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From classical physicsto guantum

°

-

Classical physics: Developed over centuries
(Archimedes, Newton, Maxwell)

Objects have well-defined properties, independent of
how they are measured

Quantum mechanics: First half of 20th century
(Planck, Einstein, Bohr, Schrodinger, Heisenberg)

One of our best physical theories,
never been contradicted by experiment

Not just in the lab: 1/3 of our GDP depends on quantum
Many “weird” effects:
superposition, interference, entanglement



°

Quantum computers

-

Current computers (in theory and practice)
are based on classical physics

Feynman, Benioff (£1982):
What about quantum mechanical computers?
Can we use those weird effects for useful computation?

Deutsch (’85): universal quantum Turing machine
Peter Shor: efficient algorithm for factoring ('94)
Since then: fast growing field

1. can we build 1t?
2. what can it do?

We focus on second question: quantum algorithms

|
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Overview of the course

-

# Quantum computation: introduction (today)
# Quantum computation: main algorithms

# Quantum communication

o |
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-

Overview of thislecture

#® What are classical algorithms?
# What are quantum algorithms?

# Simple guantum algorithms:

o Deutsch-Jozsa

s Simon



© o o o o ©

Classical algorithms

Operate on bits

-

Two main models: Turing machines, Boolean circuits

Circuits are easier to generalize to quantum
Directed acyclic graph of AND, OR, NOT gates
Starting nodes: n input bits, additional workspace

This computes some function by evaluating all gates

Input 0 —

Not

Y

bits 0

Y

OR

output
bit

Efficient computation: polynomial-size circuits

|
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From classical to qguantum

-

® bits — qubits
# AND/OR/NOT gates — unitary guantum gates
# classical circuit — quantum circuit

# reading the output bit — measuring final state

o |



Recap of linear algebra 1

-

Vector space V over field F: set of objects such that
1. v,w eV =v+w eV (closed under addition)
2. veV,aeF = av € V (closed u. scalar multiplication)

Think: V = C%, v = (v1,...,v9)", basis {e1,...,e4}

d

Inner product: (vjw) =) vjw
1=1

Orthogonal: (v|w) =0

Norm: ||v||= +/{(v]v) = \/Zglzl v

Unit vector: norm 1

|

Ouantum Computation: Introduction — p. 8/26



Recap of linear algebra 2
-

#® Linear transformation A:V — W
1. u,v eV = Au+v) = Au) + A(v)
2. veV,aeF = Alav) = aA(v)
Think: V =W = C%, Ais d x d matrix

#® Ais Hermitian if A = A* (conjugate transpose)

® Aisunitaryif A=t = A*
Equivalent:

A IS norm-preserving,
columns of A are orthonormal

o |
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Recap of linear algebra 3

- N

#® Tensor product of matrices:

AuB -+ AyB
AR B = .
ApB -+ Ay B
b
. ) [ aiby )
. a1bs
#® Special case: vectors : & : =
be '
ad oy
# Tensor product V @ W of spaces V' and W'
take basis {v; ...,v4} for V, basis {wq, ..., w.} for W,

then V @ W =span{v; ®w; : 1 <i<d,1<j<e}
Note: dimensionof V@ Wisd-e J
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Quantum bits

-

# Classical bit: value O or value 1
# Basis states of a 2-dimensional vector space:

# Qubit: superposition ag|0) + a1|1) = ( =0 ) c C?

a
® We require |ag|? + |a1]? =1
» Examples: %|O> \Lf|1>
7,7r /4
110) + Leim/4)1)

- sin(a)[0) + cos(a)|[1) -
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More qubits

-

0>®0><é>®<é

# Two qubits: tensor product space, with 4 basis vectors

® Abbreviate |a) ® |b) =

# 2-qubit state: |¢) =

#® Example: EPR-pair:

# n-qubit state: |¢) =

o

)

ja)|b) =

(1)
0

0
\ 0/

|CL,b> —

-

10)@[1), 1) ©]0), [1) @[1)

ab)

Z azlz) € C

re{0,1}2

f\00>

11
\/_‘
Z o |z) € C¥

xe{0,1}m

) (entangled)



Quantum states and dynamics

- N

® n-qubitstate |p) = Y aglz) = . e C*

r€{0,1}" 1.1

# Informally: we are in all 2" basis states simultaneously
o Formally: |¢) Is a unit vector in 2"-dimensional space

# Two kinds of quantum operations on |¢):

1. Unitary transform of the amplitude-vector
2. Measurement

o |
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M easur ement

-

Measuring quantum state [¢) = ) a.lz)
xe{0,1}m
gives |z) with probability |a,|*; state collapses to |z)

Note: probabilities sum to 1 because |¢) Is a unit vector

We can also measure part of a state.
The state then collapses to the part that is “consistent”
with the measurement outcome

1
Example: measure 2nd reqister of
p 0 T xe{%:l}n )| f(z))

gives |a) with probability {xlif(zi)a};
State collapses to Z 2)]a)

\/{SIJ —(I}’xf (r)=a J
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Quantum gate: unitary on 1 or 2 qubits

- N

# 1-qubit NOT gate: X = ( (1) (1) )

o 1-qubit Hadamard gate: H = % ( 1 _1 )

. 1 0
# 1-qubit 7/4-gate: T = ( 0 in/d )

