
Quantum Computation:
Introduction

Ronald de Wolf

Quantum Computation: Introduction – p. 1/26

http://homepages.cwi.nl/~rdewolf

From classical physics to quantum

Classical physics: Developed over centuries
(Archimedes, Newton, Maxwell)

Objects have well-defined properties, independent of
how they are measured

Quantum mechanics: First half of 20th century
(Planck, Einstein, Bohr, Schrödinger, Heisenberg)

One of our best physical theories,
never been contradicted by experiment

Not just in the lab: 1/3 of our GDP depends on quantum

Many “weird” effects:

superposition, interference, entanglement

Quantum Computation: Introduction – p. 2/26

Quantum computers

Current computers (in theory and practice)
are based on classical physics

Feynman, Benioff (±1982):
What about quantum mechanical computers?
Can we use those weird effects for useful computation?

Deutsch (’85): universal quantum Turing machine

Peter Shor: efficient algorithm for factoring (’94)

Since then: fast growing field

1. can we build it?
2. what can it do?

We focus on second question: quantum algorithms

Quantum Computation: Introduction – p. 3/26

Overview of the course

Quantum computation: introduction (today)

Quantum computation: main algorithms

Quantum communication

Quantum Computation: Introduction – p. 4/26

Overview of this lecture

What are classical algorithms?

What are quantum algorithms?

Simple quantum algorithms:

Deutsch-Jozsa

Simon

Quantum Computation: Introduction – p. 5/26

Classical algorithms

Operate on bits

Two main models: Turing machines, Boolean circuits

Circuits are easier to generalize to quantum

Directed acyclic graph of AND, OR, NOT gates

Starting nodes: n input bits, additional workspace

This computes some function by evaluating all gates

input
bits

0

0 -

-

OR
Not -

- 1
output

bit

Efficient computation: polynomial-size circuits

Quantum Computation: Introduction – p. 6/26

From classical to quantum

bits −→ qubits

AND/OR/NOT gates −→ unitary quantum gates

classical circuit −→ quantum circuit

reading the output bit −→ measuring final state

Quantum Computation: Introduction – p. 7/26

Recap of linear algebra 1

Vector space V over field F: set of objects such that
1. v, w ∈ V ⇒ v + w ∈ V (closed under addition)
2. v ∈ V, a ∈ F ⇒ av ∈ V (closed u. scalar multiplication)

Think: V = C
d, v = (v1, . . . , vd)

T , basis {e1, . . . , ed}

Inner product: 〈v|w〉 =
d∑

i=1

v∗i wi

Orthogonal: 〈v|w〉 = 0

Norm: ‖v‖=
√

〈v|v〉 =

√
∑d

i=1 |vi|2

Unit vector: norm 1

Quantum Computation: Introduction – p. 8/26

Recap of linear algebra 2

Linear transformation A : V → W

1. u, v ∈ V ⇒ A(u + v) = A(u) + A(v)

2. v ∈ V, a ∈ F ⇒ A(av) = aA(v)

Think: V = W = C
d, A is d × d matrix

A is Hermitian if A = A∗ (conjugate transpose)

A is unitary if A−1 = A∗

Equivalent:
A is norm-preserving,
columns of A are orthonormal

Quantum Computation: Introduction – p. 9/26

Recap of linear algebra 3

Tensor product of matrices:

A ⊗ B =






A11B · · · A1d′B
. . .

Ad1B · · · Add′B






Special case: vectors






a1
...

ad




⊗






b1
...
be




 =









a1b1

a1b2
...

adbe









Tensor product V ⊗ W of spaces V and W :
take basis {v1 . . . , vd} for V , basis {w1, . . . , we} for W ,
then V ⊗ W = span{vi ⊗ wj : 1 ≤ i ≤ d, 1 ≤ j ≤ e}
Note: dimension of V ⊗ W is d · e

Quantum Computation: Introduction – p. 10/26

Quantum bits

Classical bit: value 0 or value 1

Basis states of a 2-dimensional vector space:

|0〉 =

(

1

0

)

, |1〉 =

(

0

1

)

Qubit: superposition α0|0〉 + α1|1〉 =

(

α0

α1

)

∈ C
2

We require |α0|2 + |α1|2 = 1

Examples: 1√
2
|0〉 + 1√

2
|1〉

1√
2
|0〉 + 1√

2
eiπ/4|1〉

sin(α)|0〉 + cos(α)|1〉

Quantum Computation: Introduction – p. 11/26

More qubits

Two qubits: tensor product space, with 4 basis vectors

|0〉⊗|0〉 =

(

1

0

)

⊗
(

1

0

)

