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1. Introduction

This paper explores the application of a particular formal description technique, Hoare’s Communicating
Sequential Processes (CSP)1 to the description of graphical input in the current generation of graphics stan-
dards, in the context of the Components and Frameworks 2 ,3 approach to reference models for computer
graphics.

This paper starts with an overview of the Components/ Frameworks idea followed by an overview of
CSP. The next section describes the GKS input model in CSP and the following section gives some exam-
ples of how the model can be generalized. Although some of these ideas have been presented before in
ISO working documents, the formulation given here is more general and more elegant, as a result of the
structure of the formal description. The use of a formal description technique here has suggested new ways
of presenting the GKS input model and has also suggested equivalences between the operating modes in
GKS which were not previously apparent.

2. Overview of Components/ Frameworks

At the first plenary meeting of the new ISO/IEC subcommittee responsible for computer graphics, ISO/IEC
JTC1/SC24, the need to review the work of its predecessor committee and to plan for the future develop-
ment of graphics standards was recognized. SC24 authorised the formation of a Special Working Group to
recommend a five-year strategic plan for organizing the work of SC24.4 The Special Working Group met at
Blakeney in the U.K. in April 1988. The major recommendation was that the next generation of computer
graphics standards should be based firmly on a Reference Model which could identify demarcations and
�����������������������������������
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resolve disputes between standards. The Special Working Group also recommended a new approach to the
development of standards, called the ‘‘Component/ Framework Process’’. Inherent in this process was a
model of graphics standards which sees a graphics standard as constructed from a collection of components
set in a framework. Components would include datatypes and operations. A framework is the ‘‘glue’’
which joins components together to form a system and performs management concerned with display and
control. This model was seen as promoting harmonization between standards through the use of common
components and frameworks. This idea is illustrated in Figure 1 below. Standards A, B and C each have
their own frameworks. Some components are used by more than one standard, others by only one stan-
dard.

Standard A Standard B Standard C

Frameworks

- Component - Framework

Set of Components

Figure 1: Components and Frameworks.

The relationship between the PHIGS standard and the PHIGS+ proposal illustrates this idea in that PHIGS
and PHIGS+ share a common framework, but differ in their choice of output primitive component and
attribute component. PHIGS+ uses a richer set of components which take illumination into account.
PHIGS and PHIGS+ also use the same input components.

Immediately after the Blakeney meeting, the BSI held a Reference Model meeting which produced
an approach to Reference Models combining the merits of the Component/ Framework approach and an
earlier BSI approach to Reference Models. The new BSI approach2 essentially arose from the recognition
of the parallels between components and abstract data types. This work drew heavily on the work of
Arnold and Reynolds concerning configurable models of graphics systems and their work with Duce in the
formal specification of a GKS-like output pipeline.5, 6 The ideas were subsequently explored further at the
meeting of SC24/WG1 held in Tucson, U.S.A. in July 1988. At this meeting consideration was given to
how a functional standard might be expressed in a component/ frameworks setting and how input might be
treated in this way. The first (without input) proved fairly straightforward at a fairly high level of abstrac-
tion, the second proved more demanding, in part because of the lack of a suitable notation in which to
describe components.

This paper is the result of work done since that meeting by the authors to explore one particular nota-
tion, which appears to offer considerable promise for expressing the components required to describe the
GKS input model. The technique used is Hoare’s CSP notation. A short description of this notation fol-
lows.
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3. Communicating Sequential Processes

Hoare motivates CSP by a discussion of objects in the world around us which act and interact with each
other in some characteristic ways.1 The aim of CSP is to describe this characteristic behaviour. The start-
ing point for this is to decide what kinds of events or actions will be of interest and then to choose a dif-
ferent name for each kind.

As an illustration, consider a simple one-place buffer. Let the event write correspond to the user
writing a value to the buffer and read correspond to reading the value of the buffer. Each name actually
denotes an event class, there may be many occurrences of events in a single class, separated in time.

The sets of names of events which are considered relevant to the particular description of an object is
called its alphabet. An object cannot engage in events outside its alphabet, but the presence of a name in
an object’s alphabet does not imply that the object will eventually engage in that event.

