
Quantum Computing (5314QUCO6Y), Final exam

Ronald de Wolf

Monday June 24, 2019
10:00–13:00

UvA Roeterseiland, REC C1.04

The exam is “open book,” meaning you can bring any kind of paper you want but no
electronic devices. Please answer in English. Use a black or blue pen, not a pencil.
Write clearly and explicitly, and explain your answers. For a multipart-question, you
may assume answers for earlier parts of the question to answer later parts, even if you
don’t know the earlier answers. The total number of points adds up to 9; your exam
grade will be your number of points +1. An exam grade of at least 5 is a necessary
condition for passing the course. Your final grade will be 60% exam + 40% homework,
rounded to the nearest integer.

1. (1.5 points) Suppose we have a 2-bit input x = x0x1 and a phase query that maps

Ox,± : |b〉 7→ (−1)xb |b〉 for b ∈ {0, 1}.

(a) Suppose we run the 1-qubit circuit HOx,±H on initial state |0〉 and then measure (in
the computational basis). What is the probability distribution on the output bit?

(b) Now suppose the query leaves some workspace in a second qubit, which is initially |0〉:

O′x,± : |b, 0〉 7→ (−1)xb |b, b〉 for b ∈ {0, 1}.

Suppose we just ignore the workspace and run the algorithm of (a) on the first qubit with
O′x,± instead of Ox,± (and H⊗I instead of H). What is now the probability distribution
on the output bit (i.e., if we measure the first of the two bits)?

2. (2.5 points) Here we will approximately count the number of 1s in a string x ∈ {0, 1}N . Let
t = |x| denote that (unknown) number.

(a) Given an integer m ∈ {1, . . . , N}, describe a quantum algorithm that makes O(
√
N/m)

queries to x and decides between the cases t ≤ m/2 and t ∈ [m, 2m] with probability
at least 2/3. That is, the algorithm has to output 0 with probability ≥ 2/3 whenever
t ≤ m/2, has to output 1 with probability ≥ 2/3 whenever t ∈ [m, 2m], and can output
whatever it wants for other values of t.

(b) Give a quantum algorithm that uses O(
√
N log logN) queries to x and that outputs an

integer m such that, with probability ≥ 2/3, the unknown t lies between m/2 and 2m.
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3. (2.5 points) Alice and Bob share an EPR-pair, |ψ〉 = 1√
2
(|00〉+ |11〉).

(a) Let C be a 2× 2 matrix. Show that Tr((C ⊗ I)|ψ〉〈ψ|) = 1
2Tr(C).

(b) Alice could apply one of the 4 Pauli matrices (I,X, Y, Z) to her qubit. Use part (a) to
show that the 4 resulting 2-qubit states form an orthonormal set.
Hint: Use the facts that Tr(D|ψ〉〈ψ|) = 〈ψ|D|ψ〉 and that products of 2 distinct Paulis have trace 0.

(c) Suppose Alice applies one of the 4 Pauli matrices to her qubit and then sends that qubit
to Bob. Give the 4 projectors of a 4-outcome projective measurement that Bob could
do on his 2 qubits to find out which Pauli matrix Alice actually applied.

4. (2.5 points) Consider a quantum-error correcting code that encodes k qubits (and n − k
|0〉s) into an n-qubit codeword state, via the unitary encoding map

U :
∣∣∣x, 0n−k〉 7→ |C(x)〉, where x ∈ {0, 1}k, and |C(x)〉 need not be a basis state.

A “weight-w Pauli error” is the tensor product of n Pauli matrices, of which at most w are
not identity (e.g., something like X⊗ I⊗Z⊗ I⊗ I if w = 2 and n = 5). Suppose that there is
a unitary map S on 3n qubits that can identify every weight-w Pauli error E on a codeword,
by writing the name of E (the “error syndrome”, which we can think of as a 2n-bit string
”E”, for example writing 00 for I, 10 for X, 01 for Z, 11 for Y ) in a second register that’s
initially 02n. In other words, for every x ∈ {0, 1}k and weight-w Pauli error E, this S maps

S : (E|C(x)〉)
∣∣02n〉 7→ (E|C(x)〉)|”E”〉.

