
Quantum Computing (5334QUCO8Y), Exam

Ronald de Wolf

Wednesday Jan 24, 2024, 14:00–17:00
IWO Geel 4.04B, Meibergdreef 29, Amsterdam

The exam is “open book”: you can bring any kind of paper you want, but no electronic
devices. Answer in English. Use a black or blue pen, not a pencil. Write clearly and
explicitly, and explain your answers. For a multipart-question, you may assume the
earlier parts in order to answer later parts, even if you didn’t provide answers to the
earlier parts. The total number of points adds up to 9; your exam grade is your number
of points +1. An exam grade ≥ 5 is a necessary condition for passing the course. Your
final grade is 60% exam + 40% homework, rounded to the nearest integer.

1. (1.5 points) Consider the 9-qubit code from Section 20.4, where the logical 0 and 1 states
are defined as: ∣∣0〉 = 1√

8
(|000⟩+ |111⟩)(|000⟩+ |111⟩)(|000⟩+ |111⟩)

∣∣1〉 = 1√
8
(|000⟩ − |111⟩)(|000⟩ − |111⟩)(|000⟩ − |111⟩)

Give a circuit that encodes an arbitrary qubit, i.e., that maps (α|0⟩+β|1⟩)
∣∣08〉 to α∣∣0〉+β∣∣1〉

for all possible α, β. Your circuit can use CNOTs and arbitrary single-qubit gates, but no
extra workspace qubits.
Hint: Because of linearity it suffices if your circuit works if α = 1 and β = 0, or α = 0 and β = 1.

2. (1.5 points) Suppose U is an unknown unitary that you are allowed to apply once. You’re
also given one copy of an unknown eigenstate |ψ⟩ of U that has eigenvalue 1 (so U |ψ⟩ = |ψ⟩).
Give a circuit for implementing a controlled version of U on an unknown state |ϕ⟩. Your
circuit can use one application of U , as well as other gates that do not depend on U . It can
act also on |ψ⟩ but without changing it. Explain why the circuit works.
Hint: Consider controlled-SWAP.

3. (1.5 points) Let V be a subspace of {0, 1}n (with bitwise addition mod 2), and let

|V ⟩ = 1√
|V |

∑
v∈V

|v⟩

be the n-qubit state that is the uniform superposition over the elements of V . Let

V ⊥ = {w | v · w = 0 mod 2 for all v ∈ V }

be the subspace orthogonal to V . Show that H⊗n maps |V ⟩ to the n-qubit state
∣∣V ⊥〉.
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4. (2 points) The address function f : {0, 1}N → {0, 1} has N = k + 2k. Here the N -bit input
x is viewed as consisting of a k-bit string y followed by a 2k-bit string z, and the function
value f(y, z) is defined as zy where we view y as an integer in {0, . . . , 2k − 1} (an “address”
pointing to one of the bits in z = z0 . . . z2k−1).

(a) Show there is a classical deterministic algorithm to compute f with ≤ k+1 queries to x.

(b) Let g : {0, 1}k → {0, 1} be some arbitrary but known function (i.e., we know its values on
all k-bit inputs). Show how a T -query algorithm for f can be used to obtain a T -query
algorithm for g (it doesn’t matter here whether the algorithm is quantum or classical).

(c) Show that quantum algorithms that compute f with worst-case error probability ≤ 1/3,
need at least k/2 queries.
Hint: Think of the k-bit parity function.

5. (2.5 points) Suppose we have a quantum communication protocol that starts with an un-
entangled state |x⟩A|0⟩C |y⟩B, where x, y ∈ {0, 1}n. Alice and Bob can also each have many
|0⟩-qubits at the start of the protocol for workspace. The channel-register C consists of one
special qubit, initially |0⟩. Alice starts the protocol. When it’s Alice’s turn to send a qubit,
she applies a unitary that acts on the A- and C-registers; when it’s Bob’s turn to send a
qubit, he applies a unitary that acts on the C- and B-registers. The protocol’s one-bit output
is obtained by a computational-basis measurement on the last qubit sent over the channel.

(a) Prove that the (normalized) final state of the protocol after c qubits have been sent, but
before the output qubit is measured, can be written as∑

i∈{0,1}c
|ai(x)⟩A|ic⟩C |bi(y)⟩B

for some (unnormalized) states |ai(x)⟩ on Alice’s side that depend only on x, and some
(unnormalized) states |bi(y)⟩ on Bob’s side that depend only on y.1 Here ic is the last
(i.e., rightmost) bit of the c-bit string i.
Hint: Use induction on c (with c = 0 as the easy base case; define i0 = 0 if i is a string of length 0).