In CSP occurrences of events are regarded as instantaneous or atomic actions without duration.
Extended or time consuming operations can be represented by pairs of events, one denoting its start, the
second its finish. During the interval between start and finish other events may occur. Time is ignored in
the basic CSP model and consequently it is not meaningful to ask if one event occurs simultaneously with
another. When simultaneity is important (e.g. in synchronization), it is represented as a single-event
occurrence. When it is not, potentially simultaneous events are allowed to occur in any order.

CSP also does not distinguish between events initiated by an object and those initiated by some agent
outside the object. This avoidance of the concept of causality leads to considerable simplification of the
theory and its application.

The word process is used to stand for the behaviour pattern of an object. There is a convention in
CSP that events are denoted by lower case words and processes by upper case words. Let x be an event
and P be a process. Then the prefix notation

( x → P )

describes an object which first engages in event x and then behaves exactly as denoted by P. This notation
can be used to describe the entire behaviour of a process that eventually stops. However, for objects which
continue to act and interact with their environment for as long as they are needed, and which contain
repeating patterns of behaviour, this is not a convenient notation.

Consider a simplification of the 1-place buffer, an unchanging storage location which can be read.
Denote the object by B, then the alphabet of B is

αB = { read }

An object which behaves like B after being read once would be described by

(read → B)

The behaviour of this object is exactly like the original object B, which suggests a formulation

B = (read → B)

This can be regarded as an implicit definition of the behaviour of B. The potentially unbounded behaviour
of B is effectively defined as

read → read → read → read → ...

This method of process description only works if the right hand side of the equation starts with at least one
event prefixed to all recursive occurrences of the process name. A process description beginning with a
prefix is said to be guarded . In the specifications following, it is sometimes necessary to refer to the pro-
cess which satisfies (i.e. is the solution of) such an equation. If F(X) is a guarded expression containing the
process name X, then it can be shown that the equation

X = F(X)

has a unique solution. This solution is denoted by
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µX: F(X)

X is a bound variable whose name can be changed at will. In the example above, the solution of the recur-
sion equation for B is

B = µX: (read → X) = µY: (read → Y)

Many objects, including the one-place buffer with which this discussion started, allow their behaviour to be
influenced by interaction with the environment in which they are placed. If x and y are distinct events,

(x → P | y → Q)

denotes a process which initially engages in either of the events x or y. After the first event has occurred,
the process behaves as P if the first event was x or as Q if the event was y.

A description of a one-place buffer which first engages in a write event and then subsequently in
either read or write events is

B = (write → µX: (read → X | write → X) )

The choice of which event will actually occur can be controlled by the environment within which the pro-
cess evolves. The environment of a process may itself be described as a process. The complete system is
itself a process whose behaviour is definable in terms of its component processes.

When two processes are brought together to evolve concurrently, it is usually intended that they
should interact with each other. These interactions can be regarded as events in which both processes par-
ticipate. The one-place buffer described above might be placed in the context of an application program
which will alternately write and then read the buffer. Such a program can be described by the process AP

AP = write → read → AP

The notation

AP || B

denotes the process which behaves like the system composed of the two processes AP and B interacting in
synchronization as described.

When processes P and Q with differing alphabets are combined to run concurrently, events that are
in both their alphabets require simultaneous participation of P and Q. However, events in the alphabet of P
which are not in the alphabet of Q are no concern of Q. Such events may occur independently of Q when-
ever P engages in them. Similarly, Q may engage alone in events which are in the alphabet of Q but not of
P. Examples of this will be seen in the GKS input model specifications following.

CSP introduces special notation for a particular class of events called communications . A communi-
cation is an event that is described by a pair

c.v

where c is the name of a channel on which communication takes place and v is the value of the message
which passes. The set of all messages which P can communicate on channel c is defined

αc(P) = { v | c.v∈αP }

If v is a member of αc(P), a process which first outputs v on channel c and then behaves like P is defined

(c!v → P) = (c.v → P)

The only event in which this process is initially prepared to engage is the communication event c.v.

A process which is initially prepared to input any value x which can be communicated over the chan-
nel c, and then behave like P(x) is defined

(c?x → P(x)) = (y:{y | channel(y)=c} → P(message(y)))

In the one-place buffer example given earlier, a more complete description would be
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AP = write!v → read?v → AP
B = write?v → Bv

Bv = read!v → Bv | write?v → Bv

B || AP

Notice also here the use of subscripts to indicate the value of the state associated with a process.

