
Quantum Communication

Ronald de Wolf

Quantum Communication – p. 1/24

http://homepages.cwi.nl/~rdewolf


Overview of this lecture

1. Quantum information
+ application to classical codes

2. Quantum communication complexity

3. Quantum cryptography
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Quantum communication

Typical situation: Alice has x ∈ {0, 1}n,
which she wants to communicate to Bob

Alice: Bob
input x

message -

A k-qubit message contains 2k amplitudes!
Can we pack this much classical information into it?

Holevo’s theorem (1973): if Alice sends k qubits,
then any measurement that Bob can do gives him at
most k bits of mutual information with Alice

k qubits are no better than k bits (?)
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Proof of weaker version

Suppose you encode x ∈ {0, 1}n

in quantum state |φx〉 ∈ C
d. With k qubits, d = 2k

Recover with measurement operators {Mx}
(probability of outcome x on state φ is Tr(Mx|φ〉〈φ|),
require

∑

xMx = Id)

Success probability to recover x:
px = Tr(Mx|φx〉〈φx|) ≤ Tr(Mx)

∑

x∈{0,1}n

px ≤
∑

x

Tr(Mx) = Tr

(
∑

x

Mx

)

= Tr(Id) = d

Average success probability is at most d/2n

If d≪ 2n, then bad average success probability
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Random access codes

Bob cannot learn all bits of x ∈ {0, 1}n from
a k-qubit quantum message if k < n

But could he learn any one bit xi of his choice?

Note that a measurement to learn xi destroys the state

Can encode 2 bits into 1 qubit:
|φα〉 = cos(α)|0〉 + sin(α)|1〉
Use α = π/8, 3π/8, 5π/8, 7π/8 for 00, 10, 11, 01

To recover x1: measure, success prob cos(π/8)2 ≈ 0.85
To recover x2: rotate and measure, success prob 0.85

In general there’s not much improvement: if Bob can
learn any bit xi with probability p > 1/2 then (Nayak’00)

k ≥ (1 −H(p))n
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Application: Locally decodable codes

Error-correcting code: C : {0, 1}n → {0, 1}m, m ≥ n

decoding: D(w) = x if w is “close” to C(x)

Inefficient if you only want to decode a small part of x

C is q-query locally decodable if there is a decoder D
that only looks at q bits of w, and D(w, i) = xi (w.h.p.)

Hard question: optimal tradeoff between q and m?

Using quantum, KW03 show: q = 2 ⇒ m ≥ 2Ω(n)

Still the only superpolynomial bound known for LDCs
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Exponential bound on 2-query LDC

Given C : {0, 1}n → {0, 1}m, 2-query classical decoder

Can replace 2 classical queries by 1 quantum query!

Some massaging: make the quantum query uniform

Consider query-result |φx〉 =
1√
m

m∑

j=1

(−1)C(x)j |j〉

|φx〉 has logm qubits, but allows us to predict each of
the encoded bits x1, . . . , xn

Random access code bound: logm ≥ Ω(n)

⇒ 2-query LDCs need exponential length m ≥ 2Ω(n)
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Part 2:

Quantum communication complexity

Quantum Communication – p. 8/24



Communication Complexity

Information theory + complexity theory

Alice receives input x ∈ {0, 1}n,
Bob receives input y ∈ {0, 1}n,
and they want to compute f : {0, 1}n × {0, 1}n → {0, 1}
with minimal communication

Alice: Bob:
input x input y

message 1

message 2

message 3

. . .

-

�

-

?

output f(x, y)

Well-studied classically (Yao 79, Kushilevitz & Nisan 97)
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Example: Equality

EQ(x, y) = 1 iff x = y

Deterministic protocols need n bits
Randomized: need only O(log n) bits

Define polynomial px(z) = x1 + x2z + · · · + xnz
n−1,

over field F with |F| ≥ 10n

1. Alice picks z ∈R F, sends z and px(z))
︸ ︷︷ ︸

O(log n) bits

2. Bob outputs whether px(z) = py(z)

This works because:
x = y ⇒ px(z) = py(z) for all z ∈ F

x 6= y ⇒ px(z) 6= py(z) for most z ∈ F, because
px − py has degree < n, so < n zeroes
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Quantum communication complexity

What if Alice and Bob have a quantum computer and
can send each other qubits?

Holevo’s theorem: k qubits cannot contain more
information than k classical bits

This suggests that

quantum communication complexity
=

classical communication complexity
?

Wrong!
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Why study this?

For its own sake

To get lower bounds for other models:
data structures, circuits, streaming algorithms, . . .

It proves exponential quantum-classical separations
in a realistic model,
as opposed to

Factoring (Shor doesn’t give us a proven separation,
because we don’t know if factoring 6∈ P)
Query algorithms (not realistic)

Quantum Communication – p. 12/24



Example 1: Distributed Deutsch-Jozsa

Deutsch-Jozsa (black-box problem):
Is bitstring z1 . . . zN constant or balanced?

Distributed Deutsch-Jozsa:
Are x and y equal or at distance N/2?

