Quantum Computing:
Lecture Notes

Ronald de Wolf
Preface

These lecture notes were formed in small chunks during my “Quantum computing” course at the University of Amsterdam, Feb-May 2011, and compiled into one text thereafter. Each chapter was covered in a lecture of 2×45 minutes, with an additional 45-minute lecture for exercises and homework. The first half of the course (Chapters 1–7) covers quantum algorithms, the second half covers quantum complexity (Chapters 8–9), stuff involving Alice and Bob (Chapters 10–13), and error-correction (Chapter 14). A 15th lecture about physical implementations and general outlook was more sketchy, and I didn’t write lecture notes for it.

These chapters may also be read as a general introduction to the area of quantum computation and information from the perspective of a theoretical computer scientist. While I made an effort to make the text self-contained and consistent, it may still be somewhat rough around the edges; I hope to continue polishing and adding to it. Comments & constructive criticism are very welcome, and can be sent to rdepwolf@cwi.nl

Those who want to read more (much more. . .): see the book by Nielsen and Chuang [67].

Attribution and acknowledgements

Most of the material in Chapters 1–6 comes from the first chapter of my PhD thesis [83], with a number of additions: the lower bound for Simon, the Fourier transform, the geometric explanation of Grover. Chapter 7 is newly written for these notes, inspired by Santha’s survey [73]. Chapters 8 and 9 are largely new as well. Section 3 of Chapter 8, and most of Chapter 10 are taken (with many changes) from my “quantum proofs” survey paper with Andy Drucker [35]. Chapters 11 and 12 are partly taken from my non-locality survey with Harry Buhrman, Richard Cleve, and Serge Massar [22]. Chapters 13 and 14 are new. Thanks to Giannicola Scarpa for useful comments on some of the chapters.

Jan’13: updated and corrected a few things for the Feb-Mar 2013 version of this course, and included exercises for each chapter. Thanks to Harry Buhrman, Florian Speelman, Jeroen Zuiddam for spotting some typos in the earlier version.

Apr’13: more updates, clarifications and corrections; moved some material from Chapter 2 to 1; changed and added some exercises. Thanks to Jouke Witteveen for some useful comments.

April’14: fixed and clarified a few more things. Thanks to Maarten Wegewijs for spotting a typo in Chapter 4.

March’15: updated a few small things.

Ronald de Wolf
March 2015, Amsterdam
Contents

1 Quantum Computing 1
 1.1 Introduction ... 1
 1.2 Quantum mechanics .. 2
 1.2.1 Superposition ... 2
 1.2.2 Measurement .. 3
 1.2.3 Unitary evolution 4
 1.3 Quantum memory .. 4
 1.4 Elementary gates ... 6
 1.5 Example: quantum teleportation 7

2 The Circuit Model and Deutsch-Jozsa 9
 2.1 Quantum computation 9
 2.1.1 Classical circuits 9
 2.1.2 Quantum circuits 10
 2.2 Universality of various sets of elementary gates 11
 2.3 Quantum parallelism 11
 2.4 The early algorithms 11
 2.4.1 Deutsch-Jozsa 12
 2.4.2 Bernstein-Vazirani 14

3 Simon’s Algorithm 16
 3.1 The problem .. 16
 3.2 The quantum algorithm 16
 3.3 Classical algorithms for Simon’s problem 17
 3.3.1 Upper bound ... 17
 3.3.2 Lower bound ... 18

4 The Fourier Transform 20
 4.1 The classical discrete Fourier transform 20
 4.2 The Fast Fourier Transform 21
 4.3 Application: multiplying two polynomials 21
 4.4 The quantum Fourier transform 22
 4.5 An efficient quantum circuit 23
 4.6 Application: phase estimation 24
5 Shor’s Factoring Algorithm 27
 5.1 Factoring ... 27
 5.2 Reduction from factoring to period-finding 27
 5.3 Shor’s period-finding algorithm 29
 5.4 Continued fractions ... 31

6 Grover’s Search Algorithm 33
 6.1 The problem .. 33
 6.2 Grover’s algorithm ... 33
 6.3 Amplitude amplification .. 36
 6.4 Application: satisfiability 36

7 Quantum Walk Algorithms 39
 7.1 Classical random walks .. 39
 7.2 Quantum walks .. 40
 7.3 Applications ... 42
 7.3.1 Grover search .. 43
 7.3.2 Collision problem .. 43
 7.3.3 Finding a triangle in a graph 44

8 Quantum Query Lower Bounds 47
 8.1 Introduction .. 47
 8.2 The polynomial method ... 48
 8.3 The quantum adversary method 50

9 Quantum Complexity Theory 54
 9.1 Most functions need exponentially many gates 54
 9.2 Classical and quantum complexity classes 55
 9.3 Classically simulating quantum computers in polynomial space 56

10 Quantum Encodings, with a Non-Quantum Application 59
 10.1 Mixed states and general measurements 59
 10.2 Quantum encodings and their limits 60
 10.3 Lower bounds on locally decodable codes 62

11 Quantum Communication Complexity 65
 11.1 Classical communication complexity 65
 11.2 The quantum question ... 66
 11.3 Example 1: Distributed Deutsch-Jozsa 67
 11.4 Example 2: The Intersection problem 68
 11.5 Example 3: The vector-in-subspace problem 69
 11.6 Example 4: Quantum fingerprinting 69

12 Entanglement and Non-locality 73
 12.1 Quantum non-locality ... 73
 12.2 CHSH: Clauser-Horne-Shimony-Holt 75
 12.3 Magic square game ... 76
Chapter 1

Quantum Computing

1.1 Introduction

Today's computers—both in theory (Turing machines) and practice (PCs)—are based on classical physics. However, modern quantum physics tells us that the world behaves quite differently. A quantum system can be in a superposition of many different states at the same time, and can exhibit interference effects during the course of its evolution. Moreover, spatially separated quantum systems may be entangled with each other and operations may have “non-local” effects because of this.

Quantum computation is the field that investigates the computational power and other properties of computers based on quantum-mechanical principles. An important objective is to find quantum algorithms that are significantly faster than any classical algorithm solving the same problem. The field started in the early 1980s with suggestions for analog quantum computers by Paul Benioff [14] and Richard Feynman [38, 39], and reached more digital ground when in 1985 David Deutsch defined the universal quantum Turing machine [32]. The following years saw only sparse activity, notably the development of the first algorithms by Deutsch and Jozsa [34] and by Simon [77], and the development of quantum complexity theory by Bernstein and Vazirani [18]. However, interest in the field increased tremendously after Peter Shor's very surprising discovery of efficient quantum algorithms for the problems of integer factorization and discrete logarithms in 1994 [76]. Since most of current classical cryptography is based on the assumption that these two problems are computationally hard, the ability to actually build and use a quantum computer would allow us to break most current classical cryptographic systems, notably the RSA system [71, 72]. (In contrast, a quantum form of cryptography due to Bennett and Brassard [17] is unbreakable even for quantum computers.)

Let us mention three different motivations for studying quantum computers, from practical to more philosophical:

1. The process of miniaturization that has made current classical computers so powerful and cheap, has already reached micro-levels where quantum effects occur. Chip-makers tend to go to great lengths to suppress those quantum effects, but instead one might also try to make good use of them.

2. Making use of quantum effects allows one to speed-up certain computations enormously (sometimes exponentially), and even enables some things that are impossible for classical
computers. The main purpose of this course is to explain these things (algorithms, crypto, etc.) in detail.

3. Finally, one might state the main goal of theoretical computer science as “study the power and limitations of the strongest-possible computational devices that nature allows us.” Since our current understanding of nature is quantum mechanical, theoretical computer science should be studying the power of quantum computers, not classical ones.

Before limiting ourselves to theory, let us say a few words about practice: to what extent will quantum computers ever be built? At this point in time, it is just too early to tell. The first small 2-qubit quantum computer was built in 1997 and 2001 a 5-qubit quantum computer was used to successfully factor the number 15 [81]. Since then, experimental progress on a number of different technologies has been steady but slow. The practical problems facing physical realizations of quantum computers seem formidable. The problems of noise and decoherence have to some extent been solved in theory by the discovery of quantum error-correcting codes and fault-tolerant computing (see, e.g., Chapter 14 in these notes or [67, Chapter 10]), but these problems are by no means solved in practice. On the other hand, we should realize that the field of physical realization of quantum computing is still in its infancy and that classical computing had to face and solve many formidable technical problems as well—interestingly, often these problems were even of the same nature as those now faced by quantum computing (e.g., noise-reduction and error-correction). Moreover, the difficulties facing the implementation of a full quantum computer may seem daunting, but more limited things involving quantum communication have already been implemented with some success, for example teleportation (which is the process of sending qubits using entanglement and classical communication), and quantum cryptography is nowadays even commercially available.

Even if the theory of quantum computing never materializes to a real physical computer, quantum-mechanical computers are still an extremely interesting idea which will bear fruit in other areas than practical fast computing. On the physics side, it may improve our understanding of quantum mechanics. The emerging theory of entanglement has already done this to some extent. On the computer science side, the theory of quantum computation generalizes and enriches classical complexity theory and may help resolve some of its problems.

1.2 Quantum mechanics

Here we give a brief and abstract introduction to quantum mechanics. In short: a quantum state is a superposition of classical states, to which we can apply either a measurement or a unitary operation. For the required linear algebra and Dirac notation we refer to Appendix A.

1.2.1 Superposition

Consider some physical system that can be in N different, mutually exclusive classical states. Call these states $|1\rangle, |2\rangle, \ldots, |N\rangle$. Roughly, by a “classical” state we mean a state in which the system can be found if we observe it. A pure quantum state (usually just called state) $|\phi\rangle$ is a superposition of classical states, written

$$|\phi\rangle = \alpha_1|1\rangle + \alpha_2|2\rangle + \cdots + \alpha_N|N\rangle.$$

Here α_i is a complex number that is called the amplitude of $|i\rangle$ in $|\phi\rangle$ (see Appendix B for a brief explanation of complex numbers). Intuitively, a system in quantum state $|\phi\rangle$ is in all classical
states at the same time! It is in state $|1\rangle$ with amplitude α_1, in state $|2\rangle$ with amplitude α_2, and so on. Mathematically, the states $|1\rangle, \ldots, |N\rangle$ form an orthonormal basis of an N-dimensional Hilbert space (i.e., an N-dimensional vector space equipped with an inner product) of dimension N, and a quantum state $|\phi\rangle$ is a vector in this space.

1.2.2 Measurement

There are two things we can do with a quantum state: measure it or let it evolve unitarily without measuring it. We will deal with measurement first.

Measurement in the computational basis

Suppose we measure state $|\phi\rangle$. We cannot “see” a superposition itself, but only classical states. Accordingly, if we measure state $|\phi\rangle$ we will see one and only one classical state $|j\rangle$. Which specific $|j\rangle$ will we see? This is not determined in advance; the only thing we can say is that we will see state $|j\rangle$ with probability $|\alpha_j|^2$, which is the squared norm of the corresponding amplitude α_j ($|a + ib| = \sqrt{a^2 + b^2}$). Thus observing a quantum state induces a probability distribution on the classical states, given by the squared norms of the amplitudes. This implies $\sum_{j=1}^N |\alpha_j|^2 = 1$, so the vector of amplitudes has (Euclidean) norm 1. If we measure $|\phi\rangle$ and see classical state $|j\rangle$ as a result, then $|\phi\rangle$ itself has “disappeared”, and all that is left is $|j\rangle$. In other words, observing $|\phi\rangle$ “collapses” the quantum superposition $|\phi\rangle$ to the classical state $|j\rangle$ that we saw, and all “information” that might have been contained in the amplitudes α_i is gone.

Projective measurement

A somewhat more general kind of measurement than the above “measurement in the computational (or standard) basis” is possible. This will be used only sparsely in the course, so it may be skipped on a first reading. Such a projective measurement is described by projectors P_1, \ldots, P_m ($m \leq N$) which sum to identity. These projectors are then pairwise orthogonal, meaning that $P_i P_j = 0$ if $i \neq j$. The projector P_j projects on some subspace V_j of the total Hilbert space V, and every state $|\phi\rangle \in V$ can be decomposed in a unique way as $|\phi\rangle = \sum_{j=1}^m |\phi_j\rangle$, with $|\phi_j\rangle = P_j |\phi\rangle \in V_j$. Because the projectors are orthogonal, the subspaces V_j are orthogonal as well, as are the states $|\phi_j\rangle$. When we apply this measurement to the pure state $|\phi\rangle$, then we will get outcome j with probability $||\phi_j||^2 = \text{Tr}(P_j |\phi\rangle \langle \phi|)$ and the state will then “collapse” to the new state $|\phi_j\rangle / ||\phi_j|| = P_j |\phi\rangle / ||P_j |\phi\rangle||$.

For example, a measurement in the standard basis is the specific projective measurement where $m = N$ and $P_j = |j\rangle \langle j|$. That is, P_j projects onto the standard basis state $|j\rangle$ and the corresponding subspace V_j is the space spanned by $|j\rangle$. Consider the state $|\phi\rangle = \sum_{j=1}^N \alpha_j |j\rangle$. Note that $P_j |\phi\rangle = \alpha_j |j\rangle$, so applying our measurement to $|\phi\rangle$ will give outcome j with probability $||\alpha_j |j\rangle||^2 = |\alpha_j|^2$, and in that case the state collapses to $\alpha_j |j\rangle / ||\alpha_j |j\rangle|| = \frac{\alpha_j}{||\alpha_j||} |j\rangle$. The norm-1 factor $\frac{\alpha_j}{||\alpha_j||}$ may be disregarded because it has no physical significance, so we end up with the state $|j\rangle$ as we saw before.

As another example, a measurement that distinguishes between $|j\rangle$ with $j \leq N/2$ and $|j\rangle$ with $j > N/2$ corresponds to the two projectors $P_1 = \sum_{j \leq N/2} |j\rangle \langle j|$ and $P_2 = \sum_{j > N/2} |j\rangle \langle j|$. Applying this measurement to the state $|\phi\rangle = \frac{1}{\sqrt{3}} (|1\rangle + \sqrt{2}|N\rangle)$ will give outcome 1 with probability
operation on quantum states must be reversible: by applying U norm 1. Because a unitary transformation always has an inverse, it follows that any (non-measuring) transpose of U must be a unitary U^\dagger.

Instead of measuring $|\phi\rangle$, we can also apply some operation to it, i.e., change the state to some

$$|\psi\rangle = \beta_1 |1\rangle + \beta_2 |2\rangle + \cdots + \beta_N |N\rangle.$$

Quantum mechanics only allows linear operations to be applied to quantum states. What this means is: if we view a state like $|\phi\rangle$ as an N-dimensional vector $(\alpha_1, \ldots, \alpha_N)^T$, then applying an operation that changes $|\phi\rangle$ to $|\psi\rangle$ corresponds to multiplying $|\phi\rangle$ with an $N \times N$ complex-valued matrix U:

$$U \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_N \end{pmatrix} = \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_N \end{pmatrix}.$$

Note that by linearity we have $|\psi\rangle = U|\phi\rangle = U (\sum_i \alpha_i |i\rangle) = \sum_i \alpha_i U|i\rangle$.

Because measuring $|\psi\rangle$ should also give a probability distribution, we have the constraint $\sum_{j=1}^N |\beta_j|^2 = 1$. This implies that the operation U must preserve the norm of vectors, and hence must be a unitary transformation. A matrix U is unitary if its inverse U^{-1} equals its conjugate transpose U^*. This is equivalent to saying that U always maps a vector of norm 1 to a vector of norm 1. Because a unitary transformation always has an inverse, it follows that any (non-measuring) operation on quantum states must be reversible: by applying U^{-1} we can always “undo” the action of U, and nothing is lost in the process. On the other hand, a measurement is clearly non-reversible, because we cannot reconstruct $|\phi\rangle$ from the observed classical state $|j\rangle$.

1.3 Quantum memory

In classical computation, the unit of information is a bit, which can be 0 or 1. In quantum computation, this unit is a quantum bit (qubit), which is a superposition of 0 and 1. Consider a system with 2 basis states, call them $|0\rangle$ and $|1\rangle$. We identify these basis states with the vectors $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$, respectively. A single qubit can be in any superposition

$$\alpha_0 |0\rangle + \alpha_1 |1\rangle, \quad |\alpha_0|^2 + |\alpha_1|^2 = 1.$$

Accordingly, a single qubit “lives” in the vector space \mathbb{C}^2. Similarly we can think of systems of more than 1 qubit, which “live” in the tensor product space of several qubit systems. For instance, a 2-qubit system has 4 basis states: $|0\rangle \otimes |0\rangle$, $|0\rangle \otimes |1\rangle$, $|1\rangle \otimes |0\rangle$, $|1\rangle \otimes |1\rangle$. Here for instance $|1\rangle \otimes |0\rangle$ means that the first qubit is in its basis state $|1\rangle$ and the second qubit is in its basis state $|0\rangle$. We will often abbreviate this to $|1\rangle|0\rangle$, $|1,0\rangle$, or even $|10\rangle$.

More generally, a register of n qubits has 2^n basis states, each of the form $|b_1\rangle \otimes |b_2\rangle \otimes \cdots \otimes |b_n\rangle$, with $b_i \in \{0,1\}$. We can abbreviate this to $|b_1 b_2 \ldots b_n\rangle$. We will often abbreviate $0 \ldots 0$ to 0^n. Since bitstrings of length n can be viewed as numbers between 0 and $2^n - 1$, we can also write

\[|\phi\rangle = \beta_1 |1\rangle + \beta_2 |2\rangle + \cdots + \beta_N |N\rangle. \]
the basis states as numbers $|0\rangle, |1\rangle, |2\rangle, \ldots, |2^n - 1\rangle$. A quantum register of n qubits can be in any superposition

$$\alpha_0|0\rangle + \alpha_1|1\rangle + \cdots + \alpha_{2^n - 1}|2^n - 1\rangle, \quad \sum_{j=0}^{2^n - 1} |\alpha_j|^2 = 1.$$

If we measure this in the standard basis, we obtain the n-bit state state $|j\rangle$ with probability $|\alpha_j|^2$.

Measuring just the first qubit of a state would correspond to the projective measurement that has the two projectors $P_0 = |0\rangle\langle 0| \otimes I_{2^{n-1}}$ and $P_1 = |1\rangle\langle 1| \otimes I_{2^{n-1}}$. For example, applying this measurement to the state $\frac{1}{\sqrt{2}}|0\rangle|\phi\rangle + \frac{1}{\sqrt{3}}|1\rangle|\psi\rangle$ will give outcome 0 with probability $1/3$ (the state then becomes $|0\rangle|\phi\rangle$) and outcome 1 with probability $2/3$ (the state then becomes $|1\rangle|\psi\rangle$). Similarly, measuring the first n qubits of an $(n + m)$-qubit state in the standard basis corresponds to the projective measurement that has 2^n projectors $P_i = |i\rangle\langle i| \otimes I_{2^m}$ for $i \in \{0, 1\}^n$.

An important property that deserves to be mentioned is entanglement, which refers to quantum correlations between different qubits. For instance, consider a 2-qubit register that is in the state

$$\frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle.$$

Such 2-qubit states are sometimes called EPR-pairs in honor of Einstein, Podolsky, and Rosen [36], who first examined such states and their seemingly paradoxical properties. Initially neither of the two qubits has a classical value $|0\rangle$ or $|1\rangle$. However, if we measure the first qubit and observe, say, a $|0\rangle$, then the whole state collapses to $|00\rangle$. Thus observing the first qubit immediately fixes also the second, unobserved qubit to a classical value. Since the two qubits that make up the register may be far apart, this example illustrates some of the non-local effects that quantum systems can exhibit. In general, a bipartite state $|\phi\rangle$ is called entangled if it cannot be written as a tensor product $|\phi_A\rangle \otimes |\phi_B\rangle$ where $|\phi_A\rangle$ lives in the first space and $|\phi_B\rangle$ lives in the second.

At this point, a comparison with classical probability distributions may be helpful. Suppose we have two probability spaces, A and B, the first with 2^n possible outcomes, the second with 2^m possible outcomes. A distribution on the first space can be described by 2^n numbers (non-negative reals summing to 1; actually there are only $2^n - 1$ degrees of freedom here) and a distribution on the second by 2^m numbers. Accordingly, a product distribution on the joint space can be described by $2^n + 2^m$ numbers. However, an arbitrary (non-product) distribution on the joint space takes 2^{n+m} real numbers, since there are 2^{n+m} possible outcomes in total. Analogously, an n-qubit state $|\phi_A\rangle$ can be described by 2^n numbers (complex numbers whose squared modulus sum to 1), an m-qubit state $|\phi_B\rangle$ by 2^m numbers, and their tensor product $|\phi_A\rangle \otimes |\phi_B\rangle$ by $2^n + 2^m$ numbers. However, an arbitrary (possibly entangled) state in the joint space takes 2^{n+m} numbers, since it lives in a 2^{n+m}-dimensional space. We see that the number of parameters required to describe quantum states is the same as the number of parameters needed to describe probability distributions. Also note the analogy between statistical independence of two random variables A and B and non-entanglement of the product state $|\phi_A\rangle \otimes |\phi_B\rangle$. However, despite the similarities between probabilities and amplitudes, quantum states are much more powerful than distributions, because amplitudes may have negative parts which can lead to interference effects. Amplitudes only become probabilities when we square them. The art of quantum computing is to use these special properties for interesting computational purposes.
1.4 Elementary gates

A unitary that acts on a small number of qubits (say, at most 3) is often called a gate, in analogy to classical logic gates like AND, OR, and NOT; more about that in the next chapter. Two simple but important 1-qubit gates are the bitflip gate X (which negates the bit, i.e., swaps $|0\rangle$ and $|1\rangle$) and the phaseflip gate Z (which puts a $-$ in front of $|1\rangle$). Represented as 2×2 unitary matrices, these are

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Another important 1-qubit gate is the phase gate R_ϕ, which merely rotates the phase of the $|1\rangle$-state by an angle ϕ:

$$R_\phi|0\rangle = |0\rangle \quad R_\phi|1\rangle = e^{i\phi}|1\rangle.$$

This corresponds to the unitary matrix

$$R_\phi = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix}.$$

Note that Z is a special case of this: $Z = R_\pi$, because $e^{i\pi} = -1$.

Possibly the most important 1-qubit gate is the Hadamard transform, specified by:

$$H|0\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle \quad H|1\rangle = \frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle.$$

As a unitary matrix, this is represented as

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}.$$

If we apply H to initial state $|0\rangle$ and then measure, we have equal probability of observing $|0\rangle$ or $|1\rangle$. Similarly, applying H to $|1\rangle$ and observing gives equal probability of $|0\rangle$ or $|1\rangle$. However, if we apply H to the superposition $\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$ then we obtain $|0\rangle$: the positive and negative amplitudes for $|1\rangle$ cancel out! (note that this also means that H is its own inverse) This effect is called interference, and is analogous to interference patterns between light or sound waves.

An example of a two-qubit gate is the controlled-not gate CNOT. It negates the second bit of its input if the first bit is 1, and does nothing if it’s 0:

$$\text{CNOT}|0\rangle|b\rangle = |0\rangle|b\rangle \
\text{CNOT}|1\rangle|b\rangle = |1\rangle|1 - b\rangle.$$

In matrix form, this is

$$\text{CNOT} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$
1.5 Example: quantum teleportation

In the next chapter we will look in more detail at how we can use and combine such elementary gates, but as an example we will here already explain teleportation [15]. Suppose there are two parties, Alice and Bob. Alice has a qubit $\alpha_0|0\rangle + \alpha_1|1\rangle$ that she wants to send to Bob via a classical channel. Without further resources this would be impossible, but Alice also shares an EPR-pair

$$\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

with Bob (say Alice holds the first qubit and Bob the second). Initially, their joint state is

$$(\alpha_0|0\rangle + \alpha_1|1\rangle) \otimes \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle).$$

The first two qubits belong to Alice, the third to Bob. Alice performs a CNOT on her two qubits and then a Hadamard transform on her first qubit. Their joint state can now be written as

$$\frac{1}{4} |00\rangle (\alpha_0|0\rangle + \alpha_1|1\rangle) +$$

$$\frac{1}{4} |01\rangle (\alpha_0|1\rangle + \alpha_1|0\rangle) +$$

$$\frac{1}{4} |10\rangle (\alpha_0|0\rangle - \alpha_1|1\rangle) +$$

$$\frac{1}{4} |11\rangle (\alpha_0|1\rangle - \alpha_1|0\rangle).$$

Alice then measures her two qubits in the computational basis and sends the result (2 random classical bits) to Bob over a classical channel. Bob now knows which transformation he must do on his qubit in order to regain the qubit $\alpha_0|0\rangle + \alpha_1|1\rangle$. For instance, if Alice sent 11 then Bob knows that his qubit is $\alpha_0|1\rangle - \alpha_1|0\rangle$. A bitflip ($X$) followed by a phaseflip (Z) will give him Alice’s original qubit $\alpha_0|0\rangle + \alpha_1|1\rangle$. In fact, if Alice’s qubit had been entangled with other qubits, then teleportation preserves this entanglement: Bob then receives a qubit that is entangled in the same way as Alice’s original qubit was.

Note that the qubit on Alice’s side has been destroyed: teleporting moves a qubit from A to B, rather than copying it. In fact, copying an unknown qubit is impossible [84], see Exercise 1.

Exercises

1. Prove the quantum no-cloning theorem: there does not exist a 2-qubit unitary U that maps

$$|\phi\rangle|0\rangle \mapsto |\phi\rangle|\phi\rangle$$

for every qubit $|\phi\rangle$. Hint: consider what U has to do when $|\phi\rangle = |0\rangle$, when $|\phi\rangle = |1\rangle$, and when $|\phi\rangle$ is a superposition of these two.

2. Compute the result of applying a Hadamard transform to both qubits of $|0\rangle \otimes |1\rangle$ in two ways (the first way using tensor product of vectors, the second using tensor product of matrices), and show that the two results are equal:

$$H|0\rangle \otimes H|1\rangle = (H \otimes H)(|0\rangle \otimes |1\rangle).$$
3. Show that a bit-flip operation, preceded and followed by Hadamard transforms, equals a phase-flip operation: \(H X H = Z \).

4. Prove that an EPR-pair \(\frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) \) is an entangled state, i.e., that it cannot be written as the tensor product of two separate qubits.

5. A matrix \(A \) is inner product-preserving if the inner product \(\langle Av | Aw \rangle \) between \(Av \) and \(Aw \) equals the inner product \(\langle v | w \rangle \), for all vectors \(v, w \). \(A \) is norm-preserving if \(||Av|| = ||v|| \) for all vectors \(v \), i.e., \(A \) preserves the Euclidean length of the vector. \(A \) is unitary if \(A^* A = AA^* = I \).

In the following, you may assume for simplicity that the entries of the vectors and matrices are real, not complex.

- (a) Prove that \(A \) is norm-preserving if, and only if, \(A \) is inner product-preserving.
- (b) Prove that \(A \) is inner product-preserving iff \(A^* A = AA^* = I \).
- (c) Conclude that \(A \) is norm-preserving iff \(A \) is unitary.

Bonus: prove the same for complex instead of real vector spaces.

6. Suppose Alice and Bob are not entangled. If Alice sends a qubit to Bob, then this can give Bob at most one bit of information about Alice. However, if they share an EPR-pair, they can transmit two classical bits by sending one qubit over the channel; this is called superdense coding [16]. This exercise will show how this works.

- (a) They start with a shared EPR-pair, \(\frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) \). Alice has classical bits \(a \) and \(b \). Suppose she does an \(X \)-operation on her half of the EPR-pair if \(a = 1 \), and then a \(Z \)-operation if \(b = 1 \) (she does both if \(ab = 11 \), and neither if \(ab = 00 \)). Write the resulting 2-qubit state.

- (b) Suppose Alice sends her half of the state to Bob, who now has two qubits. Show that Bob can determine both \(a \) and \(b \) from his state. Write Bob’s operation as a quantum circuit with Hadamard and CNOT gates.

\(^1\)This is actually a deep statement, a special case of Holevo’s theorem. More about this may be found in Chapter 10.
Chapter 2

The Circuit Model and Deutsch-Jozsa

2.1 Quantum computation

Below we explain how a quantum computer can apply computational steps to its register of qubits. Two models exist for this: the quantum Turing machine [32, 18] and the quantum circuit model [33, 85]. These models are equivalent, in the sense that they can simulate each other in polynomial time, assuming the circuits are appropriately “uniform.” We only explain the circuit model here, which is more popular among researchers.

2.1.1 Classical circuits

In classical complexity theory, a Boolean circuit is a finite directed acyclic graph with AND, OR, and NOT gates. It has n input nodes, which contain the n input bits ($n \geq 0$). The internal nodes are AND, OR, and NOT gates, and there are one or more designated output nodes. The initial input bits are fed into AND, OR, and NOT gates according to the circuit, and eventually the output nodes assume some value. We say that a circuit computes some Boolean function $f : \{0, 1\}^n \rightarrow \{0, 1\}^m$ if the output nodes get the right value $f(x)$ for every input $x \in \{0, 1\}^n$.

A circuit family is a set $C = \{C_n\}$ of circuits, one for each input size n. Each circuit has one output bit. Such a family recognizes or decides a language $L \subseteq \{0, 1\}^*$ if, for every n and every input $x \in \{0, 1\}^n$, the circuit C_n outputs 1 if $x \in L$ and outputs 0 otherwise. Such a circuit family is uniformly polynomial if there is a deterministic Turing machine that outputs C_n given n as input, using space logarithmic in n (this implies time polynomial in n, because such a machine will have only $\text{poly}(n)$ different internal states, so it either halts after $\text{poly}(n)$ steps or cycles forever). Note that the size (number of gates) of the circuits C_n can then grow at most polynomially with n. It is known that uniformly polynomial circuit families are equal in power to polynomial-time deterministic Turing machines: a language L can be decided by a uniformly polynomial circuit family if $L \in \text{P}$ [68, Theorem 11.5], where P is the class of languages decidable by polynomial-time Turing machines.

Similarly we can consider randomized circuits. These receive, in addition to the n input bits, also some random bits (“coin flips”) as input. A randomized circuit computes a function f if it successfully outputs the right answer $f(x)$ with probability at least $2/3$ for every x (probability taken over the values of the random bits; the $2/3$ may be replaced by any $1/2 + \varepsilon$). Randomized circuits are equal in power to randomized Turing machines: a language L can be decided by a uniformly
polynomial randomized circuit family iff \(L \in \text{BPP} \), where \(\text{BPP} \) ("Bounded-error Probabilistic Polynomial time") is the class of languages that can efficiently be recognized by randomized Turing machines with success probability at least 2/3.

2.1.2 Quantum circuits

A quantum circuit (also called quantum network or quantum gate array) generalizes the idea of classical circuit families, replacing the AND, OR, and NOT gates by elementary quantum gates. A quantum gate is a unitary transformation on a small (usually 1, 2, or 3) number of qubits. We saw a number of examples already in the last chapter: the bitflip gate \(X \), the phaseflip gate \(Z \), the Hadamard gate \(H \). The main 2-qubit gate we have seen is the controlled-NOT (CNOT) gate. Adding another control register, we get the 3-qubit Toffoli gate, also called controlled-controlled-not (CCNOT) gate. This negates the third bit of its input if both of the first two bits are 1. The Toffoli gate is important because it is complete for classical reversible computation: any classical computation can be implemented by a circuit of Toffoli gates. This is easy to see: using ancilla wires with fixed values, Toffoli can implement AND (fix the 3rd in going wire to 0) and NOT (fix the 1st and 2nd ingoing wire to 1). It is known that AND and NOT-gates together suffice to implement any classical Boolean circuit, so if we can apply (or simulate) Toffoli gates, we can implement any classical computation in a reversible manner.

Mathematically, such elementary gates can be composed by taking tensor products (if gates are applied in parallel) to different parts of the register) and ordinary products (if gates are applied sequentially). We have already seen simple examples of such a circuit of elementary gates to implement teleportation (in the previous chapter).

For example, if we apply the Hadamard gate \(H \) to each bit in a register of \(n \) zeroes, we obtain
\[
\frac{1}{\sqrt{2^n}} \sum_{j \in \{0,1\}^n} |j\rangle,
\]
which is a superposition of all \(n \)-bit strings. More generally, if we apply \(H \otimes n \) to an initial state \(|i\rangle \), with \(i \in \{0,1\}^n \), we obtain
\[
H \otimes n |i\rangle = \frac{1}{\sqrt{2^n}} \sum_{j \in \{0,1\}^n} (-1)^{i \cdot j} |j\rangle,
\]
(2.1)
where \(i \cdot j = \sum_{k=1}^n i_k j_k \) denotes the inner product of the \(n \)-bit strings \(i, j \in \{0,1\}^n \). For example:
\[
H \otimes 2 |01\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) \otimes \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) = \frac{1}{2} \sum_{j \in \{0,1\}^2} (-1)^{01 \cdot j} |j\rangle.
\]
The \(n \)-fold Hadamard transform will be very useful for all the quantum algorithms explained later.

As in the classical case, a quantum circuit is a finite directed acyclic graph of input nodes, gates, and output nodes. There are \(n \) nodes that contain the input (as classical bits); in addition we may have some more input nodes that are initially \(|0\rangle \) ("workspace"). The internal nodes of the quantum circuit are quantum gates that each operate on at most 2 qubits of the state. The gates in the circuit transform the initial state vector into a final state, which will generally be a superposition. We measure some dedicated output bits of this final state to (probabilistically) obtain an answer.

In analogy to the classical class \(\text{BPP} \), we will define \(\text{BQP} \) ("Bounded-error Quantum Polynomial time") as the class of languages that can efficiently be computed with success probability at least 2/3 by (a family of) quantum circuits whose size grows at most polynomially with the input length. We will study this quantum complexity class and its relation with various classical complexity classes in more detail in Chapter 9.
2.2 Universality of various sets of elementary gates

Which set of elementary gates should we allow? There are several reasonable choices.

(1) The set of all 1-qubit operations together with the 2-qubit CNOT gate is universal, meaning that any other unitary transformation can be built from these gates. Allowing all 1-qubit gates is not very realistic from an implementational point of view, as there are uncountably many of them. However, the model is usually restricted, only allowing a small finite set of 1-qubit gates from which all other 1-qubit gates can be efficiently approximated.

(2) The set consisting of CNOT, Hadamard, and the phase-gate $R_{\pi/4}$ is universal in the sense of approximation, meaning that any other unitary can be arbitrarily well approximated using circuits of only these gates. The Solovay-Kitaev theorem says that this approximation is quite efficient: we can approximate any gate on 1 or 2 qubits up to error ε using $\text{polylog}(1/\varepsilon)$ gates from our small set; in particular, simulating arbitrary gates up to exponentially small error costs only a polynomial overhead.

It is often convenient to restrict to real numbers and use an even smaller set of gates:

(3) The set of Hadamard and Toffoli (CCNOT) is universal for all unitaries with real entries in the sense of approximation, meaning that any unitary with only real entries can be arbitrarily well approximated using circuits of only these gates (again the Solovay-Kitaev theorem says that this simulation can be done efficiently).

2.3 Quantum parallelism

One uniquely quantum-mechanical effect that we can use for building quantum algorithms is quantum parallelism. Suppose we have a classical algorithm that computes some function $f : \{0, 1\}^n \rightarrow \{0, 1\}^m$. Then we can build a quantum circuit U (consisting only of Toffoli gates) that maps $|x\rangle|0\rangle \rightarrow |x\rangle|f(x)\rangle$ for every $x \in \{0, 1\}^n$. Now suppose we apply U to a superposition of all inputs x (which is easy to build using n Hadamard transforms):

$$U \left(\frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle|0\rangle \right) = \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle|f(x)\rangle.$$

We applied U just once, but the final superposition contains $f(x)$ for all 2^n input values x! However, by itself this is not very useful and does not give more than classical randomization, since observing the final superposition will give just one random $|x\rangle|f(x)\rangle$ and all other information will be lost. As we will see below, quantum parallelism needs to be combined with the effects of interference and entanglement in order to get something that is better than classical.

2.4 The early algorithms

The two main successes of quantum algorithms so far are Shor’s factoring algorithm from 1994 [76] and Grover’s search algorithm from 1996 [44], which will be explained in later chapters. In this section we describe some of the earlier quantum algorithms that preceded Shor’s and Grover’s.
Virtually all quantum algorithms work with *queries* in some form or other. We will explain this model here. It may look contrived at first, but eventually will lead smoothly to Shor’s and Grover’s algorithm. We should, however, emphasize that the query complexity model differs from the standard model described above, because the input is now given as a “black-box.” This means that the exponential quantum-classical separations that we describe below (like Simon’s) do not by themselves give exponential quantum-classical separations in the standard model.

