Quantum Computing (5314QUCOGEY), Final exam

Ronald de Wolf

Monday June 4, 2018
14:00-17:00
UvA Roeterseiland, REC A1.02

The exam is “open book,” meaning you can bring any kind of paper you want but no
electronic devices. Please answer in English. Use a black or blue pen, not a pencil.
Write clearly and explicitly, and explain your answers. For a multipart-question, you
may assume answers for earlier parts of the question to answer later parts, even if you
don’t know the earlier answers. The total number of points adds up to 9; your exam
grade will be your number of points +1. An exam grade of at least 5 is a necessary
condition for passing the course. Your final grade will be 60% exam + 40% homework,
rounded to the nearest integer.

1. (1.5 points)
(a) What are the eigenvectors (as qubits in Dirac notation) and eigenvalues of the 1-qubit

0 1
. _ o
unitary X ( 10 ) !

(b) Suppose we can apply a query to bitstring = € {0,1}" in the usual form:
Oy : |i,b) — |i,b @ z;).

Give a circuit, involving one application of O, and some other gates, to implement the
following controlled-phase-query:

Oyt Je,i,0) o> (—1)%|c, 7, 0).

The idea here is that we implement a phase-query to x, but only in case the control-qubit
(c €{0,1}) is set to 1.

2. (2 points) Alice and Bob share an EPR-pair, \%(\Om +]11)). Suppose they each measure
their qubit with an X-observable (which corresponds to a particular projective measurement
with possible outcomes +1, —1).

(a) Show that Alice’s measurement outcome is uniformly distributed, so 50% probability of
outcome +1 and 50% probability of outcome —1.

(b) Show that Alice’s and Bob’s measurement outcomes are always equal.
Hint: it’s helpful here to write the EPR-pair in the basis |[+) = %(|O> + 1), |—-) = %(|0) —1)).
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(c) Suppose we view X ® X as one 2-qubit observable (with possible outcomes +1, —1)
instead of two 1-qubit observables. What is the probability distribution on the two
possible outcomes?

3. (2.5 points)

(a) Suppose you have a state %(]0) |p) + [1)|1))), where |¢) and |¢) are quantum states with
real amplitudes. Suppose you apply a Hadamard gate to its first qubit and then measure
that first qubit. Show that the probability of measurement outcome 0 is (1 + (¢[¢))).

(b) Suppose H is a subgroup of a finite additive group G, and g € G some element. Show
(1) if g € H then the cosets g + H and H are equal
and (2) if g ¢ H then the cosets g + H and H are disjoint.

(¢) Consider the following communication complexity problem. Alice and Bob both know
a finite group G, Alice gets as input some subgroup H < G (for instance in the form of
a generating set for H) and Bob gets input ¢ € G. Give a one-way quantum protocol
where Alice sends to Bob a message of O(log|G|) qubits, and then Bob decides with
success probability > 2/3 whether g € H.

Hint: Alice could send a uniform superposition over all h € H.

4. (3 points) Let v € [~1,1]"V be a vector with real entries, of dimension N = 2", indexed by
i € {0,1}". Suppose we can query the entries of this vector by a unitary that maps

Oy = [1)]07) = ) |vi),

so where the binary representation of the ith entry of v is written into the second register.
We assume this second register has p qubits, and the numbers v; can all be written exactly
with p bits of precision (it doesn’t matter how, but for concreteness say that the first bit
indicates the sign of the number, followed by the p — 1 most significant bits after the decimal
dot). Our goal is to prepare the n-qubit quantum state

) = HUlH S uili).

e{0,1}"

(a) Show how you can implement the following 3-register map (where the third register is
one qubit) using one application of O, and one of O, !, and some v-independent unitaries
(you don’t need to draw detailed circuits for these unitaries, nor worry about how to
write those in terms of elementary gates).

[)]07)]0) = [i}|07)(i0) + /1 = v?[1)).

(b) Suppose you apply the map of (a) to a uniform superposition over all i € {0,1}". Write
the resulting state, and calculate the probability that measuring the last qubit in the
computational basis gives outcome 0.

(¢c) What is the resulting 3-register state if the previous measurement gave outcome 07?