(a) Show that if x and y are k-bit strings, and E and F are weight-w Pauli errors, then the
n-qubit states E|C(x)〉 and F |C(y)〉 are orthogonal unless both x = y and E = F .

(b) Prove the inequality 2k
w∑
i=0

(
n

i

)
3i ≤ 2n.

Comment: This inequality implies a useful lower bound on n, but you don’t need to derive that.
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Solutions

1. (1.5 points)

(a) We have Ox,±H|0〉 =
1√
2

((−1)x0 |0〉+ (−1)x1 |1〉) =
(−1)x0√

2
(|0〉+ (−1)x0⊕x1 |1〉).

The second application of H turns this into (−1)x0 |x0 ⊕ x1〉. Hence a measurement in
the computational basis will give outcome x0 ⊕ x1 with probability 1.

(b) Now we have O′x,±(H ⊗ I)|00〉 =
1√
2

((−1)x0 |00〉+ (−1)x1 |11〉)).

Applying the second H ⊗ I turns this into

1

2
((−1)x0 |00〉+ (−1)x0 |10〉+ (−1)x1 |01〉 − (−1)x1 |11〉)).

Measuring the first qubit now gives outcomes 0 and 1 with probability 1/2 each.

2. (2.5 points)

(a) Suppose we run Grover’s algorithm assuming that there are 2m solutions, and then
query the location it outputs to verify whether this actually is a solution. This takes

T ≤ π
4

√
N
2m queries to x (plus 1 for the verification). Let p = sin((2T+1) arcsin(

√
t/N))2

denote the probability that this run of Grover finds a solution. If t = 2m then p ≈ 1,
and if t ∈ [m, 2m] then p ∈ [c, 1] for some constant c. On the other hand, if t ≤ m/2
then the algorithm is significantly less likely to find a solution: p ≤ c′ for some constant
c′ < c (you can calculate that if t � N then c ≈ 0.8 and c′ ≈ 0.5). Now it suffices to
repeat such runs of Grover O(1) times to distinguish the cases p ≤ c′ and p ≥ c with
success probability ≥ 2/3. This takes O(

√
N/m) queries.

(b) The intuition here is as follows. If we run Grover with a too-high guess for t, then we
are unlikely to find a solution. Hence we can approximate t by trying different guesses
2i for t, and using the largest one where we find a solution as our estimate for t.

To make this precise, we reduce the error probability of the algorithm of part (a) from
1/3 to 1/(10 logN) using O(log logN) repetitions in the standard way (as in Appendix B
of the lecture notes). Now consider the following algorithm:

(1) For i = 0, . . . , blog2Nc:
Run the error-reduced (a)-algorithm for m = 2i and record its output.

(2) If all runs in (1) gave output 0, then output m = 0.

(3) Else, let i∗ be the largest i for which the corresponding run in (1) gave output 1.
Output m = 2i

∗
.

The total number of queries is
∑blog2Nc

i=0 O(
√
N/2i log logN) = O(

√
N log logN).

It remains to show that this algorithm outputs (with high probability) a good approxi-
mation of t. First, if t = 0 then the algorithm will not find any solutions (because there
aren’t any) and will correctly output m = 0. Second, if t > 0 then define i′ to be the
unique integer for which t ∈ [2i

′
, 2i
′+1). Then the run of the error-reduced (a)-algorithm

with m = 2i
′

outputs 1 with probability ≥ 1− 1/(10 logN). On the other hand, for all
i ≥ i′+2 we have t ≤ 2i/2, hence the error-reduced (a)-algorithm with m = 2i outputs 0
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with probability ≥ 1 − 1/(10 logN). So with probability at least 0.9, the i∗ in line (3)
of the algorithm will be i′ or i′ + 1. In the first case our algorithm’s output is m = 2i

′

and t ∈ [m, 2m]; in the second case our output is m = 2i
′+1 and t ∈ [m/2,m].