=








1

0

0

0








, |0〉⊗|1〉, |1〉⊗|0〉, |1〉⊗|1〉

Abbreviate |a〉 ⊗ |b〉 = |a〉|b〉 = |a, b〉 = |ab〉

2-qubit state: |φ〉 =
∑

x∈{0,1}2

αx|x〉 ∈ C
4

Example: EPR-pair:
1√
2
|00〉 +

1√
2
|11〉 (entangled)

n-qubit state: |φ〉 =
∑

x∈{0,1}n

αx|x〉 ∈ C
2n

Quantum Computation: Introduction – p. 12/26

Quantum states and dynamics

n-qubit state |φ〉 =
∑

x∈{0,1}n

αx|x〉 =






α0...0
...

α1...1




 ∈ C

2n

Informally : we are in all 2n basis states simultaneously

Formally : |φ〉 is a unit vector in 2n-dimensional space

Two kinds of quantum operations on |φ〉:

1. Unitary transform of the amplitude-vector

2. Measurement

Quantum Computation: Introduction – p. 13/26

Measurement

Measuring quantum state |φ〉 =
∑

x∈{0,1}n

αx|x〉

gives |x〉 with probability |αx|2; state collapses to |x〉
Note: probabilities sum to 1 because |φ〉 is a unit vector

We can also measure part of a state.
The state then collapses to the part that is “consistent”
with the measurement outcome

Example: measure 2nd register of
1√
2n

∑

x∈{0,1}n

|x〉|f(x)〉

gives |a〉 with probability |{x:f(x)=a}|
2n

;

State collapses to
1

√

|{x : f(x) = a}|
∑

x:f(x)=a

|x〉|a〉

Quantum Computation: Introduction – p. 14/26

Quantum gate: unitary on 1 or 2 qubits

1-qubit NOT gate: X =

(

0 1

1 0

)

1-qubit Hadamard gate: H =
1√
2

(

1 1

1 −1

)

1-qubit π/4-gate: T =

(

1 0

0 eiπ/4

)

2-qubit controlled-NOT: C =








1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0








Quantum Computation: Introduction – p. 15/26

Example: fun with Hadamard

H|0〉 = 1√
2

(

1 1

1 −1

)

·
(

1

0

)

= 1√
2
(|0〉 + |1〉) = |+〉

Measurement gives |0〉 or |1〉 with probability 1/2

H|1〉 = 1√
2
(|0〉 − |1〉) = |−〉

Measurement gives |0〉 or |1〉 with probability 1/2

We can get interference:

H|+〉 =
1√
2
(H|0〉 + H|1〉) =

1

2
(|0〉 + |1〉 + |0〉 − |1〉) = |0〉

H|−〉 = |1〉

Hadamard on n qubits: H⊗n|x〉 =
1√
2n

∑

y∈{0,1}n

(−1)x·y|y〉

Quantum Computation: Introduction – p. 16/26

Quantum circuits

Circuit of gates transforms input state to final state

input
qubits

|0〉
|0〉 -

-

C

H -

-

-

final
state

Viewed as a big unitary: C(H ⊗ I)

Final state:
1√
2

(|00〉 + |11〉), an EPR-pair

Measure specific qubit of final state to obtain output

H, T , C gates can approximate any n-qubit unitary

Efficient quantum computation: polynomial-size circuit

Quantum Computation: Introduction – p. 17/26

Quantum parallelism

Suppose classical algorithm computes
f : {0, 1}n → {0, 1}m

Then quantum circuit U : |x〉|0〉 7→ |x〉|f(x)〉
can compute f on all inputs simultaneously!

U




1√
2n

∑

x∈{0,1}n

|x〉|0〉



 =
1√
2n

∑

x∈{0,1}n

|x〉|f(x)〉

This contains all 2n function values!

But observing gives only one random |x〉|f(x)〉
All other information will be lost

More tricks needed for successful quantum computation

Quantum Computation: Introduction – p. 18/26

Deutsch-Jozsa problem

Given: function f : {0, 1}n → {0, 1} (2n bits), s.t.
(1) f(x) = 0 for all x (constant), or
(2) f(x) = 0 for 1

2 · 2n of the x’s (balanced)

Question: is f constant or balanced?

