Quantum Computing (5314QUCO6Y), Final exam

Ronald de Wolf

Monday June 24, 2019 10:00–13:00 UvA Roeterseiland, REC C1.04

The exam is "open book," meaning you can bring any kind of paper you want but no electronic devices. Please answer in English. Use a black or blue pen, not a pencil. Write clearly and explicitly, and explain your answers. For a multipart-question, you may assume answers for earlier parts of the question to answer later parts, even if you don't know the earlier answers. The total number of points adds up to 9; your exam grade will be your number of points +1. An exam grade of at least 5 is a necessary condition for passing the course. Your final grade will be 60% exam +40% homework, rounded to the nearest integer.

1. (1.5 points) Suppose we have a 2-bit input $x = x_0 x_1$ and a phase query that maps

$$O_{x,\pm} : |b\rangle \mapsto (-1)^{x_b} |b\rangle \text{ for } b \in \{0,1\}.$$

- (a) Suppose we run the 1-qubit circuit $HO_{x,\pm}H$ on initial state $|0\rangle$ and then measure (in the computational basis). What is the probability distribution on the output bit?
- (b) Now suppose the query leaves some workspace in a second qubit, which is initially $|0\rangle$:

$$O'_{x,\pm}: |b,0\rangle \mapsto (-1)^{x_b} |b,b\rangle \text{ for } b \in \{0,1\}.$$

Suppose we just ignore the workspace and run the algorithm of (a) on the first qubit with $O'_{x,\pm}$ instead of $O_{x,\pm}$ (and $H \otimes I$ instead of H). What is now the probability distribution on the output bit (i.e., if we measure the first of the two bits)?

- 2. (2.5 points) Here we will approximately count the number of 1s in a string $x \in \{0, 1\}^N$. Let t = |x| denote that (unknown) number.
 - (a) Given an integer $m \in \{1, ..., N\}$, describe a quantum algorithm that makes $O(\sqrt{N/m})$ queries to x and decides between the cases $t \le m/2$ and $t \in [m, 2m]$ with probability at least 2/3. That is, the algorithm has to output 0 with probability $\ge 2/3$ whenever $t \le m/2$, has to output 1 with probability $\ge 2/3$ whenever $t \in [m, 2m]$, and can output whatever it wants for other values of t.
 - (b) Give a quantum algorithm that uses $O(\sqrt{N} \log \log N)$ queries to x and that outputs an integer m such that, with probability $\geq 2/3$, the unknown t lies between m/2 and 2m.

- 3. (2.5 points) Alice and Bob share an EPR-pair, $|\psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$.
 - (a) Let C be a 2 × 2 matrix. Show that $\operatorname{Tr}((C \otimes I)|\psi\rangle\langle\psi|) = \frac{1}{2}\operatorname{Tr}(C)$.
 - (b) Alice could apply one of the 4 Pauli matrices (I, X, Y, Z) to her qubit. Use part (a) to show that the 4 resulting 2-qubit states form an orthonormal set.
 Hint: Use the facts that Tr(D|ψ⟩⟨ψ|) = ⟨ψ|D|ψ⟩ and that products of 2 distinct Paulis have trace 0.
 - (c) Suppose Alice applies one of the 4 Pauli matrices to her qubit and then sends that qubit to Bob. Give the 4 projectors of a 4-outcome projective measurement that Bob could do on his 2 qubits to find out which Pauli matrix Alice actually applied.
- 4. (2.5 points) Consider a quantum-error correcting code that encodes k qubits (and $n k |0\rangle$ s) into an n-qubit codeword state, via the unitary encoding map

$$U: |x, 0^{n-k}\rangle \mapsto |C(x)\rangle$$
, where $x \in \{0, 1\}^k$, and $|C(x)\rangle$ need not be a basis state.

A "weight-*w* Pauli error" is the tensor product of *n* Pauli matrices, of which at most *w* are not identity (e.g., something like $X \otimes I \otimes Z \otimes I \otimes I$ if w = 2 and n = 5). Suppose that there is a unitary map *S* on 3*n* qubits that can identify every weight-*w* Pauli error *E* on a codeword, by writing the name of *E* (the "error syndrome", which we can think of as a 2*n*-bit string "*E*", for example writing 00 for *I*, 10 for *X*, 01 for *Z*, 11 for *Y*) in a second register that's initially 0^{2n} . In other words, for every $x \in \{0,1\}^k$ and weight-*w* Pauli error *E*, this *S* maps

$$S: (E|C(x)\rangle) |0^{2n}\rangle \mapsto (E|C(x)\rangle)|"E"\rangle.$$

- (a) Show that if x and y are k-bit strings, and E and F are weight-w Pauli errors, then the n-qubit states $E|C(x)\rangle$ and $F|C(y)\rangle$ are orthogonal unless both x = y and E = F.
- (b) Prove the inequality $2^k \sum_{i=0}^w \binom{n}{i} 3^i \le 2^n$.