This part (a) is the most technical part of this question, and you could consider working on it only after

you answered the other parts. There is no reason to set workspace qubits back to |0⟩ in this exercise.

(b) Let P (x, y) ∈ [0, 1] denote the probability that the output is 1, on inputs x and y. Give
a formula for P (x, y), as a function of x and y, in terms of (sums of products of) the
inner products ⟨ai(x)|aj(x)⟩ and ⟨bi(y)|bj(y)⟩.
Hint: Calculate the squared norm of the expression in (a) projected on the part where ic = 1.

(c) Show that the 2n × 2n matrix with entries P (x, y) has rank ≤ 22c−2.
Hint: For fixed i, j, the 2n × 2n matrix that has entries ⟨ai(x)|aj(x)⟩ · ⟨bi(y)|bj(y)⟩ has rank 1.

(d) Suppose we have a protocol that computes the equality function (i.e., f(x, y) = 1 iff
x = y) with error probability 0. What is the matrix P in this case?

(e) Suppose you have a protocol that computes the equality function with error probability 0,
using c qubits of communication. Prove that c ≥ n/2 + 1.
Hint: What is now the rank of the matrix P of part (d)? Don’t think of Ex 16.1–3 here, since those only

apply to one-way protocols for the equality function, while here we allow back-and-forth communication.

1The point of this way of writing the final state, is to separate the x-dependence from the y-dependence.
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Solutions

1. (1.5 points) For b ∈ {0, 1}, it’s straightforward to convert |b⟩|00⟩ into 1√
2
(|000⟩+(−1)b|111⟩)

using a Hadamard on the first qubit followed by two CNOTs. We just prepare this 3-qubit
block three times (first making two copies of the classical bit b using CNOTs that have the
4th and 7th qubit as target, respectively). Here’s the circuit:

|b⟩ • • H • •

|0⟩

|0⟩

|0⟩ H • •

|0⟩

|0⟩

|0⟩ H • •

|0⟩

|0⟩

2. (1.5 points) Suppose the first qubit is the one we want to control on. We start with the
3-register state |b⟩|ϕ⟩|ψ⟩, where b ∈ {0, 1} is the control bit (if the circuit works for the cases
where the control qubit is a basis state, then by linearity it will also work if the state is in
superposition). We want to apply U to |ϕ⟩ if b = 1, and do nothing if b = 0.

The circuit swaps the 2nd and 3rd registers controlled by the first qubit, applies U to the 3rd
register, and again swaps the 2nd and 3rd registers controlled by the first qubit.

Let’s see why this works. If the control-bit b = 0 then the two controlled-SWAPs don’t do
anything, so we have |ψ⟩ in the 3rd register when we apply U , and nothing changes because
U |ψ⟩ = |ψ⟩. If, on the other hand, the control-bit b = 1, then the first controlled-SWAP puts
|ϕ⟩ in the 3rd register (and |ψ⟩ in the 2nd), we apply U to it to get U |ϕ⟩, and the second
controlled-SWAP puts U |ϕ⟩ in the 2nd register (and |ψ⟩ back in the 3rd). So the controlled-U
operation is applied to the first two registers, and |ψ⟩ remains unchanged in the 3rd register.

3. (1.5 points)

H⊗n|V ⟩ = 1√
|V |

∑
v∈V

H⊗n|v⟩

=
1√
|V |

∑
v∈V

1√
2n

∑
w∈{0,1}n

(−1)v·w|w⟩

=
∑

w∈{0,1}n

(
1√
|V |2n

∑
v∈V

(−1)v·w

)
|w⟩
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Let’s analyze the amplitude inside the big parentheses (this is similar to Ex 3.4). Suppose
w ∈ V ⊥. Then w has inner product 0 with all of the v ∈ V . Hence (−1)v·w = 1 for every
v ∈ V , so the amplitude of |w⟩ is |V |/

√
|V |2n =

√
|V |/2n. The number of elements of V ⊥ is

2n/|V | because the dimensions of V and V ⊥ add up to n. Therefore the squared amplitudes
of the w ∈ V ⊥ sum up to 1, meaning the w ̸∈ V ⊥ all have amplitude 0. Accordingly, H⊗n|V ⟩
is exactly a uniform superposition over the w ∈ V ⊥, which is

∣∣V ⊥〉.
4. (2 points)

(a) A deterministic classical algorithm can just query the k address bits (i.e., the k bits of
y) and then query the bit zy that the address points to. That’s k + 1 queries.

