Quantum Computing (5314QUCO6Y), Final exam

Ronald de Wolf

Monday June 4, 2018 14:00–17:00 UvA Roeterseiland, REC A1.02

The exam is "open book," meaning you can bring any kind of paper you want but no electronic devices. Please answer in English. Use a black or blue pen, not a pencil. Write clearly and explicitly, and explain your answers. For a multipart-question, you may assume answers for earlier parts of the question to answer later parts, even if you don't know the earlier answers. The total number of points adds up to 9; your exam grade will be your number of points +1. An exam grade of at least 5 is a necessary condition for passing the course. Your final grade will be 60% exam +40% homework, rounded to the nearest integer.

1. (1.5 points)

- (a) What are the eigenvectors (as qubits in Dirac notation) and eigenvalues of the 1-qubit unitary $X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$?
- (b) Suppose we can apply a query to bits tring $x \in \{0,1\}^N$ in the usual form:

$$O_x: |i,b\rangle \mapsto |i,b\oplus x_i\rangle.$$

Give a circuit, involving one application of O_x and some other gates, to implement the following controlled-phase-query:

$$C_x: |c, i, 0\rangle \mapsto (-1)^{cx_i} |c, i, 0\rangle.$$

The idea here is that we implement a phase-query to x, but only in case the control-qubit $(c \in \{0,1\})$ is set to 1.

- 2. (2 points) Alice and Bob share an EPR-pair, $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$. Suppose they each measure their qubit with an X-observable (which corresponds to a particular projective measurement with possible outcomes +1, -1).
 - (a) Show that Alice's measurement outcome is uniformly distributed, so 50% probability of outcome +1 and 50% probability of outcome -1.
 - (b) Show that Alice's and Bob's measurement outcomes are always equal. Hint: it's helpful here to write the EPR-pair in the basis $|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle), \ |-\rangle = \frac{1}{\sqrt{2}}(|0\rangle |1\rangle).$

(c) Suppose we view $X \otimes X$ as one 2-qubit observable (with possible outcomes +1, -1) instead of two 1-qubit observables. What is the probability distribution on the two possible outcomes?

3. (2.5 points)

- (a) Suppose you have a state $\frac{1}{\sqrt{2}}(|0\rangle|\phi\rangle+|1\rangle|\psi\rangle)$, where $|\phi\rangle$ and $|\psi\rangle$ are quantum states with real amplitudes. Suppose you apply a Hadamard gate to its first qubit and then measure that first qubit. Show that the probability of measurement outcome 0 is $\frac{1}{2}(1+\langle\phi|\psi\rangle)$.
- (b) Suppose H is a subgroup of a finite additive group G, and $g \in G$ some element. Show (1) if $g \in H$ then the cosets g + H and H are equal and (2) if $g \notin H$ then the cosets g + H and H are disjoint.
- (c) Consider the following communication complexity problem. Alice and Bob both know a finite group G, Alice gets as input some subgroup $H \leq G$ (for instance in the form of a generating set for H) and Bob gets input $g \in G$. Give a one-way quantum protocol where Alice sends to Bob a message of $O(\log |G|)$ qubits, and then Bob decides with success probability > 2/3 whether $g \in H$.

Hint: Alice could send a uniform superposition over all $h \in H$.

4. (3 points) Let $v \in [-1,1]^N$ be a vector with real entries, of dimension $N = 2^n$, indexed by $i \in \{0,1\}^n$. Suppose we can query the entries of this vector by a unitary that maps

$$O_v: |i\rangle |0^p\rangle \mapsto |i\rangle |v_i\rangle,$$

so where the binary representation of the *i*th entry of v is written into the second register. We assume this second register has p qubits, and the numbers v_i can all be written exactly with p bits of precision (it doesn't matter how, but for concreteness say that the first bit indicates the sign of the number, followed by the p-1 most significant bits after the decimal dot). Our goal is to prepare the n-qubit quantum state

$$|\psi\rangle = \frac{1}{\|v\|} \sum_{i \in \{0,1\}^n} v_i |i\rangle.$$

(a) Show how you can implement the following 3-register map (where the third register is one qubit) using one application of O_v and one of O_v^{-1} , and some v-independent unitaries (you don't need to draw detailed circuits for these unitaries, nor worry about how to write those in terms of elementary gates).

$$|i\rangle|0^p\rangle|0\rangle\mapsto|i\rangle|0^p\rangle(v_i|0\rangle+\sqrt{1-v_i^2}|1\rangle).$$

- (b) Suppose you apply the map of (a) to a uniform superposition over all $i \in \{0,1\}^n$. Write the resulting state, and calculate the probability that measuring the last qubit in the computational basis gives outcome 0.
- (c) What is the resulting 3-register state if the previous measurement gave outcome 0?
- (d) Assume you know ||v|| exactly. Give an algorithm that prepares $|\psi\rangle$ exactly, using $O\left(\frac{\sqrt{N}}{||v||}\right)$ applications of O_v and O_v^{-1} , and some v-independent unitaries.

Solutions

1. (1.5 points)

- (a) $|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ with eigenvalue 1, and $|-\rangle = \frac{1}{\sqrt{2}}(|0\rangle |1\rangle)$ with eigenvalue -1.
- (b) You don't need any auxiliary qubits to implement C_x . First you do a CNOT from the first to the last qubit, then H on the last qubit (which puts that qubit into $|+\rangle$ or $|-\rangle$ depending on c). Then apply O_x , which adds phase $(-1)^{x_i}$ if the target qubit is set to $|-\rangle$ (i.e., if c=1), and does nothing if the target qubit is $|+\rangle$. Thus we induce the right phase $(-1)^{cx_i}$. Finally, do another H and CNOT to put the last qubit back to 0.

