
Quantum Computing (5314QUCO6Y), Final exam

Ronald de Wolf

Monday June 4, 2018
14:00–17:00

UvA Roeterseiland, REC A1.02

The exam is “open book,” meaning you can bring any kind of paper you want but no
electronic devices. Please answer in English. Use a black or blue pen, not a pencil.
Write clearly and explicitly, and explain your answers. For a multipart-question, you
may assume answers for earlier parts of the question to answer later parts, even if you
don’t know the earlier answers. The total number of points adds up to 9; your exam
grade will be your number of points +1. An exam grade of at least 5 is a necessary
condition for passing the course. Your final grade will be 60% exam + 40% homework,
rounded to the nearest integer.

1. (1.5 points)

(a) What are the eigenvectors (as qubits in Dirac notation) and eigenvalues of the 1-qubit

unitary X =

(
0 1
1 0

)
?

(b) Suppose we can apply a query to bitstring x ∈ {0, 1}N in the usual form:

Ox : |i, b〉 7→ |i, b⊕ xi〉.

Give a circuit, involving one application of Ox and some other gates, to implement the
following controlled-phase-query:

Cx : |c, i, 0〉 7→ (−1)cxi |c, i, 0〉.

The idea here is that we implement a phase-query to x, but only in case the control-qubit
(c ∈ {0, 1}) is set to 1.

2. (2 points) Alice and Bob share an EPR-pair, 1√
2
(|00〉 + |11〉). Suppose they each measure

their qubit with an X-observable (which corresponds to a particular projective measurement
with possible outcomes +1,−1).

(a) Show that Alice’s measurement outcome is uniformly distributed, so 50% probability of
outcome +1 and 50% probability of outcome −1.

(b) Show that Alice’s and Bob’s measurement outcomes are always equal.
Hint: it’s helpful here to write the EPR-pair in the basis |+〉 = 1√

2
(|0〉+ |1〉), |−〉 = 1√

2
(|0〉 − |1〉).
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(c) Suppose we view X ⊗ X as one 2-qubit observable (with possible outcomes +1,−1)
instead of two 1-qubit observables. What is the probability distribution on the two
possible outcomes?

3. (2.5 points)

(a) Suppose you have a state 1√
2
(|0〉|φ〉+ |1〉|ψ〉), where |φ〉 and |ψ〉 are quantum states with

real amplitudes. Suppose you apply a Hadamard gate to its first qubit and then measure
that first qubit. Show that the probability of measurement outcome 0 is 1

2(1 + 〈φ|ψ〉).
(b) Suppose H is a subgroup of a finite additive group G, and g ∈ G some element. Show

(1) if g ∈ H then the cosets g +H and H are equal
and (2) if g 6∈ H then the cosets g +H and H are disjoint.

(c) Consider the following communication complexity problem. Alice and Bob both know
a finite group G, Alice gets as input some subgroup H ≤ G (for instance in the form of
a generating set for H) and Bob gets input g ∈ G. Give a one-way quantum protocol
where Alice sends to Bob a message of O(log |G|) qubits, and then Bob decides with
success probability ≥ 2/3 whether g ∈ H.
Hint: Alice could send a uniform superposition over all h ∈ H.

4. (3 points) Let v ∈ [−1, 1]N be a vector with real entries, of dimension N = 2n, indexed by
i ∈ {0, 1}n. Suppose we can query the entries of this vector by a unitary that maps

Ov : |i〉|0p〉 7→ |i〉|vi〉,

so where the binary representation of the ith entry of v is written into the second register.
We assume this second register has p qubits, and the numbers vi can all be written exactly
with p bits of precision (it doesn’t matter how, but for concreteness say that the first bit
indicates the sign of the number, followed by the p− 1 most significant bits after the decimal
dot). Our goal is to prepare the n-qubit quantum state

|ψ〉 =
1

‖v‖
∑

i∈{0,1}n
vi|i〉.

(a) Show how you can implement the following 3-register map (where the third register is
one qubit) using one application of Ov and one of O−1v , and some v-independent unitaries
(you don’t need to draw detailed circuits for these unitaries, nor worry about how to
write those in terms of elementary gates).

|i〉|0p〉|0〉 7→ |i〉|0p〉(vi|0〉+
√

1− v2i |1〉).

(b) Suppose you apply the map of (a) to a uniform superposition over all i ∈ {0, 1}n. Write
the resulting state, and calculate the probability that measuring the last qubit in the
computational basis gives outcome 0.

(c) What is the resulting 3-register state if the previous measurement gave outcome 0?

(d) Assume you know ‖ v ‖ exactly. Give an algorithm that prepares |ψ〉 exactly, using

O

(√
N

‖v‖

)
applications of Ov and O−1v , and some v-independent unitaries.
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Solutions

1. (1.5 points)

(a) |+〉 = 1√
2
(|0〉+ |1〉) with eigenvalue 1, and |−〉 = 1√

2
(|0〉 − |1〉) with eigenvalue −1.