4. The GKS Input Model

4.1. Introduction

The GKS input model is based on the concept of logical input devices, providing the application program
with an interface which abstracts physical input devices from a particular hardware configuration. The pa-
per by Rosenthal et al7 gives a detailed exposition of the GKS input model.

Logical input devices are described in terms of a class, operating modes and attributes. These are
described below.

Conceptually, logical input devices are explained in terms of two processes, the measure process and
trigger process.

Classes.

The class of a logical input device defines the type of the input value which is returned. The six logical
input data types are:

1. LOCATOR: a position in world coordinates and the associated number of the normalization transfor-
mation used to convert back from device coordinates via normalized device coordinates to world
coordinates.

2. STROKE: similar to LOCATOR except it represents a sequence of world coordinate positions rather
than a single position.

3. VALUATOR: a real number in some range.

4. CHOICE: an integer representing a selection from a set of choices.

5. PICK: the name of a selected segment and an identifier indicating which set of primitives in the seg-
ment has been picked.

6. STRING: a character string.

A particular measure value of a logical input device is defined to be the value of the physical input device
transformed by a measure mapping function. GKS does not place any constraints on the realization of logi-
cal input devices in terms of physical devices. A CHOICE device could be realized by a keyboard and the
operator has to type in the name of the menu item to be selected. In this case the physical input value (the
string) is mapped to the corresponding CHOICE device value (integer selection number) by the measure
process. The following table shows a possible relationship between strings typed and the value of the
CHOICE logical input device.

���������������������������������������������������
"" NOCHOICE
"CREATE" 1
"REDRAW" 2
"DELETE" 3
"RETURN" 4���������������������������������������������������
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The measure process will always contain the current measure value of the logical input device. Usually,
the measure value is echoed in some way on the screen (for instance, by echoing a cursor shape in the posi-
tion that corresponds with the measure value).

How the measure value is mapped onto a value returned by a logical input device is defined dif-
ferently for every input class.
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Operating modes.

The operating mode indicates how the input value is obtained from the logical input device. The trigger
process plays an important role in this. A trigger process is an independent, active process which for cer-
tain operating modes, when triggered by the user, indicates that the current measure value is to be returned
to the application program.

There are three different operating modes:
� REQUEST. Logical input devices in REQUEST mode behave rather like FORTRAN READ. A

request is made by the application program for a measure to be returned from a specified device.
GKS waits until the operator has set the measure to the desired value and has activated the trigger.

� SAMPLE. In SAMPLE mode the current measure is returned whenever requested by the application
program. No triggering is involved when a logical device is sampled so that the application program
will immediately continue after issuing a sample call.

� EVENT. A number of input devices may be active together. Each time the trigger for a particular
device is activated, the current measure value and data identifying the device are added to a single
queue of input events for all the devices used in event mode. The application program can interro-
gate the queue to retrieve the input events. It is possible to couple more than one input device to the
same trigger so that multiple events can be generated from a single trigger event.

The event queue is structured as a queue of event reports. The event queue is interrogated by the
GKS function AWAIT EVENT. This function removes the event report at the top of the queue,
writes it into a buffer known as the current event report and returns the identification of the device
which produced the report (workstation identifier, input class, logical input device number) to the
application program. If the queue is empty, GKS is suspended until either input arrives (in which
case the function behaves as before) or a timeout period expires (in which case input class NONE is
returned), whichever happens first. GKS provides a set of functions, one for each device class,
which return the logical input value contained in the current event report.

Attributes.

Attributes are used to parameterize the initialization of a logical input device. Most attributes have to do
with how and where input devices produce echos on the screen. Attributes include initial values, prompt /
echo types, activation modes and echo areas. Data records provide the application program a means to
parameterize the logical input device in a device dependent manner. For instance, an entry in the data
record can specify which mouse button will be used to trigger a locator device.