Comment: This inequality implies a useful lower bound on n, but you don't need to derive that.

Solutions

1. (1.5 points)

- (a) We have $O_{x,\pm}H|0\rangle = \frac{1}{\sqrt{2}}((-1)^{x_0}|0\rangle + (-1)^{x_1}|1\rangle) = \frac{(-1)^{x_0}}{\sqrt{2}}(|0\rangle + (-1)^{x_0\oplus x_1}|1\rangle).$ The second application of H turns this into $(-1)^{x_0}|x_0\oplus x_1\rangle$. Hence a measurement in the computational basis will give outcome $x_0\oplus x_1$ with probability 1.
- (b) Now we have $O'_{x,\pm}(H \otimes I)|00\rangle = \frac{1}{\sqrt{2}}((-1)^{x_0}|00\rangle + (-1)^{x_1}|11\rangle)).$ Applying the second $H \otimes I$ turns this into

$$\frac{1}{2}((-1)^{x_0}|00\rangle + (-1)^{x_0}|10\rangle + (-1)^{x_1}|01\rangle - (-1)^{x_1}|11\rangle)).$$

Measuring the first qubit now gives outcomes 0 and 1 with probability 1/2 each.

2. (2.5 points)

- (a) Suppose we run Grover's algorithm assuming that there are 2m solutions, and then query the location it outputs to verify whether this actually is a solution. This takes $T \leq \frac{\pi}{4}\sqrt{\frac{N}{2m}}$ queries to x (plus 1 for the verification). Let $p = \sin((2T+1) \arcsin(\sqrt{t/N}))^2$ denote the probability that this run of Grover finds a solution. If t = 2m then $p \approx 1$, and if $t \in [m, 2m]$ then $p \in [c, 1]$ for some constant c. On the other hand, if $t \leq m/2$ then the algorithm is significantly less likely to find a solution: $p \leq c'$ for some constant c' < c (you can calculate that if $t \ll N$ then $c \approx 0.8$ and $c' \approx 0.5$). Now it suffices to repeat such runs of Grover O(1) times to distinguish the cases $p \leq c'$ and $p \geq c$ with success probability $\geq 2/3$. This takes $O(\sqrt{N/m})$ queries.
- (b) The intuition here is as follows. If we run Grover with a too-high guess for t, then we are unlikely to find a solution. Hence we can approximate t by trying different guesses 2^i for t, and using the largest one where we find a solution as our estimate for t.

To make this precise, we reduce the error probability of the algorithm of part (a) from 1/3 to $1/(10 \log N)$ using $O(\log \log N)$ repetitions in the standard way (as in Appendix B of the lecture notes). Now consider the following algorithm:

- (1) For $i = 0, ..., \lfloor \log_2 N \rfloor$: Run the error-reduced (a)-algorithm for $m = 2^i$ and record its output.
- (2) If all runs in (1) gave output 0, then output m = 0.
- (3) Else, let i^* be the largest *i* for which the corresponding run in (1) gave output 1. Output $m = 2^{i^*}$.

The total number of queries is $\sum_{i=0}^{\lfloor \log_2 N \rfloor} O(\sqrt{N/2^i} \log \log N) = O(\sqrt{N} \log \log N).$

It remains to show that this algorithm outputs (with high probability) a good approximation of t. First, if t = 0 then the algorithm will not find any solutions (because there aren't any) and will correctly output m = 0. Second, if t > 0 then define i' to be the unique integer for which $t \in [2^{i'}, 2^{i'+1})$. Then the run of the error-reduced (a)-algorithm with $m = 2^{i'}$ outputs 1 with probability $\geq 1 - 1/(10 \log N)$. On the other hand, for all $i \geq i' + 2$ we have $t \leq 2^i/2$, hence the error-reduced (a)-algorithm with $m = 2^i$ outputs 0 with probability $\geq 1 - 1/(10 \log N)$. So with probability at least 0.9, the i^* in line (3) of the algorithm will be i' or i' + 1. In the first case our algorithm's output is $m = 2^{i'}$ and $t \in [m, 2m]$; in the second case our output is $m = 2^{i'+1}$ and $t \in [m/2, m]$.