To explain the query setting, consider an \(N\)-bit input \(x = (x_1, \ldots, x_N) \in \{0, 1\}^N\). Usually we will have \(N = 2^n\), so that we can address bit \(x_i\) using an \(n\)-bit index \(i\). One can think of the input as an \(N\)-bit memory which we can access at any point of our choice (a Random Access Memory). A memory access is via a so-called “black-box”, which is equipped to output the bit \(x_i\) on input \(i\).

As a quantum operation, this would be the following unitary mapping on \(n + 1\) qubits:

\[
O_x : |i, 0\rangle \rightarrow |i, x_i\rangle.
\]

The first \(n\) qubits of the state are called the *address bits* (or address register), while the \((n + 1)\)st qubit is called the *target bit*. Since this operation must be unitary, we also have to specify what happens if the initial value of the target bit is 1. Therefore we actually let \(O_x\) be the following unitary transformation:

\[
O_x : |i, b\rangle \rightarrow |i, b \oplus x_i\rangle,
\]

here \(i \in \{0, 1\}^n\), \(b \in \{0, 1\}\), and \(\oplus\) denotes exclusive-or (addition modulo 2). In matrix representation, \(O_x\) is now a permutation matrix and hence unitary. Note also that a quantum computer can apply \(O_x\) on a superposition of various \(i\), something a classical computer cannot do. One application of this black-box is called a *query*, and counting the required number of queries to compute this or that function of \(x\) is something we will do a lot in the first half of these notes.

Given the ability to make a query of the above type, we can also make a query of the form \(|i\rangle \rightarrow (-1)^{x_i}|i\rangle\) by setting the target bit to the state \(|-\rangle = H|1\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)\):

\[
O_x (|i\rangle |-\rangle) = |i\rangle \frac{1}{\sqrt{2}}((x_i) - |1 - x_i\rangle) = (-1)^{x_i}|i\rangle |-\rangle.
\]

This ±-kind of query puts the output variable in the phase of the state: if \(x_i = 1\) then we get a \(-1\) in the phase of basis state \(|i\rangle\); if \(x_i = 0\) then nothing happens to \(|i\rangle\). This “phase-oracle” is sometimes more convenient than the standard type of query. We sometimes denote the corresponding \(n\)-qubit unitary transformation by \(O_{x,\pm}\).

2.4.1 Deutsch-Jozsa

Deutsch-Jozsa problem [34]:

For \(N = 2^n\), we are given \(x \in \{0, 1\}^N\) such that either

1. all \(x_i\) have the same value (“constant”), or
2. \(N/2\) of the \(x_i\) are 0 and \(N/2\) are 1 (“balanced”).

The goal is to find out whether \(x\) is constant or balanced.

The algorithm of Deutsch and Jozsa is as follows. We start in the \(n\)-qubit zero state \(|0^n\rangle\), apply a Hadamard transform to each qubit, apply a query (in its ±-form), apply another Hadamard to each qubit, and then measure the final state. As a unitary transformation, the algorithm would
be $H^\otimes_n O_\pm H^\otimes_n$. We have drawn the corresponding quantum circuit in Figure 2.1 (where time progresses from left to right).

Let us follow the state through these operations. Initially we have the state $|0^n\rangle$. By Equation 2.1 on page 10, after the first Hadamard transforms we have obtained the uniform superposition of all i:

$$\frac{1}{\sqrt{2^n}} \sum_{i \in \{0,1\}^n} |i\rangle.$$

The O_\pm-query turns this into

$$\frac{1}{\sqrt{2^n}} \sum_{i \in \{0,1\}^n} (-1)^{x_i} |i\rangle.$$

Applying the second batch of Hadamards gives (again by Equation 2.1) the final superposition

$$\frac{1}{2^n} \sum_{i \in \{0,1\}^n} (-1)^{x_i} \sum_{j \in \{0,1\}^n} (-1)^{ij} |j\rangle,$$

where $i \cdot j = \sum_{k=1}^n i_k j_k$ as before. Since $i \cdot 0^n = 0$ for all $i \in \{0,1\}^n$, we see that the amplitude of the $|0^n\rangle$-state in the final superposition is

$$\frac{1}{2^n} \sum_{i \in \{0,1\}^n} (-1)^{x_i} = \begin{cases} 1 & \text{if } x_i = 0 \text{ for all } i, \\ -1 & \text{if } x_i = 1 \text{ for all } i, \\ 0 & \text{if } x \text{ is balanced}. \end{cases}$$

Hence the final observation will yield $|0^n\rangle$ if x is constant and will yield some other state if x is balanced. Accordingly, the Deutsch-Jozsa problem can be solved with certainty using only 1 quantum query and $O(n)$ other operations (the original solution of Deutsch and Jozsa used 2 queries, the 1-query solution is from [30]).

In contrast, it is easy to see that any classical deterministic algorithm needs at least $N/2 + 1$ queries: if it has made only $N/2$ queries and seen only 0s, the correct output is still undetermined. However, a classical algorithm can solve this problem efficiently if we allow a small error probability: just query x at two random positions, output “constant” if those bits are the same and “balanced” if they are different. This algorithm outputs the correct answer with probability 1 if x is constant and outputs the correct answer with probability 1/2 if x is balanced. Thus the quantum-classical separation of this problem only holds if we consider algorithms without error probability.
2.4.2 Bernstein-Vazirani

Bernstein-Vazirani problem [18]:

For $N = 2^n$, we are given $x \in \{0, 1\}^N$ with the property that there is some unknown $a \in \{0, 1\}^n$ such that $x_i = (i \cdot a) \mod 2$. The goal is to find a.

The Bernstein-Vazirani algorithm is exactly the same as the Deutsch-Jozsa algorithm, but now the final observation miraculously yields a. Since $(-1)^{x_i} = (-1)^{(i \cdot a) \mod 2}$, we can write the state obtained after the query as:

$$\frac{1}{\sqrt{2^n}} \sum_{i \in \{0, 1\}^n} (-1)^{x_i} |i\rangle = \frac{1}{\sqrt{2^n}} \sum_{i \in \{0, 1\}^n} (-1)^{i \cdot a} |i\rangle.$$

Applying a Hadamard to each qubit will turn this into the classical state $|a\rangle$ and hence solves the problem with 1 query and $O(n)$ other operations. In contrast, any classical algorithm (even a randomized one with small error probability) needs to ask n queries for information-theoretic reasons: the final answer consists of n bits and one classical query gives at most 1 bit of information.

Bernstein and Vazirani also defined a recursive version of this problem, which can be solved exactly by a quantum algorithm in $poly(n)$ steps, but for which any classical randomized algorithm needs $n^{\Omega(\log n)}$ steps.

Exercises

1. Is the controlled-NOT operation C Hermitian? Determine C^{-1}.

2. Show that every unitary one-qubit gate with real entries can be written as a rotation matrix, possibly preceded and followed by Z-gates. In other words, show that for every 2×2 real unitary U, there exist signs $s_1, s_2, s_3 \in \{1, -1\}$ and angle $\theta \in [0, 2\pi]$ such that

$$U = s_1 \begin{pmatrix} 1 & 0 \\ 0 & s_2 \end{pmatrix} \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & s_3 \end{pmatrix}.$$

3. Construct a CNOT from two Hadamard gates and one controlled-Z (the controlled-Z gate maps $|11\rangle \mapsto -|11\rangle$ and acts like the identity on the other basis states).

4. A SWAP-gate interchanges two qubits: it maps basis state $|a, b\rangle$ to $|b, a\rangle$. Implement a SWAP-gate using a few CNOTs.

5. Let U be a 1-qubit unitary that we would like to implement in a controlled way, i.e., we want to implement a map $|c\rangle|b\rangle \mapsto |c\rangle U^c|b\rangle$ for all $c, b \in \{0, 1\}$. Suppose there exist 1-qubit unitaries A, B, and C, such that $ABC = I$ and $AXBXC = U$ (remember that X is the NOT-gate). Give a circuit that acts on two qubits and implements a controlled-U gate, using CNOTs and (uncontrolled) A, B, and C gates.

6. Using an ancilla qubit, it is possible to avoid doing any intermediate measurements in a quantum circuit. Show how this can be done.

 Hint: instead of measuring the qubit, apply a CNOT that “copies” it to a new $|0\rangle$-qubit, which is then left alone until the end of the computation. Analyze what happens.
7. In Section 2.4 we showed that a query of the type $|i, b\rangle \mapsto |i, b \oplus x_i\rangle$ (where $i \in \{0, \ldots, N - 1\}$ and $b \in \{0, 1\}$) can be used to implement a phase-query, i.e., one of the type $|i\rangle \mapsto (-1)^{x_i}|i\rangle$. Is the converse possible: can a query of the first type be implemented using phase-queries, and possibly some ancilla qubits and other gates? If yes, show how. If no, explain why not.

8. Give a randomized classical algorithm (i.e., one that can flip coins during its operation) that makes only two queries to x, and decides the Deutsch-Jozsa problem with success probability at least $2/3$ on every possible input. A high-level description is enough, no need to write out the classical circuit.

9. Suppose our N-bit input x satisfies the following promise:
 either (1) the first $N/2$ bits of x are all 0 and the second $N/2$ bits are all 1; or (2) the number of 1s in the first half of x plus the number of 0s in the second half, equals $N/2$. Modify the Deutsch-Jozsa algorithm to efficiently distinguish these two cases (1) and (2).
Chapter 3

Simon’s Algorithm

The Deutsch-Jozsa problem showed an exponential quantum improvement over the best deterministic classical algorithms; the Bernstein-Vazirani problem shows a polynomial improvement over the best randomized classical algorithms that have error probability $\leq 1/3$. In this chapter we will combine these two features: we will see a problem where quantum computers are exponentially more efficient than bounded-error randomized algorithms.

3.1 The problem

Let $N = 2^n$, and $[N] = \{1, \ldots, N\}$, which we can identify with $\{0, 1\}^n$. Let $j \oplus s$ be the n-bit string obtained by bitwise adding the n-bit strings j and s mod 2.

Simon’s problem [77]:
For $N = 2^n$, we are given $x = (x_1, \ldots, x_N)$, with $x_i \in \{0, 1\}^n$, with the property that there is some unknown non-zero $s \in \{0, 1\}^n$ such that $x_i = x_j$ iff $i = j \oplus s$. The goal is to find s.

Note that x, viewed as a function from $[N]$ to $[N]$ is a 2-to-1 function, where the 2-to-1-ness is determined by the unknown mask s. The queries to the input here are slightly different from before: the input $x = (x_1, \ldots, x_N)$ now has variables x_i that themselves are n-bit strings, and one query gives such a string completely ($|i, 0^n\rangle \rightarrow |i, x_i\rangle$). However, we can also view this problem as having $n2^n$ binary variables that we can query individually. Since we can simulate one x_i-query using only n binary queries (just query all n bits of x_i), this alternative view will not affect the number of queries very much.

3.2 The quantum algorithm

Simon’s algorithm starts out very similar to Deutsch-Jozsa: start in a state of $2n$ zero qubits $|0^n\rangle |0^n\rangle$ and apply Hadamard transforms to the first n qubits, giving

$$\frac{1}{\sqrt{2^n}} \sum_{i \in \{0,1\}^n} |i\rangle |0^n\rangle.$$
At this point, the second n-qubit register still holds only zeroes. A query turns this into

$$\frac{1}{\sqrt{2^n}} \sum_{i \in \{0,1\}^n} |i⟩|x_i⟩.$$

Now the algorithm measures the second n-bit register (this measurement is actually not necessary, but it facilitates analysis). The measurement outcome will be some value x_i and the first register will collapse to the superposition of the two indices having that x_i-value:

$$\frac{1}{\sqrt{2}} (|i⟩ + |i \oplus s⟩)|x_i⟩.$$

We will now ignore the second register and apply Hadamard transforms to the first n qubits. Using Equation 2.1 and the fact that $(i \oplus s) \cdot j = (i \cdot j) \oplus (s \cdot j)$, we can write the resulting state as

$$\frac{1}{\sqrt{2^{n+1}}} \left(\sum_{j \in \{0,1\}^n} (-1)^{i\cdot j} |j⟩ + \sum_{j \in \{0,1\}^n} (-1)^{(i \oplus s) \cdot j} |j⟩ \right) =$$

$$\frac{1}{\sqrt{2^{n+1}}} \left(\sum_{j \in \{0,1\}^n} (-1)^{i\cdot j} (1 + (-1)^{s \cdot j}) |j⟩ \right).$$

Note that $|j⟩$ has non-zero amplitude iff $s \cdot j = 0 \mod 2$. Accordingly, if we measure the final state we get a linear equation that gives information about s. Repeating this algorithm an expected number of $O(n)$ times, we obtain $n - 1$ independent linear equations involving s. The solutions to these equations will be 0^n and the correct s, which we can compute efficiently by a classical algorithm (Gaussian elimination modulo 2). This can be done by means of a classical circuit of size roughly $O(n^3)$.

Simon’s algorithm thus finds s using an expected number of $O(n)$ x_i-queries and polynomially many other operations.

3.3 Classical algorithms for Simon’s problem

3.3.1 Upper bound

Let us first sketch a classical randomized algorithm that solves Simon’s problem using $O(\sqrt{2^n})$ queries, based on the so-called “birthday paradox.” Our algorithm will make T randomly chosen distinct queries i_1, \ldots, i_T, for some T to be determined later. If there is a collision among those queries (i.e., $x_{i_k} = x_{i_\ell}$ for some $k \neq \ell$), then we are done, because then we know $i_k = i_\ell \oplus s$, equivalently $s = i_k \oplus i_\ell$. How large should T be such that we are likely to see a collision in case $s \neq 0^n$? (there won’t be any collisions if $s = 0^n$.) There are $\binom{T}{2} = \frac{T(T-1)}{2} \approx T^2/2$ pairs in our sequence that could be a collision, and since the indices are chosen randomly, the probability for a fixed pair to form a collision is $1/(2^n - 1)$. Hence by linearity of expectation, the expected number of collisions in our sequence will be roughly $T^2/2^{n+1}$. If we choose $T = \sqrt{2^{n+1}}$, we expect to have roughly 1 collision in our sequence, which is good enough to find s. Of course, an expected value of 1 collision does not mean that we will have at least one collision with high probability, but a slightly more involved calculation shows the latter statement as well.
3.3.2 Lower bound

Simon [77] proved that any classical randomized algorithm that finds \(s\) with high probability needs to make \(\Omega(\sqrt{2^n})\) queries, so the above classical algorithm is essentially optimal. This was the first proven exponential separation between quantum algorithms and classical bounded-error algorithms (let us stress again that this does not prove an exponential separation in the usual circuit model, because we are counting queries rather than ordinary operations here). Simon’s algorithm inspired Shor to his factoring algorithm, which we describe in Chapter 5.

We will use prove the classical lower bound for a decision version of Simon’s problem:

Given: input \(x = (x_0, \ldots, x_{N-1})\), where \(N = 2^n\) and \(x_i \in \{0,1\}^n\)

Promise: \(\exists s \in \{0,1\}^n\) such that: \(x_i = x_j\) if \((i = j \text{ or } i = j \oplus s)\)

Task: decide whether \(s = 0^n\)

Consider the input distribution \(\mu\) that is defined as follows. With probability 1/2, \(x\) is a random permutation of \(\{0,1\}^n\); this corresponds to the case \(s = 0^n\). With probability 1/2, we pick a non-zero string \(s\) at random, and for each pair \((i,i \oplus s)\), we pick a unique value for \(x_i = x_{i \oplus s}\) at random. If there exists a randomized \(T\)-query algorithm that achieves success probability \(p\) under this input distribution \(\mu\), then there also is deterministic \(T\)-query algorithm that achieves success probability \(p\) under \(\mu\) (because the behavior of the randomized algorithm is the average over a number of deterministic algorithms). Now consider a deterministic algorithm with error \(\leq 1/3\) under \(\mu\), that makes \(T\) queries to \(x\). We want to show that \(T = \Omega(\sqrt{2^n})\).

First consider the case \(s = 0^n\). We can assume the algorithm never queries the same point twice. Then the \(T\) outcomes of the queries are \(T\) distinct \(n\)-bit strings, and each sequence of \(T\) strings is equally likely.

Now consider the case \(s \neq 0^n\). Suppose the algorithm queries the indices \(i_1, \ldots, i_T\) (this sequence depends on \(x\)) and gets outputs \(x_{i_1}, \ldots, x_{i_T}\). Call a sequence of queries \(i_1, \ldots, i_T\) **good** if it shows a collision (i.e., \(x_{i_k} = x_{i_{\ell}}\) for some \(k \neq \ell\)), and **bad** otherwise. If the sequence of queries of the algorithm is good, then we can find \(s\), since \(i_k \oplus i_{\ell} = s\). On the other hand, if the sequence is bad, then each sequence of \(T\) distinct outcomes is equally likely—just as in the \(s = 0^n\) case! We will now show that the probability of the bad case is very close to 1 for small \(T\).

If \(i_1, \ldots, i_{k-1}\) is bad, then we have excluded \(\binom{k-1}{2}\) values of \(s\), and all other values of \(s\) are equally likely. The probability that the next query \(i_k\) makes the sequence good, is the probability that \(x_{i_k} = x_{i_j}\) for some \(j < k\), equivalently, that the set \(S = \{i_k \oplus i_j \mid j < k\}\) happens to contain the string \(s\). But \(S\) has only \(k - 1\) members, while there are \(2^n - 1 - \binom{k-1}{2}\) equally likely remaining possibilities for \(s\). This means that the probability that the sequence is still bad after query \(i_k\) is made, is very close to 1. In formulas:

\[
\Pr[i_1, \ldots, i_T \text{ is bad}] = \prod_{k=2}^{T} \Pr[i_1, \ldots, i_k \text{ is bad} \mid i_1, \ldots, i_{k-1} \text{ is bad}]
\]

\[
= \prod_{k=2}^{T} \left(1 - \frac{k-1}{2^n - 1 - \binom{k-1}{2}}\right)
\]

\[
\geq 1 - \sum_{k=2}^{T} \frac{k-1}{2^n - 1 - \binom{k-1}{2}}.
\]
Here we used the fact that \((1 - a)(1 - b) \geq 1 - (a + b)\) if \(a, b \geq 0\). Note that \(\sum_{k=2}^{T} k - 1 = T(T - 1)/2 \approx T^2/2\), and \(2^n - 1 - \left(\frac{k-1}{2}\right) \approx 2^n\) as long as \(k \ll \sqrt{2^n}\). Hence we can approximate the last formula by \(1 - T^2/2^{n+1}\). Accordingly, if \(T \ll \sqrt{2^n}\) then with probability nearly 1 (probability taken over the distribution \(\mu\)) the algorithm’s sequence of queries is bad. If it gets a bad sequence, it cannot “see” the difference between the \(s = 0^n\) case and the \(s \neq 0^n\) case, since both cases result in a uniformly random sequence of \(T\) distinct \(n\)-bit strings as answers to the \(T\) queries. This shows that \(T\) has to be \(\Omega(\sqrt{2^n})\) in order to enable the algorithm to get a good sequence of queries with high probability.

Exercises

1. Suppose we run Simon’s algorithm on the following input \(x\) (with \(N = 8\) and hence \(n = 3\)):

 \[
 \begin{align*}
 x_{000} &= x_{111} = 000 \\
 x_{001} &= x_{110} = 001 \\
 x_{010} &= x_{101} = 010 \\
 x_{011} &= x_{100} = 011
 \end{align*}
 \]

 Note that \(x\) is 2-to-1 and \(x_i = x_i \oplus 111\) for all \(i \in \{0, 1\}^3\), so \(s = 111\).

 (a) Give the starting state of Simon’s algorithm.

 (b) Give the state after the first Hadamard transforms on the first 3 qubits.

 (c) Give the state after applying the oracle.

 (d) Give the state after measuring the second register (suppose the measurement gave \(|001\rangle\)).

 (e) Using \(H^\otimes n |i\rangle = \frac{1}{\sqrt{2^n}} \sum_{j \in \{0, 1\}^n} (-1)^{i \cdot j} |j\rangle\), give the state after the final Hadamards.

 (f) Why does a measurement of the first 3 qubits of the final state give information about \(s\)?

 (g) Suppose the first run of the algorithm gives \(j = 011\) and a second run gives \(j = 101\).

 Show that, assuming \(s \neq 000\), those two runs of the algorithm already determine \(s\).

2. (a) Suppose \(x\) is an \(n\)-bit string. What happens if we apply a Hadamard transform to each qubit of the \(n\)-qubit state \(\frac{1}{\sqrt{2^n}} \sum_{y \in \{0, 1\}^n} (-1)^{x \cdot y} |y\rangle\)?

 (b) Give a quantum algorithm that uses \(T\) queries to \(n\)-bit string \(x\), and that maps \(|y\rangle \mapsto (-1)^{x \cdot y} |y\rangle\) for every \(y \in \{0, 1\}^n\) that contains at most \(T\) 1s (i.e., for every \(y\) of Hamming weight \(\leq T\)). You can argue on a high level, no need to write out circuits in detail.

 (c) Give a quantum algorithm that with high probability outputs \(x\), using at most \(n/2 + 2\sqrt{n}\) queries to \(x\). *Hint: Approximate the state of part (a) using the subroutine of part (b), and see what happens if you apply Hadamards to the approximate state. Use the fact that \(\frac{1}{\sqrt{n}} \sum_{w=0}^{n/2+2\sqrt{n}} (\binom{n}{w})\) is nearly 1. This result is by van Dam [31].*
Chapter 4

The Fourier Transform

4.1 The classical discrete Fourier transform

The Fourier transform occurs in many different versions throughout classical computing, in areas ranging from signal-processing to data compression to complexity theory.

For our purposes, the Fourier transform is going to be an $N \times N$ unitary matrix, all of whose entries have the same magnitude. For $N = 2$, it’s just our familiar Hadamard transform:

$$F_2 = H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}.$$

Doing something similar in 3 dimensions is impossible with real numbers: we can’t give three orthogonal vectors in $\{\pm 1\}^3$. However, using complex numbers allows us to define the Fourier transform for any N. Let $\omega_N = e^{2\pi i/N}$ be an N-th root of unity (“root of unity” means that $\omega_N^k = 1$ for some integer k, in this case $k = N$). The rows of the matrix will be indexed by $j \in \{0, \ldots, N-1\}$ and the columns by $k \in \{0, \ldots, N-1\}$. Define the (j,k)-entry of the matrix F_N by $\frac{1}{\sqrt{N}} \omega_N^{jk}$:

$$F_N = \frac{1}{\sqrt{N}} \begin{pmatrix} \cdots & \omega_N^{j0} & \cdots \\ \cdots & \omega_N^{j1} & \cdots \\ \cdots & \omega_N^{j(N-1)} & \cdots \end{pmatrix}.$$

Note that F_N is a unitary matrix, since each column has norm 1, and any two columns (say those indexed by k and k') are orthogonal:

$$\sum_{j=0}^{N-1} \frac{1}{\sqrt{N}} (\omega_N^j)^* \frac{1}{\sqrt{N}} \omega_N^{j'k} = \frac{1}{N} \sum_{j=0}^{N-1} \omega_N^{j(k'-k)} = \begin{cases} 1 & \text{if } k = k' \\ 0 & \text{otherwise} \end{cases}.$$

Since F_N is unitary and symmetric, the inverse $F_N^{-1} = F_N^*$ only differs from F_N by having minus signs in the exponent of the entries. For a vector $v \in \mathbb{R}^N$, the vector $\hat{v} = F_N v$ is called the Fourier transform of v.\(^1\) Doing the matrix-vector multiplication, its entries are given by $\hat{v}_j = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \omega_N^{jk} v_k$.

\(^1\)The literature on Fourier analysis usually talks about the Fourier transform of a function rather than of a vector, but on finite domains that’s just a notational variant of what we do here: a vector $v \in \mathbb{R}^N$ can also be viewed as a function $v : \{0, \ldots, N-1\} \rightarrow \mathbb{R}$ defined by $v(i) = v_i$. Also, in the classical literature people sometimes use the term “Fourier transform” for what we call the inverse Fourier transform.
4.2 The Fast Fourier Transform

The naive way of computing the Fourier transform \(\hat{v} = F_N v \) of \(v \in \mathbb{R}^N \) just does the matrix-vector multiplication to compute all the entries of \(\hat{v} \). This would take \(O(N) \) steps (additions and multiplications) per entry, and \(O(N^2) \) steps to compute the whole vector \(\hat{v} \). However, there is a more efficient way of computing \(\hat{v} \). This algorithm is called the Fast Fourier Transform (FFT, due to Cooley and Tukey in 1965), and takes only \(O(N \log N) \) steps. This difference between the quadratic \(N^2 \) steps and the near-linear \(N \log N \) is tremendously important in practice when \(N \) is large, and is the main reason that Fourier transforms are so widely used.

We will assume \(N = 2^n \), which is usually fine because we can add zeroes to our vector to make its dimension a power of 2 (but similar FFTs can be given also directly for most \(N \) that aren’t a power of 2). The key to the FFT is to rewrite the entries of \(\hat{v} \) as follows:

\[
\hat{v}_j = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \omega_N^{jk} v_k
\]

\[
= \frac{1}{\sqrt{N}} \left(\sum_{\text{even } k} \omega_N^{jk} v_k + \sum_{\text{odd } k} \omega_N^{jk} v_k \right)
\]

\[
= \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{N/2}} \sum_{\text{even } k} \omega_N^{jk/2} v_k + \omega_N^{j} \frac{1}{\sqrt{N/2}} \sum_{\text{odd } k} \omega_N^{j(k-1)/2} v_k \right)
\]

Note that we’ve rewritten the entries of the \(N \)-dimensional Fourier transform \(\hat{v} \) in terms of two \(N/2 \)-dimensional Fourier transforms, one of the even-numbered entries of \(v \), and one of the odd-numbered entries of \(v \).

This suggest a recursive procedure for computing \(\hat{v} \): first separately compute the Fourier transform \(\hat{v} \) of the \(N/2 \)-dimensional vector of even-numbered entries of \(v \) and the Fourier transform \(\hat{v} \) of the \(N/2 \)-dimensional vector of odd-numbered entries of \(v \), and then compute the \(N \) entries

\[
\hat{v}_j = \frac{1}{\sqrt{2}} (\hat{v}_{even,j} + \omega_N^j \hat{v}_{odd,j}).
\]

Strictly speaking this is not well-defined, because \(\hat{v}_{even} \) and \(\hat{v}_{odd} \) are just \(N/2 \)-dimensional vectors. However, if we define \(\hat{v}_{even,j+N/2} = \hat{v}_{even,j} \) (and similarly for \(\hat{v}_{odd} \)) then it all works out.

The time \(T(N) \) it takes to implement \(F_N \) this way can be written recursively as \(T(N) = 2T(N/2) + O(N) \), because we need to compute two \(N/2 \)-dimensional Fourier transforms and do \(O(N) \) additional operations to compute \(\hat{v} \). This recursion works out to time \(T(N) = O(N \log N) \), as promised. Similarly, we have an equally efficient algorithm for the inverse Fourier transform \(F_N^{-1} = F_N^* \), whose entries are \(\frac{1}{\sqrt{N}} \omega_N^{-jk} \).

4.3 Application: multiplying two polynomials

Suppose we are given two real-valued polynomials \(p \) and \(q \), each of degree at most \(d \):

\[
p(x) = \sum_{j=0}^{d} a_j x^j \quad \text{and} \quad q(x) = \sum_{k=0}^{d} b_k x^k
\]
We would like to compute the product of these two polynomials, which is

\[(p \cdot q)(x) = \left(\sum_{j=0}^{d} a_j x^j \right) \left(\sum_{k=0}^{d} b_k x^k \right) = \sum_{\ell=0}^{2d} \left(\sum_{j \in \mathbb{N}} a_j b_{\ell-j} \right) x^\ell,
\]

where implicitly we set \(a_j = b_j = 0\) for \(j > d\) and \(b_{\ell-j} = 0\) if \(j > \ell\). Clearly, each coefficient \(c_\ell\) by itself takes \(O(d)\) steps (additions and multiplications) to compute, which suggests an algorithm for computing the coefficients of \(p \cdot q\) that takes \(O(d^2)\) steps. However, using the fast Fourier transform we can do this in \(O(d \log d)\) steps, as follows.

The convolution of two vectors \(a, b \in \mathbb{R}^N\) is a vector \(a \ast b \in \mathbb{R}^N\) whose \(\ell\)-th entry is defined by \((a \ast b)_\ell = \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} a_j b_{\ell-j \mod N}\). Let us set \(N = 2d + 1\) (the number of nonzero coefficients of \(p \cdot q\)) and make the above \((d+1)\)-dimensional vectors of coefficients \(a\) and \(b\) \(N\)-dimensional by adding 0 zeros. Then the coefficients of the polynomial \(p \cdot q\) are proportional to the entries of the convolution: \(c_\ell = \sqrt{N}(a \ast b)_\ell\). It is easy to show that the Fourier coefficients of the convolution of \(a\) and \(b\) are the products of the Fourier coefficients of \(a\) and \(b\): for every \(\ell \in \{0, \ldots, N-1\}\) we have \((a \ast b)_\ell = \hat{a}_\ell \cdot \hat{b}_\ell\). This immediately suggests an algorithm for computing the vector of coefficients \(c_\ell\):

- apply the FFT to \(a\) and \(b\) to get \(\hat{a}\) and \(\hat{b}\), multiply those two vectors entrywise to get \(\hat{a} \ast \hat{b}\), apply the inverse FFT to get \(a \ast b\), and finally multiply \(a \ast b\) with \(\sqrt{N}\) to get the vector \(c\) of the coefficients of \(p \cdot q\). Since the FFTs and their inverse take \(O(N \log N)\) steps, and pointwise multiplication of two \(N\)-dimensional vectors takes \(O(N)\) steps, this algorithm takes \(O(N \log N) = O(d \log d)\) steps.

Note that if two numbers \(a_0 \cdots a_1 a_0\) and \(b_0 \cdots b_1 b_0\) are given in decimal notation, then we can interpret their digits as coefficients of single-variate degree-\(d\) polynomials \(p\) and \(q\), respectively: \(p(x) = \sum_{j=0}^{d} a_j x^j\) and \(q(x) = \sum_{k=0}^{d} b_k x^k\). The two numbers will now be \(p(10)\) and \(q(10)\). Their product is the evaluation of the product-polynomial \(p \cdot q\) at the point \(x = 10\). This suggests that we can use the above procedure (for fast multiplication of polynomials) to multiply two numbers in \(O(d \log d)\) steps, which would be a lot faster than the standard \(O(d^2)\) algorithm for multiplication that one learns in primary school. However, in this case we have to be careful since the steps of the above algorithm are themselves multiplications between numbers, which we cannot count at unit cost anymore if our goal is to implement a multiplication between numbers! Still, it turns out that implementing this idea carefully allows one to multiply two \(d\)-digit numbers in \(O(d \log d \log \log d)\) elementary operations. This is known as the Schönhage-Strassen algorithm, which is one of the ingredients in Shor’s algorithm (see the next chapter). We’ll skip the details.

4.4 The quantum Fourier transform

Since \(F_\mathbb{N}\) is an \(N \times N\) unitary matrix, we can interpret it as a quantum operation, mapping an \(N\)-dimensional vector of amplitudes to another \(N\)-dimensional vector of amplitudes. This is called the quantum Fourier transform (QFT). In case \(N = 2^n\) (which is the only case we will care about), this will be an \(n\)-qubit unitary. Notice carefully that this quantum operation does something different from the classical Fourier transform: in the classical case we are given a vector \(v\), written on a piece of paper so to say, and we compute the vector \(\hat{v} = F_\mathbb{N} v\), and also write the result on a piece of paper. In the quantum case, we are working on quantum states; these are vectors of amplitudes, but we don’t have those written down anywhere—they only exist as the amplitudes in a superposition.
We will see below that the QFT can be implemented by a quantum circuit using $O(n^2)$ elementary gates. This is exponentially faster than even the FFT (which takes $O(N \log N) = O(2^n n)$ steps), but it achieves something different: computing the QFT won’t give us the entries of the Fourier transform written down on a piece of paper, but only as the amplitudes of the resulting state.

4.5 An efficient quantum circuit

Here we will describe the efficient circuit for the n-qubit QFT. The elementary gates we will allow ourselves are Hadamards and controlled-R_s gates, where

$$R_s = \begin{pmatrix} 1 & 0 \\ 0 & e^{2\pi i / 2^s} \end{pmatrix}.$$

Note that $R_1 = Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $R_2 = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$. For large s, $e^{2\pi i / 2^s}$ is close to 1 and hence the R_s-gate is close to the identity-gate I. We could implement R_s-gates using Hadamards and controlled-$R_{1/2/3}$ gates, but for simplicity we will just treat each R_s as an elementary gate.

Since the QFT is linear, it suffices if our circuit implements it correctly on basis states $|k\rangle$, i.e., it should map

$$|k\rangle \mapsto F_N|k\rangle = \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} \omega_N^{jk} |j\rangle.$$

The key to doing this efficiently is to rewrite $F_N|k\rangle$, which turns out to be a product state (so F_N does not introduce entanglement when applied to a basis state $|k\rangle$). Let $|k\rangle = |k_1 \ldots k_n\rangle$, k_1 being the most significant bit. Note that for integer $j = j_1 \ldots j_n$, we can write $j / 2^n = \sum_{\ell=1}^{n} j_\ell 2^{-\ell}$. For example, binary 0.101 is $1 \cdot 2^{-1} + 0 \cdot 2^{-2} + 1 \cdot 2^{-3} = 5/8$. We have the following sequence of equalities:

$$F_N|k\rangle = \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{2\pi i jk / 2^n} |j\rangle$$

$$= \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{2\pi i (\sum_{\ell=1}^{n} j_\ell 2^{-\ell}) k} |j_1 \ldots j_n\rangle$$

$$= \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} \prod_{\ell=1}^{n} e^{2\pi i j_\ell k / 2^{\ell}} |j_1 \ldots j_n\rangle$$

$$= \bigotimes_{\ell=1}^{n} \frac{1}{\sqrt{2}} \left(|0\rangle + e^{2\pi i k / 2^{\ell}} |1\rangle \right).$$

Note that $e^{2\pi i k / 2^{\ell}} = e^{2\pi i 0. k_{\ell+1} \ldots k_n}$, the $n - \ell$ most significant bits of k don’t matter for this value.

As an example, for $n = 3$ we have the 3-qubit product state

$$F_3|k_1 k_2 k_3\rangle = \frac{1}{\sqrt{2}} (|0\rangle + e^{2\pi i 0. k_3} |1\rangle) \otimes \frac{1}{\sqrt{2}} (|0\rangle + e^{2\pi i 0. k_2 k_3} |1\rangle) \otimes \frac{1}{\sqrt{2}} (|0\rangle + e^{2\pi i 0. k_1 k_2 k_3} |1\rangle).$$

This example suggests what the circuit should be. To prepare the first qubit of the desired state $F_3|k_1 k_2 k_3\rangle$, just apply a Hadamard to $|k_3\rangle$, giving state $\frac{1}{\sqrt{2}} (|0\rangle + (-1)^{k_3} |1\rangle)$ and observe that
\((-1)^{k_3} = e^{2\pi i 0. k_3}\). To prepare the second qubit of the desired state, apply a Hadamard to \(|k_2\rangle\), giving \(\frac{1}{\sqrt{2}}(|0\rangle + e^{2\pi i 0. k_2}|1\rangle)\), and then conditioned on \(k_3\) (before we apply the Hadamard to \(|k_3\rangle\)) apply \(R_2\). This multiplies \(|1\rangle\) with a phase \(e^{2\pi i 0. k_3}\), producing the correct qubit \(\frac{1}{\sqrt{2}}(|0\rangle + e^{2\pi i 0. k_2 k_3}|1\rangle)\). Finally, to prepare the third qubit of the desired state, we apply a Hadamard to \(|k_1\rangle\), apply \(R_2\) conditioned on \(k_2\) and \(R_3\) conditioned on \(k_3\). This produces the correct qubit \(\frac{1}{\sqrt{2}}(|0\rangle + e^{2\pi i 0. k_2 k_3 k_3}|1\rangle)\). We have now produced all three qubits of the desired state \(F_8|k_1 k_2 k_3\rangle\), but in the wrong order: the first qubit should be the third and vice versa. So the final step is just to swap qubits 1 and 3. Figure 4.1 illustrates the circuit in the case \(n = 3\). Here the black circles indicate the control-qubits for each of the controlled-\(R_s\) operations, and the operation at the end of the circuit swaps qubits 1 and 3. The general case works analogously: starting with \(\ell = 1\), we apply a Hadamard to \(|k_\ell\rangle\) and then “rotate in” the additional phases required, conditioned on the values of the later bits \(k_{\ell+1} \ldots k_n\). Some swap gates at the end then put the qubits in the right order.\(^2\)

\[\begin{array}{c|c|c|c} \hline
|k_1\rangle & H & R_2 & R_3 \\
|k_2\rangle & & & \hline \\
|k_3\rangle & \text{H} & R_2 & H \\
\hline
\end{array}\]

Figure 4.1: The circuit for the 3-qubit QFT

Since the circuit involves \(n\) qubits, and at most \(n\) gates are applied to each qubit, the overall circuit uses at most \(n^2\) gates. In fact, many of those gates are phase gates \(R_s\) with \(s \gg \log n\), which are very close to the identity and hence don’t do much anyway. We can actually omit those from the circuit, keeping only \(O(\log n)\) gates per qubit and \(O(n \log n)\) gates overall. Intuitively, the overall error caused by these omissions will be small (Exercise 4 asks you to make this precise). Finally, note that by inverting the circuit (i.e., reversing the order of the gates and taking the adjoint \(U^*\) of each gate \(U\)) we obtain an equally efficient circuit for the inverse Fourier transform \(F_N^{-1} = F_N^*\).