2. (2 points) NB: Don't treat X as a unitary gate here!

- (a) The local density matrix of Alice is $\rho_A = I/2$, hence the expectation value of the observable X is $\text{Tr}(X\rho_A) = 0$, which means the outcomes +1 and -1 are equally likely.
- (b) $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) = \frac{1}{\sqrt{2}}(|+\rangle|+\rangle + |-\rangle|-\rangle)$. You can think of measuring observable X as measuring in the $\{|+\rangle, |-\rangle\}$ basis. If Alice and Bob both do this, they will either both get outcome +1 or both get -1.
- (c) Write the observable $X \otimes X = P_+ P_-$, where P_+ projects on the span of $|+\rangle|+\rangle$ and $|-\rangle|-\rangle$. Since the EPR-pair lies in that space, the outcome will be +1 with probability 1.

3. **(2.5 points)**

(a) After doing H on the first qubit, the state is

$$|\chi\rangle = \frac{1}{2}((|0\rangle + |1\rangle)|\phi\rangle + (|0\rangle - |1\rangle)|\psi\rangle) = |0\rangle \left(\frac{|\phi\rangle + |\psi\rangle}{2}\right) + |1\rangle \left(\frac{|\phi\rangle - |\psi\rangle}{2}\right).$$

The probability to get outcome 0 when measuring the first qubit, is

$$\| (|0\rangle\langle 0| \otimes I)|\chi\rangle \|^2 = \| |0\rangle \otimes \frac{|\phi\rangle + |\psi\rangle}{2} \|^2 = \frac{1}{4} (\| |\phi\rangle \|^2 + \| |\psi\rangle \|^2 + 2\langle \phi|\psi\rangle) = \frac{1}{2} (1 + \langle \phi|\psi\rangle).$$

- (b) Recall from Chapter 6.1 that any two cosets of H are either equal or disjoint. (1) Since (sub)groups are closed under the group operation, if $g \in H$ then g + H = H. (2) If $g \notin H$ then the cosets g + H and H cannot be equal, hence they must be disjoint.
- (c) Alice and Bob agree to use the first |G| basis states in a $\lceil \log_2 |G| \rceil$ -qubit space to label the elements $g \in G$. On input H, Alice prepares the state $|\phi\rangle = \frac{1}{\sqrt{|H|}} \sum_{h \in H} |h\rangle$ and sends this to Bob. Define $|\psi\rangle = \frac{1}{\sqrt{|H|}} \sum_{h \in H} |g+h\rangle$. Note that because of (b), we have $\langle \phi | \psi \rangle = 1$ if $g \in H$, and $\langle \phi | \psi \rangle = 0$ if $g \notin H$. Bob adds an auxiliary $|+\rangle$ -qubit on the left of the state he received, and applies (controlled on the auxiliary qubit) the unitary $|h\rangle \mapsto |g+h\rangle$, where g is Bob's input. Our state is now exactly the state of (a), which allows Bob to detect with probability 1/2 whether $g \notin H$. If Alice sends a few copies of $|\phi\rangle$, then Bob can decide whether $g \in H$ with probability close to 1.

4. (3 points)

- (a) For $a \in [-1,1]$, let V_a be the single-qubit gate $\left(\begin{array}{cc} a & -\sqrt{1-a^2} \\ \sqrt{1-a^2} & a \end{array}\right)$. Let U be the (p+1)-qubit unitary that applies V_a to the last qubit conditioned on the value a in the first p qubits, where we're using the same p-bit encoding of numbers $a \in [-1,1]$ as explained at the start of the question. In other words, $U = \sum_{a \in \{0,1\}^p} |a\rangle\langle a| \otimes V_a$. This U is independent of the vector v. We implement the required map as follows:
 - apply O_v to the first n+p qubits
 - apply U to the last p+1 qubits
 - apply O_v^{-1} to the first n+p qubits.

If you track what this does to basis state $|i\rangle|0^p\rangle|0\rangle$, it implements exactly the right map.

(b) The resulting state is

$$\frac{1}{\sqrt{N}} \sum_{i \in \{0,1\}^n} |i\rangle |0^p\rangle (v_i|0\rangle + \sqrt{1 - v_i^2} |1\rangle)$$

$$= \frac{1}{\sqrt{N}} \left(\sum_{i \in \{0,1\}^n} v_i |i\rangle \right) |0^p\rangle |0\rangle + \frac{1}{\sqrt{N}} \left(\sum_{i \in \{0,1\}^n} \sqrt{1 - v_i^2} |i\rangle \right) |0^p\rangle |1\rangle).$$

The probably that measuring the last qubit gives 0, is $p = \frac{1}{N} \sum_{i \in \{0,1\}^n} v_i^2 = ||v||^2 / N$.

- (c) $\sum_{i\in\{0,1\}^n} v_i |i\rangle |0^p\rangle |0\rangle$, normalized by ||v||, i.e., $|\psi\rangle$ followed by p+1 $|0\rangle$ -qubits.
- (d) We can apply amplitude amplification as in Section 7.3. The algorithm \mathcal{A} is the algorithm of (b), χ marks the basis states that end with $|0\rangle$, and $p = ||v||^2 / N$ was computed in (b). Amplitude amplification will amplify the part of the state ending in $|0\rangle$ using $O(1/\sqrt{p}) = O(\sqrt{N}/||v||)$ applications of \mathcal{A} and \mathcal{A}^{-1} . This gives us $|\psi\rangle$.