- 3. (2.5 points) Comment: This exercise is just superdense coding in disguise.
 - (a) By the cyclicity of the trace we have $\operatorname{Tr}((C \otimes I)|\psi\rangle\langle\psi|) = \langle\psi|(C \otimes I)|\psi\rangle$. Let $C_{i,j}$ (with $i, j \in \{0, 1\}$) denote the entries of C. We have

$$\begin{aligned} (C \otimes I)|\psi\rangle &= \frac{1}{\sqrt{2}} \left((C|0\rangle)|0\rangle + (C|1\rangle)|1\rangle \right) = \frac{1}{\sqrt{2}} \left((C_{00}|0\rangle + C_{10}|1\rangle)|0\rangle + (C_{01}|0\rangle + C_{11}|1\rangle)|1\rangle \right) \\ &= \frac{1}{\sqrt{2}} \left(C_{00}|00\rangle + C_{10}|10\rangle + C_{01}|01\rangle + C_{11}|11\rangle \right) \end{aligned}$$

Taking inner product with $|\psi\rangle$ gives $\langle\psi|(C\otimes I)|\psi\rangle = \frac{1}{2}(C_{00}+C_{11}) = \frac{1}{2}\mathrm{Tr}(C).$

(b) Let A and B be distinct elements of $\{I, X, Y, Z\}$, and C = AB. The inner product between the states $(A \otimes I)|\psi\rangle$ and $(B \otimes I)|\psi\rangle$ is

$$\langle \psi | (A^* \otimes I)(B \otimes I) | \psi \rangle = \langle \psi | (AB \otimes I) | \psi \rangle = \langle \psi | (C \otimes I) | \psi \rangle = \frac{1}{2} \operatorname{Tr}(C) = 0,$$

where the latter equality is because the product of any two distinct Paulis has trace 0.

(c) For $D \in \{I, X, Y, Z\}$, define 2-qubit pure state $|\phi_D\rangle = (D \otimes I)|\psi\rangle$. By part (b) these 4 states are pairwise orthogonal. Hence $\{|\phi_D\rangle\langle\phi_D|: D \in \{I, X, Y, Z\}\}$ is a well-defined 4-outcome projective measurement (i.e., its elements sum up to the 4-dimensional identity). Given one of the states $|\phi_A\rangle$, this measurement will output D with probability $\text{Tr}(|\phi_D\rangle\langle\phi_D||\phi_A\rangle\langle\phi_A|) = |\langle\phi_D|\phi_A\rangle|^2$, which is 1 if D = A and 0 otherwise.

4. (2.5 points)

(a) The inner product between $E|C(x)\rangle$ and $F|C(y)\rangle$ equals the inner product between $E|C(x)\rangle|0^{2n}\rangle$ and $F|C(y)\rangle|0^{2n}\rangle$; this (by unitarity of S) in turn equals the inner product between $E|C(x)\rangle|"E"\rangle$ and $F|C(y)\rangle|"F"\rangle$, which is

$$w = \langle C(x) | E^*F | C(y) \rangle \cdot \langle "E" | "F" \rangle.$$

First, if $E \neq F$ then $\langle "E" | "F" \rangle = 0$ (because "E" and "F" are distinct bitstrings), and hence w = 0. Second, if E = F then $E^*F = I$ (because Pauli matrices are their own inverse) and $\langle "E" | "F" \rangle = 1$, and hence $w = \langle C(x) | C(y) \rangle$ which (by unitary of U) equals $\langle x0^{n-k} | y0^{n-k} \rangle = \langle x | y \rangle$. The latter is 0 unless x = y. Hence w = 0 unless both x = yand E = F.

(b) For each $x \in \{0,1\}^k$, define the set $F_x = \{E|C(x)\} : E$ is a weight-*w* Pauli error $\}$. This is a set of *n*-qubit states, which has $|F_x| = \sum_{i=0}^w \binom{n}{i} 3^i$ elements, because that's the number of different weight-*w* Pauli errors (you can choose *i* locations in $\binom{n}{i}$ ways, and then put X, Y, Z in those chosen locations in 3^i ways). Let $F = \bigcup_{x \in \{0,1\}^k} F_x$ be the union of the 2^k sets F_x . Note that every pair of elements of *F* is orthogonal by part (a). Hence *F* is a set of $2^k \sum_{i=0}^w \binom{n}{i} 3^i$ pairwise orthogonal *n*-qubit states. But these are 2^n -dimensional vectors, and one can have at most 2^n pairwise-orthogonal vectors in a 2^n -dimensional space. Hence $|F| \leq 2^n$.