4.6 Application: phase estimation

Suppose we can apply a unitary \(U\) and we are given an eigenvector \(|\psi\rangle\) of \(U\) \((U|\psi\rangle = \lambda|\psi\rangle)\), and we would like to approximate the corresponding eigenvalue \(\lambda\). Since \(U\) is unitary, \(\lambda\) must have magnitude 1, so we can write it as \(\lambda = e^{2\pi i \phi}\) for some real number \(\phi \in [0, 1)\); the only thing that matters is this phase \(\phi\). Suppose for simplicity that we know that \(\phi = 0, \phi_1 \ldots \phi_n\) can be written with \(n\) bits of precision. Then here’s the algorithm for phase estimation:

1. Start with \(|0^n\rangle|\psi\rangle\)

2. For \(N = 2^n\), apply \(F_N\) to the first \(n\) qubits to get \(\frac{1}{\sqrt{2^n}} \sum_{k=0}^{2^n-1} |k\rangle|\psi\rangle\)

 (in fact, \(H^\otimes n \otimes I\) would have the same effect)

\(^2\)Note that we can implement a SWAP-gate using CNOTs; CNOTs can in turn be constructed from Hadamard and controlled-\(R_1\) (= controlled-\(Z\)) gates, which are in the set of elementary gates we allow here.
3. Apply the map \(|k⟩|ψ⟩ \mapsto |k⟩U^k|ψ⟩ = e^{2πiφ_k}|k⟩|ψ⟩\). In other words, apply \(U\) to the second register for a number of times given by the first register.

4. Apply the inverse Fourier transform \(F_N^{-1}\) to the first \(n\) qubits and measure the result.

Note that after step 3, the first \(n\) qubits are in state \(\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{2πiφ_k} |k⟩ = F_N^{|2^nφ}\), hence the inverse Fourier transform is going to give us \(|2^nφ⟩ = |φ_1 \ldots φ_n⟩\) with probability 1.

In case \(φ\) cannot be written exactly with \(n\) bits of precision, one can show that this procedure still (with high probability) spits out a good \(n\)-bit approximation to \(φ\). We’ll omit the calculation.

Exercises

1. For \(ω = e^{2πi/3}\) and \(F_3 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \\ 1 & ω & ω^2 \\ 1 & ω^2 & ω \end{pmatrix}\), calculate \(F_3 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}\) and \(F_3 \begin{pmatrix} 1 \\ ω^2 \\ ω \end{pmatrix}\).

2. Prove that the Fourier coefficients of the convolution of vectors \(a\) and \(b\) are the product of the Fourier coefficients of \(a\) and \(b\). In other words, prove that for every \(a, b \in \mathbb{R}^N\) and every \(ℓ \in \{0, \ldots, N−1\}\) we have \((a * b)_ℓ = \hat{a}_ℓ \cdot \hat{b}_ℓ\). Here the Fourier transform \(\hat{a}\) is defined as the vector \(F_Na\), and the \(ℓ\)-entry of the convolution-vector \(a * b\) is \((a * b)_ℓ = \frac{1}{\sqrt{N}} \sum_{j=0}^{N−1} a_j b_{ℓ−j \text{mod} N}\).

3. The Euclidean distance between two states \(|φ⟩ = \sum_i α_i |i⟩\) and \(|ψ⟩ = \sum_i β_i |i⟩\) is defined as \(∥|φ⟩−|ψ⟩∥ = \sqrt{\sum_i |α_i−β_i|^2}\). Assume the states are unit vectors with (for simplicity) real amplitudes. Suppose the distance is small: \(∥|φ⟩−|ψ⟩∥ = ϵ\). Show that then the probabilities resulting from a measurement on the two states are also close: \(\sum_i |α_i^2−β_i^2| ≤ 2ϵ\).

Hint: use \(|α_i^2−β_i^2| = |α_i−β_i| \cdot |α_i+β_i|\) and the Cauchy-Schwarz inequality.

4. The operator norm of a matrix \(A\) is defined as \(∥A∥ = \max_{\|v\|=1} ∥Av∥\).

The distance between two matrices \(A\) and \(B\) is defined as \(∥A−B∥\).

(a) What is the distance between the \(2 \times 2\) identity matrix and the phase-gate \(\begin{pmatrix} 1 & 0 \\ 0 & e^{iφ} \end{pmatrix}\)?

(b) Suppose we have a product of \(n\)-qubit unitaries \(U = U_TU_{T−1} \cdots U_1\) (for instance, each \(U_j\) could be an elementary gate on a few qubits, tensored with identity on the other qubits). Suppose we drop the \(j\)-th gate from this sequence: \(U' = U_TU_{T−1} \cdots U_{j+1}U_{j−1} \cdots U_1\). Show that \(∥U'−U∥ = ∥I−U_j∥\).

(c) Suppose we also drop the \(k\)-th unitary: \(U'' = U_TU_{T−1} \cdots U_{j+1}U_{j−1} \cdots U_{k+1}U_{k−1} \cdots U_1\). Show that \(∥U''−U∥ ≤ ∥I−U_j∥ + ∥I−U_k∥\).

Hint: use triangle inequality.

(d) Give a quantum circuit with \(O(n \log n)\) elementary gates that has distance less than \(1/n\) from the Fourier transform \(F_{2^n}\). **Hint:** drop all phase-gates with small angles \(φ < 1/n^3\) from the \(O(n^2)\)-gate circuit for \(F_{2^n}\) explained in Section 4.5. Calculate how many gates there are left in the circuit, and analyze the distance between the unitaries corresponding to the new circuit and the original circuit.

5. Suppose \(a ∈ \mathbb{R}^N\) is a vector which is \(r\)-periodic in the following sense: there exists an integer \(r\) such that \(aℓ = 1\) whenever \(ℓ\) is an integer multiple of \(r\), and \(aℓ = 0\) otherwise. Compute the
Fourier transform F_{Na} of this vector, i.e., write down a formula for the entries of the vector F_{Na}. Assuming r divides N and $r \ll N$, what are the entries with largest magnitude in the vector F_{Na}?
Chapter 5

Shor’s Factoring Algorithm

5.1 Factoring

Probably the most important quantum algorithm so far is Shor’s factoring algorithm [76]. It can find a factor of a composite number \(N \) in roughly \((\log N)^2\) steps, which is polynomial in the length \(\log N \) of the input. On the other hand, there is no known classical (deterministic or randomized) algorithm that can factor \(N \) in polynomial time. The best known classical randomized algorithms run in time roughly \(2^{(\log N)^\alpha} \), where \(\alpha = \frac{1}{3} \) for a heuristic upper bound [58] and \(\alpha = \frac{1}{2} \) for a rigorous upper bound [59]. In fact, much of modern cryptography is based on the conjecture that no fast classical factoring algorithm exists [72]. All this cryptography (for example RSA) would be broken if Shor’s algorithm could be physically realized. In terms of complexity classes: factoring (rather, the decision problem equivalent to it) is provably in \textbf{BQP} but is not known to be in \textbf{BPP}. If indeed factoring is not in \textbf{BPP}, then the quantum computer would be the first counterexample to the “strong” Church-Turing thesis, which states that all “reasonable” models of computation are polynomially equivalent (see [37] and [68, p.31,36]).

Shor also gave a similar algorithm for solving the discrete logarithm problem. His algorithm was subsequently generalized to solve the so-called \textit{Abelian hidden subgroup problem} [52, 30, 63]. We will not go into those issues here, and restrict to an explanation of the quantum factoring algorithm.

5.2 Reduction from factoring to period-finding

The crucial observation of Shor was that there is an efficient quantum algorithm for the problem of \textit{period-finding} and that factoring can be reduced to this. We first explain the reduction. Suppose we want to find factors of the composite number \(N > 1 \). Randomly choose some integer \(x \in \{2, \ldots, N-1\} \) which is coprime to \(N \) (if \(x \) is not coprime to \(N \), then the greatest common divisor of \(x \) and \(N \) is a factor of \(N \), so then we are already done). Now consider the sequence

\[1 = x^0 \pmod{N}, x^1 \pmod{N}, x^2 \pmod{N}, \ldots \]

This sequence will cycle after a while: there is a least \(0 < r \leq N \) such that \(x^r = 1 \pmod{N} \). This \(r \) is called the \textit{period} of the sequence. Assuming \(N \) is odd, it can be shown that with probability
the period of the sequence (\(x^r\)). Moreover, as explained in the previous chapter, the quantum Fourier transform can be implemented with very few \(f\)-evaluations, whereas any classical bounded-error algorithm would need to evaluate the function \(\Omega(N^{1/3}/\sqrt{\log N})\) times in order to find the period [27].

How many steps (elementary gates) will the algorithm take? For \(a = N^{O(1)}\), we can compute \(f(a) = x^a \mod N\) in \(O((\log N)^2 \log \log N \log \log \log N)\) steps: compute \(x^2 \mod N, x^4 \mod N, x^8 \mod N, \ldots\) by repeated squaring\(^3\) and take an appropriate product of these to get \(x^a \mod N\). Moreover, as explained in the previous chapter, the quantum Fourier transform can be implemented using \(O((\log N)^2)\) steps. Accordingly, Shor’s algorithm finds a factor of \(N\) using an expected number of \(O(\log \log N)\) \(f\)-evaluations.

\(^1\)Here is a proof for those familiar with basic number theory. Let \(N = p_1^{e_1} \cdots p_k^{e_k}\) be its factorization into odd primes (the exponents \(e_i\) are positive integers). By the Chinese remainder theorem, choosing a uniformly random \(x \mod N\) is equivalent to choosing, independently for all \(i \in \{1, \ldots, k\}\), a uniformly random \(x_i \mod p_i^{e_i}\). Let \(r\) be the period of the sequence \((x^r \mod N)_n\), and \(r_i\) the period of the sequence \((x_i^r \mod p_i)\). It is easy to see that \(r_i\) divides \(r\), so if \(r\) is odd then all \(r_i\) must be odd. The probability that \(r_i\) is odd is \(1/2\), because the group of numbers \(\mod p_i^{e_i}\) is cyclic, so half of its elements are squares. Hence the probability that \(r\) is odd, is at most \(1/2^k\) (in particular, it’s at most \(1/4\) if \(N\) is the product of \(k = 2\) distinct primes). Now condition on the period \(r\) being even. Then \(x^{r/2} \neq 1 \mod N\), for otherwise the period would be at most \(r/2\). If \(x^{r/2} = -1 \mod N\), then \(x^{r/2} = -1 \mod p_i^{e_i}\). The latter won’t happen if \(r_i\) is divisible by 4, which (since we are already conditioning on \(r_i\) being even) happens with probability at least \(1/2\). Hence, conditioning on \(r\) being even, the probability that \(x^{r/2} = -1 \mod N\), is at most \(1/2^{k}\). Hence the probability that \(r\) is odd or \(x^{r/2} = \pm 1 \mod N\), is at most \(2/2^k \leq 1/2\).

\(^2\)The greatest common divisor of two integers \(a\) and \(b\) is the largest positive integer \(c\) that divides both \(a\) and \(b\). If \(\gcd(a, b) = 1\) then \(a\) and \(b\) are called *coprime*. The \(\gcd\) can be computed efficiently (in time roughly linear in the number of bits of \(a\) and \(b\)) on a classical computer by *Euclid’s algorithm*.

\(^3\)Using the Schönhage-Strassen algorithm for fast multiplication [55], see Exercise 1. We could also use the more recent improvement of Fürler [42], which removes most of the \(\log \log N\) factor.
of roughly \((\log N)^2(\log \log N)^2 \log \log \log N\) steps, which is only slightly worse than quadratic in the length of the input.

5.3 Shor’s period-finding algorithm

Now we will show how Shor’s algorithm finds the period \(r\) of the function \(f\), given a “black-box” that maps \(|a\rangle|0^n\rangle \mapsto |a\rangle|f(a)\rangle\). We can always efficiently pick some \(q = 2^\ell\) such that \(N^2 < q \leq 2N^2\). Then we can implement the Fourier transform \(F_q\) using \(O((\log N)^2)\) gates. Let \(O_f\) denote the unitary that maps \(|a\rangle|0^n\rangle \mapsto |a\rangle|f(a)\rangle\), where the first register consists of \(\ell\) qubits, and the second of \(n = \lfloor \log N \rfloor\) qubits.

\[
\frac{1}{\sqrt{q}} \sum_{a=0}^{q-1} |a\rangle|0^n\rangle.
\]

The second register still consists of zeroes. Now use the “black-box” to compute \(f(a)\) in quantum parallel:

\[
\frac{1}{\sqrt{q}} \sum_{a=0}^{q-1} |a\rangle|f(a)\rangle.
\]

Observing the second register gives some value \(f(s)\), with \(s < r\). Let \(m\) be the number of elements of \(\{0, \ldots, q-1\}\) that map to the observed value \(f(s)\). Because \(f(a) = f(s)\) iff \(a = s \mod r\), the \(a\) of the form \(a = jr + s\) \((0 \leq j < m)\) are exactly the \(a\) for which \(f(a) = f(s)\). Thus the first register collapses to a superposition of \(|s\rangle, |r + s\rangle, |2r + s\rangle, \ldots, |q - r + s\rangle\) and the second register collapses to the classical state \(|f(s)\rangle\). We can now ignore the second register, and have in the first:

\[
\frac{1}{\sqrt{m}} \sum_{j=0}^{m-1} |jr + s\rangle.
\]

4 Notice the resemblance of the basic structure (Fourier, \(f\)-evaluation, Fourier) with the basic structure of Simon’s algorithm (Hadamard, query, Hadamard).
Applying the QFT again gives

\[
\frac{1}{\sqrt{m}} \sum_{j=0}^{m-1} \frac{1}{\sqrt{q}} \sum_{b=0}^{q-1} e^{2\pi i \frac{(jb+z)b}{q}} |b\rangle = \frac{1}{\sqrt{mq}} \sum_{b=0}^{q-1} e^{2\pi i \frac{zb}{q}} \left(\sum_{j=0}^{m-1} e^{2\pi i \frac{jb}{q}} \right) |b\rangle.
\]

We want to see which \(|b\rangle\) have large squared amplitudes—those are the \(b\) we are likely to see if we now measure. Using that \(\sum_{j=0}^{m-1} z^j = (1 - z^m)/(1 - z)\) for \(z \neq 1\) (see Appendix B), we compute:

\[
\sum_{j=0}^{m-1} e^{2\pi i \frac{jb}{q}} = \sum_{j=0}^{m-1} \left(e^{2\pi i \frac{zb}{q}} \right)^j = \begin{cases} m & \text{if } e^{2\pi i \frac{zb}{q}} = 1 \\ \frac{1 - e^{2\pi i \frac{zmc}{q}}}{1 - e^{2\pi i \frac{zb}{q}}} & \text{if } e^{2\pi i \frac{zb}{q}} \neq 1 \end{cases}
\]

(5.1)

Easy case: \(r\) divides \(q\). Let us do an easy case first. Suppose \(r\) divides \(q\), so the whole period “fits” an integer number of times in the domain \(\{0, \ldots, q-1\}\) of \(f\), and \(m = q/r\). For the first case of Eq. (5.1), note that \(e^{2\pi i rb/q} = 1\) iff \(rb/q\) is an integer iff \(b\) is a multiple of \(q/r\). Such \(b\) will have squared amplitude equal to \((m/\sqrt{mq})^2 = m/q = 1/r\). Since there are exactly \(r\) such \(b\), together they have all the amplitude. Thus we are left with a superposition where only the \(b\) that are integer multiples of \(q/r\) have non-zero amplitude. Observing this final superposition gives some random multiple \(b = cq/r\), with \(c\) a random number \(0 \leq c < r\). Thus we get a \(b\) such that

\[
\frac{b}{q} = \frac{c}{r},
\]

where \(b\) and \(q\) are known and \(c\) and \(r\) are not. There are \(\phi(r) \in \Omega(r/\log \log r)\) numbers smaller than \(r\) that are coprime to \(r\) [45, Theorem 328], so \(c\) will be coprime to \(r\) with probability \(\Omega(1/\log \log r)\).

Accordingly, an expected number of \(O(\log \log N)\) repetitions of the procedure of this section suffices to obtain a \(b = cq/r\) with \(c\) coprime to \(r\).\(^5\) Once we have such a \(b\), we can obtain \(r\) as the denominator by writing \(b/q\) in lowest terms.

Hard case: \(r\) does not divide \(q\). Because our \(q\) is a power of 2, it is actually quite likely that \(r\) does not divide \(q\). However, the same algorithm will still yield with high probability a \(b\) which is close to a multiple of \(q/r\). Note that \(q/r\) is no longer an integer, and \(m = |q/r|\), possibly +1. All calculations up to and including Eq. (5.1) are still valid. Using \(|1 - e^{i\theta}| = 2|\sin(\theta/2)|\), we can rewrite the absolute value of the second case of Eq. (5.1) to

\[
\frac{|1 - e^{2\pi i \frac{mrb}{q}}|}{|1 - e^{2\pi i \frac{zb}{q}}|} = \frac{|\sin(\pi mrb/q)|}{|\sin(\pi rb/q)|}.
\]

The righthand size is the ratio of two sine-functions of \(b\), where the numerator oscillates much faster than the denominator because of the additional factor of \(m\). Note that the denominator is close to 0 (making the ratio large) iff \(b\) is close to an integer multiple of \(q/r\). For most of those \(b\), the numerator won’t be close to 0. Hence, roughly speaking, the ratio will be small if \(b\) is far from an integer multiple of \(q/r\), and large for most \(b\) that are close to a multiple of \(q/r\). Doing the calculation precisely, one can show that with high probability the measurement yields a \(b\) such that

\[
\left| \frac{b}{q} - \frac{c}{r} \right| \leq \frac{1}{2q}.
\]

\(^5\)The number of required \(f\)-evaluations for period-finding can actually be reduced from \(O(\log \log N)\) to \(O(1)\).
As in the easy case, b and q are known to us while c and r are unknown.

Two distinct fractions, each with denominator $\leq N$, must be at least $1/N > 1/q$ apart. Therefore c/r is the only fraction with denominator $\leq N$ at distance $\leq 1/2q$ from b/q. Applying a classical method called “continued-fraction expansion” to b/q efficiently gives us the fraction with denominator $\leq N$ that is closest to b/q (see the next section). This fraction must be c/r. Again, with good probability c and r will be coprime, in which case writing c/r in lowest terms gives us r.

5.4 Continued fractions

Let $[a_0, a_1, a_2, \ldots]$ (finite or infinite) denote

$$a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \ldots}}$$

This is called a continued fraction (CF). The a_i are the partial quotients. We assume these to be positive natural numbers ([45, p.131] calls such CF “simple”). $[a_0, \ldots, a_n]$ is the nth convergent of the fraction. [45, Theorem 149 & 157] gives a simple way to compute numerator and denominator of the nth convergent from the partial quotients:

If

$$p_0 = a_0, \quad p_1 = a_1a_0 + 1, \quad p_n = a_np_{n-1} + p_{n-2}$$
$$q_0 = 1, \quad q_1 = a_1, \quad q_n = a_nq_{n-1} + q_{n-2}$$

then $[a_0, \ldots, a_n] = \frac{p_n}{q_n}$. Moreover, this fraction is in lowest terms.

Note that q_n increases at least exponentially with n ($q_n \geq 2q_{n-2}$). Given a real number x, the following “algorithm” gives a continued fraction expansion of x [45, p.135]:

$$a_0 := \lfloor x \rfloor, \quad x_1 := 1/(x - a_0)$$
$$a_1 := \lfloor x_1 \rfloor, \quad x_2 := 1/(x - a_1)$$
$$a_2 := \lfloor x_2 \rfloor, \quad x_3 := 1/(x - a_2)$$
$$\ldots$$

Informally, we just take the integer part of the number as the partial quotient and continue with the inverse of the decimal part of the number. The convergents of the CF approximate x as follows [45, Theorem 164 & 171]:

If $x = [a_0, a_1, \ldots]$ then $|x - \frac{p_n}{q_n}| < \frac{1}{q_n^2}$.

Recall that q_n increases exponentially with n, so this convergence is quite fast. Moreover, p_n/q_n provides the best approximation of x among all fractions with denominator $\leq q_n$ [45, Theorem 181]:

If $n > 1$, $q \leq q_n$, $p/q \neq p_n/q_n$, then $|x - \frac{p_n}{q_n}| < |x - \frac{p}{q}|$.

6Consider two fractions $z = x/y$ and $z' = x'/y'$ with $y, y' \leq N$. If $z \neq z'$ then $|xy' - x'y| \geq 1$, and hence $|z - z'| = |(xy' - x'y)/yy'| \geq 1/N^2$.

31
Exercises

1. This exercise is about efficient classical implementation of modular exponentiation.

 (a) Given n-bit numbers x and N (where $n = \lfloor \log_2 N \rfloor$), compute the whole sequence $x^0 \mod N, x^1 \mod N, x^2 \mod N, x^4 \mod N, x^8 \mod N, x^{16} \mod N, \ldots, x^{2^{n-1}} \mod N$, using $O(n^2 \log(n) \log \log(n))$ steps.
 \textit{Hint: The Schönhage-Strassen algorithm computes the product of two n-bit integers mod N, in $O(n \log(n) \log \log(n))$ steps.}

 (b) Suppose n-bit number a can be written as $a = a_{n-1} \ldots a_1 a_0$ in binary. Express $x^a \mod N$ as a product of the numbers computed in part (a).

 (c) Show that you can compute $f(a) = x^a \mod N$ in $O(n^2 \log(n) \log \log(n))$ steps.

2. Use Shor’s algorithm to find the period of the function $f(a) = 7^a \mod 10$, using a Fourier transform over $q = 128$ elements. Write down all intermediate superpositions of the algorithm. You may assume you’re lucky, meaning the first run of the algorithm already gives a $b = cq/r$ where c is coprime with r.

3. This exercise explains RSA encryption. Suppose Alice wants to allow other people to send encrypted messages to her, such that she is the only one who can decrypt them. She believes that factoring an n-bit number can’t be done efficiently (efficient = in time polynomial in n). So in particular, she doesn’t believe in quantum computing.

 Alice chooses two large random prime numbers, p and q, and computes their product $N = p \cdot q$ (a typical size is to have N a number of $n = 1024$ bits, which corresponds to both p and q being numbers of roughly 512 bits). She computes the so-called Euler function: \[
\phi(N) = (p - 1)(q - 1);\]
 she also chooses an encryption exponent e, which doesn’t share any nontrivial factor with $\phi(N)$ (i.e., e and $\phi(N)$ are coprime). Group theory guarantees there is an efficiently computable decryption exponent d such that $de = 1 \mod \phi(N)$. The public key consists of e and N (Alice puts this on her homepage), while the secret key consists of d and N. Any number $m \in \{1, \ldots, N - 1\}$ that is coprime to N, can be used as a message. There are $\phi(N)$ such m, and these numbers form a group under the operation of multiplication mod N. The number of bits $n = \lfloor \log_2 N \rfloor$ of N is the maximal length (in bits) of a message m and also the length (in bits) of the encryption. The encryption function is defined as $C(m) = m^e \mod N$, and the decryption function is $D(c) = c^d \mod N$.

 (a) Give a randomized algorithm by which Alice can efficiently generate the secret and public key.
 \textit{Hint: the prime number theorem implies that roughly $1/\log N$ of the numbers between 1 and N are prime; also there is an efficient algorithm to test if a given number is prime. Be explicit in how many bits your primes p and q will have.}

 (b) Show that Bob can efficiently compute the encoding $C(m)$ of the message m that he wants to send to Alice, knowing the public key but not the private key.
 \textit{Hint: exercise 1}

 (c) Show that $D(C(m)) = m$ for all possible messages.
 \textit{Hint: the set of all possible messages forms a group of size $\phi(N)$. Euler’s Theorem says that in any group G, we have $a^{|G|} = 1$ for all $a \in G$ (here ‘1’ is the identity element in the group).}

 (d) Show that Alice can efficiently and correctly decrypt the encryption $C(m)$ that she receives from Bob.

 (e) Show that if Charlie could factor N, then he could efficiently decrypt Bob’s message.
Chapter 6

Grover’s Search Algorithm

The second-most important quantum algorithm after Shor’s, is Grover’s quantum search problem from 1996 [44]. While it doesn’t provide an exponential speed-up, it is much more widely applicable than Shor’s algorithm.

6.1 The problem

The search problem:
For $N = 2^n$, we are given an arbitrary $x \in \{0, 1\}^N$. The goal is to find an i such that $x_i = 1$ (and to output ‘no solutions’ if there are no such i).

This problem may be viewed as a simplification of the problem of searching an N-slot unordered database. Classically, a randomized algorithm would need $\Theta(N)$ queries to solve the search problem. Grover’s algorithm solves it in $O(\sqrt{N})$ queries, and $O(\sqrt{N} \log N)$ other gates.

6.2 Grover’s algorithm

Let $O_{x, \pm} |i\rangle = (-1)^{x_i} |i\rangle$ denote the \pm-type oracle for the input x, and O_G be the unitary transformation that puts a -1 in front of $|0^n\rangle$ and does nothing to the other basis states. The Grover iterate is $G = -H^\otimes n O_G H^\otimes n O_{x, \pm}$. Note that 1 Grover iterate corresponds to 1 query.

Grover’s algorithm starts in the n-bit state $|0^n\rangle$, applies a Hadamard transformation to each qubit to get the uniform superposition $|U\rangle = \frac{1}{\sqrt{N}} \sum_i |i\rangle$ of all N indices, applies G to this state k times (for some k to be chosen later), and then measures the final state. Intuitively, what happens is that in each iteration some amplitude is moved from the indices of the 0-bits to the indices of the 1-bits. The algorithm stops when almost all of the amplitude is on the 1-bits, in which case a measurement of the final state will probably give the index of a 1-bit. Figure 6.1 illustrates this.

To analyze this, define the following “good” and “bad” states:

$$|G\rangle = \frac{1}{\sqrt{t}} \sum_{i: x_i = 1} |i\rangle \quad \text{and} \quad |B\rangle = \frac{1}{\sqrt{N-t}} \sum_{i: x_i \neq 0} |i\rangle.$$
Then the uniform state over all indices edges can be written as

\[|U \rangle = \frac{1}{\sqrt{N}} \sum_{i=0}^{N-1} |i\rangle = \sin(\theta)|G\rangle + \cos(\theta)|B\rangle, \quad \text{for} \; \theta = \arcsin\left(\sqrt{\frac{t}{N}}\right). \]

The Grover iterate \(G \) is actually the product of two reflections:\(^\text{1}\) \(O_{x,\pm} \) is a reflection through \(|B\rangle \), and

\[-H^{\otimes n}O_GH^{\otimes n} = H^{\otimes n}(2|0^n\rangle\langle 0^n| - I)H^{\otimes n} = 2|U\rangle\langle U| - I\]

is a reflection through \(|U\rangle \). Here is Grover’s algorithm restated, assuming we know the fraction of solutions is \(\varepsilon = t/N \):

1. Setup the starting state \(|U\rangle = H^{\otimes n}|0\rangle \)
2. Repeat the following \(k = O(1/\sqrt{\varepsilon}) \) times:
 a. Reflect through \(|B\rangle \) (i.e., apply \(O_{x,\pm} \))
 b. Reflect through \(|U\rangle \) (i.e., apply \(-H^{\otimes n}O_GH^{\otimes n}\))
3. Measure the first register and check that the resulting \(i \) is a solution

Geometric argument: There is a fairly simple geometric argument why the algorithm works. The analysis is in the 2-dimensional real plane spanned by \(|B\rangle \) and \(|G\rangle \). We start with

\[|U\rangle = \sin(\theta)|G\rangle + \cos(\theta)|B\rangle. \]

The two reflections (a) and (b) increase the angle from \(\theta \) to \(3\theta \), moving us towards the good state, as illustrated in Figure 6.2.

The next two reflections (a) and (b) increase the angle with another \(2\theta \), etc. More generally, after \(k \) applications of (a) and (b) our state has become

\[\sin((2k + 1)\theta)|G\rangle + \cos((2k + 1)\theta)|B\rangle. \]

\(^{1}\)A reflection through a subspace \(V \) is a unitary \(A \) such that \(Av = v \) for all vectors \(v \in V \), and \(Aw = -w \) for all \(w \) orthogonal to \(V \). In the case of Grover, the subspace \(V \) will be 1-dimensional, corresponding to \(|B\rangle \) and to \(|U\rangle \), respectively.
If we now measure, the probability of seeing a solution is $P_k = \sin((2k+1)\theta)^2$. We want P_k to be as close to 1 as possible. Note that if we can choose $\hat{k} = \pi/4\theta - 1/2$, then $(2\hat{k} + 1)\theta = \pi/2$ and hence $P_{\hat{k}} = \sin(\pi/2)^2 = 1$. An example where this works is if $t = N/4$, for then $\theta = \pi/6$ and $\hat{k} = 1$.

Unfortunately, \hat{k} will usually not be an integer. However, if we choose k to be the integer closest to $\hat{k} = \pi/4\theta - 1/2$, then the failure probability will still be small (using $|k - \hat{k}| \leq 1/2$ and assuming $t \leq N/2$):

$$P_k = \sin((2k + 1)\theta)^2 \approx \sin((2\hat{k} + 1)\theta)^2 = (\sin(\theta))^2 = \frac{t}{N}.$$

Since $\arcsin \theta \geq \theta$, the number of queries is $k \leq \pi/4\theta \leq \frac{\pi}{4} \sqrt{\frac{N}{t}}$.

Algebraic argument: For those who don’t like geometry, here’s an alternative (but equivalent) algebraic argument. Let a_k denote the amplitude of the indices of the t 1-bits after k Grover iterates, and b_k the amplitude of the indices of the 0-bits. Initially, for the uniform superposition $|U\rangle$ we have $a_0 = b_0 = 1/\sqrt{N}$. Using that $-H^\otimes nO_GH^\otimes n = [2/N] - I$, where $[2/N]$ is the matrix in which all entries are $2/N$, we find the following recursion:

$$a_{k+1} = \frac{N - 2t}{N} a_k + \frac{2(N-t)}{N} b_k$$
$$b_{k+1} = -\frac{2t}{N} a_k + \frac{N - 2t}{N} b_k$$

The following formulas, due to Boyer et al. [19], provide a closed form for a_k and b_k (which may be verified by substituting them into the recursion).

$$a_k = \frac{1}{\sqrt{t}} \sin((2k + 1)\theta)$$
$$b_k = \frac{1}{\sqrt{N-t}} \cos((2k + 1)\theta)$$

where $\theta = \arcsin(\sqrt{t/N})$.

Accordingly, after k iterations the success probability (the sum of squares of the amplitudes of the locations of the t 1-bits) is the same as in the geometric analysis

$$P_k = t \cdot a_k^2 = (\sin((2k + 1)\theta))^2.$$
Now we have a bounded-error quantum search algorithm with $O(\sqrt{N/t})$ queries, assuming we know t. In fact, if we know t then the algorithm can be tweaked to end up in exactly the good state. Roughly speaking, you can make the angle θ slightly smaller, such that $k = \pi/4\theta - 1/2$ becomes an integer. We will skip the details.

If we do not know t, then there is a problem: we do not know which k to use, so we do not know when to stop doing the Grover iterates. Note that if k gets too big, the success probability $P_k = (\sin((2k + 1)\theta))^2$ goes down again! However, a slightly more complicated algorithm due to [19] (basically running the above algorithm with systematic different guesses for k) shows that an expected number of $O(\sqrt{N/t})$ queries still suffice to find a solution if there are t solutions. If there is no solution ($t = 0$) we can easily detect that by checking x_i for the i that the algorithm outputs.

6.3 Amplitude amplification

The analysis that worked for Grover’s algorithm is actually much more generally applicable (we will also see it again in the next chapter). Let $\chi : \mathbb{Z} \to \{0, 1\}$ be any Boolean function; inputs $z \in \mathbb{Z}$ satisfying $\chi(z) = 1$ are called solutions. Suppose we have an algorithm to check whether z is a solution. This can be written as a unitary O_χ that maps $|z\rangle \mapsto (-1)^{\chi(z)}|z\rangle$. Suppose also we have some (quantum or classical) algorithm A that uses no intermediate measurements and has probability p of finding a solution when applied to starting state $|0\rangle$. Classically, we would have to repeat A roughly $1/p$ times before we find a solution. The amplitude amplification algorithm below only needs to run A $O(1/\sqrt{p})$ times:

1. Setup the starting state $|U\rangle = A|0\rangle$
2. Repeat the following $O(1/\sqrt{p})$ times:
 (a) Reflect through $|B\rangle$ (i.e., apply O_χ)
 (b) Reflect through $|U\rangle$ (i.e., apply $-AO_GA^*$)
3. Measure the first register and check that the resulting vertex x is marked.

Defining $\theta = \arcsin(\sqrt{p})$ and good and bad states $|G\rangle$ and $|B\rangle$ in analogy with the earlier geometric argument for Grover’s algorithm, the same reasoning shows that amplitude amplification indeed finds a solution with high probability. This way, we can speed up a very large class of classical heuristic algorithms: any algorithm that has some non-trivial probability of finding a solution can be amplified to success probability nearly 1 (provided we can efficiently check solutions, i.e., implement O_χ).

Note that the Hadamard transform $H^\otimes n$ can be viewed as an algorithm with success probability $p = t/N$, because $H^\otimes n|0^n\rangle$ is the uniform superposition over all N locations. Hence Grover’s algorithm is a special case of amplitude amplification, where $O_\chi = O_x$ and $A = H^\otimes n$.

6.4 Application: satisfiability

Grover’s algorithm has many applications: basically any classical algorithm that has some search-component can be improved using Grover’s algorithm as a subroutine. This includes many basic computer applications such as finding shortest paths and minimum spanning trees, graph algorithms, etc.
We can also use it to speed up the computation of \(\text{NP} \)-complete problems, albeit only quadratically, not exponentially. As an example, consider the satisfiability problem: we are given a Boolean formula \(\phi(i_1, \ldots, i_n) \) and want to know if it has a satisfying assignment, i.e., a setting of the bits \(i_1, \ldots, i_n \) that makes \(\phi(i_1, \ldots, i_n) = 1 \). A classical brute-force search along all \(2^n \) possible assignments takes time roughly \(2^n \).

To find a satisfying assignment faster, define the \(N = 2^n \)-bit input to Grover’s algorithm by \(x_i = \phi(i) \), where \(i \in \{0,1\}^n \). For a given \(i = i_1 \ldots i_n \) it is easy to compute \(\phi(i) \) classically in polynomial time. We can write that computation as a reversible circuit (using only Toffoli gates), corresponding to a unitary \(U_\phi \) that maps \(|i,0,0⟩ \rightarrow |i,\phi(i),w_i⟩ \), where the third register holds some classical workspace the computation may have needed. To apply Grover we need an oracle that puts the answer in the phase and doesn’t leave workspace around (as that would mess up the interference effects). Define \(O_x \) as the unitary that first applies \(U_\phi \), then applies a Z-gate to the second register, and then applies \(U_\phi \) to “clean up” the workspace again. This has the form we need for Grover: \(O_{x,±}|i⟩ = (-1)^{x_i}|i⟩ \). Now we can run Grover and find a satisfying assignment with high probability if there is one, using a number of elementary operations that is \(\sqrt{2^N} \) times some polynomial factor.

