4.8 Pigeonhole and resolution 47

4.8 Pigeonhole and resolution

In this section we will present a result of a different nature — we will use the
pigeonhole principle to show that the principle #tself is hard to deduce in a
classical proof system, known as Resolution.

4.8.1 Resolution refutation proofs

The resolution proof system was introduced by Blake (1937) and has been
made popular as a theorem-proving technique by Davis and Putnam (1960)
and Robinson (1965). This system operates with clauses, i.e., with Or’s of
literals, where each literal is either a variable x; or its negation Z;. A truth-
assignment is an assignment of constants 0 and 1 to all the variables. Such an
assignment satisfies (falsifies) a clause if it evaluates at least one (respectively,
none) of its literals to 1. A set of clauses is satisfiable if there is an assignment
which satisfies all its clauses.

Let F be a set of clauses and suppose that F is not satisfiable. A resolution
refutation proof for F is a sequence of clauses R = (Cy,...,C;) where C, is
the empty clause (which, by definition, is satisfied by no assignment) and each
intermediate clause C; either belongs to F or is derived from some previous
two clauses using the following resolution rule:

The clause C' V C’ can be inferred from two clauses CV z; and C' V

In this case one also says that the variable x; was resolved to derive the clause
C V C’. The length of such a proof is equal to the number ¢ of clauses in the
derivation.

Observe that the resolution rule is sound in the following sense: if some
assignment (of constants to all the variables) falsifies the derived clause CVC’,
then it must falsify at least one of the clauses C'Vz; and C’ VZ; from which it
was derived. It is also known (and easy to show) that Resolution is complete:
every unsatisfiable set of clauses has a resolution refutation proof.

What about the length of such derivations? Due to its practical impor-
tance, this question bothered complexity theoreticians and logicians for a
long time.

The first exponential lower bound for the length of regular resolution was
proved by Tseitin (1968) already 30 years ago. (These are resolution proofs
with the additional restriction that along every path every particular variable
z; can be resolved at most once; a path in a derivation is just a sequence of
clauses, each of which is one of the two hypotheses from which the next clause
is derived.) However, despite its apparent simplicity, the first lower bounds for
non-regular resolution were only proved in 1985 by Haken. These bounds were
achieved for the set of clauses PHPz+1 formalizing the pigeonhole principle.
Subsequently, Haken’s argument was refined and extended to other principles
as well as to proof systems generalizing Resolution.

48 4. The Pigeonhole Principle

One may also consider the generalized pigeonhole principle PHP]" saying
that m pigeons (m > n+ 1) cannot sit in n holes so that every pigeon is alone
in its hole. The larger the difference m — n, the “more true” is the principle
itself, and its proof might be shorter. Buss and Pitassi (1998) have proved
that, for m > 2V"’°g", PHP? has a resolution proof of length polynomial in
m. But for a long time, no non-trivial lower bound was known for m > n2.
Overcomming this “n square” barrier was one of the most challenging open
problems about the power of Resolution. This problem was recently resolved
by Ran Raz (2001) who proved that for any m > n +1, any Resolution proof
of PHP}? requires length 2™, where € > 0 is an absolute constant.

4.8.2 Haken’s lower bound

Recall that the pigeonhole principle states that n pigeons cannot sit in 7 — 1
holes so that every pigeon is alone in its hole. To formalize the principle, let
us introduce boolean variables Z;,; interpreted as:

Z;,; = 1 if and only if the ith pigeon sits in the jth hole.
Let PHP]_, denote the set of clauses:

(i) zi VTi2 V-V, 1 for each i = 1,...,m
(ii) Tik VT, for each 1 Si#j<nand1<k<n-1.

Note that the And of all clauses of the first sort is satisfiable if and only if
€very pigeon sits in at least one hole, whereas the And of the clauses of the
second sort can be satisfied if and only if no two pigeons sit in the same hole.

Thus, by the pigeonhole principle(!), the And of all clauses in PHP},_, is not
satisfiable.

Theorem 4.13 (Haken 1985). For q sufficiently large n, any Resolution
proof of PHP]. | requires length 22

Originally, Haken’s proof used the so-called “bottleneck counting” argu-
ment and was quite involved. Here we present a new and simple proof of his
result found by Beame and Pitassi (1996).

Proof. We will concentrate on a particular subset of truth assignments. Look
at the set of underlying variables X = {zij: 1<ig<n,1 SJ<n-1} as
an n x (n — 1) matrix. Say that a truth assignment a: X — {0,1} to the
underlying variables Z;j s critical if it defines a one-to-one map from n — 1
pigeons to n — 1 holes, with the remaining pigeon not mapped to any hole.
A critical assignment, where i is the left-out pigeon, is called i-critical (see
Fig. 4.2). In what follows we will be interested only in these critical truth
assignments. (How many such assignments do we have?)

Take an arbitrary resolution refutation proof R = (C1,...,C) for
PHP,_,. As a first step, we get rid of negations: we replace each clause
Cin R by a positive clause Ct*, ie, by a clause without negated variables.

4.8 Pigeonhole and resolution 49

10000 01000
01000 00010
00100 10000
ij100000 i j]000O0O0
00010 00001
00001 00100

Fig. 4.2. Two i-critical truth assignments for i = 4 in the case of 6 pigeons and 5
holes

The idea of this transformation is due to Buss (1987) and works as follows:
replace each occurrence of Z; ; in the clause C by the Or

Cij =215V Vo1 VTig1; VooV

of all the variables, corresponding to the Jth hole, except z; ;. The resulting
sequence of positive clauses R* = (Cy,..., ;) is no longer a valid resolution
refutation proof — it is just a sequence which we will call a positive pseudo-
proof of PHP,_,. For the rest of the proof it will only be important that this
sequence has the property that, with respect to critical assignments, the rules
in it are still sound. That is, if C is derived from C: and C; in the original
proof R then, for every critical o,

Ci(a) - CF (@) < CH(a).
This is an immediate consequence of the following claim.

