
Quantum Computing (5334QUCO8Y), Exam

Ronald de Wolf

Monday Jan 27, 2025, 14:00–17:00
room REC D4.02 Brug, UvA Roeterseiland

The exam is “open book”: you can bring any kind of paper you want, but no electronic
devices. Answer in English. Use a black or blue pen, not a pencil. Write clearly and
explicitly, and explain your answers. For a multipart-question, you may assume the
earlier parts in order to answer later parts, even if you didn’t provide answers to the
earlier parts. You are allowed to refer to things explained in the lecture notes, or
things that were part of homework exercises that you did, without re-explaining their
details in your answer (just state clearly what the invoked construction achieves).

The total number of points adds up to 9; your exam grade is number of points +1.
An exam grade ≥ 5 is a necessary condition for passing the course. Your final grade
is 60% exam + 40% homework, rounded to the nearest half-integer (except 5.5).

1. (1 point) We know that symmetrization cannot increase the degree of an N -variate polyno-
mial. Can it decrease it? If yes, give an example polynomial; if no, argue why.

2. (2 points) This question is about a variant of quantum phase estimation. Section 4.6 assumed
controlled-U ’s for this, some of which were applied sequentially, but in this exercise we are
only allowed to apply uncontrolled U ’s, and only in parallel (= simultaneous, not one after

another). Suppose U =

(
1 0
0 e2πiϕ

)
with unknown ϕ = {0, 1/4, 1/2, 3/4}, so 2 bits suffice

to exactly represent the number ϕ.

(a) Show how to prepare a qubit 1√
2
(|0⟩ + e2πiϕ|1⟩) using one application of U and some

elementary gate(s).

(b) Show how to prepare a qubit 1√
2
(|0⟩+e2πi2ϕ|1⟩) using two parallel applications of U and

some elementary gate(s). You’re allowed to use an auxiliary qubit.
Hint: Set up an EPR-pair.

(c) Give a circuit that acts on 3 qubits, that uses U⊗3 and no other applications of U , and
that returns ϕ with probability 1.
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3. (2 points) Suppose we are given k copies of an unknown m-qubit state |ψ⟩, and we want to
learn (by means of some measurement on the km qubits) the 2m-dimensional vector of ampli-
tudes of |ψ⟩ up to Euclidean distance ≤ 1/10, with success probability ≥ 2/3. Show that this
requires k ≥ Ω(2m/m), i.e. a measurement that works for every |ψ⟩ needs to measure at least
some constant times 2m/m many copies of |ψ⟩ to be able to produce such an approximating
vector.
Hint: Consider the 2n different fingerprint states |ϕx⟩ on m = logn + O(1) qubits from Section 16.6, for all

2n possible x ∈ {0, 1}n, and how much information one can get from the km qubits of k copies of |ϕx⟩. Argue

that if you know the state |ϕx⟩ up to Euclidean distance ≤ 1/10, then you can find the n-bit string x.

4. (1.5 points) Suppose we have a qubit whose density matrix is ρ = α0I +α1X +α2Y +α3Z,
where α0, α1, α2, α3 are real coefficients and I,X, Y, Z are the Pauli matrices.

(a) Show that α0 = 1/2.

(b) Depolarizing noise (of strength p ∈ [0, 1]) acts on a qubit as follows: with probability
1− p nothing happens to the qubit, and with probability p the qubit is replaced by the
“completely mixed state” of a qubit, whose density matrix is I/2.

Show that depolarizing noise on the above qubit doesn’t change the coefficient α0, but
shrinks each of α1, α2, α3 by a factor of 1− p.

5. (2.5 points)

(a) Let H ∈ {0, 1}2n×2n be a symmetric Boolean matrix whose entries we can query in
the usual way (we have a unitary OH such that OH |j, k, b⟩ = |j, k, b ⊕ Hjk⟩ for all
j, k,∈ {0, 1}n and b ∈ {0, 1}). We are promised that there is an unknown j ̸= 0n such
that H0n,j = Hj,0n = 1, and all other entries of H are 0. Prove that finding this j (with
success probability ≥ 2/3) requires Ω(

√
2n) quantum queries.

(b) For the same H as in (a), show that the state eiH |0n⟩ is cos(1)|0n⟩+ i sin(1)|j⟩.
Hint: Use Taylor series eiH =

∑
k≥0(iH)k/k!, cos(x) =

∑
even k≥0(ix)

k/k!, i sin(x) =
∑

odd k≥0(ix)
k/k!

(c) Consider the Hamiltonian simulation problem for an n-qubit Hamiltonian H, which is
to implement (as a circuit, including queries to entries of H) a unitary Ũ that is ε-close
to eiHt. Now suppose that H is s-sparse but (in contrast to p.77) we do not have access
to the OH,loc oracle, but only to the OH oracle for accessing the entries of H. Show an
Ω(

√
2n) quantum query lower bound in this setting for Hamiltonian simulation for the

case of s = 1, t = 1, and ε = 1/100.
Hint: (sin(1)− 1/100)2 > 2/3.