Exercises

1. (a) Suppose \(n = 2 \), and \(x = x_{00}x_{01}x_{10}x_{11} = 0001 \). Give the initial, intermediate, and final superpositions in Grover’s algorithm, for \(k = 1 \) queries. What is the success probability?

 (b) Give the final superposition for the above \(x \) after \(k = 2 \) iterations. What is now the success probability?

2. Show that if the number of solutions is \(t = N/4 \), then Grover’s algorithm always finds a solution with certainty after just one query. How many queries would a classical algorithm need to find a solution with certainty if \(t = N/4 \)? And if we allow the classical algorithm error probability \(1/10 \)?

3. Let \(x = x_0 \ldots x_{N-1} \) be a sequence of distinct integers, where \(N = 2^n \). We can query these in the usual way, i.e., we can apply unitary \(O_x : |i,0⟩ \rightarrow |i,x_i⟩ \), as well as its inverse. The minimum of \(x \) is defined as \(\min \{x_i \mid i \in \{0, \ldots, N-1\} \} \). Give a quantum algorithm that finds (with probability \(\geq 2/3 \)) an index achieving the minimum, using at most \(O(\sqrt{N} \log N) \) queries to the input.

 Hint: start with \(m = x_i \) for a random \(i \), and repeatedly use Grover’s algorithm to find an index \(j \) such that \(x_j < m \) and update \(m = x_j \). Continue this until you can find no element smaller than \(m \), and analyze the number of queries of this algorithm. You are allowed to argue about this algorithm on a high level (i.e., things like “use Grover to search for a \(j \) such that...” are OK), no need to write out complete circuits.

 Bonus: give a quantum algorithm that uses \(O(\sqrt{N}) \) queries.

4. Let \(x = x_0 \ldots x_{N-1} \), where \(N = 2^n \) and \(x_i \in \{0,1\}^n \), be an input that we can query in the usual way. We are promised that this input is 2-to-1: for each \(i \) there is exactly one other \(j \) such that \(x_i = x_j \).

 \(^2\)Such an \((i,j) \)-pair is called a collision.

\(^2\)The 2-to-1 inputs for Simon’s algorithm are a very special case of this, where \(x_i \) equals \(x_j \) if \(i = j \oplus s \) for fixed but unknown \(s \in \{0,1\}^n \).
(a) Suppose S is a randomly chosen set of s elements of $\{0, \ldots, N-1\}$. What is the probability that there exists a collision in S?

(b) Give a classical randomized algorithm that finds a collision (with probability $\geq 2/3$) using $O(\sqrt{N})$ queries to x. Hint: What is the above probability if $s = 2\sqrt{N}$?

(c) Give a quantum algorithm that finds a collision (with probability $\geq 2/3$) using $O(N^{1/3})$ queries. Hint: Choose a set S of size $s = N^{1/3}$, and classically query all its elements. First check if S contains a collision. If yes, you’re done. If not, use Grover to find a $j \not\in S$ that collides with an $i \in S$. This algorithm is due to [21].

5. Suppose we have a database with $N = 2^n$ binary slots, containing t ones (solutions) and $N-t$ zeroes.

(a) Show that we can use Grover’s algorithm to find the positions of all t ones, using an expected number of $O(t\sqrt{N})$ queries to the database. You can argue on a high level, no need to draw actual quantum circuits.

(b) Show that this can be improved to an expected number of $O(\sqrt{tN})$ queries.

 Hint: Recall that if there are i solutions, Grover’s algorithm finds a solution using an expected number of $O(\sqrt{N/i})$ queries.
Chapter 7

Quantum Walk Algorithms

7.1 Classical random walks

Consider an undirected graph G with N vertices. Suppose at least an ε-fraction of the vertices are “marked”, and we would like to find a marked vertex. One way to do this is with a random walk:

- Start at some specific vertex y of the graph.
- Repeat the following a number of times: Check if y is marked, and if not then choose one of its neighbors at random and set y to be that neighbor.

This may seem like a stupid algorithm, but it has certain advantages. For instance, it only needs space $O(\log N)$, because you only need to keep track of the current vertex y, and maybe a counter that keeps track of how many steps you’ve already taken.\(^1\) Such an algorithm can for example decide whether there is a path from a specific vertex y to a specific vertex x using $O(\log N)$ space. We’d start the walk at y and only x would be marked; one can show that if there exists a path from y to x in G, then we’ll reach x in $\text{poly}(N)$ steps.

Let us restrict attention to d-regular graphs without self-loops, so each vertex has exactly d neighbors. Also assume the graph is connected. A random walk on such a graph corresponds to an $N \times N$ symmetric matrix P, where $P_{x,y} = 1/d$ if (x,y) is an edge in G, and $P_{x,y} = 0$ otherwise. If $v \in \mathbb{R}^N$ is a vector with a 1 at position y and 0s elsewhere, then Pv is a vector whose xth entry is $(Pv)_x = 1/d$ if (x,y) is an edge, and $(Pv)_x = 0$ otherwise. In other words, Pv is the uniform probability distribution over the neighbors of y, which is what you get by taking one step of the random walk starting at y. More generally, if v is a probability distribution on the vertices, then Pv is the new probability distribution on vertices after taking one step of the random walk, and $P^k v$ is the probability distribution after taking k steps.

Suppose we start with some probability-distribution vector v (which may or may not be concentrated at one vertex y). Then $P^k v$ will converge to the uniform distribution over all vertices, and the speed of convergence is determined by the difference between the first and second-largest eigenvalues of P. This can be seen as follows. Let $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_N$ be the eigenvalues of P, ordered by size, and v_1, \ldots, v_N be corresponding orthogonal eigenvectors. First, the largest eigenvalue is $\lambda_1 = 1$, and corresponds to the eigenvector $v_1 = u = (1/N)$ which is the uniform distribution over all vertices. Second, all other eigenvalues λ_i will be in $(-1,1)$ and the corresponding normalized

\(^1\)Here we’re assuming the neighbors of any one vertex are efficiently computable, so you don’t actually need to keep the whole graph in memory. This will be true for all graphs we consider here.
eigenvector v_i will be orthogonal to u (hence the sum of the entries of v_i is 0). Let δ be the difference between $\lambda_1 = 1$ and $\max_{i \geq 2} |\lambda_i|$ (this δ is known as the “spectral gap”). Then $|\lambda_i| \leq 1 - \delta$ for all $i \geq 2$. Now decompose the starting distribution v as $v = \sum \alpha_i v_i$. Since the sum of v’s entries is 1, and the sum of v_1’s entries is 1, while each other eigenvector v_i has entries summing to 0, it follows that $\alpha_1 = 1$. Now let us see what happens if we apply the random walk for k steps, starting from v:

$$P^k v = P^k \left(\sum \alpha_i v_i \right) = \sum \alpha_i \lambda_i^k v_i = u + \sum_{i \geq 2} \alpha_i \lambda_i^k v_i.$$

Consider the squared norm of the difference between $P^k v$ and u:

$$\|P^k v - u\|^2 = \sum_{i \geq 2} \alpha_i^2 |\lambda_i|^{2k} \leq \|v\|^2 (1 - \delta)^{2k}.$$

Since v is a probability distribution we have $\|v\|^2 \leq 1$. Choosing $k = \ln(1/\eta)/\delta$ we get $\|P^k v - u\| \leq \eta$. In particular, if δ is not too small, then we get quick convergence of the random walk to the uniform distribution u, no matter which distribution v we started with.\footnote{Convergence in total variation distance can be derived from this by Cauchy-Schwarz, choosing $\eta \ll 1/\sqrt{N}$.}

Suppose it costs S to set up an initial state v, it costs U to perform one step of the random walk, and it costs C to check whether a given vertex is marked. “Cost” is left undefined for now, but typically it will count number of queries to some input, or number of elementary operations. Consider a classical search algorithm that starts at v, and then repeats the following until it finds a marked vertex: check if the current vertex is marked, and if not run a random walk for roughly $1/\delta$ steps to get close to the uniform distribution. Ignoring constant factors, the expected cost before this procedure finds a marked item, is on the order of

$$S + \frac{1}{\varepsilon} \left(C + \frac{1}{\delta} U \right).$$

7.2 Quantum walks

We will now modify the classical random walk algorithm preceding Eq. (7.1) to a quantum algorithm, where the distribution-preserving matrix P is changed to a norm-preserving matrix $W(P)$ (i.e., a unitary). Our presentation is mostly based on Santha’s survey paper [73], to which we refer for more details and references. While the basis state of a classical random walk is the current vertex we are at, a basis state of a quantum walk has two registers, the first corresponding to the current vertex and the second correspond to the previous vertex. Equivalently, a basis state of a quantum walk corresponds to an edge of the graph.

Our resulting quantum walk algorithm for search will actually be quite analogous to Grover’s algorithm. We’ll call a basis state $|x \rangle |y \rangle$ “good” if x is a marked vertex, and “bad” otherwise. Define $|p_x \rangle = \sum_y \sqrt{P_{xy}} |y \rangle$ to be the uniform superposition over the neighbors of x. As for Grover,
define “good” and “bad” states as the superpositions over good and bad basis states:

\[|G\rangle = \frac{1}{\sqrt{|M|}} \sum_{x \in M} |x\rangle |p_x\rangle \quad \text{and} \quad |B\rangle = \frac{1}{\sqrt{N - |M|}} \sum_{x \not\in M} |x\rangle |p_x\rangle , \]

where \(M \) denotes the set of marked vertices. Note that \(|G\rangle\) is just the uniform superposition over all edges \((x, y)\) where the first coordinate is marked, and \(|B\rangle\) is just the uniform superposition over all edges \((x, y)\) where the first coordinate is not marked.

If \(\varepsilon = |M|/N \) and \(\theta := \arcsin(\sqrt{\varepsilon}) \) then the uniform state over all edges can be written as

\[|U\rangle = \frac{1}{\sqrt{N}} \sum_{x} |x\rangle |p_x\rangle = \sin(\theta) |G\rangle + \cos(\theta) |B\rangle . \]

Here is the algorithm for searching a marked vertex if an \(\varepsilon \)-fraction is marked:

1. Setup the starting state \(|U\rangle\)
2. Repeat the following \(O(1/\sqrt{\varepsilon})\) times:
 (a) Reflect through \(|B\rangle\)
 (b) Reflect through \(|U\rangle\)
3. Measure the first register and check that the resulting vertex \(x\) is marked.

We’ll explain in a moment how to implement (a) and (b). Assuming we know how to do that, the proof that this algorithm finds a marked vertex is the same as for Grover. We start with

\[|U\rangle = \sin(\theta) |G\rangle + \cos(\theta) |B\rangle . \]

Choosing \(k \approx \frac{\pi}{4\theta} = O(1/\sqrt{\varepsilon}) \), we will have \(\sin((2k + 1)\theta) \approx 1 \), at which point measuring will probably yield a marked vertex \(x\).

(a) Reflect through \(|B\rangle\). Reflecting through \(|B\rangle\) is relatively straightforward: we just have to “recognize” whether the first register contains a marked \(x\), and put a \(-1\) if so.

(b) Reflect through \(|U\rangle\). This is where the quantum walk comes in. Let \(\mathcal{A} \) be the subspace span\{\(|x\rangle|p_x\rangle\}\} and \(\mathcal{B} \) be span\{\(|p_y\rangle|y\rangle\}\}. Let \(\text{ref}(\mathcal{A}) \) denote the unitary which is a reflection through \(\mathcal{A} \) (i.e., \(\text{ref}(\mathcal{A})v = v \) for all vectors \(v \in \mathcal{A} \), and \(\text{ref}(\mathcal{A})w = -w \) for all vectors \(w \) orthogonal to \(\mathcal{A} \)) and similarly define \(\text{ref}(\mathcal{B}) \). Define \(W(P) = \text{ref}(\mathcal{B})\text{ref}(\mathcal{A}) \) to be the product of these two reflections. This is the unitary analogue of \(P \), and may be called “one step of a quantum walk.” It’s somewhat hard to quickly get a good intuition for this, and we won’t try this here.

To do the reflection through \(|U\rangle\), we want to construct a unitary \(R(P) \) that maps \(|U\rangle \mapsto |U\rangle\) and \(|\psi\rangle \mapsto -|\psi\rangle\) for all \(|\psi\rangle\) that are orthogonal to \(|U\rangle\) (and that are in the span of the eigenvectors of

\footnote{As in Grover, if we don’t know \(\varepsilon \) then we just run the algorithm repeatedly with exponentially decreasing guesses for \(\varepsilon (1/2, 1/4, 1/8, \ldots) \). If at the end we still haven’t found a marked item, we’ll conclude that probably none exists.}
W(P)). We will do that by means of phase estimation on W(P) (see Section 4.6). The eigenvalues of W(P) can be related to the eigenvalues of P as follows. Let λ₁ = cos(θ₁), λ₂ = cos(θ₂), … be the eigenvalues of P. It turns out that the eigenvalues of W(P) are of the form e ±2iθj. W(P) has one eigenvalue-1 eigenvector, which is |U⟩, corresponding to θ₁ = 0. The spectral gap of P is δ, so all other eigenvectors of W(P) correspond to an eigenvalue e ±2iθj where |θj| ≥ √2δ in absolute value (because 1 − δ ≥ |λj| = |cos(θj)| ≥ 1 − θ2 j/2). The procedure R(P) will add a second auxiliary register (initially |0⟩) and do phase estimation with precision √ δ/2 to detect the unique eigenvalue-1 eigenvector |U⟩. This requires O(1/√ δ) applications of W(P). Let us analyze this on some eigenvector |w⟩ of W(P), with corresponding eigenvalue e ±2iθj. Assume for simplicity that phase estimation gives (in the auxiliary second register) an estimate ˜θj of θj that is within precision √ δ/2. Because the non-zero |θj| are at least √2δ, approximating within √ δ/2 is good enough to determine whether the correct value θj itself is 0 or not. If θj ̸= 0, then R(P) puts a minus in front of the state. Finally, it reverses the phase estimation to set the auxiliary second register back to |0⟩.

In formulas, R(P) maps

|w⟩|0⟩ → PE |w⟩| ˜θj⟩ → (−1) [θj̸=0] |w⟩| ˜θj⟩ → PE −1 (−1) [θj̸=0] |w⟩|0⟩.

This has the desired effect: R(P) maps |U⟩ → |U⟩, and |ψ⟩ → −|ψ⟩ for all |ψ⟩ orthogonal to |U⟩.

Now that we know how to implement the algorithm, let us look at its complexity. Consider the following setup, update, and checking costs:

- Setup cost S: the cost of constructing |U⟩
- Update cost U: the cost of realizing the following two maps and their inverse:
 1. |x⟩|0⟩ → |x⟩|px⟩
 2. |0⟩|y⟩ → |p⟩|y⟩
- Checking cost C: the cost of the unitary map |x⟩|y⟩ → mx|x⟩|y⟩, where mx = −1 if x is marked, and mx = 1 otherwise

Note that ref(A) can be implemented by applying the inverse of (1), putting a minus if the second register is not |0⟩, and applying (1). We can similarly implement ref(B) using (2). Since R(P) takes O(1/√ δ) applications of W(P) = ref(B)ref(A), the cost of part (b) of the algorithm is O(U/√ δ). The cost of part (a) of the algorithm is C. Ignoring constant factors, the total cost of the algorithm is then

S + \frac{1}{\sqrt ε} \left(C + \frac{1}{\sqrt δ} U \right). \quad (7.2)

Compare this with the classical cost of Eq. (7.1): quantum search square-roots both ε and δ.

7.3 Applications

There are a number of interesting quantum walk algorithms that beat the best classical algorithms. We’ll give three examples here. More can be found in [73].

4Phase estimation will actually have some error probability (˜θj will be a bad estimate with small but non-zero probability), but we’ll skip the technical details that are needed to deal with this.
7.3.1 Grover search

Let us first derive a quantum algorithm for search. Suppose we have an N-bit string x of weight t, and we know $t/N \geq \varepsilon$. Consider the complete graph G on N vertices. Then the matrix P for the random walk on G has 0s on its diagonal, and its off-diagonal entries are all equal to $1/(N-1)$. This can be written as $P = \frac{1}{N-1}J - \frac{1}{N}I$, where J is the all-1 matrix and I is the identity. It is easy to see that $\lambda_1 = N/(N-1) - 1/(N-1) = 1$ (corresponding to the uniform vector) and all other eigenvalues are $-1/N$. Hence δ is very large here: $\delta = 1 - 1/N$. We’ll mark a vertex i iff $x_i = 1$. Then, measuring cost by number of queries, a quantum walk on G will have $S = U = 0$ and $C = 1$. Plugging this into Eq. (7.2), it will probably find a marked vertex in time $O(1/\sqrt{\varepsilon})$. The worst case is $\varepsilon = 1/N$, in which case we’ll use $O(\sqrt{N})$ queries. Not surprisingly, we’ve essentially rederived Grover’s algorithm.

7.3.2 Collision problem

Consider the following collision problem:

Input: $x = x_0, \ldots, x_{n-1}$, where each x_i is an integer.5

Goal: find distinct i and j such that $x_i = x_j$ if these exist, otherwise output “all elements are distinct.”

The decision version of this problem (deciding if there exists at least one collision) is also known as element distinctness.

Consider the graph whose vertices correspond to the sets $R \subseteq \{0, \ldots, n-1\}$ of r elements. The total number of vertices is $N = \binom{n}{r}$. We’ll put an edge between the vertices for R and R' iff these two sets differ in exactly two elements; in other words, you can get from R to R' by removing one element i from R and replacing it by a new element j. The resulting graph $J(n, r)$ is known as the Johnson graph. It is $r(n-r)$-regular, since every R has $r(n-r)$ different neighbors R'. Its spectral gap is known to be $\delta = n/r(n-r)$; we won’t prove that here. For each set R we also keep track of the corresponding sequence of x-values, $x_R = (x_i)_{i \in R}$. Hence the full “name” of a vertex is the pair (R, x_R).

We’ll call a vertex in $J(n, r)$ marked if it contains a collision, i.e., the corresponding set R contains distinct i, j such that $x_i = x_j$. In the worst case there is exactly one colliding pair i, j (more collisions only make the problem easier). The probability that i and j are both in a random r-set R, is $\varepsilon = \frac{2 \binom{n-r}{r-1}}{n^{r-1}}$. Hence the fraction of marked vertices is at least $\varepsilon \approx (r/n)^2$.

We will now determine the setup, checking, and update costs. The setup cost (measured in terms of queries) is $S = r + 1$: we have to create a uniform superposition $|U\rangle$ over all edges R, R', and for each such basis state query all $r + 1$ elements of $R \cup R'$ to add the information x_R and $x_{R'}$. Checking whether a given vertex R, x_R contains a collision doesn’t take any queries because we already have x_R, hence $C = 0$. To determine the update cost, note that mapping the second register of $|R, x_R\rangle|0\rangle$ to a superposition of all neighbors $R', x_{R'}$ requires querying (in superposition for all neighbors R') the value x_j of the element j that was added to get R'. Hence $U = O(1)$. Plugging this into Eq. (7.2), the cost of a quantum walk algorithm for collision-finding is

$$S + \frac{1}{\sqrt{\varepsilon}} \left(C + \frac{1}{\sqrt{\delta}} U \right) = O(r + n/\sqrt{\varepsilon}).$$

5Say, all $x_i \leq n^2$ to avoid having to use too much space to store these numbers.

43
This is $O(n^{2/3})$ if we set $r = n^{2/3}$. This $O(n^{2/3})$ turns out to be the optimal query complexity for the collision problem [2]. By some more work involving efficient data structures, the time complexity (= total number of elementary quantum gates) can be brought down to $n^{2/3}(\log n)^{O(1)}$ [7].

7.3.3 Finding a triangle in a graph

Consider the following triangle-finding problem:

Input: the adjacency matrix of a graph H on n vertices.

Goal: find vertices u, v, w that form a triangle (i.e., $(u, v), (v, w), (w, u)$ are all edges in the graph), if they exist.

We'll assume we have query access to the entries of the adjacency matrix of H, which tells us whether (u, v) is an edge or not. There are $\binom{n}{2}$ bits in this oracle, one for each potential edge of H. It is not hard to see that a classical algorithm needs $\Omega(n^2)$ queries before it can decide with good probability whether a graph contains a triangle or not. For example, take a bipartite graph consisting of 2 sets of $n/2$ vertices each, such that any pair of vertices from different sets is connected by an edge. Such a graph is triangle-free, but adding any one edge will create a triangle. A classical algorithm would have to query all those edges separately.

Let us try a quantum walk approach. Again consider the Johnson graph $J(n, r)$. Each vertex will correspond to a set $R \subseteq$ of r vertices, annotated with the result of querying all possible $\binom{r}{2}$ edges having both endpoints in R. We will call the vertex for set R *marked* if it contains one *edge* of a triangle. If there is at least one triangle in the graph, the fraction of marked vertices is at least $\varepsilon \approx (r/n)^2$. Getting a good upper bound for the checking cost C requires some work—namely Grover search plus another quantum walk!

The setup cost will be $S = \binom{n}{2}$. The update cost will be $U = 2r - 2$, because if we remove one vertex i from R then we have to remove information about $r - 1$ edges in H, and if we add a new j to R we have to query $r - 1$ new edges in H.

Suppose we are given a set R of r vertices. How do we decide whether R contains an edge of a triangle? If we can efficiently decide, for a given u and R, whether R contains vertices v, w such that u, v, w form a triangle in H, then we could combine this with a Grover search over all n possible vertices u of H. Given u and R, let us design a subroutine based on another quantum walk, this time on the Johnson graph $J(r, r^{2/3})$. Each vertex of this Johnson graph corresponds to a subset $R' \subseteq R$ of $r' = r^{2/3}$ vertices. Its spectral gap is $\delta' = r/r'(r - r') \approx 1/r^{2/3}$. We’ll mark R' if it contains vertices v, w such that u, v, w form a triangle. If there is at least one triangle involving u and some $v, w \in R$, then the fraction of marked vertices R' in $J(r, r^{2/3})$ is at least $\varepsilon' \approx (r'/r)^2 = 1/r^{2/3}$. For this subroutine, the setup cost is $O(r^{2/3})$, the update cost is $O(1)$, and the checking cost is 0. Plugging this into Eq. (7.2), we can decide whether a fixed u forms a triangle with two vertices in R', using $O(r^{2/3})$ queries. Let’s ignore the small error probability of the latter subroutine (it can be dealt with, but that’s technical). Then we can combine it with Grover search over all n vertices u to get checking cost $C = O(\sqrt{nr^{2/3}})$.

Plugging these S, U, and C into Eq. (7.2), the overall cost of a quantum walk algorithm for triangle-finding is

$$S + \frac{1}{\sqrt{\varepsilon}} \left(C + \frac{1}{\sqrt{\delta}} U \right) = O \left(r^2 + \frac{n}{r} (\sqrt{nr^{2/3}} + r^{3/2}) \right).$$

This is $O(n^{13/10})$ if we set $r = n^{3/5}$ [61]. The exponent $13/10$ can be slightly improved further [13, 57, 49], and the current best exponent is $5/4$ [56]. It is an open question what the optimal quantum
query complexity for triangle-finding is; the best lower bound is only \(n \). Also, the optimal quantum time complexity of this problem is still wide open.

Exercises

1. Let \(P \) be the projector on a \(d \)-dimensional subspace \(V \subseteq \mathbb{R}^n \) that is spanned by orthonormal vectors \(v_1, \ldots, v_d \). This means that \(Pv = v \) for all \(v \in V \), and \(Pw = 0 \) for all \(w \) that are orthogonal to \(V \).

 (a) Show that \(P \) can be written in Dirac notation as \(P = \sum_{i=1}^d |v_i\rangle\langle v_i| \).

 (b) Show that \(R = 2P - I \) is a reflection through the subspace corresponding to \(P \), i.e., \(Rv = v \) for all \(v \) in the subspace and \(Rw = -w \) for all \(w \) that are orthogonal to the subspace.

2. Let \(A, B, \) and \(C \) be \(n \times n \) matrices with real entries. We’d like to decide whether or not \(AB = C \). Of course, you could multiply \(A \) and \(B \) and compare the result with \(C \), but matrix multiplication is expensive (the current best algorithm takes time roughly \(O(n^{2.38}) \)).

 (a) Give a classical randomized algorithm that verifies whether \(AB = C \) (with success probability at least \(2/3 \)) using \(O(n^2) \) steps, using the fact that matrix-vector multiplication can be done in \(O(n^2) \) steps. Hint: Choose a uniformly random vector \(v \in \{0,1\}^n \), calculate \(ABv \) and \(Cv \), and check whether these two vectors are the same. This result is by Freivalds.

 (b) Show that if we have query-access to the entries of the matrices (i.e., oracles that map \(i, j, 0 \mapsto i, j, A_{i,j} \) and similarly for \(B \) and \(C \)), then any classical algorithm with small error probability needs at least \(n^2 \) queries to detect a difference between \(AB \) and \(C \). Hint: Consider the case \(A = I \).

 (c) Give a quantum walk algorithm that verifies whether \(AB = C \) (with success probability at least \(2/3 \)) using \(O(n^{5/3}) \) queries to matrix-entries. Hint: Modify the algorithm for collision-finding: use a random walk on the Johnson graph \(J(n,r) \), where each vertex corresponds to a set \(R \subseteq [n] \), and that vertex is marked if there are \(i, j \in R \) such that \((AB)_{i,j} \neq C_{i,j} \). This result is by Buhrman and Spalek [25].

3. A 3-SAT instance \(\phi \) over \(n \) Boolean variables \(x_1, \ldots, x_n \) is a formula which is the AND of a number of clauses, each of which is an OR of 3 variables or their negations. For example, \(\phi(x_1, \ldots, x_4) = (x_1 \lor x_2 \lor \overline{x_3}) \land (x_2 \lor x_3 \lor \overline{x_4}) \) is a 3-SAT formula with 2 clauses. A satisfying assignment is a setting of the \(n \) variables such that \(\phi(x_1, \ldots, x_n) = 1 \) (i.e., TRUE). In general it’s NP-hard to find a satisfying assignment to such a formula. Brute force would try out all \(2^n \) possible truth-assignments, but something better can be done by a classical random walk. Consider the following simple algorithm of Schöning [74], which is a random walk on the set of all \(N = 2^n \) truth assignments:

 - Start with a uniformly random \(x \in \{0,1\}^n \).
 - Repeat the following at most \(3n \) times: if \(\phi(x) = 1 \) then STOP, else find the leftmost clause that is false, randomly choose one of its 3 variables and flip its value.

 One can show that this algorithm has probability at least \((3/4)^n \) of finding a satisfying assignment (if \(\phi \) is satisfiable). You may assume this without proof.
(a) Use the above to give a classical algorithm that finds a satisfying assignment with high probability in time $(4/3)^n \cdot p(n)$, where $p(n)$ is some polynomial factor (no need to use the C,U,S-framework of the chapter here; the answer is much simpler).

(b) Give a quantum algorithm that finds one (with high probability) in time $\sqrt{(4/3)^n \cdot p(n)}$. Hint: view the $3n$-step random walk algorithm as a deterministic algorithm with an additional input $r \in \{0,1\}^n \times \{1,2,3\}^{3n}$, where the first n bits determine x, and the last $3n$ entries determine which variable of the leftmost false clauses will be flipped in the $3n$ steps of the random walk. Use Grover search on the space of all such r (no need to write out complete circuits here).
Chapter 8

Quantum Query Lower Bounds

8.1 Introduction

Almost all the algorithms we have seen so far in this course worked in the query model. Here the goal is to compute some function \(f : \{0, 1\}^N \rightarrow \{0, 1\} \) on a given input \(x \in \{0, 1\}^N \). The distinguishing feature of the query model is the way \(x \) is accessed: \(x \) is not given explicitly, but is stored in a random access memory, and we’re being charged unit cost for each query that we make to this memory. Informally, a query asks for and receives the \(i \)-th element \(x_i \) of the input. Formally, we model a query unitarily as the following 2-register quantum operation \(O_x \), where the first register is \(N \)-dimensional and the second is 2-dimensional:

\[
O_x : |i, b\rangle \mapsto |i, b \oplus x_i\rangle.
\]

In particular, \(|i, 0\rangle \mapsto |i, x_i\rangle\). This only states what \(O_x \) does on basis states, but by linearity determines the full unitary. Note that a quantum algorithm can apply \(O_x \) to a superposition of basis states, gaining some sort of access to several input bits \(x_i \) at the same time.

A \(T \)-query quantum algorithm starts in a fixed state, say the all-0 state \(|0 \ldots 0\rangle\), and then interleaves fixed unitary transformations \(U_0, U_1, \ldots, U_T \) with queries. The algorithm’s fixed unitaries may act on a workspace-register, in addition to the two registers on which \(O_x \) acts. In this case we implicitly extend \(O_x \) by tensoring it with the identity operation on this extra register, so it maps

\[
O_x : |i, b, w\rangle \mapsto |i, b \oplus x_i, w\rangle.
\]

Hence the final state of the algorithm can be written as the following matrix-vector product:

\[
U_T O_x U_{T-1} O_x \cdots O_x U_1 O_x U_0 |0 \ldots 0\rangle.
\]

This state depends on the input \(x \) only via the \(T \) queries. The output of the algorithm is obtained by a measurement of the final state. For instance, if the output is Boolean, the algorithm could just measure the final state in the computational basis and output the first bit of the result.

The query complexity of some function \(f \) is now the minimal number of queries needed for an algorithm that outputs the correct value \(f(x) \) for every \(x \) in the domain of \(f \) (with error probability

\[\text{If the input } x \text{ consists of non-binary items } x_i \text{ (as is the case for instance with the input for Simon's algorithm) then those can be simulated by querying individual bits of each } x_i.\]
8.2 The polynomial method

From quantum query algorithms to polynomials. An n-variate multilinear polynomial p is a function $p : \mathbb{C}^N \to \mathbb{C}$ that can be written as
\[p(x_1, \ldots, x_N) = \sum_{S \subseteq [N]} a_S \prod_{i \in S} x_i, \]
for some complex numbers a_S. The degree of p is $\text{deg}(p) = \max\{|S| : a_S \neq 0\}$. It is easy to show that every function $f : \{0, 1\}^N \to \mathbb{C}$ has a unique representation as such a polynomial; $\text{deg}(f)$ is defined as the degree of that polynomial. For example, the 2-bit AND function is $p(x_1, x_2) = x_1 x_2$, and the 2-bit Parity function is $p(x_1, x_2) = x_1 + x_2 - 2x_1 x_2$. Both polynomials have degree 2. Sometimes a lower degree suffices for a polynomial to approximate the function. For example, $p(x_1, x_2) = \frac{1}{3}(x_1 + x_2)$ approximates the 2-bit AND function up to error 1/3 for all inputs, using degree 1.

A very useful property of T-query algorithms is that the amplitudes of their final state are degree-T N-variate polynomials of x [40, 11]. More precisely: consider a T-query algorithm with input $x \in \{0, 1\}^N$ acting on an m-qubit space. Then its final state can be written
\[\sum_{z \in \{0,1\}^m} \alpha_z(x) |z\rangle, \]
where each α_z is a multilinear polynomial in x of degree at most T.

Proof. The proof is by induction on T. The base case ($T = 0$) trivially holds: the algorithm’s state $U_0 |0 \ldots 0\rangle$ is independent of x, so its amplitudes are constants.

For the induction step, suppose we have already done T queries. Then by the induction hypothesis the state after U_T can be written as
\[\sum_{z \in \{0,1\}^m} \alpha_z(x) |z\rangle, \]
where each α_z is a multilinear polynomial in x of degree at most T. Each basis state $|z\rangle = |i, b, w\rangle$ consists of 3 registers: the two registers $|i, b\rangle$ of the query, and a workspace register containing basis state $|w\rangle$. The algorithm now makes another query O_x followed by a unitary U_{T+1}. The query swaps basis states $|i, 0, w\rangle$ and $|i, 1, w\rangle$ if $x_i = 1$, and doesn’t do anything to these basis states if $x_i = 0$. This changes amplitudes as follows:
\[\alpha_{i,0,w}(x)|i, 0, w\rangle + \alpha_{i,1,w}(x)|i, 1, w\rangle \mapsto ((1 - x_i)\alpha_{i,0,w}(x) + x_i\alpha_{i,1,w}(x))|i, 0, w\rangle + (x_i\alpha_{i,0,w}(x) + (1 - x_i)\alpha_{i,1,w}(x))|i, 1, w\rangle. \]
Now the new amplitudes are of the form \((1-x_i)\alpha_i,0,w(x)+x_i\alpha_i,1,w(x)\) or \(x_i\alpha_i,0,w(x)+(1-x_i)\alpha_i,1,w(x)\). The new amplitudes are still polynomials in \(x_1,\ldots,x_N\). Their degree is at most 1 more than the degree of the old amplitudes, so at most \(T+1\). Finally, since \(U_{T+1}\) is a linear map that is independent of \(x\), it does not increase the degree of the amplitudes further (the amplitudes after \(U_{T+1}\) are linear combinations of the amplitudes before \(U_{T+1}\)). This concludes the induction step.

Note that this construction could introduce degrees higher than 1, e.g., terms of the form \(x_i^2\). However, our inputs \(x_i\) are 0/1-valued, so we have \(x_i^k = x_i\) for all integers \(k \geq 1\). Accordingly, we can reduce higher degrees to 1, making the polynomials multilinear without increasing degree. \(\square\)

Suppose our algorithm acts on an \(m\)-qubit state. If we measure the first qubit of the final state and output the resulting bit, then the probability of output 1 is given by

\[
p(x) = \sum_{z \in \{0,1\}^{m-1}} |\alpha_z(x)|^2,
\]

which is a real-valued polynomial of \(x\) of degree at most \(2T\). Note that if the algorithm computes \(f\) with error \(\leq 1/3\), then \(p\) is an approximating polynomial for \(f\): if \(f(x) = 0\) then \(p(x) \in [0,1/3]\) and if \(f(x) = 1\) then \(p(x) \in [2/3,1]\). This gives a method to lower bound the minimal number of queries needed to compute \(f\): if one can show that every polynomial that approximates \(f\) has degree at least \(d\), then every quantum algorithm computing \(f\) with error \(\leq 1/3\) must use at least \(d/2\) queries.

Applications of the polynomial method. For our examples we will restrict attention to symmetric functions.\(^2\) Those are the ones where the function value \(f(x)\) only depends on the Hamming weight (number of 1s) in the input \(x\). Examples are \(N\)-bit OR, AND, Parity, Majority, etc.

Suppose we have a polynomial \(p(x_1,\ldots,x_N)\) that approximates \(f\) with error \(\leq 1/3\). Then it is easy to see that a polynomial that averages over all permutations of the input bits \(x_1,\ldots,x_N\):

\[
q(x) = \frac{1}{N!} \sum_{\pi \in S_N} p(\pi(x)),
\]

still approximates \(f\). As it turns out, we can define a single-variate polynomial \(r(z)\) of the same degree as \(q\), such that \(q(x) = r(|x|)\).\(^3\) This \(r\) is defined on all real numbers, and we know something about its behavior on integer points \(\{0,\ldots,N\}\). Thus it suffices to lower bound the degree of single-variate polynomials with the appropriate behavior.

For an important example, consider the \(N\)-bit OR function. Grover’s algorithm can find an \(i\) such that \(x_i = 1\) (if such an \(i\) exists) and hence can compute the OR function with error \(\leq 1/3\) using \(O(\sqrt{N})\) queries. By the above reasoning, any \(T\)-query quantum algorithm that computes the OR with error \(\leq 1/3\) induces a single-variate polynomial \(r\) satisfying

\(^2\)One can also use the polynomial method for non-symmetric functions, for instance to prove a tight lower bound of \(\Omega(N^{2/3})\) queries for the general problem of collision-finding; this matches the quantum walk algorithm of the previous lecture (Section 7.3.2). However, that lower bound proof is substantially more complicated and we won’t give it here.