4.2. Structure of the Specification

This section describes the overall structure of the CSP specification of the GKS input model. The follow-
ing sections elaborate the specification in detail. Figure 2 illustrates the overall structure.
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Figure 2: Structure of the Specification

The first attempt at a CSP specification of GKS input used different structures to describe each of the
operating modes. By examining the resulting specifications; it was realized that each mode could be
described in terms of five processes (LID, S, E, M and T). The following specifications are therefore
presented within this framework; some of the components which populate this framework have different
descriptions in the different operating modes.

The specification starts from the realization that there are three key objects, the application program,
the operator, and the logical input device which is the connection between the two. For simplicity we will
only consider a single logical input device here. The application program and the operator provide the
environment for the logical input device and to describe the system as a whole it is convenient to describe
also what actions the operator may perform and what functions the application may invoke. These are all
modelled as events in the alphabet of the CSP processes describing the application (AP) and the operator
(OP).

The process LID describes the behaviour of a logical input device in terms of a measure process M,
an echo process E, a trigger process T and a storage process S. It was the realization that each operating
mode could be described in terms of processes of these kinds which led to the model presented here. In the
case of SAMPLE mode the trigger process is null. It will be seen that the echo and measure processes are
the same in all the operating modes. The different modes present different opportunities to the operator
and application and have different storage components.

Each of the processes will now be discussed in turn for each of the operating modes. Section 4.7
discusses how this generalizes to the case of more than one device.

4.3. Application Program (AP)

The application program may set the mode of a logical input device and invoke functions appropriate to
that mode. Some slight simplifications are made to the GKS model. GKS allows the application to set an
initial value for a device in the appropriate workstation statelist. Here initialization is not considered as it is
essentially orthogonal to the remainder of the specification. Secondly, when a device is placed in SAM-
PLE or EVENT modes, measure and trigger (in the case of EVENT mode only) processes are created
immediately for the device and it becomes active. When a device is set into REQUEST mode, the measure
and trigger processes are not created until the REQUEST <device class> function is invoked. Essentially
the device is in a quiescent state until this latter function is invoked. The specification given here reflects
this by explicitly introducing a set −quiescent −mode event.

The behaviour of the application program is described by the process:
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AP = set −mode −quiescent → AP
| (request → REQUEST || E 0 || M 0 || T || OP R || S R || LID R)
| (set −mode −sample → SAMPLE || E 0 || M 0 || OP S || S S || LID S)
| (set −mode −event → EVENT || E 0 || M 0 || T || OP E || S<>

E || LID E)

This specification states that the logical input device can be set into the quiescent mode, REQUEST mode,
SAMPLE mode or EVENT mode. The request event corresponds to an invocation of the GKS REQUEST
<device class> functions. From quiescent mode it can be set into any of the other modes. From the other
modes, the behaviour is described by a composition of control (REQUEST, SAMPLE, EVENT), storage,
measure, trigger echo and operator processes. Superscripts are used to denote processes which are dif-
ferent for the different modes. Subscripts are used to denote the initial states of processes.

4.4. REQUEST Mode.

4.4.1. The operator process, OP R.

The operator of a logical input device can change the value of the device’s measure process or fire the
trigger process. The trigger firing can be represented as an event trigger and setting a new measure value
by outputting a value v on channel m. The behaviour of the operator is then characterized by the process
OP R defined as:

OP R = (m!v → OP R) | (trigger → STOPOPR )

This means that the operator can choose to change the value of the measure or fire the trigger. Once the
trigger has fired, the interaction with that device terminates.

4.4.2. The application program, REQUEST.

The application program can receive a logical input value from a channel o. The interaction with the dev-
ice then terminates and the device returns to the quiescent state. The behaviour of the application program
in REQUEST mode is described by the process:

REQUEST = o?v → AP

4.4.3. The measure process, M.

The behaviour is described by:

Mv = (m?v ′ → e!v ′ → Mv′) | (get_m → si!v → Mv)

The communication over channel m corresponds to the operator setting a new measure value, which is then
transmitted to the echo process over channel e. The logical input device may request the current measure
value by the event get_m. The value is returned along channel si. The special value 0 (process M 0)
denotes the measure process initialized to the initial measure value recorded in the workstation state list.

