Quantum Computation: Introduction

Ronald de Wolf

From classical physics to quantum

- Classical physics: Developed over centuries (Archimedes, Newton, Maxwell)
- Objects have well-defined properties, independent of how they are measured
- Quantum mechanics: First half of 20th century (Planck, Einstein, Bohr, Schrödinger, Heisenberg)
- One of our best physical theories, never been contradicted by experiment
- Not just in the lab: 1/3 of our GDP depends on quantum
- Many "weird" effects: superposition, interference, entanglement

Quantum computers

- Current computers (in theory and practice) are based on classical physics
- Feynman, Benioff (±1982): What about quantum mechanical computers? Can we use those weird effects for useful computation?
- Deutsch ('85): universal quantum Turing machine
- Peter Shor: efficient algorithm for factoring ('94)
- Since then: fast growing field
 - 1. can we build it?
 - 2. what can it do?
- We focus on second question: quantum algorithms

Overview of the course

Quantum computation: introduction (today)

Quantum computation: main algorithms

Quantum communication

Overview of this lecture

What are classical algorithms?

What are quantum algorithms?

- Simple quantum algorithms:
 - Deutsch-Jozsa
 - Simon

Classical algorithms

- Operate on bits
- Two main models: Turing machines, Boolean circuits
- Circuits are easier to generalize to quantum
- Directed acyclic graph of AND, OR, NOT gates
- Starting nodes: n input bits, additional workspace
- This computes some function by evaluating all gates

Efficient computation: polynomial-size circuits

From classical to quantum

■ bits — qubits

■ AND/OR/NOT gates — unitary quantum gates

classical circuit — quantum circuit

reading the output bit → measuring final state

Recap of linear algebra 1

- Vector space V over field \mathbb{F} : set of objects such that
 - 1. $v, w \in V \Rightarrow v + w \in V$ (closed under addition)
 - 2. $v \in V, a \in \mathbb{F} \Rightarrow av \in V$ (closed u. scalar multiplication)

Think: $V = \mathbb{C}^d$, $v = (v_1, \dots, v_d)^T$, basis $\{e_1, \dots, e_d\}$

- Inner product: $\langle v|w\rangle = \sum_{i=1}^d v_i^* w_i$
- Orthogonal: $\langle v|w\rangle=0$
- Norm: $||v|| = \sqrt{\langle v|v\rangle} = \sqrt{\sum_{i=1}^{d} |v_i|^2}$
- Unit vector: norm 1

Recap of linear algebra 2

• Linear transformation $A:V\to W$

1.
$$u, v \in V \Rightarrow A(u + v) = A(u) + A(v)$$

2.
$$v \in V, a \in \mathbb{F} \Rightarrow A(av) = aA(v)$$

Think: $V = W = \mathbb{C}^d$, A is $d \times d$ matrix

- A is Hermitian if $A = A^*$ (conjugate transpose)
- A is unitary if $A^{-1} = A^*$

Equivalent:

A is norm-preserving, columns of A are orthonormal

Recap of linear algebra 3

Tensor product of matrices:

$$A \otimes B = \begin{pmatrix} A_{11}B & \cdots & A_{1d'}B \\ & \ddots & \\ A_{d1}B & \cdots & A_{dd'}B \end{pmatrix}$$

$$ullet$$
 Special case: vectors $\left(egin{array}{c} a_1 \ dots \ a_d \end{array}
ight) \otimes \left(egin{array}{c} b_1 \ dots \ b_e \end{array}
ight) = \left(egin{array}{c} a_1b_1 \ a_1b_2 \ dots \ a_db_e \end{array}
ight)$

● Tensor product $V \otimes W$ of spaces V and W: take basis $\{v_1, \ldots, v_d\}$ for V, basis $\{w_1, \ldots, w_e\}$ for W, then $V \otimes W = \operatorname{span}\{v_i \otimes w_j : 1 \leq i \leq d, 1 \leq j \leq e\}$ Note: dimension of $V \otimes W$ is $d \cdot e$

Quantum bits

- Classical bit: value 0 or value 1
- Basis states of a 2-dimensional vector space:

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, |1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

- Qubit: superposition $\alpha_0|0\rangle+\alpha_1|1\rangle=\left(\begin{array}{c}\alpha_0\\\alpha_1\end{array}\right)\in\mathbb{C}^2$
- We require $|\alpha_0|^2 + |\alpha_1|^2 = 1$