\(^3\)To see why this is the case, note that for every degree \(i\), all degree-\(i\) monomials in the symmetrized polynomial \(q\) have the same coefficient \(a_i\). Moreover, on input \(x \in \{0,1\}^N\) of Hamming weight \(z\), exactly \(\binom{z}{i}\) of the degree-\(i\) monomials are 1, while the others are 0. Hence \(q(x) = \sum_{i=0}^d a_i \binom{z}{i}\). Since \(\binom{z}{d} = z(z-1)\cdots(z-d+1)/d!\) is a single-variate polynomial in \(z\) of degree \(d\), we can define \(r(z) = \sum_{i=0}^d a_i \binom{z}{i}\).
This polynomial $r(x)$ “jumps” between $x = 0$ and $x = 1$ (i.e., it has a derivative $r'(x) \geq 1/3$ for some $x \in [0, 1]$), while it remains fairly constant on the domain $\{1, \ldots, N\}$. By a classical theorem from approximation theory (proved independently around the same time by Ehlich and Zeller, and by Rivlin and Cheney), such polynomials must have degree $d \geq \Omega(\sqrt{N})$. Hence $T \geq \Omega(\sqrt{N})$ as well. Accordingly, Grover’s algorithm is optimal (up to a constant factor) in terms of number of queries.

What about exact algorithms for OR? Could we tweak Grover’s algorithm so that it always finds a solution with probability 1 (if one exists), using $O(\sqrt{N})$ queries? This turns out not to be the case: a T-query exact algorithm for OR induces a polynomial r of degree $\leq 2T$ that satisfies

$$r(0) = 0, \text{ and } r(t) = 1 \text{ for all integers } t \in \{1, \ldots, N\}$$

It is not hard to see that such a polynomial needs degree at least N: observe that $r(x) - 1$ is a non-constant polynomial with at least N roots.\(^4\) Hence $T \geq N/2$. Accordingly, Grover cannot be made exact without losing the square-root speed-up!

Using the polynomial method, one can in fact show for every symmetric function f that is defined on all 2^N inputs, that quantum algorithms cannot provide a more-than-quadratic speed-up over classical algorithms. More generally, for every function f (symmetric or non-symmetric) that is defined on all inputs, quantum algorithms cannot provide a more-than-6th-root speed-up over classical algorithms\(^5\).

8.3 The quantum adversary method

The polynomial method has a strength which is also a weakness: it applies even to a stronger (and less physically meaningful) model of computation where we allow any linear transformation on the state space, not just unitary ones. As a result, it does not always provide the strongest possible lower bound for quantum query algorithms.

Ambainis [5, 6] provided an alternative method for quantum lower bounds, the quantum adversary. This exploits unitarity in a crucial way and in certain cases yields a provably better bound than the polynomial method [6]. We will present a very simple version of the adversary method here. Stronger versions may be found in [48, 47]; the latter one actually gives optimal bounds for every Boolean function [70]! Recall that a quantum query algorithm is a sequence

$$U_T O_x U_{T-1} O_x \cdots O_x U_1 O_x U_0,$$

applied to the fixed starting state $|0\ldots0\rangle$, where the basic “query transformation” O_x depends on the input x, and U_0, U_1, \ldots, U_T are arbitrary unitaries that don’t depend on x. Consider the evolution of our quantum state under all possible choices of x: formally, we let $|\psi_{x}^{t}\rangle$ denote the state at time t (i.e., after applying O_x for the t-th time) under input x. In particular, $|\psi_{x}^{0}\rangle = |0\ldots0\rangle$ for all x (and $\langle \psi_{x}^{0} | \psi_{x}^{0} \rangle = 1$ for each x, y). Now if the algorithm computes the Boolean function f with success probability $2/3$ on every input, then the final measurement must accept every $x \in f^{-1}(0)$

\(^4\)A “root” is an x such that $r(x) = 0$. It is a well-known fact from algebra that every non-constant polynomial of degree d has at most d roots (over any field).

\(^5\)Note that this doesn’t include functions where the input has to satisfy a certain promise, such as Deutsch-Jozsa and Simon’s problem.
with probability $\leq 1/3$, and accept every $y \in f^{-1}(1)$ with success probability $\geq 2/3$. It is not hard to verify that this implies $|\langle \psi_x^T | \psi_y^T \rangle| \leq \frac{17}{18}$. This suggests that we find a $R \subseteq f^{-1}(0) \times f^{-1}(1)$ of hard-to-distinguish (x, y)-pairs, and consider the progress measure

$$S_t = \sum_{(x, y) \in R} |\langle \psi_x^t | \psi_y^t \rangle|$$

as a function of t. By our observations, initially we have $S_0 = |R|$, and in the end we must have $S_T \leq \frac{17}{18}|R|$. Also, crucially, the progress measure is unaffected by each application of a unitary U_t, since each U_t is independent of the input and unitary transformations preserve inner products.

If we can determine an upper bound Δ on the change $|S_{t+1} - S_t|$ in the progress measure at each step, we can conclude that the number T of queries is at least $\frac{|R|}{8\Delta}$. Ambainis proved the following: suppose that

(i) each $x \in f^{-1}(0)$ appearing in R, appears at least m_0 times in pairs (x, y) in R;

(ii) each $y \in f^{-1}(1)$ appearing in R, appears at least m_1 times in pairs (x, y) in R;

(iii) for each $x \in f^{-1}(0)$ and $i \in [N]$, there are at most ℓ_0 inputs $y \in f^{-1}(1)$ such that $(x, y) \in R$ and $x_i \neq y_i$;

(iv) for each $y \in f^{-1}(1)$ and $i \in [N]$, there are at most ℓ_1 inputs $x \in f^{-1}(0)$ such that $(x, y) \in R$ and $x_i \neq y_i$.

Then for all $t \geq 0$, $|S_{t+1} - S_t| = O\left(\sqrt{\frac{m_0}{m_0^t} \cdot \frac{m_1}{m_1^t}} \cdot |R|\right)$, and therefore

$$T = \Omega\left(\sqrt{\frac{m_0}{\ell_0} \cdot \frac{m_1}{\ell_1}}\right). \quad (8.1)$$

Intuitively, conditions (i)-(iv) imply that $|S_{t+1} - S_t|$ is small relative to $|R|$ by bounding the “distinguishing ability” of any query. The art in applying this technique lies in choosing the relation R carefully to maximize this quantity, i.e., make m_0 and/or m_1 large, while keeping ℓ_0 and ℓ_1 small.

Note that for the N-bit OR function this method easily gives the optimal $\Omega(\sqrt{N})$ lower bound, as follows. Choose $R = \{(x, y) : x = 0^N, y \text{ has Hamming weight 1}\}$. Then $m_0 = N$ while $m_1 = \ell_0 = \ell_1 = 1$. Plugging this into Eq. (8.1) gives the right bound.

Let us give another application, a lower bound that is much harder to prove using the polynomial method.” Suppose $f : \{0, 1\}^N \rightarrow \{0, 1\}$ is a 2-level AND-OR tree, with $N = k^2$ input bits: f is the AND of k ORs, each of which has its own set of k inputs bits. By carefully doing 2 levels of Grover search (search for a subtree which is 0^k), one can construct a quantum algorithm that computes f with small error probability and $O(\sqrt{k} \cdot \sqrt{R}) = O(\sqrt{N})$ queries. It was long an open problem to give a matching lower bound on the approximate degree, and this was proved only in 2013. In contrast, the adversary method gives the optimal lower bound on the quantum query complexity quite easily: choose the relation R as follows

6 Remember Exercise 3 from Chapter 4 for states $|\phi\rangle$ and $|\psi\rangle$: if $\|\phi - \psi\| = \varepsilon$ then the (total variation) distance between the probability distributions you get from measuring $|\phi\rangle$ and $|\psi\rangle$, respectively, is at most 2ε. Hence if we know there is a two-outcome measurement that accepts $|\phi\rangle$ with probability $\leq 1/3$ and accepts $|\psi\rangle$ with probability $\geq 2/3$, then we must have total variation distance at least $2/3$ and hence $\varepsilon \geq 1/3$. Via the equation $\varepsilon^2 = \|\phi - \psi\|^2 = 2 - 2\text{Re}(\langle \psi | \phi \rangle)$, this translates into an upper bound $|\langle \psi | \phi \rangle| \leq 1 - \varepsilon^2/2 \leq 17/18$.

7 A tight $\Omega(\sqrt{N})$ lower bound for the approximate degree of this function was proved only in 2013.
R consists of those pairs (x, y) where
x has one subtree with input 0^k and the other $k - 1$ subtrees have an arbitrary k-bit
input of Hamming weight 1 (note $f(x) = 0$)
y is obtained from x by changing one of the bits of the 0^k-subtree to 1 (note $f(y) = 1$).

Then $m_0 = m_1 = k$ and $\ell_0 = \ell_1 = 1$, and we get a lower bound of $\Omega\left(\sqrt{\frac{m_0 m_1 \ell_0 \ell_1}{logN}}\right) = \Omega(k) = \Omega(\sqrt{N})$.

Exercises

1. Consider a 2-bit input $x = x_0 x_1$ with an oracle $O_x : |i\rangle \mapsto (-1)^{x_i}|i\rangle$. Write out the final state
of the following 1-query quantum algorithm: $HO_x H |0\rangle$. Give a degree-2 polynomial $p(x_0, x_1)$
that equals the probability that this algorithm outputs 1 on input x. What function does
this algorithm compute?

2. Consider polynomial $p(x_1, x_2) = 0.3 + 0.4x_1 + 0.5x_2$, which approximates the 2-bit OR func-
tion. Write down the symmetrized polynomial $q(x_1, x_2) = \frac{1}{2}(p(x_1, x_2) + p(x_2, x_1))$. Give a
single-variate polynomial r such that $q(x) = r(|x|)$ for all $x \in \{0, 1\}^2$.

3. Let f be the N-bit Parity function, which is 1 if its input $x \in \{0, 1\}^N$ has odd Hamming
weight, and 0 if the input has even Hamming weight (assume N is an even number).

 (a) Give a quantum algorithm that computes Parity with success probability 1 on every
input x, using $N/2$ queries. *Hint: think of Exercise 1.*

 (b) Show that this is optimal, even for quantum algorithms that have error probability $\leq 1/3
on every input *Hint: show that the symmetrized approximate polynomial r induced by the algorithm
has degree at least N.*

4. Suppose we have a T-query quantum algorithm that computes the N-bit AND function with
success probability 1 on all inputs $x \in \{0, 1\}^N$. In Section 8.2 we showed that such an
algorithm has $T \geq N/2$ (we showed it for OR, but the same argument works for AND).
Improve this lower bound to $T \geq N$.

5. Consider the following 3-bit function $f : \{0, 1\}^3 \to \{0, 1\}$:
$f(x_1, x_2, x_3) = 1$ if $x_1 = x_2 = x_3$, and $f(x_1, x_2, x_3) = 0$ otherwise

 (a) How many queries does a classical deterministic algorithm need to compute f? Explain
your answer.

 (b) Give a quantum algorithm that computes f with success probability 1 using 2 queries.

 (c) Show that 2 queries is optimal: there is no quantum algorithm that computes f with
success probability 1 using only 1 query. *Hint: Use the result of the previous exercise for $N = 2$.*

6. Let f be the N-bit Majority function, which is 1 if its input $x \in \{0, 1\}^N$ has Hamming weight
$> N/2$, and 0 if the input has Hamming weight $\leq N/2$ (assume N is even).

 (a) Prove that $\text{deg}(f) \geq N/2$. What does this imply for the query complexity of exact
quantum algorithms that compute majority?
(b) Use the adversary method to show that every bounded-error quantum algorithm for computing Majority, needs $\Omega(N)$ queries. Hint: when defining the relation R, consider that the hardest task for this algorithm is to distinguish inputs of weight $N/2$ from inputs of weight $N/2 + 1$.

7. Consider the sorting problem: there are N numbers a_1, \ldots, a_N and we want to sort these. We can only access the numbers by making comparisons. A comparison is similar to a block-box query: it takes 2 indices i, j as input and outputs whether $a_i < a_j$ or not. The output of a sorting algorithm should be the list of N indices, sorted in increasing order. It is known that for classical computers, $N \log_2(N) + O(N)$ comparisons are necessary and sufficient for sorting. Prove that a quantum algorithm needs at least $\Omega(N)$ comparisons for sorting, even if it is allowed an error probability $\leq 1/3$.

Hint: show how you can use sorting to solve the Majority-problem and then use the lower bound from the previous exercise to get an $\Omega(N)$ lower bound on sorting. (It is actually known that sorting takes $\Omega(N \log N)$ comparisons even on a quantum computer, but you don’t have to show that.)

8. Consider a total Boolean function $f : \{0, 1\}^N \to \{0, 1\}$. Given an input $x \in \{0, 1\}^N$ and subset $B \subseteq [N]$ of indices of variables, let x^B denote the N-bit input obtained from x by flipping all bits x_i whose index i is in B. The block sensitivity $bs(f, x)$ of f at input x, is the maximal integer k such that there exist disjoint sets B_1, \ldots, B_k satisfying $f(x) \neq f(x^{B_i})$ for all $i \in [k]$. The block sensitivity $bs(f)$ of f is $\max_x bs(f, x)$.

(a) Show that the bounded-error quantum query complexity of f is $\Omega(\sqrt{bs(f)})$. Hint: reduce the $bs(f)$-bit OR function (restricted to inputs of weight 0 or 1) to f and invoke the lower bound we know for OR.

(b) It is known that for every total Boolean function f, there is a classical deterministic algorithm that computes it using $O(bs(f)^3)$ many queries [11]. What can you conclude from this and part (a) about the relation between deterministic and quantum query complexity for total functions?
Chapter 9

Quantum Complexity Theory

9.1 Most functions need exponentially many gates

As we have seen, quantum computers seem to provide enormous speed-ups for problems like factoring, and square-root speed-ups for various search-related problems. Could they be used to speed up almost all problems, at least by some amount? Here we will show that this is not the case: as it turns out, quantum computers are not significantly better than classical computers for most computational problems.

Consider the problem of computing a Boolean function \(f : \{0,1\}^n \rightarrow \{0,1\} \) by means of a quantum circuit. Ideally, most such functions would be computable by efficient quantum circuits (i.e., using at most \(\text{poly}(n) \) elementary gates). Instead, we will show by means of a simple counting argument that almost all such functions \(f \) have circuit complexity nearly \(2^n \). This is a variant of a well-known counting argument for classical Boolean circuits due to Shannon.

Let us fix some finite set of elementary gates, for instance the Shor basis \(\{H, P_{\pi/8}, \text{CNOT}\} \) or \(\{H, \text{Toffoli}\} \). Suppose this set has \(k \) types of gates, of maximal fanout 3. Let us try to count the number of distinct circuits that have at most \(C \) elementary gates. For simplicity we include the initial qubits (the \(n \) input bits as well as workspace qubits, which are initially \(|0\rangle \)) as a \((k+1)\)st type among those \(C \) gates. First we need to choose which type of elementary gate each of the \(C \) gates is; this can be done in \((k+1)^C\) ways. Now every gate has at most 3 ingoing and 3 outgoing wires. For each of its 3 outgoing wires we can choose an ingoing wire for one of the gates in the following level; this can be done in at most \((3C)^3\) ways. Hence the total number of circuits with up to \(C \) elementary gates is at most \((k+1)^C (3C)^3C = C^{O(C)}\). We are clearly overcounting here, but that’s OK because we want an upper bound on the number of circuits.

We’ll say that a specific circuit computes a Boolean function \(f : \{0,1\}^n \rightarrow \{0,1\} \) if for every input \(x \in \{0,1\}^n \), a measurement of the first qubit of the final state (obtained by applying the circuit to initial state \(|x,0\rangle \)) gives value \(f(x) \) with probability at least 2/3. Each of our \(C^{O(C)} \) circuits can compute at most one \(f \) (in fact some of those circuits don’t compute any function at all). Accordingly, with \(C \) gates we can compute at most \(C^{O(C)} \) distinct Boolean functions \(f : \{0,1\}^n \rightarrow \{0,1\} \). Hence even if we just want to be able to compute 1% of all \(2^{2n} \) Boolean functions then we already need

\[
C^{O(C)} \geq \frac{1}{100}2^{2n}, \text{ which implies } C \geq \Omega(2^n/n).
\]

Accordingly, very few computational problems will be efficiently solvable on a quantum computer.
Below we will try to classify those using the tools of complexity theory.

9.2 Classical and quantum complexity classes

A “complexity class” is a set of decision problems (a.k.a. “languages”) that all have similar complexity in some sense, for instance the ones that can be solved with polynomial time or polynomial space. Let us first mention some of the main classical complexity classes:

- **P.** The class of problems that can be solved by classical deterministic computers using polynomial time.

- **BPP.** The problems that can be solved by classical randomized computers using polynomial time (and with error probability $\leq 1/3$ on every input).

- **NP.** The problems where the ‘yes’-instances can be verified in polynomial time if some prover gives us a polynomial-length “witness.” Some problems in this class are **NP-complete**, meaning that any other problem in **NP** can be reduced to it in polynomial time. Hence the **NP-complete** problems are the hardest problems in **NP**. An example is the problem of satisfiability: we can verify that a given n-variable Boolean formula is satisfiable if a prover gives us a satisfying assignment, so it is in **NP**, but one can even show that is **NP-complete**. Other examples are integer linear programming, travelling salesman, graph-colorability, etc.

- **PSPACE.** The problems that can be solved by classical deterministic computers using polynomial space.

We can consider quantum analogues of all such classes, an enterprise that was started by Bernstein and Vazirani [18]:

- **EQP.** The class of problems that can be solved exactly by quantum computers using polynomial time. This class depends on the set of elementary gates one allows, and is not so interesting.

- **BQP.** The problems that can be solved by quantum computers using polynomial time (and with error probability $\leq 1/3$ on every input). This class is the accepted formalization of “efficiently solvable by quantum computers.”

- **QNP.** The problems where the ‘yes’-instances can be verified efficiently if some prover gives us a polynomial-length “quantum witness.” This is again dependent on the elementary gates one allows, and not so interesting. Allowing error probability $\leq 1/3$ on every input, we get to a class called **QMA** (“quantum Merlin-Arthur”). This is a more robust and more interesting quantum version of **NP**; unfortunately we don’t have time to study it in this course.

- **QSPACE.** The problems that can be solved by quantum computers using polynomial space. This turns out to be the same as classical **PSPACE**.

In all the above cases, the error probability $1/3$ can be reduced efficiently to much smaller constants ε: just run the computation $k = O(\log(1/\varepsilon))$ times and take the majority of the answers given by the k different runs.
We should be a bit careful about what we mean by a “polynomial time [or space] quantum algorithm.” Our model for computation has been quantum circuits, and we need a separate quantum circuit for each new input length. So a quantum algorithm of time $p(n)$ would correspond to a family of quantum circuits $\{C_n\}$, where C_n is the circuit that is used for inputs of length n; it should have at most $p(n)$ elementary gates.\(^1\)

In the next section we will prove that $\text{BQP} \subseteq \text{PSPACE}$. We have $\text{BPP} \subseteq \text{BQP}$, because a BPP-machine on a fixed input length n can be written as a polynomial-size reversible circuit (i.e., consisting of Toffoli gates) that starts from a state that involves some coin flips. Quantum computers can generate those coin flips using Hadamard transforms, then run the reversible circuit, and measure the final answer bit. It is believed that BQP contains problems that aren’t in BPP, for example factoring large integers: this problem (or rather decision-version thereof) is in BQP because of Shor’s algorithm, and is generally believed not to be in BPP. Thus we have the following sequence of inclusions:

$$\text{P} \subseteq \text{BPP} \subseteq \text{BQP} \subseteq \text{PSPACE}.$$

It is generally believed that $\text{P} = \text{BPP}$, while the other inclusions are believed to be strict. Note that a proof that BQP is strictly greater than BPP (for instance, a proof that factoring cannot be solved efficiently by classical computers) would imply that $\text{P} \neq \text{PSpace}$, solving what has been one of the main open problems in computer science since the 1960s. Hence such a proof—if it exists at all—will probably be very hard.

What about the relation between BQP and NP? It’s generally believed that NP-complete problems are probably not in BQP. The main evidence for this is the lower bound for Grover search: a quantum brute-force search on all 2^n possible assignments to an n-variable formula gives a square-root speed-up, but not more. This is of course not a proof, since there might be clever, non-brute-force methods to solve satisfiability. There could also be problems in BQP that are not in NP, so it may well be that BQP and NP are incomparable. Much more can be said about quantum complexity classes; see for instance Watrous’s survey [82].

9.3 Classically simulating quantum computers in polynomial space

When Richard Feynman first came up with quantum computers [38], he motivated them by

> “the full description of quantum mechanics for a large system with R particles is given by a function $q(x_1, x_2, \ldots, x_R, t)$ which we call the amplitude to find the particles x_1, \ldots, x_R [RdW: think of x_i as one qubit], and therefore, because it has too many variables, it cannot be simulated with a normal computer with a number of elements proportional to R or proportional to N.” [...]
> “Can a quantum system be probabilistically simulated by a classical (probabilistic, I’d assume) universal computer? In other words, a computer which will give the same probabilities as the quantum system does. If you take the computer to be the classical kind I’ve described so far, (not the quantum kind described in the last section) and there are no changes in any laws, and there’s no hocus-pocus, the answer is certainly, No!”

\(^1\)To avoid smuggling loads of hard-to-compute information into this definition (e.g., C_n could contain information about whether the nth Turing machine halts or not), we will require this family to be efficiently describable: there should be a classical Turing machine which, on input n and j, outputs (in time polynomial in n) the jth elementary gate of C_n, with information about where its incoming and outgoing wires go.
The suggestion to devise a quantum computer to simulate quantum physics is of course a brilliant one, but the main motivation is not quite accurate. As it turns out, it is not necessary to keep track of all (exponentially many) amplitudes in the state to classically simulate a quantum system. Here we will show that it can actually be simulated efficiently in terms of space \([18]\), though not necessarily in terms of time.

Consider a circuit with \(T = \text{poly}(n)\) gates that acts on \(S\) qubits. Assume for simplicity that all gates are either the 1-qubit Hadamard or the 3-qubit Toffoli gate (as mentioned before, these two gates suffice for universal quantum computation), and that the classical output (0 or 1) of the algorithm is determined by a measurement of the first qubit of the final state. Without loss of generality \(S \leq 3T\), because \(T\) Toffoli gates won’t affect more than \(3T\) qubits. Let \(U_j\) be the unitary that applies the \(j\)th gate to its (1 or 3) qubits, and applies identity to all other qubits. The entries of this matrix are of a simple form \((0, 1/\sqrt{2}, \text{or} -1/\sqrt{2} \text{for Hadamard}; \text{0 or 1 for Toffoli})\) and easy to compute. Let \(|i_0\rangle = |x\rangle |0^{S-n}\rangle\) be the starting state, where \(x \in \{0, 1\}^n\) is the classical input, and the second register contains the workspace qubits the algorithm uses. The final state will be

\[|\psi_x\rangle = U_T U_{T-1} \cdots U_2 U_1 |i_0\rangle.\]

The amplitude of basis state \(|i_T\rangle\) in this final state is

\[\langle i_T | \psi_x \rangle = \langle i_T | U_T U_{T-1} U_{T-2} \cdots U_2 U_1 |i_0\rangle.\]

Inserting an identity matrix \(I = \sum_{i \in \{0, 1\}^S} |i\rangle \langle i|\) between the gates, we can rewrite this as

\[
\langle i_T | \psi_x \rangle = \langle i_T | U_T \left(\sum_{i_{T-1}} |i_{T-1}\rangle \langle i_{T-1}| \right) U_{T-1} \left(\sum_{i_{T-2}} |i_{T-2}\rangle \langle i_{T-2}| \right) U_{T-2} \cdots U_2 \left(\sum_{i_1} |i_1\rangle \langle i_1| \right) U_1 |x, 0\rangle \\
= \sum_{i_{T-1}, \ldots, i_1} \prod_{j=1}^{T} \langle i_j | U_j | i_{j-1}\rangle.
\]

The number \(\langle i_j | U_j | i_{j-1}\rangle\) is just one entry of the matrix \(U_j\) and hence easy to calculate. Then \(\prod_{j=1}^{T} \langle i_j | U_j | i_{j-1}\rangle\) is also easy to compute, in polynomial space (and polynomial time). If \(\ell\) of the \(T\) gates are Hadamards, then each such number is either 0 or \(\pm 1/\sqrt{2}\).

Adding up \(\prod_{j=1}^{T} \langle i_j | U_j | i_{j-1}\rangle\) for all \(i_{T-1}, \ldots, i_1\) is also easy to do in polynomial space if we reuse space for each new \(i_{T-1}, \ldots, i_1\). Hence the amplitude \(\langle i_T | \psi_x \rangle\) can be computed exactly using polynomial space.\(^2\) We assume that the \textbf{BQP} machine’s answer is obtained by measuring the first qubit of the final state. Then its acceptance probability is the sum of squares of all amplitudes of basis states starting with a 1: \(\sum_{i_{T-1}, \ldots, i_1} \langle i_T | \psi_x \rangle^2\). Since we can compute each \(\langle i_T | \psi_x \rangle\) in polynomial space, the acceptance probability of a \textbf{BQP}-circuit on classical input \(x\) can be computed in polynomial space.

Exercises

1. The following problem is a decision version of the factoring problem:

\(^2\)Of course, the calculation will take exponential time, because there are \(2^{S(T-1)}\) different sequences \(i_{T-1}, \ldots, i_1\) that we need to go over sequentially.
Given positive integers \(N \) and \(k \), decide if \(N \) has a prime factor \(p \in \{ k, \ldots, N − 1 \} \).

Show that if you can solve this decision problem efficiently (i.e., in time polynomial in the input length \(n = \lceil \log N \rceil \)), then you can also find the prime factors of \(N \) efficiently. \textit{Hint: use binary search, running the algorithm with different choices of} \(k \) \textit{to “zoom in” on the largest prime factor.}

2. (a) Let \(U \) be an \(S \)-qubit unitary which applies a Hadamard gate to the \(k \)th qubit, and identity gates to the other \(S − 1 \) qubits. Let \(i, j \in \{0, 1\}^S \). Show an efficient way to calculate the matrix-entry \(U_{i,j} = \langle i | U | j \rangle \) (note: even though \(U \) is a tensor product of \(2 \times 2 \) matrices, it’s still a \(2^S \times 2^S \) matrix, so calculating \(U \) completely isn’t efficient).

(b) Let \(U \) be an \(S \)-qubit unitary which applies a CNOT gate to the \(k \)th and \(\ell \)th qubits, and identity gates to the other \(S − 2 \) qubits. Let \(i, j \in \{0, 1\}^S \). Show an efficient way to calculate the matrix-entry \(U_{i,j} = \langle i | U | j \rangle \).

3. Consider a circuit \(C \) with \(T = poly(n) \) elementary gates (only Hadamards and Toffolis) acting on \(S = poly(n) \) qubits. Suppose this circuit computes \(f : \{0, 1\}^n \to \{0, 1\} \) with bounded error probability: for every \(x \in \{0, 1\}^n \), when we start with basis state \(|x, 0^{S−n}\rangle \), run the circuit and measure the first qubit, then the result equals \(f(x) \) with probability at least 2/3.

(a) Consider the following quantum algorithm: start with basis state \(|x, 0^{S−n}\rangle \), run the above circuit \(C \) without the final measurement, apply a \(Z \) gate to the first qubit, and reverse the circuit \(C \). Denote the resulting final state by \(|\psi_x\rangle \). Show that if \(f(x) = 0 \) then the amplitude of basis state \(|x, 0^{S−n}\rangle \) in \(|\psi_x\rangle \) is in the interval \([1/3, 1]\), while if \(f(x) = 1 \) then the amplitude of \(|x, 0^{S−n}\rangle \) in \(|\psi_x\rangle \) is in \([-1, −1/3]\).

(b) \textbf{PP} is the class of computational decision problems that can be solved by classical randomized polynomial-time computers with success probability > 1/2 (however, the success probability could be exponentially close to 1/2, i.e., \textbf{PP} is \textbf{BPP} without the ‘B’ for bounded-error). Show that \(\textbf{BQP} \subseteq \textbf{PP} \).

\textit{Hint: use part (a). Analyze the amplitude of} \(|x, 0^{S−n}\rangle \) \textit{in the final state} \(|\psi_x\rangle \), \textit{using ideas from the proof of} \(\textbf{BQP} \subseteq \textbf{PSPACE} \) \textit{in Section 9.3. Note that in contrast to that proof, you cannot use more than polynomial time for this exercise.}
Chapter 10

Quantum Encodings, with a Non-Quantum Application

10.1 Mixed states and general measurements

So far, we have restricted our states to so-called pure states: unit vectors of amplitudes. In the classical world we often have uncertainty about the state of a system, which can be expressed by viewing the state as a random variable that has a certain probability distribution over the set of basis states. Similarly we can define a mixed quantum state as a probability distribution (or “mixture”) over pure states. While pure states are written as vectors, it is most convenient to write mixed states as density matrices. A pure state $|\phi\rangle$ corresponds to the density matrix $|\phi\rangle\langle\phi|$, which is the outer product of the vector $|\phi\rangle$. For example, the pure state $|\phi\rangle = \alpha|0\rangle + \beta|1\rangle$ corresponds to the density matrix $|\phi\rangle\langle\phi|$.

A mixed state that is in pure states $|\phi_1\rangle,...,|\phi_m\rangle$ with probabilities $p_1,...,p_m$, respectively, corresponds to the density matrix $\sum_{i=1}^{m} p_i |\phi_i\rangle\langle\phi_i|$. The set of density matrices is exactly the set of positive semidefinite (PSD) matrices of trace 1. A mixed state is pure if, and only if, it has rank 1.

By linearity, this actually tells us how a unitary acts on an arbitrary mixed state:

$$\rho \mapsto U \rho U^*.$$

What about measurements? A projective measurement with k outcomes corresponds to k orthogonal projectors P_1,\ldots,P_k that satisfy $\sum_{i=1}^{k} P_i = I$ (i.e., together they make up the whole space).

1Note that applying the probabilities p_i to the vectors $|\phi_i\rangle$ (rather than to the matrices $|\phi_i\rangle\langle\phi_i|$) does not make sense in general, because $\sum_{i=1}^{m} p_i |\phi_i\rangle$ need not be a unit vector.

2An (orthogonal) projector P is a Hermitian matrix (i.e., $P = P^*$) that satisfies $P^2 = P$. Equivalently, its eigenvalues are all 0 or 1. It projects onto the eigenspace spanned by the eigenvectors that have eigenvalue 1. Two projectors P and P' are orthogonal if $PP' = 0$.

59
When applying this measurement to a mixed state ρ, the probability to see outcome i is given by $p_i = \text{Tr}(P_i \rho)$. If we get outcome i, then the state collapses to $P_i \rho P_i / p_i$ (the division by p_i renormalizes the state to have trace 1). This may look weird, but let’s recover our familiar measurement in the computational basis in this framework. Suppose we measure a state $|\phi\rangle = \sum_j \alpha_j |j\rangle$ using d projectors $P_i = |i\rangle \langle i|$ (note that $\sum_i P_i$ is the identity on the d-dimensional space). The probability to get outcome i is given by $p_i = \text{Tr}(P_i |\phi\rangle \langle \phi|) = |\langle i|\phi\rangle|^2 = |\alpha_i|^2$. If we get outcome i then the state collapses to $P_i |\phi\rangle \langle \phi| P_i / p_i = \alpha_i |i\rangle \langle i| / p_i = |i\rangle \langle i|$. This is exactly the measurement in the computational basis as we have used it in the course until now. Similarly, a measurement of the first register of a two-register state corresponds to projectors $P_i = |i\rangle \langle i| \otimes I$, where i goes over all basis states of the first register.

If we only care about the final probability distribution on the k outcomes, not about the resulting state, then the most general thing we can do is a so-called positive-operator-valued measure (POVM). This is specified by k positive semidefinite matrices E_1, \ldots, E_k satisfying $\sum_{i=1}^k E_i = I$. When measuring a state ρ, the probability of outcome i is given by $\text{Tr}(E_i \rho)$ (describing the post-measurement states requires more information, and we won’t go into that here). A projective measurement is the special case of a POVM where the measurement elements E_i are projectors.

10.2 Quantum encodings and their limits

Quantum information theory studies the quantum generalizations of familiar notions from classical information theory such as Shannon entropy, mutual information, channel capacities, etc. Here we will discuss a few quantum information-theoretic results that all have the same flavor: they say that a low-dimensional quantum state (i.e., a small number of qubits) cannot contain too much accessible information.

Holevo’s Theorem: The mother of all such results is Holevo’s theorem from 1973 [46], which predates the area of quantum computing by several decades. Its proper technical statement is in terms of a quantum generalization of mutual information, but the following consequence of it (derived by Cleve et al. [29]) about two communicating parties, suffices for our purposes.

Theorem 1 (Holevo, CDNT) *If Alice wants to send n bits of information to Bob via a quantum channel (i.e., by exchanging quantum systems), and they do not share an entangled state, then they have to exchange at least n qubits. If they share unlimited prior entanglement, then Alice has to send at least $n/2$ qubits to Bob, no matter how many qubits Bob sends to Alice.*

This theorem is slightly imprecisely stated here, but the intuition is very clear: the first part of the theorem says that if we encode some classical random variable X in an m-qubit state\(^3\), then no measurement on the quantum state can give more than m bits of information about X. More precisely: the classical mutual information between X and the classical measurement outcome M on the m-qubit system is at most m. If we encoded the classical information in an m-bit system instead of an m-qubit system this would be a trivial statement, but the proof of Holevo’s theorem

\(^3\)Via an encoding map $x \mapsto \rho_x$; we generally use capital letters like X to denote random variables, lower case like x to denote specific values.
is quite non-trivial. Thus we see that a \(m\)-qubit state, despite somehow “containing” \(2^m\) complex amplitudes, is no better than \(m\) classical bits for the purpose of storing information.\(^4\)

Low-dimensional encodings: Here we provide a “poor man’s version” of Holevo’s theorem due to Nayak [64, Theorem 2.4.2], which has a simple proof and often suffices for applications. Suppose we have a classical random variable \(X\), uniformly distributed over \([N] = \{1, \ldots, N\}\). Let \(x \mapsto \rho_x\) be some encoding of \([N]\), where \(\rho_x\) is a mixed state in a \(d\)-dimensional space. Let \(E_1, \ldots, E_N\) be the POVM operators applied for decoding; these sum to the \(d\)-dimensional identity operator. Then the probability of correct decoding in case \(X = x\), is

\[
p_x = \text{Tr}(E_x \rho_x) \leq \text{Tr}(E_x).
\]

The sum of these success probabilities is at most

\[
\sum_{x=1}^N p_x \leq \sum_{x=1}^N \text{Tr}(E_x) = \text{Tr} \left(\sum_{x=1}^N E_x \right) = \text{Tr}(I) = d.
\]

(10.1)

In other words, if we are encoding one of \(N\) classical values in a \(d\)-dimensional quantum state, then any measurement to decode the encoded classical value has average success probability at most \(d/N\) (uniformly averaged over all \(N\) values that we can encode). For example, if we encode \(n\) bits into \(m\) qubits, we will have \(N = 2^n\), \(d = 2^m\), and the average success probability of decoding is at most \(2^m/2^n\).

Random access codes: The previous two results dealt with the situation where we encoded a classical random variable \(X\) in some quantum system, and would like to recover the original value \(X\) by an appropriate measurement on that quantum system. However, suppose \(X = X_1 \ldots X_n\) is a string of \(n\) bits, uniformly distributed and encoded by a map \(x \mapsto \rho_x\), and it suffices for us if we are able to decode individual bits \(X_i\) from this with some probability \(p > 1/2\). More precisely, for each \(i \in [n]\) there should exist a measurement \(\{M_i, I - M_i\}\) allowing us to recover \(x_i\): for each \(x \in \{0, 1\}^n\) we should have \(\text{Tr}(M_i \rho_x) \geq p\) if \(x_i = 1\) and \(\text{Tr}(M_i \rho_x) \leq 1 - p\) if \(x_i = 0\). An encoding satisfying this is called a *quantum random access code*, since it allows us to choose which bit of \(X\) we would like to access. Note that the measurement to recover \(x_i\) can change the state \(\rho_x\), so generally we may not be able to decode more than one bit of \(x\). (also, we cannot copy \(\rho_x\) because of the no-cloning theorem – see Chapter 1).

