Efficient Data Structures from Union-Free Families of Sets

Ronald de Wolf*

March 12, 2012

1 7r-Union-free families of sets

We generalize the definition of an r-union-free family J given in the book [Juk11, Section 8.6] to the case
where no set in F intersects much with the union of r other sets from F:

Definition 1. Let F be a family of sets over the universe [n|, r > 1 an integer, and € € (0, 1]. The family is
called (r, )-union-free if for all distinct Ay, Ay, ..., A, € F we have

[Ao N (Ui=14)] < e[ Aol (D
The family is called r-union-free if it is (r, 1)-union-free (such families are also often called r-cover-free).

Note that a 1-union-free family is just an antichain, due to the strict inequality in Eq. (1).

How big can F be, as a function of r, n, and €? For the case of r-union-free families (so where € = 1),
[Juk11, Theorem 8.13] proves an upper bound of |F| < 90(nlog(r)/r?) Surprisingly, this upper bound is
almost achievable, even if we set € to some constant less than 1: in Section 3 we give an existence proof of

an (r, €)-union-free family of size | F| > 29n*/r*),

2 Efficiently storing sparse sets

Consider the following data structure problem. We are given a set .S which is a subset of some universe [U],
and we would like to store .S in a way that is both space-efficient, and that allows us to efficiently answer
“membership queries”, i.e., decide if a given j € [U] is an element of .S or not. One solution is just to store
the characteristic vector of S using U bits. So our encoding of S would be some string £(S) € {0,1}V. In
this case, we can answer a membership query perfectly just by looking at the jth bit of E(S) (looking at a
bit of the data structure is called a “bitprobe”). In general, if we don’t know anything more about .S, then
this is the best we can do.

However, suppose we know that S is “sparse”, i.e., its size | S| is at most some r that is much smaller
than the universe size U. In this case, using U bits to store it would be wasteful: we could just write down
its elements in rlog U < U bits, which is essentially optimal.! Unfortunately with such an encoding it’s
not clear that we can still decide membership in S efficiently, with only one bitprobe. Using an (r, )-union-
free family one can construct an encoding that takes somewhat more space (2 log U instead of rlog U

*CWI and university of Amsterdam, rdewolf@cwi.nl
'Since we need at least (g) different codewords, the length of the codewords has to be at least log ([TJ) > rlog(U/r) bits.



bits), and that allows us to answer membership queries with success probability 1 — ¢ using only one
bitprobe [BMRVO02].

So fix some allowed error probability € and positive integer r, and take an (r,e)-union-free family
|F| = {A1,..., Ay} over a universe [n]. By the result of Section 3, we can take n = O(r?log U).? Here’s
the data structure that we use: each S C [U] is encoded as an n-bit string E(.S) as follows

Encoding: Let E(S) € {0, 1}" be the characteristic vector of the set U;egA;
Here’s how we can answer a membership query about a given element j € [U] with 1 bitprobe:
Query-answering: Pick a uniformly random k € A;, and read and output the kth bit of £(.5).

Let’s see how well this performs. First, if j € S then A; C U;cgA; so all A;-bits in E(S) are set to 1.
Hence no matter which position £ € A; the algorithm probes, it will always output the correct answer in
this case. Second, if j ¢ S then E/(S) is the characteristic vector of a set U;c s A; that has little intersection
with A;: by the (7, €)-union-free property, only an e-fraction of the & € A; will lie in U;cgA;. Hence the
probability (over the choice of k) that E(S); = 1 is at most €. Accordingly, the algorithm will give the
correct answer 0 with probability at least 1 — €.

We have constructed a data structure of length n = O(r?log U) bits that allows us to store r-subsets of
the universe [U] in such a way that we can answer membership queries using only one bitprobe. Note that
the general upper bound | F| < 20(n108(")/™*) mentioned above is equivalent n = Q(%). Hence this
construction cannot be improved much just by plugging in a better F.

The length of our data structure n. = O(r? log U) is still a factor r larger than the information-theoretically
minimal length O(rlogU). It is in fact possible to give a 1-bitprobe data structure with this minimal
length [BMRVO02], but now there will be an € error probability in both cases (also if j € .S). That construc-
tion is based on expander graphs, and we won’t explain it here.

3 Good (r, ¢)-union-free families exist

Error parameter € > 0, integer r, and family-size U are given. We use the probabilistic method to prove the
existence of an (7, €)-union-free family F of U distinct sets over a universe of size n = O(TQIE#U).
Consider an integer a, whose value will be chosen later. Set n = 2ar/e, rounded up to an integer.
Let A be a random variable obtained by uniformly choosing a elements from [n] (with repetition, so |A]
is at most a). Choose |F| = {41,..., Ay} by choosing U independent copies of A. Fix distinct indices

10,91, - - -, ir € [U]. The “bad event” for this sequence of indices is
() [Aig N (Uj=1 Aij)| = €] Agg

The set B = U}T:lAij has at most ar elements, hence the probability that a random element of [n] lands
in B is at most ar/n = ¢/2. The set A;, consists of a such random elements, so we expect the overlap
between A;, and B to be at most ac/2. The bad event (x) is that this overlap is at least twice as large as
its expectation, hence by a Chernoff bound the probability of () is < 27 for some constant ¢ > 0.3

1 U
Choosing a the first integer greater than 1og (1) makes the probability of (x) smaller than 1/ (#1).

ce

The dependence on the fixed & disappears in the O(-) notation.
3You can get ¢ = 1/61n(2) by using the last bound on [Juk11, page 276] with 1 = ae/2 and § = 1.



Since there are (T_lil) different such sequences of indices, the union bound now implies that with positive

probability none of the (Tgl) bad events happens, and hence there exists a choice of F which is (7, £)-union-
free. Note that avoiding all bad events also implies that all A; are distinct, so F will have U distinct elements.
The size of the required universe is n = 2ar/e = O(@#U). Equivalently, as a lower bound on |F| = U
this can be written as U > 90ne?/r?),

References

[BMRVO02] H. Buhrman, P. B. Miltersen, J. Radhakrishnan, and S. Venkatesh. Are bitvectors optimal?
SIAM Journal on Computing, 31(6):1723-1744, 2002. Earlier version in STOC’00.

[Juk11] S. Jukna. Extremal Combinatorics, with Applications in Computer Science. EATCS Series.
Springer, second edition, 2011.