3. (2.5 points) Comment: This exercise is just superdense coding in disguise.

(a) By the cyclicity of the trace we have Tr((C ⊗ I)|ψ〉〈ψ|) = 〈ψ|(C ⊗ I)|ψ〉. Let Ci,j (with
i, j ∈ {0, 1}) denote the entries of C. We have

(C ⊗ I)|ψ〉 =
1√
2

((C|0〉)|0〉+ (C|1〉)|1〉) =
1√
2

((C00|0〉+ C10|1〉)|0〉+ (C01|0〉+ C11|1〉)|1〉)

=
1√
2

(C00|00〉+ C10|10〉+ C01|01〉+ C11|11〉)

Taking inner product with |ψ〉 gives 〈ψ|(C ⊗ I)|ψ〉 = 1
2(C00 + C11) = 1

2Tr(C).

(b) Let A and B be distinct elements of {I,X, Y, Z}, and C = AB. The inner product
between the states (A⊗ I)|ψ〉 and (B ⊗ I)|ψ〉 is

〈ψ|(A∗ ⊗ I)(B ⊗ I)|ψ〉 = 〈ψ|(AB ⊗ I)|ψ〉 = 〈ψ|(C ⊗ I)|ψ〉 =
1

2
Tr(C) = 0,

where the latter equality is because the product of any two distinct Paulis has trace 0.

(c) For D ∈ {I,X, Y, Z}, define 2-qubit pure state |φD〉 = (D ⊗ I)|ψ〉. By part (b) these
4 states are pairwise orthogonal. Hence {|φD〉〈φD| : D ∈ {I,X, Y, Z}} is a well-defined
4-outcome projective measurement (i.e., its elements sum up to the 4-dimensional iden-
tity). Given one of the states |φA〉, this measurement will output D with probability
Tr(|φD〉〈φD||φA〉〈φA|) = |〈φD|φA〉|2, which is 1 if D = A and 0 otherwise.

4. (2.5 points)

(a) The inner product between E|C(x)〉 and F |C(y)〉 equals the inner product between
E|C(x)〉

∣∣02n〉 and F |C(y)〉
∣∣02n〉; this (by unitarity of S) in turn equals the inner product

between E|C(x)〉|”E”〉 and F |C(y)〉|”F”〉, which is

w = 〈C(x)|E∗F |C(y)〉 · 〈”E”|”F”〉.

First, if E 6= F then 〈”E”|”F”〉 = 0 (because ”E” and ”F” are distinct bitstrings), and
hence w = 0. Second, if E = F then E∗F = I (because Pauli matrices are their own
inverse) and 〈”E”|”F”〉 = 1, and hence w = 〈C(x)|C(y)〉 which (by unitary of U) equals
〈x0n−k|y0n−k〉 = 〈x|y〉. The latter is 0 unless x = y. Hence w = 0 unless both x = y
and E = F .

(b) For each x ∈ {0, 1}k, define the set Fx = {E|C(x)〉 : E is a weight-w Pauli error}. This
is a set of n-qubit states, which has |Fx| =

∑w
i=0

(
n
i

)
3i elements, because that’s the

number of different weight-w Pauli errors (you can choose i locations in
(
n
i

)
ways, and

then put X,Y, Z in those chosen locations in 3i ways). Let F = ∪x∈{0,1}kFx be the

union of the 2k sets Fx. Note that every pair of elements of F is orthogonal by part (a).
Hence F is a set of 2k

∑w
i=0

(
n
i

)
3i pairwise orthogonal n-qubit states. But these are

2n-dimensional vectors, and one can have at most 2n pairwise-orthogonal vectors in a
2n-dimensional space. Hence |F | ≤ 2n.
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