Strictly speaking, the value communicated over channel m from the operator is a physical input
value. The value associated with the state of the measure process and communicated along channel si is a
logical input value. If f denotes the physical to logical value mapping, the first choice in the behaviour
above could be written as :

Mv = (m?v ′ → e!f (v ′) → Mf(v′))

This also makes it clear that it is the logical rather than the physical value which is echoed (see 4.4.5). The
measure process is the point in the specification where the physical to logical mapping occurs. For exam-
ple, if a keyboard is used to implement a CHOICE device, f might be the function:

f = { "" → NOCHOICE, "CREATE" → 1, "REDRAW" → 2, "DELETE" → 3, "RETURN" → 4 }

The mapping could be specified precisely using a notation such as Z8 in combination with CSP,9 but that
would take us rather beyond the scope of this present paper. The intention should, however, be clear.
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4.4.4. The trigger process, T.

The behaviour of the trigger process is just :

T = trigger → triggers → T

The event trigger is shared by the operator and the trigger process. The event triggers is shared by the
trigger and storage processes.

4.4.5. The echo process, E.

The echo process can receive a value on channel e (from the measure process), and echo it on the display.

Ev = e?v ′ → Ev′

The special value 0 (process E 0) denotes the echo process which echoes the initial measure value recorded
in the workstation state list.

4.4.6. The logical input device, LID R.

The logical input device reads a logical input value from the storage channel, so, and delivers it to the
application program on channel o. The behaviour is defined by:

LID R = get_s → so?v → o!v → LID R

4.4.7. The storage process, S R.

The storage process is initiated by the event get_s, awaits the trigger firing event triggers , initiates the event
get_m to get the current value of the measure process, then reads the current value of the measure on chan-
nel si and transmits this value to the LID R process on channel so. This behaviour is defined by:

S R = (get_s → triggers → get_m → si?v → so!v → S R)

The storage process is effectively providing a one-place buffer between the measure process and the appli-
cation program. The value of the measure process transmitted to the application is the value current when
the trigger fires.

4.4.8. Remarks on REQUEST mode.

� The table below shows the alphabets of each of the processes in the specification. The left hand
column lists all the possible event classes. An ‘×’ underneath a process indicates that the
corresponding event is in the alphabet of that process.

���������������������������������������������������������������������������������������������������������
OP R REQUEST M T LID R E S R
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m.v × ×

trigger × ×
o.v × ×
e.v × ×

get_m × ×
si.v × ×

triggers × ×
get_s × ×
so.v × ×���������������������������������������������������������������������������������������������������������
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� The application process, REQUEST, does not exhibit any choice. The choice in the system is made
by the operator, who can choose when to vary the measure and when to fire the trigger. This is
shown clearly in the specification.

� The specification also shows clearly that the device is put into REQUEST mode by the application.
Once the trigger has fired, a logical input value is returned to the application program and interaction
with the device ceases until it is put into REQUEST mode again by the application program at which
point a new measure process is created.
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4.5. SAMPLE Mode.

4.5.1. The operator process, OP S.

The operator of a logical input device can only change the value of the device’s measure process. The
behaviour of the operator is then characterized by the process OP S defined as:

OP S = (m!v → OP S)

4.5.2. The application program, SAMPLE.

The application program can engage in three events, set −mode −quiescent which returns the device to the
quiescent state, sample requesting a logical input value from the device, and receiving a logical input value
from it on channel o. The behaviour of the application program is described by the process:

SAMPLE = (µX:sample → o?v → X) | (set −mode −quiescent → AP)

Notice that once the device is in SAMPLE mode, the application program can sample the device any
number of times before returning it to the quiescent state.

4.5.3. The measure process, M.

The measure process is exactly the same as for REQUEST mode. The behaviour is described by:

Mv = (m?v ′ → e!v ′ → Mv′) | (get_m → si!v → Mv)

4.5.4. The echo process, E.

The echo process is exactly the same as for REQUEST mode. The echo process can receive a value on
channel e, and echo it on the display.

Ev = e?v ′ → Ev′

4.5.5. The logical input device, LID S.

The application can sample the logical input device (sample), reading a logical input value from the storage
process and delivering it to the application program on channel o. The behaviour is described by:

LID S = sample → get_s → so?v → o!v → LID S

The event sample is also contained in the alphabet of the process SAMPLE. The description of SAMPLE
input differs from that of REQUEST input because in the latter the device reverts to the quiescent state
after one value has been returned to the application program, whereas in SAMPLE input the device
remains active and may be sampled any number of times before being explicitly returned to the quiescent
state.