(100 0)
# 2-qubit controlled-NOT: C' = 0100

0 0 0 1

\ 001 0)

o |
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-

Example: fun with Hadamard

Ho>;§<1 1>-<é>;§<o>+1>>+>

Measurement gives |0) or |1) with probability 1/2

H|1) = 5(10) = [1)) = |-)
Measurement gives |0) or |1) with probability 1/2

-

We can get interference:

1 1
HI¥) = —=(H[0)+ HIL) = 5(0) +[1) +[0) ~ 1)) = 0)
Hl-) = 1)

Hadamard on n qubits: H®"|z) = ! Z (—1)"Yy)



o o

Quantum circuits

-

Circuit of gates transforms input state to final state

Y

input  [0)— H o |7 final
qubits |0) _, state

Y

Viewed as a big unitary: C'(H ® I)

% (100) + [11)), an EPR-pair

Measure specific qubit of final state to obtain output

Final state:

H, T, C gates can approximate any n-qubit unitary
Efficient quantum computation: polynomial-size circuit

|
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-

#® Suppose classical algorithm computes

Quantum parallelism

f:{0,1}" — {0,1}™

# Then quantum circuit U : |x)|0) — |z)|f(x))

can compute f on all inputs simultaneously!

1 1
U( D3 x>o>) 2 loli@)

xe{0,1}n xe{0,1}n

® This contains all 2™ function values!
# But observing gives only one random |z)|f(x))
® All other information will be lost

L #® More tricks needed for successful guantum computationJ
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Deutsch-Jozsa problem

-

Given: function f : {0,1}" — {0,1} (2" bits), s.t.
(1) f(x) = 0 for all x (constant), or
(2) f(x) = 0 for 3 - 2" of the z's (balanced)

Question: Is f constant or balanced?

Classically: need at least % . 2™ + 1 steps (“queries” to f)

Quantumly: O(n) gates suffice, and only 1 query

Query: application of unitary O¢ : |z,0) — |z, f(z))

# More generally: O; : |z,b) — |2,0® f(z)) (b €{0,1})
® Note: Oy|z)|—) = (—1)/@)|z)|-)



Deutsch-Jozsa algorithm
B 0)—{H H

Oy

measure

0)—H H
11)—H H

# Starting state: [0...0)(1)

n

1
o After first Hadamards: —
ﬂ_{;} )] -)

o Make one query: \/lz_n Z (— 1)@z |-)
x€{0,1}m

L.p Forget about the |—)



Deutsch-Jozsa (continued)

After second Hadamard:

1
DV I M

ze{0,1}" ye{0,1}

1 1 If constant
_ —1 flz) —
&Q...0 on Z ( ) { 0 If balanced
re{0,1}7

Measurement gives right answer with certainty

Big quantum-classical separation. ..

But the problem is efficiently solvable by bounded-error
classical algorithm (query f at a few random x)

|
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Simon’s problem

-

Given: function f : {0,1}" — {0, 1}" such that there
exists s € {0,1}" satisfying f(z) = f(y) ifx =y D s

Note: if s = 0" then f Is a permutation (1-1),
otherwise f is a 2-1 function

Question: iIs s = 0™ or not

Classically: need /2" queries for high success prob
Quantumly: solve in O(n) queries and O(n?) gates

Quantum algorithm is exponentially better, even
compared with classical bounded-error algorithms

|

Ouantum Combputation: Introduction — p. 22/26



Simon: quantum algorithm

-

0)— H
0)—{
0
0

-

H

measure

H

measure

» After H's and Oy: ﬁ > wefonin [T f(2))

® Measure specific f(x): 1st register %(]w) + |z @ s))

P 1
L.o After H'’s: Voo

(Zyeqoups (1) + (=)@ v]y))



-

Simon’s algorithm (continued)

| N
> UM+ (1)) )

yeq{0,1}

Note: |y) has non-zero amplitude iff s - y = 0 mod 2

First n qubits:

A /2n+1

Measure: get string y € {0,1}" s.t. s-y = 0 mod 2

Repeat this 2n times, giving vy1, . . ., Yon,
each with s - y; = 0 mod 2

W.h.p. there are n linearly independent y’s

This system of linear equations s - y; = 0 mod 2
determines s (solve via Gaussian elimination)

Quantum algorithm uses O(n) queries and O(n’) gates



9

L.p

Classical lower bound

-

Intuition: a classical algorithm can only query f at
random points

As long as it doesn’t find a collision (z,y s.t. f(z) = f(y))
It cannot distinguish 1-1 from 2-1 functions

For uniform 2-1 function and fixed z, v:
Pr(f(z) = f(y)] = 1/2"

With T queries, we have queried (1) specific pairs

2_77, ~ 2n+1

™1 _ T?
2

Pr|see a collision] < Exp|#collisions| ~ (

If T < /27 then algorithm can’t distinguish 1-1 from 2-1
Classical algorithm needs ~ /2" queries J
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Summary

-

# We introduced quantum mechanics T

# We showed how to use it for computation:
gubits, unitary gates, circuits, measurements

# Quantum algorithms can be better than classical
(Deutsch-Jozsa and Simon)

® Next two lectures:

s Main quantum algorithms: Shor and Grover
s Quantum communication

o |
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