(b) Set z to the 2k “truth-table” (i.e., sequence of values) of the function g. Now to compute
g on an unknown k-bit string y, we can run the algorithm for the address function on
the input yz (with z fixed as above). The number of queries made by this algorithm to
its k-bit input y, is at most the number of queries made by the T -query algorithm to its
N -bit input yz, so at most T . The function g is computed correctly, because the bit zy
that the address y points to, has been set to g(y).

(c) Suppose we have a T -query quantum algorithm for the address function. Using (b) with
g set to the k-bit parity function, we obtain a T -query algorithm for computing parity
with error probability ≤ 1/3. But we know from Chapter 11 that computing parity,
needs ≥ k/2 quantum queries. Hence T ≥ k/2.

5. (2.5 points)

(a) As the hint says, we use induction on c.
Base case. For c = 0, the final state is just |x⟩|0⟩|y⟩, so we let i range only over the
empty string, and define |ai(x)⟩ = |x⟩ and |bi(y)⟩ = |y⟩.
Inductive step (c → c + 1). The induction hypothesis is that after c qubits of com-
munication, the state can be written as

|ψ⟩ =
∑

i∈{0,1}c
|ai(x)⟩A|ic⟩C |bi(y)⟩B

Now the protocol sends its (c + 1)st qubit. Assume it’s Alice who sends that qubit
(if instead it’s Bob’s turn to send a qubit, the proof is completely analogous). Alice
applies some unitary U to the first two registers (the A- and C-registers). Each term
|ai(x)⟩A|ic⟩C then becomes U(|ai(x)⟩A|ic⟩C), which can be written as |ai0(x)⟩A|0⟩C +
|ai1(x)⟩A|1⟩C for some unnormalized states |ai0(x)⟩A and |ai1(x)⟩A. Define |bi0(y)⟩B =
|bi(y)⟩B and |bi1(y)⟩B = |bi(y)⟩B. Then we can write the state after the (c+ 1)st qubit
of communication as

(U ⊗ IB)|ψ⟩ =
∑

i∈{0,1}c
(|ai0(x)⟩A|0⟩C + |ai1(x)⟩A|1⟩C) |bi(y)⟩B

=
∑

i∈{0,1}c
|ai0(x)⟩A|0⟩C |bi0(y)⟩B + |ai1(x)⟩A|1⟩C)|bi1(y)⟩B

=
∑

j∈{0,1}c+1

|aj(x)⟩A|jc+1⟩C |bj(y)⟩B,
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which concludes the inductive step.

(b) Let I = {i ∈ {0, 1}c : ic = 1} be the strings ending in a 1. Following the hint, we have

P (x, y) =∥
∑
i∈I

|ai(x)⟩A|ic⟩C |bi(y)⟩B ∥2

=
∑
i,j∈I

(⟨ai(x)|A⟨ic|C⟨bi(y)|B) · (|aj(x)⟩A|jc⟩C |bj(y)⟩B)

=
∑
i,j∈I

⟨ai(x)|aj(x)⟩ · ⟨ic|jc⟩ · ⟨bi(y)|bj(y)⟩

=
∑
i,j∈I

⟨ai(x)|aj(x)⟩ · ⟨bi(y)|bj(y)⟩,

where the last equality is because ic = jc = 1, so ⟨ic|jc⟩ = 1.

(c) For i, j ∈ {0, 1}c, define 2n×2n matrixMij whose (x, y)-entry is ⟨ai(x)|aj(x)⟩·⟨bi(y)|bj(y)⟩.
Such a matrix Mij has rank 1 (as the hint says), because it is the outer product of a
2n-dimensional vector (with entries ⟨ai(x)|aj(x)⟩) with another 2n-dimensional vector
(with entries ⟨bi(y)|bj(y)⟩). From (b) we can see that P is the sum of the matrices Mij

where i ∈ I and j ∈ I. There are |I|2 = 22c−2 such Mij . The rank of a sum of matrices
is at most the sum of the ranks (Appendix A.8), hence the rank of P =

∑
i,j∈I Mij is at

most 22c−2 times 1.

(d) The protocol has to output the correct answer 1 with certainty whenever x = y, so the
diagonal entries of P are 1. On the other hand, the protocol outputs the wrong answer 1
with probability 0 whenever x ̸= y, so the off-diagonal entries of P are 0. In other words,
P is the 2n × 2n identity matrix in this case.

(e) The matrix P from part (d) has rank 2n, so from part (c) we have 2n ≤ 22c−2, which
implies (by taking logarithms and rearranging) that c ≥ n/2 + 1.
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