Efficient quantum protocol (BCW 98):

1. Alice sends |φ〉 = 1√
N

∑N
i=1(−1)xi|i〉 (logN qubits)

2. Bob changes to |ψ〉 = 1√
N

∑

i(−1)xi+yi|i〉,
measures in a basis containing |U〉 = 1√

N

∑

i |i〉
3. If x = y: |ψ〉 = |U〉

If (x, y) = N
2 : |ψ〉 is orthogonal to |U〉

Classical protocols need to send almost N bits
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Example 2: Disjointness

Are x ⊆ [N ] and y ⊆ [N ] disjoint sets?

Classical protocols need almost N bits,
even if we allow some error probability

We can use Grover’s quantum search algorithm
to search for an intersection (BCW 98):

Grover takes O(
√
N) steps, each step takes O(logN)

qubits of communication =⇒ O(
√
N logN) qubits

Improved to O(
√
N) (AA 02), optimal (Razborov 01)
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Example 3: Exponential separation

Alice gets v ∈ R
n, orthogonal spaces M0,M1

Bob gets a unitary U

Promise: Uv is either in M0 or in M1

Question: which one?

2 log n qubit protocol:
1. Alice sends |v〉
2. Bob applies U and sends back U |v〉
3. Alice measures if U |v〉 ∈M0 or M1

Raz 99: Classical protocols need to send ≈
√
n bits

(even if we allow error)
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Example 4: Fingerprinting

Quantum fingerprinting (BCWW 01):
n-bit x =⇒ log n-qubit |φx〉, s.t. 〈φx|φy〉 small

Simultaneous message passing model:

Alice: x Bob: y

Referee

H
H

Hj

�
�

��

?

x
?
= y

Quantum protocol: Alice sends |φx〉,
Bob sends |φy〉, referee tests equality (“Swap test”)

Classical lower bound:
√
n bits (NS 96)
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Lower bounds: Inner product

Inner product problem: f(x, y) = x · y mod 2

Suppose a protocol computes f :
|x〉|y〉 7→ (−1)x·y |x〉

︸︷︷︸

Alice

|y〉
︸︷︷︸

Bob

Run the protocol on superposition of all y:

|x〉 1√
2n

∑

y∈{0,1}n

|y〉 7→ |x〉 1√
2n

∑

y∈{0,1}n

(−1)x·y|y〉

︸ ︷︷ ︸

H|x〉

Now a Hadamard transform gives Bob x!

Then n bits have been communicated =⇒
protocol must have sent n qubits (CDNT’98, via Holevo)
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Teleportation (BBCJPW’93)

Power of entanglement: using an EPR-pair, we can
send an unknown qubit over a classical channel

Start with (α|0〉A + β|1〉A) 1√
2
(|0〉A|0〉B + |1〉A|1〉B)

Alice applies (H ⊗ I)C. Result:
1
2 |00〉A(α|0〉B + β|1〉B)+
1
2 |01〉A(α|1〉B + β|0〉B)+
1
2 |10〉A(α|0〉B − β|1〉B)+
1
2 |11〉A(α|1〉B − β|0〉B)

Alice measures her two qubits and sends Bob result
(2 classical bits!)

Bob then knows how to change his qubit to α|0〉 + β|1〉
e.g., if he received 01 then he applies an X
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Part 3:

Quantum cryptography
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Cryptography

Alice wants to send message M ∈ {0, 1}n to Bob

The goal is not minimal communication, but secrecy:
a third party (Eve) tapping the channel should not get
information about the message

If Alice and Bob share a secret key K ∈ {0, 1}n then
Alice can send C = M ⊕K over the channel

Bob learns M , but Eve learns nothing about M from C

How can we make Alice and Bob share a secret key?

Classically this is impossible, but
with quantum communication it can be done
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Quantum key distribution (BB 84)

Basis 0: {|0〉, |1〉}, Basis 1: {|+〉, |−〉}
Alice chooses n random bits a1, . . . , an and n random
bases b1, . . . , bn. She sends ai to Bob in basis bi
Bob chooses random bases b′1, . . . , b

′
n and measures

the qubits he received, yielding bits a′1, . . . , a
′
n

Alice sends Bob all bi
≈ n/2 i’s: bi = b′i hence ai = a′i (unless Eve tampered)

Use half of those bits to check for tampering/noise:
information vs disturbance tradeoff

Rest: key of roughly n/4 shared bits

Classical postprocessing:
reconcilliation, privacy amplification
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Building quantum computers?

The main problem: quantum systems are very fragile.
We need to simultaneously

Isolate them from the environment
Operate on them very precisely

Strong effort going on around the world. Approaches:
Nuclear magnetic resonance
(factored 15 = 3 × 5 on a 7-qubit computer in 2001)
Electron spins
Ion traps
Solid state
Optics (quantum crypto)

Hard to predict if/when a QC will be built. . .
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Summary: quantum communication

Holevo’s theorem:
k qubits contain at most k bits of information

Still, we can sometimes exponentially improve
communication complexity with a quantum channel

Quantum cryptography allows Alice and Bob
to obtain a secret shared key
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Summary of the whole course

The world is quantum, so the strongest computers that
nature allows us are quantum computers

This is fundamental for the theory of computation, but
could also have big practical consequences

Computation: strong algorithms, like Shor and Grover

Communication: reduce communication complexity,
quantum key distribution

Much more that I didn’t talk about. . .
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