An encoding that allows us to recover (with high success probability) an \(n\)-bit string requires about \(n\) qubits by Holevo. Random access codes only allow us to recover *each* of the \(n\) bits. Can they be much shorter? In small cases they can be: for instance, one can encode two classical bits into one qubit, in such a way that each of the two bits can be recovered with success probability 85% from that qubit (see Exercise 2). However, Nayak [64] proved that asymptotically quantum random access codes cannot be much shorter than classical.

Theorem 2 (Nayak) Let \(x \mapsto \rho_x\) be a quantum random access encoding of \(n\)-bit strings into \(m\)-qubit states such that, for each \(i \in [n]\), we can decode \(X_i\) from \(|\psi_X\rangle\) with success probability \(p\)

\(^4\)This is in the absence of prior entanglement: if Alice and Bob do share entanglement, then \(m\) qubits are no better than \(2m\) classical bits. The factor of 2 is necessary: if Alice and Bob share \(m\) EPR-pairs, then Alice can transmit \(2m\) classical bits to Bob by sending only \(m\) qubits.
Then \(m \geq (1 - H(p))n \), where \(H(p) = -p \log p - (1 - p) \log(1 - p) \) is the binary entropy function.

The intuition of the proof is quite simple: since the quantum state allows us to predict the bit \(X_i \) with probability \(p_i \), it reduces the "uncertainty" about \(X_i \) from 1 bit to \(H(p_i) \) bits. Hence it contains at least \(1 - H(p_i) \) bits of information about \(X_i \). Since all \(n \) \(X_i \)'s are independent, the state has to contain at least \(\sum_{i=1}^{n} (1 - H(p_i)) \) bits about \(X \) in total.

10.3 Lower bounds on locally decodable codes

Here we will give an application of quantum information theory to a classical problem.\(^5\) The development of error-correcting codes is one of the success stories of science in the second half of the 20th century. Such codes are eminently practical, and are widely used to protect information stored on discs, communication over channels, etc. From a theoretical perspective, there exist codes that are nearly optimal in a number of different respects simultaneously: they have constant rate, can protect against a constant noise-rate, and have linear-time encoding and decoding procedures. We refer to Trevisan’s survey [78] for a complexity-oriented discussion of codes and their applications.

One drawback of ordinary error-correcting codes is that we cannot efficiently decode small parts of the encoded information. If we want to learn, say, the first bit of the encoded message then we usually still need to decode the whole encoded string. This is relevant in situations where we have encoded a very large string (say, a library of books, or a large database), but are only interested in recovering small pieces of it at any given time. Dividing the data into small blocks and encoding each block separately will not work: small chunks will be efficiently decodable but not error-correcting, since a tiny fraction of well-placed noise could wipe out the encoding of one chunk completely. There exist, however, error-correcting codes that are locally decodable, in the sense that we can efficiently recover individual bits of the encoded string.

Definition 1 \(C : \{0,1\}^n \to \{0,1\}^N \) is a \((q,\delta,\varepsilon)\)-locally decodable code (LDC) if there is a classical randomized decoding algorithm \(A \) such that

1. \(A \) makes at most \(q \) queries to an \(N \)-bit string \(y \).

2. For all \(x \) and \(i \), and all \(y \in \{0,1\}^N \) with Hamming distance \(d(C(x), y) \leq \delta N \) we have \(\Pr[A^y(i) = x_i] \geq 1/2 + \varepsilon \).

The notation \(A^y(i) \) reflects that the decoder \(A \) has two different types of input. On the one hand there is the (possibly corrupted) codeword \(y \), to which the decoder has oracle access and from which it can read at most \(q \) bits of its choice. On the other hand there is the index \(i \) of the bit that needs to be recovered, which is known fully to the decoder.

The main question about LDCs is the tradeoff between the codelength \(N \) and the number of queries \(q \) (which is a proxy for the decoding-time). This tradeoff is still not very well understood.

\(^5\)There is a growing number of such applications of quantum tools to non-quantum problems. See [35] for a survey.
quantum encoding is in fact a quantum random access code for x where the latter denotes the string obtained from z by flipping its i-th bit. Individually, each of these two indices is uniformly distributed. Hence for each of them, the probability that the returned bit of is corrupted is at most δ. By the union bound, with probability at least $1 - 2\delta$, both queries return the uncorrupted values. Adding these two bits mod 2 gives the correct answer:

$$C(x)_z \oplus C(x)_{z \oplus e_i} = (x \cdot z) \oplus (x \cdot (z \oplus e_i)) = x \cdot e_i = x_i.$$

Thus the Hadamard code is a $(2, \delta, 1/2 - 2\delta)$-LDC of exponential length.

The only superpolynomial lower bound known on the length of LDCs is for the case of 2 queries: there one needs an exponential code length and hence the Hadamard code is essentially optimal. This is shown via a quantum argument [51]—despite the fact that the result is a purely classical result, about classical codes and classical decoders. The easiest way to present this argument is to assume the following fact, which states a kind of “normal form” for the decoder.

Fact 1 (Katz & Trevisan [50] + folklore) For every (q, δ, ε)-LDC $C : \{0,1\}^n \rightarrow \{0,1\}^N$, and for each $i \in [n]$, there exists a set M_i of $\Omega(\delta \varepsilon N/q^2)$ disjoint tuples, each of at most q indices from $[N]$, and a bit $a_{i,t}$ for each tuple $t \in M_i$, such that the following holds:

$$\Pr_{x \in \{0,1\}^n} \left[x_i = a_{i,t} \oplus \sum_{j \in t} C(x)_j \right] \geq 1/2 + \Omega(\varepsilon/2^q),$$

(10.2)

where the probability is taken uniformly over x. Hence to decode x_i from $C(x)$, the decoder can just query the indices in a randomly chosen tuple t from M_i, outputting the sum of those q bits and $a_{i,t}$.

Note that the above decoder for the Hadamard code is already of this form, with $M_i = \{(z, z \oplus e_i)\}$. We omit the proof of Fact 1. It uses purely classical ideas and is not hard.

Now suppose $C : \{0,1\}^n \rightarrow \{0,1\}^N$ is a $(2, \delta, \varepsilon)$-LDC. We want to show that the code length N must be exponentially large in n. Our strategy is to show that the following N-dimensional quantum encoding is in fact a quantum random access code for x (with some success probability $p > 1/2)$:

$$x \mapsto |\phi_x\rangle = \frac{1}{\sqrt{N}} \sum_{j=1}^N (-1)^{C(x)_j} |j\rangle.$$

Theorem 2 then implies that the number of qubits of this state (which is $\lceil \log N \rceil$) is at least $(1 - H(p))n = \Omega(n)$, and we are done.

Suppose we want to recover x_i from $|\phi_x\rangle$. We’ll do this by a sequence of two measurements, as follows. We turn each M_i from Fact 1 into a measurement: for each pair $(j, k) \in M_i$ form the projector $P_{jk} = |j\rangle\langle j| + |k\rangle\langle k|$, and let $P_{\text{rest}} = \sum_{j \notin \cup_i M_i} |j\rangle\langle j|$ be the projector on the remaining indices. These $|M_i| + 1$ projectors sum to the N-dimensional identity matrix, so they form a valid projective measurement. Applying this to $|\phi_x\rangle$ gives outcome (j, k) with probability $\|P_{jk}|\phi_x\rangle\|^2 = 2/N$ for each $(j, k) \in M_i$. There are $|M_i| = \Omega(\delta \varepsilon N)$ different (j, k)-pairs in M_i, so the probability to see one of those as outcome of the measurement, is $|M_i| \cdot 2/N = \Omega(\delta \varepsilon)$. With the remaining probability $r = 1 - \Omega(\delta \varepsilon)$, we’ll get “rest” as outcome of the measurement. In the latter case we
didn’t get anything useful from the measurement, so we’ll just output a fair coin flip as our guess for \(x_i\) (then the output will equal \(x_i\) with probability exactly 1/2). In case we got one of the \((j, k)\) as measurement outcome, the state has collapsed to the following useful superposition:

\[
\frac{1}{\sqrt{2}} \left((-1)^{C(x)_j} |j\rangle + (-1)^{C(x)_k} |k\rangle \right)
\]

We know what \(j\) and \(k\) are, because it is the outcome of the measurement on \(|\phi_x\rangle\). Doing a 2-outcome measurement in the basis \(\frac{1}{\sqrt{2}} (|j\rangle \pm |k\rangle)\) now gives us the value \(C(x)_j \oplus C(x)_k\) with probability 1. By Eq. (10.2), if we add the bit \(a_{i,(j,k)}\) to this, we get \(x_i\) with probability at least \(1/2 + \Omega(\varepsilon)\). The success probability of recovering \(x_i\), averaged over all \(x\), is

\[
p \geq \frac{1}{2} r + \left(\frac{1}{2} + \Omega(\varepsilon) \right) (1 - r) = \frac{1}{2} + \Omega(\delta\varepsilon^2).
\]

Thus we have constructed a random access code that encodes \(n\) bits into \(\log N\) qubits, and has success probability at least \(p\). Applying Theorem 2 and using that \(1 - H(\varepsilon^2) = \Theta(\varepsilon^2)\) for \(\varepsilon \in [0, 1/2]\), we obtain the following:

Theorem 3 If \(C : \{0, 1\}^n \rightarrow \{0, 1\}^N\) is a \((2, \delta, \varepsilon)-locally decodable code, then \(N \geq 2^{\Omega(\delta^2\varepsilon^4n)}\).

Exercises

1. (a) Give the density matrix that corresponds to a 50-50 mixture of \(|0\rangle\) and \(|1\rangle\).
 (b) Give the density matrix that corresponds to a 50-50 mixture of \(|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)\) and \(|-\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)\).

2. (a) Give a quantum random access code that encodes 2 classical bits into 1 qubit, such that each of the two classical bits can be recovered from the quantum encoding with success probability \(p \geq 0.85\). **Hint:** It suffices to use pure states with real amplitudes as encoding. Try to “spread out” the 4 encodings \(|\phi_{00}\rangle, |\phi_{01}\rangle, |\phi_{10}\rangle, |\phi_{11}\rangle\) in the 2-dimensional real plane as good as possible.
 (b) Give a good upper bound (as a function of \(n\)) on the maximal success probability \(p\) for a random access code that encodes \(n\) classical bits into 1 qubit.

3. Teleportation transfers an arbitrary unknown qubit from Alice to Bob, using 1 EPR-pair and 2 classical bits of communication from Alice to Bob (see Section 1.5). Prove that these 2 bits of communication are necessary, i.e., you cannot teleport an arbitrary unknown qubit using 1 EPR-pair and only 1 classical bit of communication. **Hint:** Use the fact that 1 classical bit of communication can only send 1 bit of information, no matter how much entanglement Alice and Bob share. Combine this fact with superdense coding.

4. Consider the Hadamard code \(C\) that encodes \(n = 2\) bits \(x_1 x_2\) into a codeword of \(N = 4\) bits.
 (a) Give the 4-bit codeword \(C(11)\).
 (b) What are the states \(|\phi_x\rangle\) that arise as quantum random access code when we apply the LDC lower bound proof of Section 10.3 to \(C\)?
 (c) What is the measurement used for recovering \(x_2\) in that proof?
Chapter 11

Quantum Communication Complexity

Communication complexity has been studied extensively in the area of theoretical computer science and has deep connections with seemingly unrelated areas, such as VLSI design, circuit lower bounds, lower bounds on branching programs, size of data structures, and bounds on the length of logical proof systems, to name just a few.

11.1 Classical communication complexity

First we sketch the setting for classical communication complexity. Alice and Bob want to compute some function \(f : \mathcal{D} \to \{0, 1\} \), where \(\mathcal{D} \subseteq X \times Y \).\(^1\) Alice receives input \(x \in X \), Bob receives input \(y \in Y \), with \((x, y) \in \mathcal{D}\). A typical situation, illustrated in Fig. 11.1, is where \(X = Y = \{0, 1\}^n \), so both Alice and Bob receive an \(n \)-bit input string. As the value \(f(x, y) \) will generally depend on both \(x \) and \(y \), some communication between Alice and Bob is required in order for them to be able to compute \(f(x, y) \). We are interested in the minimal amount of communication they need.

A communication protocol is a distributed algorithm where first Alice does some individual computation, and then sends a message (of one or more bits) to Bob, then Bob does some computation and sends a message to Alice, etc. Each message is called a round. After one or more rounds the protocol terminates and one of the parties (let’s say Bob) outputs some value that should be

\[\text{Inputs: } \begin{cases} x \in \{0, 1\}^n \hfill \\ y \in \{0, 1\}^n \end{cases} \]

\[\text{Output: } f(x, y) \]

Figure 11.1: Alice and Bob solving a communication complexity problem

\(^1\)If the domain \(\mathcal{D} \) equals \(X \times Y \) then \(f \) is called a total function, otherwise it is called a partial or promise function.
The cost of a protocol is the total number of bits communicated on the worst-case input. A deterministic protocol for \(f(x,y) \) always has to output the right value \(f(x,y) \) for all \((x,y) \in \mathcal{D} \). In a bounded-error protocol, Alice and Bob may flip coins and the protocol has to output the right value \(f(x,y) \) with probability \(\geq 2/3 \) for all \((x,y) \in \mathcal{D} \). We could either allow Alice and Bob to toss coins individually (local randomness, or “private coin”) or jointly (shared randomness, or “public coin”). A public coin can simulate a private coin and is potentially more powerful. However, Newman’s theorem [65] says that having a public coin can save at most \(O(\log n) \) bits of communication, compared to a protocol with a private coin.

To illustrate the power of randomness, let us give a simple yet efficient bounded-error protocol for the equality problem, where the goal for Alice is to determine whether her \(n \)-bit input is the same as Bob’s or not: \(f(x,y) = 1 \) if \(x = y \), and \(f(x,y) = 0 \) otherwise. Alice and Bob jointly toss a random string \(r \in \{0,1\}^n \). Alice sends the bit \(a = x \cdot r \) to Bob (where ‘\(\cdot \)’ is inner product mod 2). Bob computes \(b = y \cdot r \) and compares this with \(a \). If \(x = y \) then \(a = b \), but if \(x \neq y \) then \(a \neq b \) with probability 1/2. Repeating this a few times, Alice and Bob can decide equality with small error using \(O(n) \) public coin flips and a constant amount of communication. This protocol uses public coins, but note that Newman’s theorem implies that there exists an \(O(\log n) \)-bit protocol that uses a private coin.

11.2 The quantum question

Now what happens if we give Alice and Bob a quantum computer and allow them to send each other qubits and/or to make use of EPR-pairs that they share at the start of the protocol?

Formally speaking, we can model a quantum protocol as follows. The total state consists of 3 parts: Alice’s private space, the channel, and Bob’s private space. The starting state is \(|x\rangle|0\rangle|y\rangle \): Alice gets \(x \), the channel is initialized to 0, and Bob gets \(y \). Now Alice applies a unitary transformation to her space and the channel. This corresponds to her private computation as well as to putting a message on the channel (the length of this message is the number of channel-qubits affected by Alice’s operation). Then Bob applies a unitary transformation to his space and the channel, etc. At the end of the protocol Alice or Bob makes a measurement to determine the output of the protocol. This model was introduced by Yao [85].

In the second model, introduced by Cleve and Buhrman [28], Alice and Bob share an unlimited number of EPR-pairs at the start of the protocol, but now they communicate via a classical channel: the channel has to be in a classical state throughout the protocol. We only count the communication, not the number of EPR-pairs used. Protocols of this kind can simulate protocols of the first kind with only a factor 2 overhead: using teleportation, the parties can send each other a qubit using an EPR-pair and two classical bits of communication. Hence the qubit-protocols that we describe below also immediately yield protocols that work with entanglement and a classical channel. Note that an EPR-pair can simulate a public coin toss: if Alice and Bob each measure their half of the pair of qubits, they get the same random bit.

The third variant combines the strengths of the other two: here Alice and Bob start out with an unlimited number of EPR-pairs and they are allowed to communicate qubits. This third kind of communication complexity is in fact equivalent to the second, up to a factor of 2, again by teleportation.

Before continuing to study this model, we first have to face an important question: is there anything to be gained here? At first sight, the following argument seems to rule out any significant
gain. Suppose that in the classical world \(k \) bits have to be communicated in order to compute \(f \). Since Holevo’s theorem says that \(k \) qubits cannot contain more information than \(k \) classical bits, it seems that the quantum communication complexity should be roughly \(k \) qubits as well (maybe \(k/2 \) to account for superdense coding, but not less). Surprisingly (and fortunately for us), this argument is false, and quantum communication can sometimes be much less than classical communication complexity. The information-theoretic argument via Holevo’s theorem fails, because Alice and Bob do not need to communicate the information in the \(k \) bits of the classical protocol; they are only interested in the value \(f(x, y) \), which is just 1 bit. Below we will go over four of the main examples that have so far been found of differences between quantum and classical communication complexity.

11.3 Example 1: Distributed Deutsch-Jozsa

The first impressively large gaps between quantum and classical communication complexity were exhibited by Buhrman, Cleve, and Wigderson [24]. Their protocols are distributed versions of known quantum query algorithms, like the Deutsch-Jozsa and Grover algorithms. Let us start with the first one. It is actually explained most easily in a direct way, without reference to the Deutsch-Jozsa algorithm (though that is where the idea came from). The problem is a promise version of the equality problem. Suppose the \(n \)-bit inputs \(x \) and \(y \) are restricted to the following case:

Distributed Deutsch-Jozsa: either \(x = y \), or \(x \) and \(y \) differ in exactly \(n/2 \) positions

Note that this promise only makes sense if \(n \) is an even number, otherwise \(n/2 \) would not be integer. In fact it will be convenient to assume \(n \) a power of 2. Here is a simple quantum protocol to solve this promise version of equality using only \(\log n \) qubits:

1. Alice sends Bob the \(\log n \)-qubit state \(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} (-1)^{x_i} |i\rangle \), which she can prepare unitarily from \(x \) and \(\log n \) \(|0\rangle\)-qubits.
2. Bob applies the unitary map \(|i\rangle \mapsto (-1)^{y_i} |i\rangle \) to the state, applies a Hadamard transform to each qubit (for this it is convenient to view \(i \) as a \(\log n \)-bit string), and measures the resulting \(\log n \)-qubit state.
3. Bob outputs 1 if the measurement gave \(|0^{\log n}\rangle\) and outputs 0 otherwise.

It is clear that this protocol only communicates \(\log n \) qubits, but why does it work? Note that the state that Bob measures is

\[
H^{\otimes \log n} \left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} (-1)^{x_i+y_i} |i\rangle \right) = \frac{1}{n} \sum_{i=1}^{n} (-1)^{x_i+y_i} \sum_{j \in \{0,1\}^{\log n}} (-1)^{i \cdot j} |j\rangle
\]

This superposition looks rather unwieldy, but consider the amplitude of the \(|0^{\log n}\rangle\) basis state. It is \(\frac{1}{n} \sum_{i=1}^{n} (-1)^{x_i+y_i} \), which is 1 if \(x = y \) and 0 otherwise because the promise now guarantees that \(x \) and \(y \) differ in exactly \(n/2 \) of the bits! Hence Bob will always give the correct answer.

What about efficient classical protocols (without entanglement) for this problem? Proving lower bounds on communication complexity often requires a very technical combinatorial analysis.
Buhrman, Cleve, and Wigderson used a deep combinatorial result from [41] to prove that every classical errorless protocol for this problem needs to send at least $0.007n$ bits.

This log n-qubits-vs-0.007n-bits example was the first exponentially large separation of quantum and classical communication complexity. Notice, however, that the difference disappears if we move to the bounded-error setting, allowing the protocol to have some small error probability. We can use the randomized protocol for equality discussed above or even simpler: Alice can just send a few (i, x_i) pairs to Bob, who then compares the x_i’s with his y_i’s. If $x = y$ he will not see a difference, but if x and y differ in $n/2$ positions, then Bob will probably detect this. Hence $O(\log n)$ classical bits of communication suffice in the bounded-error setting, in sharp contrast to the errorless setting.

11.4 Example 2: The Intersection problem

Now consider the Intersection function, which is 1 if $x_i = y_i = 1$ for at least one i. Buhrman, Cleve, and Wigderson [24] also presented an efficient quantum protocol for this, based on Grover’s search algorithm. We can solve Intersection if we can solve the following search problem: find some i such that $x_i = y_i = 1$ (if such an i exists).\footnote{This is sometimes called the appointment-scheduling problem: view x and y as Alice’s and Bob’s agendas, respectively, with a 1 indicating a free timeslot. Then the goal is to find a timeslot where Alice and Bob are both free.} We want to find a solution to the search problem on the string $z = x \land y$ (which is the bit-wise AND of x and y), since $z_i = 1$ whenever both $x_i = 1$ and $y_i = 1$. The idea is now to let Alice run Grover’s algorithm to search for such a solution. Clearly, she can prepare the uniform starting state herself. She can also apply H and O_G herself. The only thing where she needs Bob’s help, is in implementing O_z. This they do as follows. Whenever Alice wants to apply O_z to a state

$$|\phi\rangle = \sum_{i=1}^{n} \alpha_i |i\rangle,$$

she tags on her x_i in an extra qubit and sends Bob the state

$$\sum_{i=1}^{n} \alpha_i |i\rangle |x_i\rangle.$$

Bob applies the unitary map

$$|i\rangle |x_i\rangle \mapsto (-1)^{z_i \land y_i} |i\rangle |x_i\rangle$$

and sends back the result. Alice sets the last qubit back to $|0\rangle$ (which she can do unitarily because she has x), and now she has the state $O_z |\phi\rangle$! Thus we can simulate O_z using 2 messages of $\log(n) + 1$ qubits each. Thus Alice and Bob can run Grover’s algorithm to find an intersection, using $O(\sqrt{n})$ messages of $O(\log n)$ qubits each, for total communication of $O(\sqrt{n} \log n)$ qubits. Later Aaronson and Ambainis [1] gave a more complicated protocol that uses $O(\sqrt{n})$ qubits of communication.

What about lower bounds? It is a well-known result of classical communication complexity that classical bounded-error protocols for the Intersection problem need about n bits of communication. Thus we have a quadratic quantum-classical separation for this problem. Could there be a quantum protocol that uses much less than \sqrt{n} qubits of communication? This question was open for quite a few years after [24] appeared, until finally Razborov [69] showed that any bounded-error quantum protocol for Intersection needs to communicate about \sqrt{n} qubits.
11.5 Example 3: The vector-in-subspace problem

Notice the contrast between the examples of the last two sections. For the Distributed Deutsch-Jozsa problem we get an exponential quantum-classical separation, but the separation only holds if we require the classical protocol to be errorless. On the other hand, the gap for the disjointness function is only quadratic, but it holds even if we allow classical protocols to have some error probability.

Here is a function where the quantum-classical separation has both features: the quantum protocol is exponentially better than the classical protocol, even if the latter is allowed some error:

- Alice receives a unit vector $v \in \mathbb{R}^m$.
- Bob receives two m-dimensional projectors P_0 and P_1 such that $P_0 + P_1 = I$.
- Promise: either $P_0 v = v$ or $P_1 v = v$.
- Question: which of the two?

As stated, this is a problem with continuous input, but it can be discretized in a natural way by approximating each real number by $O(\log m)$ bits. Alice and Bob’s input is now $n = O(m^2 \log m)$ bits long. There is a simple yet efficient 1-round quantum protocol for this problem: Alice views v as a log m-qubit state and sends this to Bob; Bob measures with operators P_0 and P_1, and outputs the result. This takes only $\log m = O(\log n)$ qubits of communication.

The efficiency of this protocol comes from the fact that an m-dimensional unit vector can be “compressed” or “represented” as a log m-qubit state. Similar compression is not possible with classical bits, which suggests that any classical protocol will have to send the vector v more or less literally and hence will require a lot of communication. This turns out to be true but the proof is quite hard [53]. It shows that any bounded-error protocol needs to send at least roughly $n^{1/3}$ bits.

11.6 Example 4: Quantum fingerprinting

The examples of the previous section were either exponential quantum improvements for promise problems (Deutsch-Jozsa and vector-in-subspace) or polynomial improvements for total problems (disjointness). We will now give an exponential improvement for the total problem of equality-testing, but in a restricted setting called the simultaneous message passing (SMP) model. Alice and Bob receive n-bit input x and y, respectively. They do not have any shared resources like shared randomness or an entangled state, but they do have local randomness. They don’t communicate with each other directly, but instead send a single message to a third party, called the Referee. The Referee, upon receiving message m_A from Alice and m_B from Bob, should output the value $f(x, y)$. The goal is to compute $f(x, y)$ with a minimal amount of communication from Alice and Bob to the Referee.

We will see that for the equality problem there is an exponential savings in communication when qubits are used instead of classical bits. Classically, the problem of the bounded-error communication complexity of equality in the SMP model was open for almost twenty years, until Newman and Szegedy [66] exhibited a lower bound of $\Omega(\sqrt{n})$ bits. This is tight, since Ambainis [4] constructed a bounded-error protocol for this problem where the messages are $O(\sqrt{n})$ bits long (see Exercise 4). In contrast, in the quantum setting this problem can be solved with very little communication: only $O(\log n)$ qubits suffice [23].

The quantum trick is to associate each $x \in \{0, 1\}^n$ with a short quantum state $|\phi_x\rangle$, called the quantum fingerprint of x. Just like with physical fingerprints, the idea is that a quantum fingerprint
is a small object that doesn’t contain very much information about the object \(x \), but does suffice for testing if the fingerprinted object equals some other fingerprinted object.

Let us consider an error-correcting code \(C : \{0,1\}^n \to \{0,1\}^N \). There exist codes where \(N = O(n) \) and any two codewords \(C(x) \) and \(C(y) \) have Hamming distance close to \(N/2 \), say \(d(C(x), C(y)) \in [0.49N, 0.51N] \) (for instance, a random linear code will work). Define the quantum fingerprint of \(x \) as follows:

\[
|\phi_x\rangle = \frac{1}{\sqrt{N}} \sum_{j=1}^{N} (-1)^{C(x)_j} |j\rangle.
\]

This is a unit vector in an \(N \)-dimensional space, so it corresponds to only \(\lceil \log N \rceil = \log(n) + O(1) \) qubits. For distinct \(x \) and \(y \), the corresponding fingerprints will have small inner product:

\[
\langle \phi_x | \phi_y \rangle = \frac{1}{N} \sum_{j=1}^{N} (-1)^{C(x)_j + C(y)_j} = \frac{N - 2d(C(x), C(y))}{N} \in [-0.02, 0.02].
\]

The quantum protocol is very simple (see Figure 11.2): Alice and Bob send quantum fingerprints of \(x \) and \(y \) to the Referee, respectively. The referee now has to determine whether \(x = y \) (which corresponds to \(\langle \phi_x | \phi_y \rangle = 1 \)) or \(x \neq y \) (which corresponds to \(\langle \phi_x | \phi_y \rangle \in [-0.02, 0.02] \)). The following test (Figure 11.3), sometimes called the SWAP-test, accomplishes this with small error probability.

This circuit first applies a Hadamard transform to a qubit that is initially \(|0\rangle \), then SWAPs the other two registers conditioned on the value of the first qubit being \(|1\rangle \), then applies another Hadamard transform to the first qubit and measures it. Here SWAP is the operation that swaps the two registers: \(|\phi_x\rangle |\phi_y\rangle \mapsto |\phi_y\rangle |\phi_x\rangle \). The Referee receives \(|\phi_x\rangle \) from Alice and \(|\phi_y\rangle \) from Bob and applies the test to these two states. An easy calculation reveals that the outcome of the measurement
is 1 with probability \((1 - |\langle \phi_x | \phi_y \rangle|^2)/2\). Hence if \(|\phi_x \rangle = |\phi_y \rangle \) then we observe a 1 with probability 0, but if \(|\langle \phi_x | \phi_y \rangle| \) is close to 0 then we observe a 1 with probability close to 1/2. Repeating this procedure with several individual fingerprints can make the error probability arbitrarily close to 0.

Exercises

1. Prove that classical deterministic protocols with one message (from Alice to Bob), need to send \(n\) bits to solve the equality problem. *Hint: Argue that if Alice sends the same message for distinct inputs \(x\) and \(x'\), then Bob doesn’t know what to output if his input is \(y = x\).*

2. (a) Show that if \(|\phi\rangle\) and \(|\psi\rangle\) are non-orthogonal states (i.e., \(\langle \phi | \psi \rangle \neq 0\)), then there is no two-outcome projective measurement that perfectly distinguishes these two states, in the sense that applying the measurement on \(|\phi\rangle\) always gives a different outcome from applying the same measurement to \(|\psi\rangle\). *Hint: Argue that if \(P\) is a projector then we can’t have \(P|\phi\rangle = |\phi\rangle\) and \(P|\psi\rangle = 0\).*

 (b) Prove that quantum protocols with one message (from Alice to Bob), need to send \(\log n\) qubits to solve the distributed Deutsch-Jozsa problem with success probability 1 on every input. *Hint: Observe that among Alice’s possible \(n\)-bit inputs are the \(n\) codewords of the Hadamard code that encodes \(\log n\) bits; each pair of distinct Hadamard codewords is at Hamming distance exactly \(n/2\). Use part (a) to argue that Alice needs to send pairwise orthogonal states for those \(n\) inputs, and hence her message-space must have dimension at least \(n\).*

3. Consider one-round quantum communication complexity. Alice gets input \(x \in \{0,1\}^n\), Bob gets input \(y \in \{0,1\}^n\), and they want to compute some Boolean function \(f(x,y)\) of their inputs. Assume that all rows of the communication matrix are different, i.e., for all \(x\) and \(x'\) there is a \(y\) such that \(f(x,y) \neq f(x',y)\). They are allowed only one round of communication: Alice sends a quantum message to Bob and Bob must then be able to give the right answer with probability 1. Prove that Alice needs to send \(n\) qubits to Bob for this. *Hint: use the fact that 2 non-orthogonal states cannot be distinguished perfectly (previous exercise), and that a set of \(2^n\) vectors that are pairwise orthogonal must have dimension \(2^n\).*

4. Consider an error-correcting code \(C : \{0,1\}^n \rightarrow \{0,1\}^N\) where \(N = O(n)\), \(N\) is a square, and any two distinct codewords are at Hamming distance \(d(C(x), C(y)) \in [0.49N, 0.51N]\) (such codes exist, but you don’t have to prove that).

 (a) View the codeword \(C(x)\) as a \(\sqrt{N} \times \sqrt{N}\) matrix. Show that if you choose a row uniformly at random and choose a column uniformly at random, then the unique index \(i\) where these row and column intersect, is uniformly distributed over \(i \in \{1, \ldots, N\}\).

 (b) Give a classical bounded-error SMP-protocol for the equality problem where Alice and Bob each send \(O(\sqrt{n})\) bits to the Referee. *Hint: Let Alice send a random row of \(C(x)\) (with the row-index) and let Bob send a random column of \(C(y)\) (with the column-index).*

5. Suppose Alice and Bob each have \(n\)-bit agendas, and they know that for exactly 25% of the timeslots they are both free. Give a quantum protocol that finds such a timeslot with probability 1, using only \(O(\log n)\) qubits of communication.
6. Consider the following communication complexity problem, called the “Hidden Matching Problem”, from [10]. Alice’s input is some $x \in \{0, 1\}^n$. Bob’s input is a matching M, i.e., a partition of $\{1, \ldots, n\}$ into $n/2$ disjoint pairs (assume n is a power of 2). Their goal is that Bob outputs a pair $(i, j) \in M$ together with the parity $x_i \oplus x_j$ of the two bits indexed by that pair. It doesn’t matter which pair $(i, j) \in M$ Bob outputs, as long as the additional bit of output equals the parity of the two indexed bits of x. Show that they can solve this problem with success probability 1 using only a message of $\log n$ qubits from Alice to Bob (and no communication from Bob to Alice).

Hint: The matching M induces a projective measurement that Bob can do on the message he receives.
Chapter 12

Entanglement and Non-locality

12.1 Quantum non-locality

Entangled states are those that cannot be written as a tensor product of separate states. The most famous one is the EPR-pair:

$$\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle).$$

Suppose Alice has the first qubit of the pair, and Bob has the second. If Alice measures her qubit in the computational basis and gets outcome $b \in \{0,1\}$, then the state collapses to $|bb\rangle$. Similarly, if Alice measures her qubit in some other basis, this will collapse the joint state (including Bob’s qubit) to some state that depends on her measurement basis as well as its outcome. Somehow Alice’s action seems to have an instantaneous effect on Bob’s side—even if the two qubits are light-years apart! This was a great bother to Einstein, whose theory of relativity posits that information and causation cannot travel faster than the speed of light. Einstein called such effects of entanglement “spooky action at a distance” (in German: “spukhafte Fernwirkungen”), and viewed it as a fundamental problem for quantum mechanics [36]. In his view, quantum mechanics should be replaced by some “local realist” physical theory that would still have the same predictive power as quantum mechanics. Here “local” means that information and causation act locally, not faster than light, and “realistic” means that physical systems have definite, well-defined properties (even if those properties may be unknown to us).

Note that the above experiment where Alice measures her half of the EPR-pair doesn’t actually violate locality: no information is transferred from Alice and Bob. From Bob’s perspective there is no difference between the situation where Alice measured and the situation where she didn’t.\(^{1}\)

For this experiment, a shared coin flip between Alice and Bob is a local realist physical model that has exactly the same observable consequences as measuring the qubits of the EPR-pair in the computational basis: a 50-50 distribution on outcomes $|00\rangle$ and $|11\rangle$. This shared-coin-flip model is local because no information is transferred between Alice and Bob, and it’s realist because the coin flip has a definite outcome (even if that outcome is unknown to Alice and Bob before they measure).

Given this example, one might hope (and Einstein expected) that any kind of behavior that comes from entangled states can be replaced by some local realist physical model. This way, quantum mechanics could be replaced by an alternative physical theory with less counter-intuitive

\(^{1}\)In fact, one can show that entanglement can never replace communication.
behavior. Surprisingly, in the 1960s, John Bell [12] devised entanglement-based experiments whose behavior \textit{cannot be reproduced by any local realist theory}. In other words, we can let Alice and Bob do certain measurements on an entangled state, and the resulting distributions on their outputs predicted by quantum mechanics, \textit{cannot be obtained} from any local realist theory. This phenomenon is known as “quantum non-locality.” It could of course be that the quantum mechanical predictions of the resulting correlations are just wrong. However, in the early 1980s, such experiments were actually done by Aspect and others [9], and they gave the outcomes that quantum mechanics predicted.\footnote{Modulo some technical “loopholes” due to imperfect photon sources, measurement devices, etc. These are still hotly debated, but most people accept that Aspect’s and later experiments are convincing, and kill any hope of a complete local-realist explanation of nature.}

Such experiments, which realize correlations that are \textit{provably impossible} to realize with local realist models, are among the deepest and most philosophical results of 20th century physics: the commonsense idea of local realism is most probably false! Since Bell’s seminal work, the concept of quantum non-locality has been extensively studied, by physicists, philosophers, and more recently by computer scientists. In the next sections we review some interesting examples. The two-party setting of these examples is illustrated in Fig. 12.1: Alice receives input x and Bob receives input y, and they produce outputs a and b, respectively, that have to be correlated in a certain way (which depends on the game). They are not allowed to communicate. In physics language, we could assume they are “space-like separated”, which means that they are so far apart that they cannot influence each other during the course of the experiment (assuming information doesn’t travel faster than the speed of light). In the classical scenario they are allowed to share a random variable. Physicists would call this the “local hidden variable” that gives properties their definite value (that value may be unknown to the experimenter). This setting captures all local realist models. In the quantum model Alice and Bob are allowed to share entangled states, such as EPR-pairs. The goal is to show that entanglement-based strategies can do things that local realist strategies cannot.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure12_1}
\caption{The non-locality scenario involving two parties: Alice and Bob receive inputs x and y, respectively, and are required to produce outputs a and b that satisfy certain conditions. Once the inputs are received, no communication is permitted between the parties.}
\end{figure}

\footnotetext[2]{Despite its name, non-locality doesn’t disprove locality, but rather disproves the conjunction of locality and realism—at least one of the two assumptions has to fail.}

74
12.2 CHSH: Clauser-Horne-Shimony-Holt

In the CHSH game [26] Alice and Bob receive input bits x and y, and their goal is to output bits a and b, respectively, such that

$$a \oplus b = x \land y,$$ \hspace{1cm} (12.1)

('\land' is logical AND; '⊕' is parity, i.e. addition mod 2) or, failing that, to satisfy this condition with as high a probability as possible.