Claim 4.14. For every critical truth assignment ;, C'* (a) = C(a).

Proof. Suppose there is a critical assignment o such that C*(a) # C(a).
This can only happen if C contains a literal T;,j such that 7; ;(a) # C; ;().
But this is impossible, since o has precisely one 1 in the jth column. o

We will use this property (the soundness with respect to critical assign-
ments) to show that the pseudo-proof R+ (and, hence, also the original proof
R) must be long, namely ~ that t > 2"/32. For the sake of contradiction, as-
sume that we have fewer than 2"/%2 clauses in R+. Say that a clause is long
if it has at least n?/8 variables, i.e., if it includes more that 1 /8 fraction of all
n(n — 1) possible variables. Let £ be the number of long clauses in R; hence

£ < on/32

Since each long clause has at least a 1/8 fraction of all the variables, there
must be (by the pigeonhole principle!) a variable Z;,; which occurs in at least
£/8 of the long clauses. Set this variable to 1, and at the same time set to 0
all the variables z;,; and zy ; for all j' # j,7' # i (see Fig. 4.3). After this
setting, all the clauses containing ;,; will disappear from the proof (they all
get the value 1) and the variables which are set to 0 will disappear from the

remaining clauses.

50 4. The Pigeonhole Principle

0O -0 O O~

Fig. 4.3. Setting of constants to eliminate long clauses containing z; ;

Applying this restriction to the entire proof R+ leaves us with a new
positive pseudo-proof of PHPZ:%, where the number of long clauses is at most
£(1 - 1/8). Continue in this fashion until we have set all long clauses to 1.
Applying this argument iteratively d = 81n ¢ many times, we are guaranteed
to have knocked out all long clauses, because

£(1—1/8)% < ené-9/8 — 1,

Thus, we are left with a positive pseudo-proof R’ of PHP _,, where m =
n —8In¢, and where no clause is long, i.e., has length at least n2/8. But this
contradicts the following claim which states that such a pseudo-proof must
have a clause of size

2m?/9 = 2(n — 8In£)?/9 > 2(n —n/4)?/9 = n?/8.
So, it remains to prove the claim.

Claim 4.15. Any positive pseudo-proof of PHP;_, must have a clause with
at least 2m? /9 variables.

Proof. Let R’ be a positive pseudo-proof of PHP™ _, . Recall that R/ contains
no negated literals and that the rules in R’ are sound with respect to critical
assignments. This implies that for every clause C in R’ there is a set of
clauses W from PHP];_; whose conjunction implies C on all critical truth
assignments. That is, every critical assignment satisfying all the clauses in
W must also satisfy the clause C. We call such a set of clauses W a witness
of C. One clause C may have several witnesses. We define the weight of C as
the minimal number of clauses in its witness.

Let us make several observations about this measure. Since we are con-
sidering only critical truth assignments, only the “pigeon” clauses of type (i),
saying that some pigeon must be mapped to a hole, will be included in a
minimal witness, just because all other clauses are satisfied by every critical
assignment (no column has two 1’s). The weight of these initial “pigeon”
clauses is 1, and the weight of the final clause is m (since this clause outputs
0 for all critical assignments). Since (by soundness) the weight of a clause is
at most the sum of weights of the two clauses from which it is derived, there
must exist a clause C' in the proof whose weight s is between m/3 and 2m/3.

3w
st

Ais
st

1-

),
al

»

Exercises 51

(This is a standard and useful trick, and we address it in Exercise 4.14.) We
will prove that this clause C' must contain at least 2m?2 /9 variables.

To show this, let W = {C; : i € S}, where || = s, be a minimal set of
pigeon clauses

Ci=zi,1 VT2V Vi,
in PHPT?_, whose conjunction implies C. We will show that C has at least
(m — s)s > 2m?/9
distinct literals. _
Take an ¢ € S, and let o be an i-critical truth assignment falsifying C.
(Such an assignment exists by the minimality of W; check this!) For each
J & S, consider the j-critical assignment o’ obtained from o by replacing

t by j. This assignment differs from o only in two places: if o mapped the
pigeon j to the hole k, then o/ maps the pigeon i to this hole & (see Fig. 4.4).

k

10000 1
ilo@ooo jilo
00100 0
i {0000 “ io
00010 0
00001 0

Fig. 4.4. Assignment o is obtained from o by interchanging the ith and jth rows.

Since j ¢ S, the assignment o/ satisfies all the clauses of the witness
W of C, and hence, must satisfy the clause C. Since C(a) = 0 and the
assignments «,o’ differ only in the variables Zik and z;, this can only
happen when C contains the variable Z; r (remember that the clause C has
no negated literals). Running the same argument over all m — s pigeons j & S
(using the same a), it follows that C must contain at least m — s distinct
variables z; k., Z;i k,, ... 1 Ti,km, COrresponding to the ith pigeon. Repeating
the argument for all pigeons i € S shows that C contains at least (m—s)s
variables, as claimed.
This completes the proof of the claim, and thus, the proof of the theorem.
O

Exercises
4.1.” Suppose five points are chosen inside an equilateral triangle with side-
length 1. Show that there is at least one pair of points whose distance apart
is at most 1/2. Hint: Divide the triangle into four suitable boxes.