• Examples:
$$\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$$
 $\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}e^{i\pi/4}|1\rangle$
 $\sin(\alpha)|0\rangle + \cos(\alpha)|1\rangle$

More qubits

Two qubits: tensor product space, with 4 basis vectors

$$|0\rangle \otimes |0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, |0\rangle \otimes |1\rangle, |1\rangle \otimes |0\rangle, |1\rangle \otimes |1\rangle$$

- Abbreviate $|a\rangle \otimes |b\rangle = |a\rangle |b\rangle = |a,b\rangle = |ab\rangle$
- 2-qubit state: $|\phi\rangle = \sum_{x \in \{0,1\}^2} \alpha_x |x\rangle \in \mathbb{C}^4$
- Example: EPR-pair: $\frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle$ (entangled)
- n-qubit state: $|\phi\rangle = \sum_{x \in \{0,1\}^n} \alpha_x |x\rangle \in \mathbb{C}^{2^n}$

Quantum states and dynamics

$$\text{n-qubit state } |\phi\rangle = \sum_{x \in \{0,1\}^n} \alpha_x |x\rangle = \left(\begin{array}{c} \alpha_{0\dots 0} \\ \vdots \\ \alpha_{1\dots 1} \end{array}\right) \in \mathbb{C}^{2^n}$$

- Informally: we are in all 2^n basis states simultaneously
- Formally: $|\phi\rangle$ is a unit vector in 2^n -dimensional space
- Two kinds of quantum operations on $|\phi\rangle$:
 - 1. Unitary transform of the amplitude-vector
 - 2. Measurement

Measurement

- Measuring quantum state $|\phi\rangle=\sum_{x\in\{0,1\}^n}\alpha_x|x\rangle$ gives $|x\rangle$ with probability $|\alpha_x|^2$; state collapses to $|x\rangle$
- Note: probabilities sum to 1 because $|\phi\rangle$ is a unit vector
- We can also measure part of a state. The state then collapses to the part that is "consistent" with the measurement outcome

Quantum gate: unitary on 1 or 2 qubits

- 1-qubit NOT gate: $X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- 1-qubit Hadamard gate: $H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$
- 1-qubit $\pi/4$ -gate: $T = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{pmatrix}$

Example: fun with Hadamard

Measurement gives $|0\rangle$ or $|1\rangle$ with probability 1/2

Measurement gives $|0\rangle$ or $|1\rangle$ with probability 1/2

We can get interference:

$$H|+\rangle = \frac{1}{\sqrt{2}}(H|0\rangle + H|1\rangle) = \frac{1}{2}(|0\rangle + |1\rangle + |0\rangle - |1\rangle) = |0\rangle$$

$$H|-\rangle = |1\rangle$$

● Hadamard on
$$n$$
 qubits: $H^{\otimes n}|x\rangle = \frac{1}{\sqrt{2^n}} \sum_{y \in \{0,1\}^n} (-1)^{x \cdot y} |y\rangle$

Quantum circuits

Circuit of gates transforms input state to final state

- Viewed as a big unitary: $C(H \otimes I)$
- Final state: $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$, an EPR-pair
- Measure specific qubit of final state to obtain output
- \blacksquare H, T, C gates can approximate any n-qubit unitary
- Efficient quantum computation: polynomial-size circuit

Quantum parallelism

- Suppose classical algorithm computes $f: \{0,1\}^n \to \{0,1\}^m$
- Then quantum circuit $U:|x\rangle|0\rangle \mapsto |x\rangle|f(x)\rangle$ can compute f on all inputs simultaneously!

$$U\left(\frac{1}{\sqrt{2^n}}\sum_{x\in\{0,1\}^n}|x\rangle|0\rangle\right) = \frac{1}{\sqrt{2^n}}\sum_{x\in\{0,1\}^n}|x\rangle|f(x)\rangle$$

- This contains all 2^n function values!
- But observing gives only one random $|x\rangle|f(x)\rangle$
- All other information will be lost
- More tricks needed for successful quantum computation