First consider the case of classical deterministic strategies, so without any randomness. For these, Alice’s output bit depends solely on her input bit x, and similarly for Bob. Let a_0 be the bit that Alice outputs if her input is $x = 0$, and a_1 the bit she outputs if $x = 1$. Let b_0, b_1 be the outputs Bob gives on inputs $y = 0$ and $y = 1$, respectively. These four bits completely characterize any deterministic strategy. Condition (12.1) becomes

$$a_0 \oplus b_0 = 0,$$

$$a_0 \oplus b_1 = 0,$$

$$a_1 \oplus b_0 = 0,$$

$$a_1 \oplus b_1 = 1.$$ \hspace{1cm} (12.2)

It is impossible to satisfy all four equations simultaneously, since summing them modulo 2 yields $0 = 1$. Therefore it is impossible to satisfy Condition (12.1) perfectly. Since a probabilistic strategy (where Alice and Bob share randomness) is a probability distribution over deterministic strategies, it follows that no probabilistic strategy can have success probability better than $3/4$ on every possible input (the $3/4$ can be achieved simultaneously for every input, see Exercise 2).\footnote{Such statements, upper bounding the optimal success probability of classical strategies for a specific game, are known as Bell inequalities. This specific one is called the CHSH inequality.}

Now consider the same problem but where Alice and Bob are supplied with a shared two-qubit system initialized to the entangled state

$$\frac{1}{\sqrt{2}}(|00\rangle - |11\rangle).$$

Such a state can easily be obtained from an EPR-pair, for instance if Alice applies a Z to her qubit. Now the parties can produce outputs that satisfy Condition (12.1) with probability $\cos(\pi/8)^2 \approx 0.85$ (higher than what is possible in the classical case), as follows. Recall the unitary operation that rotates the qubit by angle θ: $R(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$. If $x = 0$ then Alice applies $R(-\pi/16)$ to her qubit; and if $x = 1$ she applies $R(3\pi/16)$. Then Alice measures her qubit in the computational basis and outputs the resulting bit a. Bob’s procedure is the same, depending on his input bit y. It is straightforward to calculate that if Alice rotates by θ_A and Bob rotates by θ_B, the state becomes

$$\frac{1}{\sqrt{2}}(\cos(\theta_A + \theta_B)(|00\rangle - |11\rangle) + \sin(\theta_A + \theta_B)(|01\rangle + |10\rangle)).$$

After the measurements, the probability that $a \oplus b = 0$ is $\cos(\theta_A + \theta_B)^2$. Note that if $x \land y = 0$ then $\theta_A + \theta_B = \pm \pi/8$, while if $x \land y = 1$ then $\theta_A + \theta_B = 3\pi/8$. Hence Condition 12.1 is satisfied with probability $\cos(\pi/8)^2$ for all four input possibilities.
12.3 Magic square game

Tsirelson [79] showed that $\cos(\pi/8)^2$ is the best that quantum strategies can do for CHSH, even if they are allowed to use much more entanglement than one EPR-pair. Is there a game where the quantum protocol always succeeds, while the best classical success probability is bounded below 1? A particularly elegant example is the following magic square game [8]. Consider the problem of labeling the entries of a 3×3 matrix with bits so that the parity of each row is even, whereas the parity of each column is odd. This is clearly impossible: if the parity of each row is even then the sum of the 9 bits is 0 mod 2, but if the parity of each column is odd then the sum of the 9 bits is 1 mod 2. The two matrices

\[
\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 1 & 0
\end{array}
\quad \begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 1 & 1
\end{array}
\]

each satisfy five out of the six constraints. For the first matrix, all rows have even parity, but only the first two columns have odd parity. For the second matrix, the first two rows have even parity, and all columns have odd parity.

Consider the game where Alice receives $x \in \{1, 2, 3\}$ as input (specifying the number of a row), and Bob receives $y \in \{1, 2, 3\}$ as input (specifying the number of a column). Their goal is to each produce 3-bit outputs, $a_1a_2a_3$ for Alice and $b_1b_2b_3$ for Bob, such that

1. They satisfy the row/column parity constraints: $a_1 \oplus a_2 \oplus a_3 = 0$ and $b_1 \oplus b_2 \oplus b_3 = 1$.
2. They are consistent where the row intersects the column: $a_y = b_x$.

As usual, Alice and Bob are forbidden from communicating once the game starts, so Alice does not know y and Bob does not know x. We shall show the best classical strategy has success probability $8/9$, while there is a quantum strategy that always succeeds.

An example of a deterministic strategy that attains success probability $8/9$ (when the input xy is uniformly distributed) is where Alice plays according to the rows of the first matrix above and Bob plays according the columns of the second matrix above. This succeeds in all cases, except where $x = y = 3$. To see why this is optimal, note that for any other classical strategy, it is possible to represent it as two matrices as above but with different entries. Alice plays according to the rows of the first matrix and Bob plays according to the columns of the second matrix. We can assume that the rows of Alice’s matrix all have even parity; if she outputs a row with odd parity then they immediately lose, regardless of Bob’s output. Similarly, we can assume that all columns of Bob’s matrix have odd parity.\footnote{In fact, the game can be simplified so that Alice and Bob each output just two bits, since the parity constraint determines the third bit.} Considering such a pair of matrices, the players lose at each entry where they differ. There must be such an entry, since otherwise it would be possible to have all rows even and all columns odd with one matrix. Thus, when the input xy is chosen uniformly from $\{1,2,3\} \times \{1,2,3\}$, the success probability of any classical strategy is at most $8/9$.

We now give the quantum strategy for this game. Let I, X, Y, Z be the 2×2 Pauli matrices:

\[
I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.
\]
Each is an observable with eigenvalues in \{+1, -1\}. That is, each can be written as \(P_+ - P_-\) where \(P_+\) and \(P_-\) are orthogonal projectors that sum to identity, and hence define a two-outcome measurement with outcomes +1 and -1.\(^6\) For example, \(Z = |0\rangle \langle 0| - |1\rangle \langle 1|\), corresponding to a measurement in the computational basis (with \(|b\rangle\) corresponding to outcome \((-1)^b\)). And \(X = |+\rangle \langle +| - |−\rangle \langle −|\), corresponding to a measurement in the Hadamard basis. The Pauli matrices are self-inverse, they anti-commute (e.g., \(XY = −YX\)), and \(X = iZY, Y = iXZ,\) and \(Z = iYX\).

Consider the following table, where each entry is a tensor product of two Paulis:

\(X \otimes X\)	\(Y \otimes Z\)	\(Z \otimes Y\)
\(Y \otimes Y\)	\(Z \otimes X\)	\(X \otimes Z\)
\(Z \otimes Z\)	\(X \otimes Y\)	\(Y \otimes X\)

Because \((P_+ - P_-) \otimes (Q_+ - Q_-) = (P_+ \otimes Q_+ + P_- \otimes Q_-) - (P_+ \otimes Q_- + P_- \otimes Q_+)\), each such product is itself an observable. Hence each product of Pauli matrices corresponds to a measurement on a two-qubit space, with outcomes +1 and -1.

Note that the observables along each row commute and their product is \(I \otimes I\), and the observables along each column commute and their product is \(- I \otimes I\). This implies that for any two-qubit state, performing the three measurements along any row results in three \{+1, -1\}-valued bits whose product is +1. Also, performing the three measurements along any column results in three \{+1, -1\}-valued bits whose product is -1.

We can now describe the quantum protocol. It uses two pairs of entangled qubits, each of which is in initial state:

\[
\frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)
\]

(again, such states can be obtained from EPR-pairs by local operations). Alice, on input \(x\), applies three two-qubit measurements corresponding to the observables in row \(x\) of the above table. For each measurement, if the result is +1 then she outputs 0, and if the result is -1 then she outputs 1. Similarly, Bob, on input \(y\), applies the measurements corresponding to the observables in column \(y\), and converts the ±1-outcomes into bits.

We have already established that Alice and Bob’s output bits satisfy the required parity constraints. It remains to show that Alice and Bob’s output bits agree at the point where the row meets the column. For that measurement, Alice and Bob are measuring with respect to the same observable in the above table. Because all the observables in each row and in each column commute, we may assume that the place where they intersect is the first observable applied. Those bits are obtained by Alice and Bob each measuring \(\frac{1}{2}(|0\rangle - |1\rangle)(|0\rangle - |1\rangle)\) with respect to the observable in entry \((x, y)\) of the table. To show that their measurements will agree for all cases of \((x, y)\), we consider the individual Pauli measurements on the individual entangled pairs of the form \(\frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)\). Let \(a'\) and \(b'\) denote the outcomes of the first measurement (in terms of bits), and \(a''\) and \(b''\) denote the outcomes of the second. Since the measurement associated with the tensor product of two observables is operationally equivalent to measuring each individual observable and taking the product of the results, we have \(a_y = a' \oplus a''\) and \(b_x = b' \oplus b''\). It is straightforward to

\(^6\)More generally, a projective measurement with projectors \(P_1, \ldots, P_k\) and associated outcomes \(\lambda_1, \ldots, \lambda_k\), can be written as one matrix \(M = \sum_{i=1}^{k} \lambda_i P_i\), which is called an observable. This is a succinct way of writing down the projective measurement as one matrix, and has the added advantage that the expected value of the outcome can be easily calculated: if we are measuring a pure state \(|\psi\rangle\), the probability of outcome \(\lambda_i\) is \(||P_i|\psi\rangle||^2 = \text{Tr}(P_i|\psi\rangle \langle \psi|)\), so the expected value of the outcome is \(\sum_{i=1}^{k} \lambda_i \text{Tr}(P_i|\psi\rangle \langle \psi|) = \text{Tr}(M|\psi\rangle \langle \psi|)\) (where we used that trace is linear). If we are measuring a mixed state \(\rho = \sum_j p_j |\psi_j\rangle \langle \psi_j|\), the expected value of the outcome is \(\sum_j p_j \text{Tr}(M|\psi_j\rangle \langle \psi_j|) = \text{Tr}(M\rho)\).
verify that if the same measurement from \{I, X, Y, Z\} is applied to each qubit of \(\frac{1}{\sqrt{2}}(|01\rangle - |10\rangle)\) then the outcomes will be distinct: \(a' \oplus b' = 1\) and \(a'' \oplus b'' = 1\). We now have \(a_y = b_x\), because
\[
a_y \oplus b_x = (a' \oplus a'') \oplus (b' \oplus b'') = (a' \oplus b') \oplus (a'' \oplus b'') = 1 \oplus 1 = 0. \quad (12.4)
\]

12.4 A non-local version of distributed Deutsch-Jozsa

The previous two examples used small amounts of entanglement: one EPR-pair for CHSH, two EPR-pairs for magic square. In both cases we could show that classical protocols need at least some communication if they want to achieve the same as what entanglement-based protocols can achieve. We will now give a non-locality game that’s parametrized by a number \(n\), and where Alice and Bob’s quantum strategy uses \(\log n\) EPR-pairs [20]. The advantage is that we can show that classical protocols for this game need much classical communication rather than at least some non-zero amount.

Non-local DJ problem: Alice and Bob receive \(n\)-bit inputs \(x\) and \(y\) that satisfy the DJ promise: either \(x = y\), or \(x\) and \(y\) differ in exactly \(n/2\) positions. The task is for Alice and Bob to provide outputs \(a, b \in \{0, 1\}^{\log n}\) such that if \(x = y\) then \(a = b\), and if \(x\) and \(y\) differ in exactly \(n/2\) positions then \(a \neq b\).

They achieve this as follows

1. Alice and Bob share \(\log n\) EPR-pairs, i.e., the maximally entangled state \(\frac{1}{\sqrt{n}} \sum_{i=0}^{n-1} |i\rangle |i\rangle\).
2. They both apply locally a conditional phase to obtain: \(\frac{1}{\sqrt{n}} \sum_{i=0}^{n-1} (-1)^{x_i+y_i} |i\rangle (-1)^{y_i} |i\rangle\).
3. They both apply a Hadamard transform, obtaining
\[
\frac{1}{n \sqrt{n}} \sum_{i=0}^{n-1} (-1)^{x_i+y_i} \sum_{a \in \{0,1\}^{\log n}} (-1)^{a_i} |a\rangle \sum_{b \in \{0,1\}^{\log n}} (-1)^{b_i} |b\rangle
= \frac{1}{n \sqrt{n}} \sum_{a,b \in \{0,1\}^{\log n}} \left(\sum_{i=0}^{n-1} (-1)^{x_i+y_i+i(a \oplus b)} \right) |a\rangle |b\rangle.
\]
4. They measure in the computational basis and output the results \(a\) and \(b\), respectively.

For every \(a\), the probability that both Alice and Bob obtain the same result \(a\) is:
\[
\left| \frac{1}{n \sqrt{n}} \sum_{i=0}^{n-1} (-1)^{x_i+y_i} \right|^2,
\]
which is \(1/n\) if \(x = y\), and \(0\) otherwise. This solves the problem perfectly using prior entanglement.

\footnote{Note that \(k\) EPR-pairs \(\left(\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)\)^\otimes k\) can also be written as \(\frac{1}{\sqrt{2^k}} \sum_{i \in \{0,1\}^k} |i\rangle |i\rangle\) if we reorder the qubits, putting Alice’s \(k\) qubits on the left and Bob’s on the right. While these two ways of writing the state strictly speaking correspond to two different vectors of amplitudes, they still represent the same bipartite physical state, and we will typically view them as equal.}
What about classical protocols? Suppose there is a classical protocol that uses C bits of communication. If they ran this protocol, and then Alice communicated her output a to Bob (using an additional $\log n$ bits), he could solve the distributed Deutsch-Jozsa problem since he could then check whether $a = b$ or $a \neq b$. But we know that solving the distributed Deutsch-Jozsa problem requires at least $0.007n$ bits of communication. Hence $C + \log n \geq 0.007n$, so $C \geq 0.007n - \log n$. Thus we have a non-locality problem that can be solved perfectly if Alice and Bob share $\log n$ EPR-pairs, while classically it needs not just some communication, but actually a lot of communication.

Exercises

1. Suppose Alice and Bob share an EPR-pair $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$.

 (a) Let U be a unitary with real entries. Show that the following two states are the same:

 (1) the state obtained if Alice applies U to her qubit of the EPR-pair;

 (2) the state obtained if Bob applies the transpose U^T to his qubit of the EPR-pair.

 (b) What state do you get if both Alice and Bob apply a Hadamard transform to their qubit of the EPR-pair? Hint: you could write this out, but you can also get the answer almost immediately from part (a) and the fact that $H^T = H^{-1}$.

2. Give a classical strategy using shared randomness for the CHSH game, such that Alice and Bob win the game with probability at least $3/4$ for every possible input x, y (note the order of quantification: the same strategy has to work for every x, y). Hint: For every fixed input x, y, there is a classical strategy that gives a wrong output only on that input, and that gives a correct output on all other possible inputs. Use the shared randomness to randomly choose one of those deterministic strategies.

3. “Mermin’s game” is the following. Consider three space-like separated players: Alice, Bob, and Charlie. Alice receives input bit x, Bob receives input bit y, and Charlie receives input bit z. The input satisfies the promise that $x \oplus y \oplus z = 0$. The goal of the players is to output bits a, b, c, respectively, such that $a \oplus b \oplus c = \text{OR}(x, y, z)$. In other words, the outputs should sum to 0 (mod 2) if $x = y = z = 0$, and should sum to 1 (mod 2) if $x + y + z = 2$.

 (a) Show that every classical deterministic strategy will fail on at least one of the 4 allowed inputs.

 (b) Show that every classical randomized strategy has success probability at most $3/4$ under the uniform distribution on the four allowed inputs xyz.

 (c) Suppose the players share the following entangled 3-qubit state:

 $$\frac{1}{2}(|000\rangle - |011\rangle - |101\rangle - |110\rangle).$$

 Suppose each player does the following: if his/her input bit is 1, apply H to his/her qubit, otherwise do nothing. Describe the resulting 3-qubit superposition.

 (d) Using (c), give a quantum strategy that wins the above game with probability 1 on every possible input.
Chapter 13
Quantum Cryptography

13.1 Quantum key distribution

One of the most basic tasks of cryptography is to allow Alice to send a message to Bob (whom she trusts) over a public channel, without allowing a third party Eve (for “eavesdropper”) to get any information about M from tapping the channel. Suppose Alice wants to send message $M \in \{0, 1\}^n$ to Bob. The goal here is not minimal communication, but secrecy. This is often done by public-key cryptography such as RSA. Such schemes, however, are only computationally secure, not information-theoretically secure: all the information about the private key can be computed from the public key, it just appears to take a lot of time to compute it—assuming of course that problems like factoring are classically hard, and that nobody builds a quantum computer...

In contrast, the following “one-time pad” scheme is information-theoretically secure. If Alice and Bob share a secret key $K \in \{0, 1\}^n$ then Alice can send $C = M \oplus K$ over the channel. By adding K to what he received, Bob learns M. On the other hand, if Eve didn’t know anything about K then she learns nothing about M from tapping the message $M \oplus K$ that goes over the channel. How can we make Alice and Bob share a secret key? In the classical world this is impossible, but with quantum communication it can be done!

Below we describe the famous BB84 quantum key distribution protocol of Bennett and Brassard [17]. Consider two possible bases: basis 0 is the computational basis $\{|0\rangle, |1\rangle\}$, and basis 1 is the Hadamard basis $\{|+, -\rangle\}$. The main property of quantum mechanics that we’ll use, is that if a bit b is encoded in an unknown basis, then Eve cannot get information about b without disturbing the state, and the latter can be detected by Alice and Bob.\(^1\)

1. Alice chooses n random bits a_1, \ldots, a_n and n random bases b_1, \ldots, b_n. She sends a_i to Bob in basis b_i over the public quantum channel. For example, if $a_i = 0$ and $b_i = 1$ then the ith qubit that she sends is in state $|+\rangle$.

2. Bob chooses random bases b'_1, \ldots, b'_n and measures the qubits he received in those bases, yielding bits a'_1, \ldots, a'_n.

\(^1\)Quantum key distribution might in fact better be called “quantum eavesdropper detection.” There are some more assumptions underlying BB84 that should be made explicit: we assume that the classical channel used in steps 3–5 is “authenticated”, meaning that Alice and Bob know they are talking to each other, and Eve can listen but not change the bits sent over the classical channel (in contrast to the qubits sent during step 1 of the protocol, which Eve is allowed to manipulate in any way she wants).
3. Bob sends Alice all \(b'_i\), and Alice sends Bob all \(b_i\). Note that for roughly \(n/2\) of the \(i\)'s, Alice and Bob used the same basis \(b_i = b'_i\). For those \(i\)'s Bob should have \(a'_i = a_i\) (if there was no noise and Eve didn’t tamper with the \(i\)th qubit on the channel). Both Alice and Bob know for which \(i\)'s this holds. Let’s call these roughly \(n/2\) positions the “shared string.”

4. Alice randomly selects \(n/4\) locations in the shared string, and sends Bob those locations as well as the values \(a_i\) at those locations. Bob then checks whether they have the same bits in those positions. If the fraction of errors is bigger than some number \(p\), then they suspect some eavesdropper was messing with the channel, and they abort.\(^2\)

5. If the test is passed, then they discard the \(n/4\) test-bits, and have roughly \(n/4\) bits left in their shared string. This is called the “raw key.” Now they do some classical postprocessing on the raw key: “information reconciliation” to ensure they end up with exactly the same shared string, and “privacy amplification” to ensure that Eve has negligible information about that shared string.\(^3\)

The communication is \(n\) qubits in step 1, \(2n\) bits in step 3, \(O(n)\) bits in step 4, and \(O(n)\) bits in step 5. So the required amount of communication is linear in the length of the shared secret key that Alice and Bob end up with.

It’s quite hard to formally prove that this protocol yields (with high probability) a shared key about which Eve has negligible information. In fact it took more than 12 years before BB84 was finally proven secure \([62, 60]\). The main reason it works is that when the qubits that encode \(a_1, \ldots, a_n\) are going over the public channel, Eve doesn’t know yet in which bases \(b_1, \ldots, b_n\) these are encoded (she will learn the \(b_i\) later from tapping the classical communication in step 3, but at that point this information is not of much use to her anymore). She could try to get as much information as she can about \(a_1, \ldots, a_n\) by some measurement, but there’s an information-vs-disturbance tradeoff: the more information Eve learns about \(a_1, \ldots, a_n\) by measuring the qubits, the more she will disturb the state, and the more likely it is that Alice and Bob will detect her presence in step 4.

We won’t go into the full proof details here, just illustrate the information-disturbance tradeoff for the case where Eve individually attacks the qubits encoding each bit in step 1 of the protocol.\(^4\)

In Fig. 13.1 we give the four possible states for one BB84-qubit. If Alice wants to send \(a_i = 0\), then she sends a uniform mixture of \(|0\rangle\) and \(|+\rangle\) across the channel; if Alice wants to send \(a_i = 1\) she sends a uniform mixture of \(|1\rangle\) and \(|-\rangle\). Suppose Eve tries to learn \(a_i\) from the qubit on the channel. The best way for her to do this is to measure in the orthonormal basis corresponding to state \(\cos(\pi/8)|0\rangle + \sin(\pi/8)|1\rangle\) and \(-\sin(\pi/8)|0\rangle + \cos(\pi/8)|1\rangle\). Note that the first state is halfway between the two encodings of 0, and the second state is halfway between the two encodings of 1. This will give her the value of \(a_i\) with probability \(\cos(\pi/8)^2 \approx 0.85\) (remember the 2-to-1 quantum random access code from Exercise 2 of Chapter 10). However, this measurement will change the state of the qubit by an angle of at least \(\pi/8\), so if Bob now measures the qubit he receives in the same basis as Alice, his probability of recovering the incorrect value of \(a_i\) is at least \(\sin(\pi/8)^2 \approx 0.15\)

\(^2\)The number \(p\) can for instance be set to the natural error-rate that the quantum channel would have if there were no eavesdropper.

\(^3\)This can be done for instance by something called the “leftover hash lemma.”

\(^4\)The more complicated situation where Eve does an \(n\)-qubit measurement on all qubits of step 1 simultaneously can be reduced to the case of individual-qubit measurements by something called the quantum De Finetti theorem, but we won’t go into the details here.
(if Bob measured in a different basis than Alice, then the result will be discarded anyway). If this i is among the test-bits Alice and Bob use in step 4 of the protocol (which happens with probability $1/2$), then they will detect an error. Eve can of course try a less disturbing measurement to reduce the probability of being detected, but such a measurement will also have a lower probability of telling her a_i.

$|\rangle |$

$|\rangle |$

$|\rho\rangle |$

Figure 13.1: The four possible states in BB84 encoding: $|0\rangle$ and $|+\rangle$ are two different encodings of 0, and $|1\rangle$ and $|\rangle$ are two different encodings of 1.

13.2 Reduced density matrices and the Schmidt decomposition

Suppose Alice and Bob share some pure state $|\phi\rangle$. If this state is entangled, it cannot be written as a tensor product $|\phi_A\rangle \otimes |\phi_B\rangle$ of separate pure states for Alice and Bob. Still, there is a way to describe Alice’s local state as a mixed state, by tracing out Bob’s part. Formally, if $A \otimes B$ is a product matrix then $\text{Tr}_B(A \otimes B) = A \cdot \text{Tr}(B)$. By extending this linearly to matrices that are not of product form, the operation Tr_B is well-defined on all mixed states (note that Tr_B removes Bob’s part of the state, leaving just Alice’s part of the state). If ρ_{AB} is some bipartite state (mixed or pure, entangled or not), then $\rho_A = \text{Tr}_B(\rho_{AB})$ is Alice’s local density matrix. This describes all the information she has. For example, for an EPR-pair $|\phi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$, the corresponding density matrix is

$$
\rho_{AB} = \frac{1}{2}(|00\rangle\langle 00| + |00\rangle\langle 11| + |11\rangle\langle 00| + |11\rangle\langle 11|)
$$

and since $\text{Tr}(|a\rangle\langle b|) = 1$ if $a = b$ and $\text{Tr}(|a\rangle\langle b|) = 0$ if $|a\rangle$ and $|b\rangle$ are orthogonal, we have

$$
\rho_A = \text{Tr}_B(\rho_{AB}) = \frac{1}{2}(|0\rangle\langle 0| + |1\rangle\langle 1|).
$$

In other words, Alice’s local state is the same as a random coin flip! Similarly we can compute Bob’s local state by tracing out Alice’s part of the space: $\rho_B = \text{Tr}_A(\rho_{AB})$.

The Schmidt decomposition is a very useful way to write bipartite pure states, and allows us to easily calculate the local density matrices of Alice and Bob. It says the following: for every bipartite state $|\phi\rangle$ there is an orthonormal basis $|a_1\rangle, \ldots, |a_d\rangle$ for Alice’s space, an orthonormal basis $|b_1\rangle, \ldots, |b_d\rangle$ for Bob’s, and nonnegative reals $\lambda_1, \ldots, \lambda_d$ whose squares sum to 1, such that

$$
|\phi\rangle = \sum_{i=1}^{d} \lambda_i |a_i\rangle |b_i\rangle. \quad \text{(13.1)}
$$
The number of nonzero λ_i’s is called the Schmidt rank of the state. For example, an EPR-pair has Schmidt coefficients $\lambda_1 = \lambda_2 = 1/\sqrt{2}$ and hence has Schmidt rank 2.

The existence of the Schmidt decomposition is shown as follows. Let $\rho_A = \text{Tr}_B(\langle \phi | \phi \rangle)$ be Alice’s local density matrix. This is Hermitian, so it has a spectral decomposition $\rho_A = \sum_i \mu_i |a_i\rangle \langle a_i|$ with orthonormal eigenvectors $|a_i\rangle$ and nonnegative real eigenvalues μ_i. Note $\sum_i \mu_i = \text{Tr}(\rho_A) = 1$. Since the $\{|a_i\rangle\}$ form an orthonormal set, we can extend it to an orthonormal basis for Alice’s d-dimensional space (adding additional orthonormal $|a_i\rangle$ and $\mu_i = 0$). Hence there are c_{ij} such that

$$|\phi \rangle = \sum_{i,j=1}^d \sqrt{\mu_i c_{ij}} |a_i\rangle |j\rangle,$$

where the $|j\rangle$ are the computational basis states for Bob’s space. Define $\lambda_i = \sqrt{\mu_i}$ and $|b_i\rangle = \sum_j c_{ij} |j\rangle$. This gives the decomposition of $|\phi \rangle$ of Eq. (13.1). It only remains to show that $\{|b_i\rangle\}$ is an orthonormal set, which we do as follows. The density matrix version of Eq. (13.1) is

$$|\phi \rangle \langle \phi | = \sum_{i,j=1}^d \lambda_i \lambda_j |a_i\rangle \langle a_j| \otimes |b_i\rangle \langle b_j|.$$

We know that if we trace out the B-part from $|\phi \rangle \langle \phi |$, then we should get $\rho_A = \sum_i \lambda_i^2 |a_i\rangle \langle a_i|$, but that can only happen if $\langle b_j | b_i \rangle = \text{Tr}(|b_i\rangle \langle b_j|) = 1$ for $i = j$ and $\langle b_j | b_i \rangle = 0$ for $i \neq j$. Hence the $|b_i\rangle$ form an orthonormal set. Note that from Eq. (13.1) it easily follows that Bob’s local density matrix is $\rho_B = \sum_i \lambda_i^2 |b_i\rangle \langle b_i|.$

13.3 The impossibility of perfect bit commitment

Key distribution is just one of the many tasks cryptographers would like to solve. Another important primitive is bit commitment. In this scenario there is no eavesdropper, but Alice and Bob don’t trust each other. Suppose Alice has a bit b which for the time being she doesn’t want to reveal to Bob, though she would like to somehow convince Bob that she has already made up her mind about b and won’t change its value later. A protocol for bit commitment comes in two stages, each of which may involve several rounds of communication:

1. In the “commit” phase Alice gives Bob a state which is supposed to commit her to the value of b (without informing Bob about the value of b).
2. In the “reveal” phase Alice sends b to Bob, and possibly some other information to allow him to check that this is indeed the same value b that Alice committed to before.

A protocol is binding if Alice can’t change her mind, meaning she can’t get Bob to “open” $1 - b$. A protocol is concealing if Bob cannot get any information about b before the “reveal phase.”

A good protocol for bit commitment would be a very useful building block for many other cryptographic applications. For instance, it would allow Alice and Bob (who still don’t trust each other) to jointly flip a fair coin. Maybe they’re going through a divorce, and need to decide who

5 A good metaphor to think about this: in the commit phase Alice locks b inside a safe which she sends to Bob. This commits her to the value of b, since the safe is no longer in her hands. During the reveal phase she sends Bob the key to the safe, who can then open it and learn b.

83
gets to keep their joint car. Alice can’t just flip the coin by herself because Bob doesn’t trust her to do this honestly, and vice versa. Instead, Alice would pick a random coin b and commit to it. Bob would then pick a random coin c and send it to Alice. Alice then reveals b, and the outcome of the coin flip is defined to be $b \oplus c$. As long as at least one of the two parties follows this protocol, the result will be a fair coin flip.

Perfect coin flipping (and hence also perfect bit commitment) are known to be impossible in the classical world. After BB84 there was some hope that perfect bit commitment (and hence also perfect coin flipping) would be possible in the quantum world, and there were some seemingly-secure proposals for quantum protocols to achieve this. Unfortunately it turns out that there is no quantum protocol for bit commitment that is both perfectly binding and perfectly concealing.

To show that a protocol for perfect bit commitment is impossible, consider the joint pure state $|\phi_b\rangle$ that Alice and Bob would have if Alice wants to commit to bit-value b, and they both honestly followed the protocol. If the protocol is perfectly concealing, then the reduced density matrix on Bob’s side should be independent of b, i.e., $\text{Tr}_A(|\phi_0\rangle\langle\phi_0|) = \text{Tr}_A(|\phi_1\rangle\langle\phi_1|)$. The way we constructed the Schmidt decomposition in the previous section now implies that there exist Schmidt decompositions of $|\phi_0\rangle$ and $|\phi_1\rangle$ with the same λ_i’s and the same b_i’s: there exist orthonormal bases $\{a_i\}$ and $\{a'_i\}$ such that

$$|\phi_0\rangle = \sum_{i=1}^{d} \lambda_i |a_i\rangle|b_i\rangle$$

and

$$|\phi_1\rangle = \sum_{i=1}^{d} \lambda_i |a'_i\rangle|b_i\rangle$$

Now Alice can locally switch from $|\phi_0\rangle$ to $|\phi_1\rangle$ by just applying on her part of the state the map $|a_i\rangle \mapsto |a'_i\rangle$. Alice’s map is unitary because it takes one orthonormal basis to another orthonormal basis. But then the protocol is not binding at all: Alice can still freely change her mind about the value of b after the “commit” phase is over! Accordingly, if a quantum protocol for bit commitment is perfectly concealing, it cannot be binding at all.

13.4 More quantum cryptography

Quantum cryptography is by now a pretty large subset of the area of quantum information and computation. Here we just briefly mention a few other topics in quantum crypto:

- There are quantum protocols for bit commitment that are partially concealing and partially binding—something which is still impossible in the classical world. A primitive called “weak coin flipping” can be implemented almost perfectly in the quantum world, and cannot be implemented at all in the classical world.

- Under assumptions on the fraction of dishonest players among a set of k parties, it is possible to implement secure multi-party quantum computation. This is a primitive that allows the players to compute any function of their k inputs, without revealing more information to player i than can be inferred from i’s input plus the function value.

- One can actually do nearly perfect bit commitment, coin flipping, etc., assuming the dishonest party has bounded quantum storage, meaning that it can’t keep large quantum states coherent.

6 The assumption that the state is pure rather than mixed is without loss of generality.
for longer times. At the present state of quantum technology this is a very reasonable assumption (though a breakthrough in physical realization of quantum computers would wipe this approach out).

• In device-independent cryptography, Alice and Bob want to solve certain cryptographic tasks like key distribution or randomness generation without trusting their own devices (for instance because they don’t trust the vendor of their apparatuses). Roughly speaking, the idea here is to use Bell-inequality violations to prove the presence of entanglement, and then use this entanglement for cryptographic purposes. Even if Alice or Bob’s apparatuses have been tampered with, they can still only violate things like the CHSH inequality if they actually share an entangled state.

• Experimentally it is much easier to realize quantum key distribution than general quantum computation, because you basically just need to prepare qubits (usually photons) in either the computational or the Hadamard basis, send them across a channel (usually an optical fibre, but sometimes free space), and measure them in either the computational or the Hadamard basis. Many sophisticated experiments have already been done. Somewhat surprisingly, you can already commercially buy quantum key distribution machinery. Unfortunately the implementations are typically not perfect (for instance, we don’t have perfect photon counters), and once in a while another loophole is exposed in the implementation, which the vendor then tries to patch, etc.

Exercises

1. Here we will consider in more detail the information-disturbance tradeoff for measuring a qubit in one of the four BB84 states (each of which occurs with probability 25%).

 (a) Suppose Eve measures the qubit in the orthonormal basis given by \(\cos(\theta)|0\rangle + \sin(\theta)|1\rangle \) and \(-\sin(\theta)|0\rangle + \cos(\theta)|1\rangle \), for some parameter \(\theta \in [0, \pi/4] \). For each of the four possible BB84 states, give the probabilities of outcome 0 and outcome 1 (so the answer consists of 8 numbers, each of which is a function of \(\theta \)).

 (b) What is the average probability that Eve’s measurement outcome equals the encoded bit \(a_i \), as function of \(\theta \)? (average taken both over the uniform distribution over the four BB84 states, and over the probabilities calculated in part (a))

 (c) What is the average absolute value of the angle by which the state is changed if Eve’s outcome is the encoded bit \(a_i \)? Again, the answer should be a function of \(\theta \).

2. (a) What is the Schmidt rank of the state \(\frac{1}{2}(|00\rangle + |01\rangle + |10\rangle + |11\rangle) \)?

 (b) Suppose Alice and Bob share \(k \) EPR-pairs. What is the Schmidt rank of their joint state?

 (c) Prove that a pure state \(|\phi\rangle \) is entangled if, and only if, its Schmidt rank is greater than 1.

3. Prove that Alice cannot give information to Bob by doing a unitary operation on her part of an entangled pure state. \textit{Hint: Show that a unitary on Alice’s side of the state won’t change Bob’s local density matrix \(\rho_B \).}
4. Suppose Alice sends two n-bit messages M_1 and M_2 with the one-time pad scheme, reusing the same n-bit key K. Show that Eve can now get some information about M_1, M_2 from tapping the classical channel.
Chapter 14

Error-Correction and Fault-Tolerance

14.1 Introduction

When Shor’s algorithm had just appeared in 1994, most people (especially physicists) were extremely skeptical about the prospects of actually building a quantum computer. In their view, it would be impossible to avoid errors when manipulating small quantum systems, and such errors would very quickly overwhelm the computation, rendering it no more useful than classical computation. However, in the few years that followed, the theory of quantum error-correction and fault-tolerant computation was developed. This shows, roughly speaking, that if the error-rate per operation can be brought down to something reasonably small (say 1%), then under some reasonable assumptions we can actually do near-perfect quantum computing for as long as we want. Below we give a succinct and somewhat sketchy introduction to this important but complex area, just explaining the main ideas. See Daniel Gottesman’s survey for more details [43].

14.2 Classical error-correction

In the early days of classical computing, errors were all over the place: memory-errors, errors in bits sent over a channel, incorrectly applied instructions, etc.1 Nowadays hardware is much more reliable, but we also have much better “software solutions” for errors, in particular error-correcting codes. Such codes take a string of data and encode it in a larger string (the “codeword”), adding a lot of redundancy so that a small fraction of errors on the codeword won’t be able to reduce the information about the encoded data.

The simplest example is of course the repetition code. If we want to protect a bit b, we could repeat it three times:

$$b \mapsto bbb.$$

If we want to decode the encoded bit b from the (possibly corrupted) 3-bit codeword, we just take the majority value of the 3 bits.

