PSPACE that we saw in the lecture. You may assume BQP-algorithms have error at most

1/100 instead of the usual 1/3. Note that you cannot use more than polynomial time.
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