Comment: This shows that the efficient access to the locations of the few non-zero entries of H that is

provided by OH,loc (on p.77), is essential for efficient Hamiltonian simulation for a sparse H; with only

entry-wise access, Hamiltonian simulation requires exponentially large circuits, even for sparsity s = 1.
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Model solutions

1. Yes. For example p(x0, x1) = x0 − x1 symmetrizes to the 0 polynomial (so the degree goes
from 1 to 0).

2. (a) Start with |0⟩, apply H, and then U .

(b) Start with |00⟩, apply H ⊗ I and then CNOT to create an EPR-pair. Apply U ⊗ U to
get the right phase on |11⟩. Apply a CNOT to set the last qubit back to 0.

(c) Use (a) and (b) to create the 2-qubit product state F4|ϕ⟩ (and a now-irrelevant 3rd qubit
in state |0⟩). Applying the inverse QFT circuit F−1

4 gives us the 2-bit basis state |4ϕ⟩,
whose 2 bits are the bits of ϕ.

3. Consider m-qubit quantum fingerprints |ϕx⟩ and |ϕy⟩ for distinct x, y ∈ {0, 1}n (as defined
halfway p.138, with m = log n + O(1)). Their distance is large, because their inner product
is small:

∥|ϕx⟩ − |ϕy⟩∥2= 2− 2⟨ϕx|ϕy⟩ ≥ 1.96.

If vector v ∈ C2m is 1/10-close to |ϕx⟩ then it cannot also be 1/10-close to |ϕy⟩, because
otherwise we would have ∥ |ϕx⟩ − |ϕy⟩ ∥≤∥ |ϕx⟩ − v ∥ + ∥ v − |ϕy⟩ ∥≤ 2/10 by triangle
inequality, contradicting that the distance between |ϕx⟩ and |ϕy⟩ must be large. Accordingly,
if we can obtain a vector v that is 1/10-close to an unknown quantum fingerprint |ϕx⟩ (by
doing a measurement on the km-qubit state |ϕx⟩⊗k) then that uniquely determines |ϕx⟩,
which means we can compute x from v. Think of x ∈ {0, 1}n as uniformly random, then
learning x gives us n = 2m−O(1) = Ω(2m) bits of information. If we can obtain such a v with
success probability ≥ 2/3 rather than with success probability 1, then we are still obtaining
Ω(n) bits of information (about x) from the km qubits of the k copies of |ϕx⟩. By Holevo’s
theorem, we must have km ≥ Ω(n) = Ω(2m) and hence k ≥ Ω(n/m) = Ω(2m/m).

4. (a) 1 = Tr(ρ) = α0Tr(I) + α1Tr(X) + α2Tr(Y ) + α3Tr(Z) = 2α0, hence α0 = 1/2.

(b) The mixed state resulting from applying depolarizing noise to a qubit ρ is

(1− p)ρ+ pI/2 = ((1− p)α0 + p/2︸ ︷︷ ︸
1/2

)I + (1− p)α1X + (1− p)α2Y + (1− p)α3Z.

5. (a) Consider an input x ∈ {0, 1}N to the search problem (from Chapter 7) with N = 2n−1.
We can define a symmetric 2n×2n matrix H by setting its 0th row and column to (0, x),
and all other entries to 0. We can now implement a query to entries of this H by means
of one query to x. If we can find the j that the exercise talks about using T queries to
entries ofH, then we can solve the search problem on x with the same success probability,
using T queries to x. Since we know the latter takes Ω(

√
N) queries (this was proved

multiple times in Chapter 11), we must have T = Ω(
√
N) = Ω(

√
2n − 1) = Ω(

√
2n).
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(b) Note that H|0n⟩ = |j⟩ and H|j⟩ = |0n⟩, so Hk|0n⟩ = |0n⟩ for all even integers k, and
Hk|0n⟩ = |j⟩ for all odd k. Using the three Taylor series from the hint, we have

eiH |0n⟩ =
∑
k≥0

(iH)k

k!
|0n⟩

=
∑

even k≥0

ik

k!
Hk|0n⟩+

∑
odd k≥0

ik

k!
Hk|0n⟩ = cos(1)|0n⟩+ i sin(1)|j⟩

(c) Consider a matrix H as in part (a) of the question, which is an n-qubit Hamiltonian that
is s-sparse for s = 1. Let Ũ be a circuit (including queries to entries of H, elementary
gates that are independent of H, possibly even some auxiliary qubits that start and end
in |0⟩) that does Hamiltonian simulation for this H for time t = 1 and ε = 1/100. In
other words, Ũ is close to eiH , within operator-norm error 1/100. Apply Ũ to |0n⟩. The
resulting state has distance ≤ 1/100 to the state of (b), which in particular means that
the magnitude of the amplitude on basis state |j⟩ is at least sin(1)−1/100. Measuring the
state in the computational basis gives us j with probability at least (sin(1)− 1/100)2 >
2/3. By part (a) this requires at least Ω(

√
2n) queries to entries of H, so the circuit Ũ

has to contain at least that many queries.
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