Consider a very simple noise model: every bit is flipped (independently of the other bits) with probability p. Then initially, before applying the code, b has probability p to be flipped. But if we apply the repetition code, the probability that the majority-value of the three bits is different from b, is the probability of 2 or 3 bitflips, which is $3p^2(1-p) + p^3 < 3p^2$. Hence the error-rate

1The name “bugs” actually comes from insects getting stuck inside the computer and causing errors.
has been reduced from \(p\) to less than \(3p^2\). If the initial error-rate \(p_0\) was \(< 1/3\), then the new error-rate \(p_1 < 3p_0^2\) is less than \(p_0^2\) and we have made progress: the error-rate on the encoded bit is smaller than before. If we’d like it to be even smaller, we could concatenate the code with itself, i.e., repeat each of the three bits in the code three times, so the codelength becomes 9. This would give error-rate \(p_2 = 3p_1^2(1 - p_1) + p_1^2 < 3p_1^2 < 27p_0^6\), giving a further improvement. As we can see, as long as the initial error-rate \(p\) was at most \(1/3\), we can reduce the error-rate to whatever we want: \(k\) levels of concatenation encode one “logical bit” into \(3^k\) “physical bits”, but the error-rate for each logical bit has been reduced to \(\frac{1}{3}(3p_0)^{2k}\). This is a very good thing: if the initial error is below the threshold of \(1/3\), then \(k\) levels of concatenation increases the number of bits exponentially (in \(k\)), but reduces the error-rate double-exponentially fast!

Typically, already a small choice of \(k\) gets the error-rate down to negligible levels. For example, suppose we want to protect some polynomial (in some \(n\)) number of bits for some polynomial number of time-steps, and our physical error-rate is some fixed \(p_0 < 1/3\). Choosing \(k = 2\log\log n\) levels of concatenation already suffices for this, because then \(p_k \leq \frac{1}{3}(3p_0)^{2k} \sim 2^{-(\log n)^2} = n^{-\log n}\) goes to 0 faster than any polynomial. With this choice of \(k\), each logical bit would be encoded in \(3^k = (\log n)^{2\log_2(3)}\) physical bits, so we only increase the number of bits by a polylogarithmic factor.

14.3 Quantum errors

The need for error-correction is far greater for quantum computers than for classical computers, because “quantum hardware” is much more fragile than classical hardware. Unfortunately, error-correction is also substantially more difficult in the quantum world, for several reasons:

- The classical solution of just repeating a state is not available in general in the quantum world, because of the no-cloning theorem.
- The classical world has basically only bitflip-errors, while the quantum world is continuous and hence has infinitely many different possible errors.
- Measurements that test whether a state is correct can collapse the state, losing information.

Depending on the specific model of errors that one adopts, it is possible to deal with all of these issues. We will consider the following simple error model. Consider quantum circuits with \(S\) qubits, and \(T\) time-steps; in each time-step, several gates on disjoint sets of qubits may be applied in parallel. After each time-step, at each qubit, independently from the other qubits, some unitary error hits that qubit with probability \(p\). Note that we assume the gates themselves to operate perfectly; this is just a convenient technical assumption, since a perfect gate followed by errors on its outgoing qubits is the same as an imperfect gate.

Let’s investigate what kind of (unitary) errors we could get on one qubit. Consider the four Pauli matrices:

\[
I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.
\]

These have an interpretation as possible errors: \(I\) corresponds to no-error, \(X\) is a bitflip-error, \(Z\) is a phaseflip-error, and \(Y = iXZ\) is a phaseflip-error followed by a bitflip-error (and a global phase
of i, which doesn’t matter). These four matrices span the space of all possible 2×2 matrices, so every possible error-operation E on a qubit is some linear combination of the 4 Pauli matrices. More generally, every $2^k \times 2^k$ matrix can be written uniquely as a linear combinations of matrices that each are the tensor product of k Pauli matrices.

Consider for example the error which puts a small phase ϕ on $|1\rangle$:

$$E = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = e^{i\phi/2} \cos(\phi/2) I - ie^{i\phi/2} \sin(\phi/2) Z.$$

Note that for small ϕ most of the weight in this linear combination sits on I, which corresponds to the fact that E is close to I. The sum of squared moduli of the two coefficients is 1 in this case. That’s not a coincidence: whenever we write a unitary as a linear combination of Pauli matrices, the sum of squares of the coefficients will be 1 (see Exercise 1).

The fact that all one-qubit errors are linear combinations of I, X, Y, Z, together with the linearity of quantum mechanics, implies that if we can correct bitflip-errors, phaseflip-errors, and their product, then we can correct all possible unitary errors on a qubit.\(^2\) So typically, quantum error-correcting codes are designed to correct bitflip and phaseflip-errors (their product is then typically also correctable), and all other possible errors are then also handled without further work.

Our noise model does not explicitly consider errors on multiple qubits that are not a product of errors on individual qubits. However, even such a joint error on, say, k qubits simultaneously can still be written as a linear combination of products of k Pauli matrices. So also here the main observation applies: if we can just correct bitflip and phaseflip-errors on individual qubits, then we can correct all possible errors!

14.4 Quantum error-correcting codes

Quantum error-correcting codes encode a number of “logical qubits” into a larger number of “physical qubits”, in such a way that errors on some number of its qubits can be corrected. The first and simplest is Peter Shor’s 9-qubit code [75], which encodes 1 logical qubit into 9 physical qubits, and can correct an error on any one of the 9 physical qubits. Here are the codewords for the two logical basis states:

$$|0\rangle \mapsto |\overline{0}\rangle = \frac{1}{\sqrt{8}} (|000\rangle + |111\rangle)(|000\rangle + |111\rangle)(|000\rangle + |111\rangle)$$

$$|1\rangle \mapsto |\overline{1}\rangle = \frac{1}{\sqrt{8}} (|000\rangle - |111\rangle)(|000\rangle - |111\rangle)(|000\rangle - |111\rangle)$$

These two quantum codewords $|\overline{0}\rangle$ and $|\overline{1}\rangle$ span a 2-dimensional space $\{\alpha |\overline{0}\rangle + \beta |\overline{1}\rangle\}$. This 2-dimensional subspace of the overall 2^9-dimensional space is called the “codespace.”

Suppose an error happens on one of these 9 qubits. We would like to have a procedure that maps the resulting state back to the codespace. By linearity, it suffices if we can do this for the basis states $|\overline{0}\rangle$ and $|\overline{1}\rangle$. First consider bitflip and phaseflip-errors.

\(^2\)We can even correct the non-unitary errors that arise from undesired interaction between qubits of our circuit with the environment, but we won’t talk about such errors here.
Detecting a bitflip-error. If a bitflip-error occurs on one the first three qubits, we can detect its location by noting which of the 3 positions is the minority bit. We can do this for each of the three 3-qubit blocks. Hence there is a unitary that writes down in 4 ancilla qubits (which are all initially $|0\rangle$) a number $e_b \in \{0, 1, \ldots, 9\}$. Here $e_b = 0$ means that no bitflip-error was detected, and $e_b \in \{1, \ldots, 9\}$ means that a bitflip-error was detected on qubit number e_b. Note that we don’t specify what should happen if more than one bitflip-error occurred.

Detecting a phaseflip-error. To detect a phaseflip-error, we can consider the relative phase for each of the three blocks $|000\rangle \pm |111\rangle$, and if they are not all the same, unitarily write down in 2 more ancilla qubits (again, initially $|0\rangle$) a number $e_p \in \{0, 1, 2, 3\}$. Here $e_p = 0$ means that no phaseflip-error was detected, and $e_p \in \{1, 2, 3\}$ means that a phaseflip-error was detected in the e_pth block.

Together the above two procedures form one unitary U (i.e., one circuit) that acts on $9 + 4 + 2 = 15$ qubits, and that “writes down” both e_b and e_p in ancilla qubits. For example, suppose we have the state $X_i Z_j |\overline{0}\rangle$. After fresh ancilla qubits $|0^4\rangle |0^2\rangle$ are added, U maps

$$X_i Z_j |\overline{0}\rangle |0^4\rangle |0^2\rangle \mapsto X_i Z_j |i\rangle |j'\rangle.$$

Together, $e_b = i$ and $e_p = j'$ form the “error syndrome”; this tells us which error occurred where. The error-correction procedure can now measure this syndrome in the computational basis, and take corrective action depending on the classical outcomes e_b and e_p: apply an X to qubit e_b (or no X if $e_b = 0$), and apply a Z to one qubit in the e_pth block (or no Z if $e_p = 0$). The case of a Y-error on the ith qubit corresponds to the case where $i = j$ (i.e., the ith qubit is hit by both a phaseflip and a bitflip); our procedure still works in this case. Hence we can perfectly correct one Pauli error on any one of the 9 codeword qubits.

As we argued before, the ability to correct Pauli-errors suffices to correct all possible errors. Let’s see in more detail how this works. Consider for instance some 9-qubit unitary error E. Assume it can be decomposed as a linear combination of 9-qubit products of Paulis, each having at most one bitflip-error and one phaseflip-error:

$$E = \sum_{i,j} \alpha_{ij} X_i Z_j.$$

Suppose this error occurs on $|\overline{0}\rangle$:

$$E |\overline{0}\rangle = \sum_{i,j} \alpha_{ij} X_i Z_j |\overline{0}\rangle.$$

If we now add ancillas $|0^4\rangle |0^2\rangle$ and apply the above unitary U, then we go into a superposition of error syndromes:

$$U (E \otimes I^6) |\overline{0}\rangle |0^4\rangle |0^2\rangle = \sum_{i,j} \alpha_{ij} X_i Z_j |\overline{0}\rangle |i\rangle |j'\rangle.$$

\[3\]Note that we are not discovering on which of the 9 qubits the phaseflip-error happened (in contrast to the case of bitflips), but that’s OK: we can correct it nonetheless.
Measuring the ancillas will now probabilistically give us one of the syndromes \(|i\rangle|j\rangle\), and collapse the state to

\[X_i Z_j |0\rangle|i\rangle|j\rangle. \]

In a way, this measurement of the syndrome “discretizes” the continuously many possible errors to the finite set of Pauli errors. Once the syndrome has been measured, we can apply a corrective \(X\) and/or \(Z\) to the first 9 qubits to undo the specific error corresponding to the specific syndrome we got as outcome of our measurement.

So now we can correct an error on one qubit. To achieve this, however, we have substantially increased the number of locations where such an error could occur: the number of qubits has gone from 1 to 9 (even to 15 if we count the ancilla as well), and we need a number of time-steps to compute and measure the syndrome, and to correct a detected error. Hence this procedure only gains us something if the error-rate \(p\) is so small that the probability of 2 or more errors on the larger encoded system is smaller than the probability of 1 error in the unencoded qubit. We will get back to this issue below, when talking about the threshold theorem. Note also that each new application of the correction-procedure need a new, fresh 6-qubit ancilla initialized to \(|0\rangle|0\rangle\). After one run of the error-correction procedure these ancillas will contain the measured error syndrome, and we can just discard this. In a way, error correction acts like a refrigerator: a fridge pumps heat out of its system and dumps it into the environment, and error-correction pumps noise out of its system and dumps it in the environment in the form of the discarded ancilla qubits.

The above 9-qubit code is just one example of a quantum error-correcting code. Better codes exist, and a lot of work has gone into simultaneously optimizing the different parameters: we want to encode a large number of logical qubits into a not-much-larger number of physical qubits, while being able to correct as many errors as possible. The shortest code that encodes one logical qubit and protects against one error, has five physical qubits. There are also asymptotically good quantum error-correcting codes, which encode \(k\) logical qubits into \(O(k)\) physical qubits and can correct errors on a constant fraction of the physical qubits (rather than just an error on one of the qubits).

14.5 Fault-tolerant quantum computation

Encoding a quantum state in a quantum error-correcting code to protect it against noise is good, but not enough: we also need to be able to do operations on the encoded qubits (Hadamards, CNOTs, etc.). One way is to decode the logical qubits, do the operation on them, and then re-encode them. This, however, is a recipe for disaster: if an error occurs between the decoding and subsequent encoding, we’re unprotected. Accordingly, we need to be able to do operations on the logical qubits while they are encoded. Additionally, we need operations for regular stages of error-correction, i.e., measuring the syndrome and correcting. These operations may also introduce errors.\(^4\)

There is a 7-qubit code (due to Andrew Steane) which is used often because it has nice properties: a Hadamard on the logical qubit corresponds to \(H^\otimes 7\) on the physical qubits, and a CNOT between two logical qubits corresponds to applying CNOTs between the 7 pairs of the two blocks of physical qubits (i.e., between the 1st qubit of one block and the 1st qubit of the other block, etc.). Adding the gate that maps \(|b\rangle \mapsto e^{i\theta}|b\rangle\) to this suffices for universal quantum computation;

\(^4\)It’s like being inside a leaky boat on the open seas, using a leaky bucket to scoop out water all the time to prevent the boat from filling up with water and sinking. It’s doable, but not easy.
unfortunately, implementing this gate fault-tolerantly takes a lot more work, and we won’t go into that here.

When designing schemes for fault-tolerant computing, it is very important to ensure that errors do not spread too quickly. Consider for instance a CNOT: if its control-bit is erroneous, then after doing the CNOT also its target bit will be erroneous. The trick is to keep this under control in such a way that regular phases of error-correction don’t get overwhelmed by the errors. In addition, we need to be able to fault-tolerantly prepare states, and measure logical qubits in the computational basis. We won’t go into the (many) further details of fault-tolerant quantum computing (see [43]).

14.6 Concatenated codes and the threshold theorem

The idea to concatenate a code with itself, described at the end of Section 14.2, also applies to quantum codes. Suppose we have some code that encodes one qubit into C qubits, that can correct one error on one of its C qubits, and uses D time-steps per stage of error-correcting (each time-step may involve a number of elementary gates in parallel). Instead of only 1, we now have CD locations where an error could occur! Assuming error-rate p per-qubit-per-timestep, the probability for the code to fail on a specific logical qubit at a specific time (i.e., to have more than 1 physical error on its CD locations) is $p' = \sum_{i>1}^{CD} (\binom{CD}{i}) p^i$. If p is a sufficiently small constant, then this sum is dominated by the term for $i = 2$, and we have $p' \approx (CD)^2 p^2$. Hence if the initial error-rate p is below some magical constant $\approx 1/CD$, then each level of error-correction reduces the error-rate.

More generally, suppose we concatenate this code k times with itself. Then every “logical qubit” gets encoded into C^k qubits, but (by the same calculation as in Section 14.2) the error-rate for each logical qubit gets reduced to $O((CDp)^k)$. Suppose we want to be able to “survive” $T = \text{poly}(n)$ time-steps without any error on the logical qubits; that is what we would need to run an efficient quantum algorithm on faulty quantum hardware. Then it suffices if we reduce the error rate to $\ll 1/T$, for which $k = O(\log \log T)$ levels of concatenation are enough. These layers of error-correction increase the number of qubits and the computation time by a factor which is exponential in k, but that is still only a polylogarithmic overhead, since $2^{O(\log \log T)} = (\log T)^{O(1)}$.

The above sketch (when implemented precisely) gives us the famous “threshold theorem” [3, 54]: if the initial error-rate of the quantum hardware can be brought down below some magical constant (known as the “fault-tolerance threshold”), then we can use software-solutions like quantum error-correcting codes and fault-tolerant computing to ensure that we can quantum compute for long periods of time without serious errors. Much research has gone into finding the best value for this fault-tolerance threshold. The more efficient our basic quantum error-correcting codes are (i.e., the smaller C and D), the higher (= better) the value of the threshold is. Currently the best rigorous estimates for the threshold are around 0.1%, but there is numerical evidence that even a few percent would be tolerable. This is actually one of the most important results in the area of quantum computing, and is the main answer to the skeptics mentioned at the start of the chapter: as long as experimentalists manage to implement basic operations within a few percent of error in a scalable way, then we should be able to build large-scale quantum computers.5

Currently there seems to be no fundamental reason why we cannot do this; it is, however, an extremely hard engineering problem.

5This is of course assuming our simple model of independent noise on each physical qubit is not too far off; if the noise can be correlated in devious ways it becomes much harder (though often still possible) to protect against.
Exercises

1. Let E be an arbitrary 1-qubit unitary. We know that it can be written as

$$E = \alpha_0 I + \alpha_1 X + \alpha_2 Y + \alpha_3 Z,$$

for some complex coefficients α_i. Show that $\sum_{i=0}^{3} |\alpha_i|^2 = 1$. Hint: Compute the trace $\text{Tr}(E^* E)$ in two ways, and use the fact that $\text{Tr}(AB) = 0$ if A and B are distinct Paulis, and $\text{Tr}(AB) = \text{Tr}(I) = 2$ if A and B are the same Pauli.

2. (a) Write the 1-qubit Hadamard transform H as a linear combination of the four Pauli matrices.

(b) Suppose an H-error happens on the first qubit of $\alpha |\underline{0}\rangle + \beta |\underline{1}\rangle$ using the 9-qubit code. Give the various steps in the error-correction procedure that corrects this error.

3. Give a quantum circuit for the encoding of Shor’s 9-qubit code, i.e., a circuit that maps $|00\rangle \rightarrow |0\rangle$ and $|10\rangle \rightarrow |1\rangle$. Explain why the circuit works.

4. Shor’s 9-qubit code allows to correct a bit flip and/or a phase flip on one of its 9 qubits. Below we give a 4-qubit code which allows to detect a bit flip and/or a phase flip. By this we mean that after the detection procedure we either have the original uncorrupted state back, or we know that an error occurred (though we do not know which one). The logical 0 and 1 are encoded as:

$$|0\rangle_L = \frac{1}{2} (|00\rangle + |11\rangle) \otimes (|00\rangle + |11\rangle)$$
$$|1\rangle_L = \frac{1}{2} (|00\rangle - |11\rangle) \otimes (|00\rangle - |11\rangle)$$

(a) Show which measurements we can do to detect a bit flip error.

(b) Show which measurements we can do to detect a phase flip error.

(c) Does that mean that we can now detect any 1-qubit error? Explain your answer.

5. Show that there cannot be a quantum code that encodes one logical qubit into 2^k physical qubits while being able to correct errors on up to k of the qubits. Hint: Proof by contradiction.

Given an unknown qubit $\alpha |0\rangle + \beta |1\rangle$, encode it using this code. Split the 2^k qubits into two sets of k qubits, and use each to get a copy of the unknown qubit. Then invoke the no-cloning theorem.

6. Suppose we have a qubit whose density matrix is $\rho = \alpha_I I + \alpha_X X + \alpha_Y Y + \alpha_Z Z$, where $\alpha_I, \alpha_X, \alpha_Y, \alpha_Z$ are real coefficients and I, X, Y, Z are the Pauli matrices.

(a) Show that $\alpha_I = 1/2$.

(b) Depolarizing noise (of strength $p \in [0, 1]$) acts on a qubit as follows: with probability $1 - p$ nothing happens to the qubit, and with probability p the qubit is replaced by the “completely mixed state” of a qubit, whose density matrix is $I/2$. Show that depolarizing noise on the above qubit doesn’t change the coefficient α_I, but shrinks each of $\alpha_X, \alpha_Y, \alpha_Z$ by a factor of $1 - p$.

93
7. Shor’s 9-qubit code allows to correct a bit flip and/or a phase flip on one of its 9 qubits. Below we give a 4-qubit code which allows to detect a bitflip and/or a phaseflip. By this we mean that after the detection procedure we either have the original uncorrupted state back, or we know that an error occurred (though we do not know which one). The logical 0 and 1 are encoded as:

\[
|0\rangle = \frac{1}{2}(|00\rangle + |11\rangle) \otimes (|00\rangle + |11\rangle)
\]
\[
|1\rangle = \frac{1}{2}(|00\rangle - |11\rangle) \otimes (|00\rangle - |11\rangle)
\]

(a) Show which measurements we can do to detect a bitflip error.
(b) Show which measurements we can do to detect a phaseflip error.
(c) Does that mean that we can now detect any 1-qubit error? Explain your answer.
Appendix A

Some Useful Linear Algebra

In this appendix we sketch some useful parts of linear algebra, most of which will be used somewhere or other in these notes.

A.1 Some Terminology and Notation

We use $V = \mathbb{C}^d$ to denote the d-dimensional complex vector space, which is the set of all column vectors of d complex numbers. We assume familiarity with the basic rules of matrix addition and multiplication. A set of vectors $v_1, \ldots, v_m \in V$ is linearly independent if the only way to get $\sum_{i=1}^m a_i v_i$ equal to the zero-vector 0 is to set $a_1 = \cdots = a_m = 0$. A basis for V is a set of vectors v_1, \ldots, v_d such that every vector $v \in V$ can be written as a linear combination of those basis vectors $v = \sum_{i=1}^d a_i v_i$. One can show that a basis is linearly independent.

We use A_{ij} for the (i,j)-entry of a matrix A and A^T for its transpose, which has $A^T_{ij} = A_{ji}$. We use I_d to denote the $d \times d$ identity matrix, which has 1s on its diagonal and 0s elsewhere; we usually omit the subscript d when the dimension is clear from context. If A is square and there is a matrix B such that $AB = BA = I$, then we use A^{-1} to denote this B, which is called the inverse of A (and is unique if it exists). Note that $(AB)^{-1} = B^{-1}A^{-1}$. If A is a matrix (not necessarily square), then A^* denotes its conjugate transpose: the matrix obtained by transposing A and taking the complex conjugates of all entries. Note that $(AB)^* = B^*A^*$. Physicists often write A^\dagger instead of A^*.

For vectors v, w, we use $\langle v | w \rangle = v^*w = \sum_i v_i^* w_i$ for their inner product. The combination of the vector space V with this inner product is called a Hilbert space. Two vectors v, w are orthogonal if $\langle v | w \rangle = 0$. The inner product induces a vector norm $\|v\| = \sqrt{\langle v | v \rangle} = \sqrt{\sum_i |v_i|^2}$. The norm in turn induces a distance $\|v - w\|$ between vectors v and w. Note that distance and inner product are closely related:

$$\|v - w\|^2 = \langle v - w | v - w \rangle = \|v\|^2 + \|w\|^2 - \langle v | w \rangle - \langle w | v \rangle.$$

In particular, for unit vectors v and w the real part of their inner product equals $1 - \frac{1}{2}\|v - w\|^2$. Hence unit vectors that are close together have an inner product close to 1, and vice versa. The Cauchy-Schwarz inequality gives $|\langle v | w \rangle| \leq \|v\| \cdot \|w\|$.

A set $\{v_i\}$ of vectors is called an orthogonal set if all vectors are pairwise orthogonal: $\langle v_i | v_j \rangle = 0$ if $i \neq j$. If additionally the vectors all have norm 1, then the set is called orthonormal. The outer product of v and w is the matrix vw^*. Below we will restrict attention to square matrices, unless
Moreover, it is easy to show that (3) implies (2) using the following identity:

\[A = DS, \]

and upper triangular matrices are exactly its diagonal entries, the eigenvalues of \(A \). The equivalence of (3) and (4) is obvious. Note that by (4), the eigenvalues of a unitary matrix have absolute value 1.

A.2 Unitary Matrices

A matrix \(A \) is unitary if \(A^{-1} = A^* \). The following conditions are equivalent:

1. \(A \) is unitary
2. \(A \) preserves inner product: \(\langle Av, Aw \rangle = \langle v, w \rangle \) for all \(v, w \)
3. \(A \) preserves norm: \(\|Av\| = \|v\| \) for all \(v \)
4. \(\|Av\| = 1 \) if \(\|v\| = 1 \)

(1) implies (2) because if \(A \) is unitary then \(A^*A = I \), and hence \(\langle Av, Aw \rangle = (v^*A^*)Aw = \langle v, w \rangle \). (2) implies (1) as follows: if \(A \) is not unitary then \(A^*A \neq I \), so then there is a \(w \) such that \(A^*Aw \neq w \) and, hence, a \(v \) such that \(\langle v, w \rangle \neq \langle v, A^*Aw \rangle = \langle Av, Aw \rangle \), contradicting (2). Clearly (2) implies (3).

Moreover, it is easy to show that (3) implies (2) using the following identity:

\[\|v + w\|^2 = \|v\|^2 + \|w\|^2 + \langle v, w \rangle + \langle w, v \rangle. \]

The equivalence of (3) and (4) is obvious. Note that by (4), the eigenvalues of a unitary matrix have absolute value 1.

A.3 Diagonalization and Singular Values

Matrices \(A \) and \(B \) are similar if there is an invertible matrix \(S \) such that \(A = SBS^{-1} \). Note that if \(Av = \lambda v \), then \(BS^{-1}v = \lambda S^{-1}v \), so similar matrices have the same eigenvalues. Schur’s lemma states that every matrix \(A \) is similar to an upper triangular matrix: \(A = U^{-1}TU \) for some unitary \(U \) and upper triangular \(T \). Since similar matrices have the same eigenvalues and the eigenvalues of an upper triangular matrix are exactly its diagonal entries, the eigenvalues of \(A \) form the diagonal of \(T \).

A matrix \(D \) is diagonal if \(D_{ij} = 0 \) whenever \(i \neq j \). Let \(S \) be some matrix satisfying \(AS = SD \) for some diagonal matrix \(D \). Let \(v_i \) be the \(i \)th column of \(S \) and \(\lambda_i \) be the \(i \)th entry on the diagonal of \(D \), then

\[
\begin{pmatrix}
\vdots & \vdots & \vdots \\
Av_1 & \cdots & Av_d \\
\vdots & \vdots & \vdots \\
\end{pmatrix}
= S
\begin{pmatrix}
\vdots & \vdots & \vdots \\
\lambda_1v_1 & \cdots & \lambda_dv_d \\
\vdots & \vdots & \vdots \\
\end{pmatrix},
\]

and we see that \(v_i \) is an eigenvector of \(A \) associated with eigenvalue \(\lambda_i \). Conversely, if \(v_1, \ldots, v_d \) are eigenvectors of \(A \) with eigenvalues \(\lambda_1, \ldots, \lambda_d \), then we have \(AS = SD \), where \(S \) has the \(v_i \) as columns and \(D \) is the diagonal matrix of \(\lambda_i \). We call a square matrix \(A \) diagonalizable if it is similar to some diagonal matrix \(D \): \(A = SDS^{-1} \). This \(D \) then has \(A \)’s eigenvalues \(\lambda_i \) on its diagonal, some of which may be zero. Note that \(A \) is diagonalizable iff it has a linearly independent set of \(d \) eigenvectors. These eigenvectors will form the columns of \(S \), giving \(AS = SD \), and linear independence ensures
that S has an inverse, giving $A = SDS^{-1}$. A matrix A is unitarily diagonalizable iff it can be diagonalized via a unitary matrix U: $A = UDU^{-1}$. By the same argument as before, A will be unitarily diagonalizable iff it has an orthonormal set of d eigenvectors.

A matrix A is normal if it commutes with its conjugate transpose ($A^*A = AA^*$). For example, unitary matrices are normal. If A is normal and $A = U^{-1}T U$ for some upper triangular T (which must exist because of Schur's lemma), then $T = U A^*U^{-1}$ and $T^* = U A^*U^{-1}$, so $T T^* = U A^* A U^{-1} = U A^* A U^{-1} = T T^*$. Hence T is normal and upper triangular, which implies (with a little work) that T is diagonal. This shows that normal matrices are unitarily diagonalizable. Conversely, if A is normal and $A = U^{-1} T U$ for some upper triangular T (which must exist because of Schur's lemma), then $T = U A^* U^{-1}$ and $T^* = U A^* U^{-1}$, so $T T^* = U A^* A U^{-1} = U A^* A U^{-1} = T T^*$. Hence T is normal and upper triangular, which implies (with a little work) that T is diagonal. This shows that normal matrices are unitarily diagonalizable. If A is not normal, it may still be diagonalizable via a non-unitary S, for example:

$$
\begin{bmatrix}
1 & 1 \\
0 & 2
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 \\
0 & 2 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & -1 \\
0 & 1
\end{bmatrix}
$$

If $A = U D U^{-1}$ then $A^* = U D^* U^{-1}$, so the eigenvalues of A^* are the complex conjugates of the eigenvalues of A.

An important class of normal (and hence unitarily diagonalizable) matrices are the Hermitian matrices, which are the ones satisfying $A = A^*$. Note that the previous paragraph implies that the eigenvalues of Hermitian matrices are real. A Hermitian matrix is called positive definite (resp. positive semidefinite) if all its eigenvalues are positive (resp. non-negative). If all eigenvalues are 0 or 1, then A is called a projection or projection matrix. This is equivalent to requiring $A^2 = A$.

Not all matrices are diagonalizable, for instance $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$. However, every matrix A has a singular value decomposition, as follows. It is easy to see that the matrix $A^* A$ has the same eigenvectors as A and that its eigenvalues are the squared absolute values of the eigenvalues of A. Since $A^* A$ is Hermitian and hence normal, we have $A^* A = U D U^{-1}$ for some U and some non-negative real diagonal matrix D. The entries of $\Sigma = \sqrt{D}$ are called the singular values of A. Every A has a singular value decomposition $A = U \Sigma V^{-1}$, with U,V unitary. This implies that A can be written as $A = \sum_i \lambda_i u_i v_i^*$, with u_i the columns of U and v_i the columns of V.

A.4 Trace

The trace of a matrix A is the sum of its diagonal entries: $\text{Tr}(A) = \sum_i A_{ii}$. Some important and easily verified properties of $\text{Tr}(A)$ are:

- $\text{Tr}(A + B) = \text{Tr}(A) + \text{Tr}(B)$
- $\text{Tr}(AB) = \text{Tr}(BA)$
- $\text{Tr}(A)$ is the sum of the eigenvalues of A
 (This follows from Schur and the previous item: $\text{Tr}(A) = \text{Tr}(U T U^{-1}) = \text{Tr}(U^{-1} U T) = \text{Tr}(T) = \sum_i \lambda_i)$

97
A.5 Tensor Products

If \(A = (A_{ij}) \) is an \(m \times n \) matrix and \(B \) an \(m' \times n' \) matrix, then their tensor or Kronecker product is the \(mm' \times nn' \) matrix

\[
A \otimes B = \begin{pmatrix}
A_{11}B & \cdots & A_{1n}B \\
A_{21}B & \cdots & A_{2n}B \\
\vdots & & \ddots \\
A_{m1}B & \cdots & A_{mn}B
\end{pmatrix}.
\]

The following properties of the tensor product are easily verified:

- \(c(A \otimes B) = (cA) \otimes (cB) \) for all scalars \(c \)
- \((A \otimes B)^* = A^* \otimes B^* \) (and similarly for inverse and transpose)
- \(A \otimes (B + C) = (A \otimes B) + (A \otimes C) \)
- \(A \otimes (B \otimes C) = (A \otimes B) \otimes C \)
- \((A \otimes B)(C \otimes D) = (AC) \otimes (BD) \)

Different vector spaces can also be combined using tensor products. If \(V \) and \(V' \) are vectors spaces of dimension \(d \) and \(d' \) with basis \(\{v_1, \ldots, v_d\} \) and \(\{v'_1, \ldots, v'_{d'}\} \), respectively, then their tensor product space is the \(d \cdot d' \)-dimensional space \(W = V \otimes V' \) spanned by \(\{v_i \otimes v'_j \mid 1 \leq i \leq d, 1 \leq j \leq d'\} \).

Applying a linear operation \(A \) to \(V \) and \(B \) to \(V' \) corresponds to applying the tensor product \(A \otimes B \) to the tensor product space \(W \).

A.6 Rank

The rank of a matrix \(A \) (over a field \(\mathbb{F} \)) is the size of the largest linearly independent set of rows of \(A \) (linear independence taken over \(\mathbb{F} \)). Unless mentioned otherwise, we take \(\mathbb{F} \) to be the field of real numbers. We say that \(A \) has full rank if its rank equals its dimension. The following properties are all easy to show:

- \(\text{rank}(A) = \text{rank}(A^*) \)
- \(\text{rank}(A) \) equals the number of non-zero eigenvalues of \(A \) (counting multiplicity)
- \(\text{rank}(A + B) \leq \text{rank}(A) + \text{rank}(B) \)
- \(\text{rank}(AB) \leq \min\{\text{rank}(A), \text{rank}(B)\} \)
- \(\text{rank}(A \otimes B) = \text{rank}(A) \cdot \text{rank}(B) \)
- \(A \) has an inverse iff \(A \) has full rank
A.7 Dirac Notation

Physicists often write their linear algebra in Dirac notation, and we will follow that custom for denoting quantum states. In this notation we write $|v\rangle = v$ and $\langle v| = v^*$. The first is called a ket, the second a bra. Note that

- $\langle v|w\rangle = \langle v||w\rangle$
- If A is unitarily diagonalizable, then $A = \sum_i \lambda_i |v_i\rangle\langle v_i|$ for some orthonormal set of eigenvectors $\{v_i\}$
- $|v\rangle\langle v| \otimes |w\rangle\langle w| = (|v\rangle \otimes |w\rangle)(\langle v| \otimes \langle w|)$
Appendix B

Some other Useful Mathematics

Here we collect various identities and other useful mathematical facts needed in parts of the lecture notes.

• The Cauchy-Schwarz inequality:
 \[\sum_{i=1}^{n} a_i b_i \leq \sqrt{\sum_{i=1}^{n} a_i^2} \sqrt{\sum_{i=1}^{n} b_i^2}. \]
 Equivalently, written in terms of inner products and norms of vectors: \(|\langle a, b \rangle| \leq \|a\| \cdot \|b\|\).
 It is proved as follows: for every real \(\lambda\) we have \(0 \leq \langle a - \lambda b, a - \lambda b \rangle = \|a\|^2 + \lambda^2 \|b\|^2 - 2\lambda \langle a, b \rangle\).
 Now set \(\lambda = \|a\|/\|b\|\) and rearrange.

• A complex number is of the form \(c = a + bi\), where \(a, b \in \mathbb{R}\), and \(i\) is the imaginary unit, which satisfies \(i^2 = -1\). Such a \(c\) can also be written as \(c = re^{i\phi}\) where \(r = |c| = \sqrt{a^2 + b^2}\) is the magnitude of \(c\), and \(\phi \in [0, 2\pi)\) is the angle that \(c\) makes with the positive horizontal axis when we view it as a point \((a, b)\) in the plane. Note that complex numbers of magnitude 1 lie on the unit circle in this plane. We can also write those as \(e^{i\phi} = \cos(\phi) + i\sin(\phi)\). The complex conjugate \(c^*\) is \(a - ib\), equivalently \(c^* = re^{-i\phi}\).

• \(\sum_{j=0}^{m-1} z^j = \begin{cases} m & \text{if } z = 1 \\ \frac{1-z^m}{1-z} & \text{if } z \neq 1 \end{cases}\)
 The case \(z = 1\) is obvious; the case \(z \neq 1\) may be seen by observing that \((1 - z)(\sum_{j=0}^{m-1} z^j) = \sum_{j=0}^{m-1} z^j - \sum_{j=1}^{m} z^j = 1 - z^m\). For example, if \(z = e^{2\pi i r/N}\) is a root of unity, with \(r\) an integer in \(\{1, \ldots, N-1\}\), then \(\sum_{j=0}^{N-1} z^j = \frac{1-e^{2\pi i r}}{1-e^{2\pi i r/N}}\).

• The above ratio can be rewritten using the identity \(|1 - e^{i\theta}| = 2|\sin(\theta/2)|\); this identity can be seen drawing the numbers 1 and \(e^{i\theta}\) as vectors from the origin in the complex plane, and dividing their angle \(\theta\) in two. Some other useful trigonometric identities: \(\cos(\theta)^2 + \sin(\theta)^2 = 1\), \(\sin(2\theta) = 2\sin(\theta)\cos(\theta)\).

• \(1 + x \leq e^x\) for all real numbers \(x\) (positive as well as negative).
• If \(\varepsilon_j \in [0, 1] \) then
\[
1 - \sum_{j=1}^{k} \varepsilon_j \leq \prod_{j=1}^{k} (1 - \varepsilon_j) \leq e^{-\sum_{j=1}^{k} \varepsilon_j}.
\]
The upper bound comes from the preceding item. The lower bound follows easily by induction, using the fact that
\((1 - \varepsilon_1)(1 - \varepsilon_2) = 1 - \varepsilon_1 - \varepsilon_2 + \varepsilon_1 \varepsilon_2 \geq 1 - \varepsilon_1 - \varepsilon_2\).

• When we don’t care about constant factors, we’ll often use big-Oh notation:
\(T(n) = O(f(n)) \)
means there exist constants \(c, d \geq 0 \) such that for all integers \(n \), we have
\(T(n) \leq cf(n) + d \).
Similarly, big-Omega notation is used for lower bounds:
\(T(n) = \Omega(f(n)) \)
means there exist positive constants \(c \) and \(d \) such that
\(T(n) \geq cf(n) - d \) for all \(n \).

106