(b) You don’t need any auxiliary qubits to implement Cx. First you do a CNOT from the
first to the last qubit, then H on the last qubit (which puts that qubit into |+〉 or |−〉
depending on c). Then apply Ox, which adds phase (−1)xi if the target qubit is set to
|−〉 (i.e., if c = 1), and does nothing if the target qubit is |+〉. Thus we induce the right
phase (−1)cxi . Finally, do another H and CNOT to put the last qubit back to 0.

2. (2 points) NB: Don’t treat X as a unitary gate here!

(a) The local density matrix of Alice is ρA = I/2, hence the expectation value of the ob-
servable X is Tr(XρA) = 0, which means the outcomes +1 and −1 are equally likely.

(b) 1√
2
(|00〉 + |11〉) = 1√

2
(|+〉|+〉 + |−〉|−〉). You can think of measuring observable X as

measuring in the {|+〉, |−〉} basis. If Alice and Bob both do this, they will either both
get outcome +1 or both get −1.

(c) Write the observable X ⊗X = P+ − P−, where P+ projects on the span of |+〉|+〉 and
|−〉|−〉. Since the EPR-pair lies in that space, the outcome will be +1 with probability 1.

3. (2.5 points)

(a) After doing H on the first qubit, the state is

|χ〉 =
1

2
((|0〉+ |1〉)|φ〉+ (|0〉 − |1〉)|ψ〉) = |0〉

(
|φ〉+ |ψ〉

2

)
+ |1〉

(
|φ〉 − |ψ〉

2

)
.

The probability to get outcome 0 when measuring the first qubit, is

‖(|0〉〈0| ⊗ I)|χ〉‖2=‖|0〉 ⊗ |φ〉+ |ψ〉
2

‖2= 1

4
(‖|φ〉‖2 + ‖|ψ〉‖2 +2〈φ|ψ〉) =

1

2
(1 + 〈φ|ψ〉).

(b) Recall from Chapter 6.1 that any two cosets of H are either equal or disjoint. (1) Since
(sub)groups are closed under the group operation, if g ∈ H then g + H = H. (2) If
g 6∈ H then the cosets g +H and H cannot be equal, hence they must be disjoint.

(c) Alice and Bob agree to use the first |G| basis states in a dlog2 |G|e-qubit space to label
the elements g ∈ G. On input H, Alice prepares the state |φ〉 = 1√

|H|

∑
h∈H |h〉 and

sends this to Bob. Define |ψ〉 = 1√
|H|

∑
h∈H |g + h〉. Note that because of (b), we have

〈φ|ψ〉 = 1 if g ∈ H, and 〈φ|ψ〉 = 0 if g 6∈ H.

Bob adds an auxiliary |+〉-qubit on the left of the state he received, and applies (con-
trolled on the auxiliary qubit) the unitary |h〉 7→ |g + h〉, where g is Bob’s input. Our
state is now exactly the state of (a), which allows Bob to detect with probability 1/2
whether g 6∈ H. If Alice sends a few copies of |φ〉, then Bob can decide whether g ∈ H
with probability close to 1.

4. (3 points)
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(a) For a ∈ [−1, 1], let Va be the single-qubit gate

(
a −

√
1− a2√

1− a2 a

)
. Let U be the

(p + 1)-qubit unitary that applies Va to the last qubit conditioned on the value a in
the first p qubits, where we’re using the same p-bit encoding of numbers a ∈ [−1, 1] as
explained at the start of the question. In other words, U =

∑
a∈{0,1}p |a〉〈a| ⊗ Va. This

U is independent of the vector v. We implement the required map as follows:
- apply Ov to the first n+ p qubits
- apply U to the last p+ 1 qubits
- apply O−1v to the first n+ p qubits.
If you track what this does to basis state |i〉|0p〉|0〉, it implements exactly the right map.

(b) The resulting state is

1√
N

∑
i∈{0,1}n

|i〉|0p〉(vi|0〉+
√

1− v2i |1〉)

=
1√
N

 ∑
i∈{0,1}n

vi|i〉

 |0p〉|0〉+
1√
N

 ∑
i∈{0,1}n

√
1− v2i |i〉

 |0p〉|1〉).
The probably that measuring the last qubit gives 0, is p = 1

N

∑
i∈{0,1}n v

2
i =‖v‖2 /N .

(c)
∑

i∈{0,1}n vi|i〉|0p〉|0〉, normalized by ‖v‖, i.e., |ψ〉 followed by p+ 1 |0〉-qubits.

(d) We can apply amplitude amplification as in Section 7.3. The algorithmA is the algorithm
of (b), χ marks the basis states that end with |0〉, and p =‖ v ‖2 /N was computed
in (b). Amplitude amplification will amplify the part of the state ending in |0〉 using
O(1/

√
p) = O(

√
N/ ‖v‖) applications of A and A−1. This gives us |ψ〉.
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