Classically: need at least 1
2 · 2n + 1 steps (“queries” to f)

Quantumly: O(n) gates suffice, and only 1 query

Query: application of unitary Of : |x, 0〉 7→ |x, f(x)〉
More generally: Of : |x, b〉 7→ |x, b ⊕ f(x)〉 (b ∈ {0, 1})

Note: Of |x〉|−〉 = (−1)f(x)|x〉|−〉

Quantum Computation: Introduction – p. 19/26

Deutsch-Jozsa algorithm
|0〉

|0〉
|1〉

measure

H
...
H

H

H
...
H

H

Of

Starting state: |0 . . . 0
︸ ︷︷ ︸

n

〉|1〉

After first Hadamards:
1√
2n

∑

x∈{0,1}n

|x〉|−〉

Make one query:
1√
2n

∑

x∈{0,1}n

(−1)f(x)|x〉|−〉

Forget about the |−〉
Quantum Computation: Introduction – p. 20/26

Deutsch-Jozsa (continued)

After second Hadamard:

1√
2n

∑

x∈{0,1}n

(−1)f(x) 1√
2n

∑

y∈{0,1}n

(−1)x·y|y〉

α0...0 =
1

2n

∑

x∈{0,1}n

(−1)f(x) =

{

1 if constant
0 if balanced

Measurement gives right answer with certainty

Big quantum-classical separation. . .

But the problem is efficiently solvable by bounded-error
classical algorithm (query f at a few random x)

Quantum Computation: Introduction – p. 21/26

Simon’s problem

Given: function f : {0, 1}n → {0, 1}n such that there
exists s ∈ {0, 1}n satisfying f(x) = f(y) iff x = y ⊕ s

Note: if s = 0n then f is a permutation (1-1),
otherwise f is a 2-1 function

Question: is s = 0n or not

Classically: need
√

2n queries for high success prob

Quantumly: solve in O(n) queries and O(n3) gates

Quantum algorithm is exponentially better, even
compared with classical bounded-error algorithms

Quantum Computation: Introduction – p. 22/26

Simon: quantum algorithm

|0〉

|0〉
|0〉

|0〉

measure

measure

H
...
H

...

H
...
H

...

Of

After H ’s and Of : 1√
2n

∑

x∈{0,1}n |x〉|f(x)〉

Measure specific f(x): 1st register 1√
2
(|x〉 + |x ⊕ s〉)

After H ’s: 1√
2n+1

(
∑

y∈{0,1}n(−1)x·y|y〉 + (−1)(x⊕s)·y|y〉
)

Quantum Computation: Introduction – p. 23/26

Simon’s algorithm (continued)

First n qubits:
1√

2n+1

∑

y∈{0,1}n

(−1)x·y (1 + (−1)s·y) |y〉

Note: |y〉 has non-zero amplitude iff s · y = 0 mod 2

Measure: get string y ∈ {0, 1}n s.t. s · y = 0 mod 2

Repeat this 2n times, giving y1, . . . , y2n,
each with s · yi = 0 mod 2

W.h.p. there are n linearly independent y’s

This system of linear equations s · yi = 0 mod 2
determines s (solve via Gaussian elimination)

Quantum algorithm uses O(n) queries and O(n3) gates

Quantum Computation: Introduction – p. 24/26

Classical lower bound

Intuition: a classical algorithm can only query f at
random points

As long as it doesn’t find a collision (x, y s.t. f(x) = f(y))
it cannot distinguish 1-1 from 2-1 functions

For uniform 2-1 function and fixed x, y:
Pr[f(x) = f(y)] ≈ 1/2n

With T queries, we have queried
(T

2

)
specific pairs

Pr[see a collision] ≤ Exp[#collisions] ≈
(

T

2

)
1

2n
≈ T 2

2n+1

If T ≪
√

2n then algorithm can’t distinguish 1-1 from 2-1

Classical algorithm needs ≈
√

2n queries

Quantum Computation: Introduction – p. 25/26

Summary

We introduced quantum mechanics

We showed how to use it for computation:
qubits, unitary gates, circuits, measurements

Quantum algorithms can be better than classical
(Deutsch-Jozsa and Simon)

Next two lectures:

Main quantum algorithms: Shor and Grover

Quantum communication

Quantum Computation: Introduction – p. 26/26

	From classical physics to quantum
	Quantum computers
	Overview of the course
	Overview of this lecture
	Classical algorithms
	From classical to quantum
	Recap of linear algebra 1
	Recap of linear algebra 2
	Recap of linear algebra 3
	Quantum bits
	More qubits
	Quantum states and dynamics
	Measurement
	Quantum gate: unitary on 1 or 2 qubits
	Example: fun with Hadamard
	Quantum circuits
	Quantum parallelism
	Deutsch-Jozsa problem
	Deutsch-Jozsa algorithm
	Deutsch-Jozsa (continued)
	Simon's problem
	Simon: quantum algorithm
	Simon's algorithm (continued)
	Classical lower bound
	Summary