(d) Assume you know || v | exactly. Give an algorithm that prepares |¢)) exactly, using

N
O <||H applications of O, and O 1 and some v-independent unitaries.
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Solutions
1. (1.5 points)

(a) [+) = %(|0) + [1)) with eigenvalue 1, and |—) = %(|O) — |1)) with eigenvalue —1.

(b) You don’t need any auxiliary qubits to implement C,. First you do a CNOT from the
first to the last qubit, then H on the last qubit (which puts that qubit into |+) or |—)
depending on ¢). Then apply O, which adds phase (—1)% if the target qubit is set to
|—) (i.e., if ¢ = 1), and does nothing if the target qubit is |+). Thus we induce the right
phase (—1)“*i. Finally, do another H and CNOT to put the last qubit back to 0.

2. (2 points) NB: Don’t treat X as a unitary gate here!

(a) The local density matrix of Alice is pg = I/2, hence the expectation value of the ob-
servable X is Tr(Xp4) = 0, which means the outcomes +1 and —1 are equally likely.

(b) %(!0@ +|11)) = %(|+>\+> +|=)|—))- You can think of measuring observable X as
measuring in the {|+),|—)} basis. If Alice and Bob both do this, they will either both
get outcome +1 or both get —1.

(c) Write the observable X ® X = P, — P_, where Py projects on the span of |[4)|+) and
|—)|—). Since the EPR-pair lies in that space, the outcome will be +1 with probability 1.

3. (2.5 points)

(a) After doing H on the first qubit, the state is

10 = 500+ 1)1+ (0) = [l = fo) (12512 ) oy (5142,

The probability to get outcome 0 when measuring the first qubit, is

() + 1) 2 1 1
110y (0l & Dlx) [*=[110) & === (1} I* + 1) I +2(6[)) = (1 + (9])).
(b) Recall from Chapter 6.1 that any two cosets of H are either equal or disjoint. (1) Since
(sub)groups are closed under the group operation, if ¢ € H then g + H = H. (2) If
g ¢ H then the cosets g + H and H cannot be equal, hence they must be disjoint.

(c) Alice and Bob agree to use the first |G| basis states in a [log, |G|]-qubit space to label

the elements g € G. On input H, Alice prepares the state |¢p) = #ZheH |h) and

VIH]

sends this to Bob. Define [¢)) = \/ﬁ > nem |9+ h). Note that because of (b), we have
(plv)y =1if g € H, and (¢|p) =0if g & H.

Bob adds an auxiliary |+)-qubit on the left of the state he received, and applies (con-
trolled on the auxiliary qubit) the unitary |h) — |g + h), where g is Bob’s input. Our
state is now exactly the state of (a), which allows Bob to detect with probability 1/2
whether g ¢ H. If Alice sends a few copies of |¢), then Bob can decide whether g € H
with probability close to 1.

4. (3 points)



(a)

a —V1—a?
V1—a? a
(p + 1)-qubit unitary that applies V, to the last qubit conditioned on the value a in
the first p qubits, where we’re using the same p-bit encoding of numbers a € [—1, 1] as
explained at the start of the question. In other words, U =} ,c(01yr |@)(a| ® Vo. This
U is independent of the vector v. We implement the required map as follows:
- apply O, to the first n 4+ p qubits
- apply U to the last p + 1 qubits
- apply O;! to the first n + p qubits.
If you track what this does to basis state |)|0P)|0), it implements exactly the right map.

For a € [—1,1], let V, be the single-qubit gate < ) Let U be the

The resulting state is

jN S 10)[07)(11]0) + /1 — e21))
i€{0,1}n

- 14 P 1 — 2l 2
Vit {OZ}> 07)10) + {OZ} 1= 220} | 107y 1)),
The probably that measuring the last qubit gives 0, is p = & 2ic{o1}n v? =||v||* /N.
>_ic{o,13n vi|1)|07)|0), normalized by [[v, i.e., [¢) followed by p + 1 |0)-qubits.
We can apply amplitude amplification as in Section 7.3. The algorithm A is the algorithm
of (b), x marks the basis states that end with |0), and p =| v ||*> /N was computed

in (b). Amplitude amplification will amplify the part of the state ending in |0) using
O(1//p) = O(VN/ ||v||) applications of A and A~!. This gives us |¢)).