Deutsch-Jozsa problem

- Given: function $f: \{0,1\}^n \to \{0,1\}$ (2^n bits), s.t. (1) f(x) = 0 for all x (constant), or (2) f(x) = 0 for $\frac{1}{2} \cdot 2^n$ of the x's (balanced)
- Question: is f constant or balanced?
- Classically: need at least $\frac{1}{2} \cdot 2^n + 1$ steps ("queries" to f)
- **Quantumly**: O(n) gates suffice, and only 1 query
- Query: application of unitary $O_f: |x,0\rangle \mapsto |x,f(x)\rangle$
- More generally: $O_f: |x,b\rangle \mapsto |x,b\oplus f(x)\rangle$ ($b\in\{0,1\}$)
- Note: $O_f|x\rangle|-\rangle = (-1)^{f(x)}|x\rangle|-\rangle$

Deutsch-Jozsa algorithm

- Starting state: $|\underbrace{0\dots0}_{n}\rangle|1\rangle$
- After first Hadamards: $\frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle|-\rangle$
- Forget about the $|-\rangle$

Deutsch-Jozsa (continued)

After second Hadamard:

$$\frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} (-1)^{f(x)} \frac{1}{\sqrt{2^n}} \sum_{y \in \{0,1\}^n} (-1)^{x \cdot y} |y\rangle$$

- Measurement gives right answer with certainty
- Big quantum-classical separation...
- But the problem is efficiently solvable by bounded-error classical algorithm (query f at a few random x)

Simon's problem

- Given: function $f: \{0,1\}^n \to \{0,1\}^n$ such that there exists $s \in \{0,1\}^n$ satisfying f(x) = f(y) iff $x = y \oplus s$
- Note: if $s = 0^n$ then f is a permutation (1-1), otherwise f is a 2-1 function
- Question: is $s = 0^n$ or not
- Classically: need $\sqrt{2^n}$ queries for high success prob
- Quantumly: solve in O(n) queries and $O(n^3)$ gates
- Quantum algorithm is exponentially better, even compared with classical bounded-error algorithms

Simon: quantum algorithm

- After H's and O_f : $\frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle |f(x)\rangle$
- **●** Measure specific f(x): 1st register $\frac{1}{\sqrt{2}}(|x\rangle + |x \oplus s\rangle)$
- After H's: $\frac{1}{\sqrt{2^{n+1}}}\left(\sum_{y\in\{0,1\}^n}(-1)^{x\cdot y}|y\rangle+(-1)^{(x\oplus s)\cdot y}|y\rangle\right)$

Simon's algorithm (continued)

- First n qubits: $\frac{1}{\sqrt{2^{n+1}}} \sum_{y \in \{0,1\}^n} (-1)^{x \cdot y} (1 + (-1)^{s \cdot y}) |y\rangle$
- ▶ Note: $|y\rangle$ has non-zero amplitude iff $s \cdot y = 0 \mod 2$
- **●** Measure: get string $y \in \{0,1\}^n$ s.t. $s \cdot y = 0 \mod 2$
- Repeat this 2n times, giving y_1, \ldots, y_{2n} , each with $s \cdot y_i = 0 \mod 2$
- ullet W.h.p. there are n linearly independent y's
- This system of linear equations $s \cdot y_i = 0 \mod 2$ determines s (solve via Gaussian elimination)
- Quantum algorithm uses O(n) queries and $O(n^3)$ gates

Classical lower bound

- Intuition: a classical algorithm can only query f at random points
- As long as it doesn't find a collision (x, y s.t. f(x) = f(y)) it cannot distinguish 1-1 from 2-1 functions
- For uniform 2-1 function and fixed x, y: $\Pr[f(x) = f(y)] \approx 1/2^n$
- With T queries, we have queried $\binom{T}{2}$ specific pairs

$$\Pr[\text{see a collision}] \leq \exp[\#\text{collisions}] pprox \binom{T}{2} \frac{1}{2^n} pprox \frac{T^2}{2^{n+1}}]$$

- If $T \ll \sqrt{2^n}$ then algorithm can't distinguish 1-1 from 2-1
- Classical algorithm needs $\approx \sqrt{2^n}$ queries

Summary

- We introduced quantum mechanics
- We showed how to use it for computation: qubits, unitary gates, circuits, measurements
- Quantum algorithms can be better than classical (Deutsch-Jozsa and Simon)
- Next two lectures:
 - Main quantum algorithms: Shor and Grover
 - Quantum communication