4.5.6. The storage process, S S.

The storage process is similar to the process S R in REQUEST mode, except that there is no involvement of
the trigger process. The value delivered is the value current when the application invokes the sample func-
tion.

S S = (get_s → get_m → si?v → so!v → S S)

4.5.7. Remarks on SAMPLE mode.

� The table below shows the alphabets of the processes in this specification. Note that the trigger pro-
cess is not used in the specification.
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� Figure 3 illustrates the structure of this specification. It can be seen that this is just a special case of
the general case shown in Figure 2.
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Figure 3: Structure of the SAMPLE Specification

� The application program can decide when to sample the device, that is when to invoke the SAMPLE
<device> function (event sample). The operator can alter the value of the device’s measure, but that
is the only option offered to the operator.

� The device remains in SAMPLE mode until the application chooses to return it to the quiescent state.
In GKS the application would set the device directly into one of the other operating modes or reini-
tialize the device in SAMPLE mode. Here we select a new mode in two stages, returning first to the
quiescent state before selecting the new mode. This gives a tidier specification.

� The measure process in SAMPLE mode is identical to the measure process in REQUEST mode. The
form of the storage processes in these two modes shows clearly the role of the trigger in REQUEST
mode input.

4.6. EVENT Mode.

4.6.1. The operator process, OP E.

The operator of a logical input device in EVENT mode can change the value of the device’s measure pro-
cess or fire the trigger process. The trigger firing can be represented as an event trigger and setting a new
measure value by outputting a value v on channel m. The behaviour of the operator is then characterized
by the process OP E defined as:
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OP E = (m!v → OP E) | (trigger → OP E)

4.6.2. The application program, EVENT.

The application program can engage in three events, set −mode −quiescent which returns the device to the
quiescent state, await −event requesting a logical input value from the storage and receiving a logical input
value from it channel o. The behaviour of the application program is described by the process:

EVENT = µ X. (await_event → o?v → X) | (set −mode −quiescent → AP)

4.6.3. The measure process, M.

This is identical to the measure process in SAMPLE and REQUEST modes. The behaviour is described
by:

Mv = (m?v ′ → e!v ′ → Mv′) | (get_m → si!v → Mv)

4.6.4. The trigger process, T.

This is identical to REQUEST mode.

T = trigger → triggers → T

4.6.5. The echo process, E.

The echo process can receive a value on channel e, and echo it on the display. This is identical to
REQUEST and SAMPLE modes.

Ev = e?v ′ → Ev′

4.6.6. The logical input device, LID E.

The logical input device reads a logical input value from the storage channel, so, and delivers it to the
application program on channel o. The behaviour is described by:

LID E = await_event → get_s → so?v → o!v → LID E

There is a similarity with the process LID S in that the device remains active when await event has com-
pleted.

4.6.7. The storage process, S E.

This process represents the major difference between EVENT mode and REQUEST and SAMPLE modes.
In the other two modes the storage process does not retain values. In EVENT mode, trigger firing results in
values being sent to the storage process. Their consumption awaits a get_s event from the logical input
device.

In GKS, the storage discipline is a queue. Values are added to one end of the queue by get_m and
removed from the other by get_s. Subscripts to the process name are used to indicate the state of the queue
before and after each event which modifies the queue.

The AWAIT EVENT function in GKS returns a NONE value to the application program if the queue
is empty when the function is invoked and no input is added to the queue before a timeout period has
expired. Timeout is indicated in this model by the event time_out. It is not further defined here.

In GKS the AWAIT EVENT function returns the identification of the device from which the event at
the top of the queue originated and moves this event description to the current event report. Events are
retrieved from the current event report by GET <device class> functions, one for each type of device. In
this specification, the current event report is not described, it is merely stated that the logical input value is
returned to the application program through channel o.
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Ss<v>
E =( get_s → so!v → Ss

E)
Ss

E =( triggers → get_m → si?v → S<v>s
E )

S<>
E =( get_s → ( time_out → so!NONE → S<>

E | triggers → get_m → si?v → so!v → S<>
E ))

| ( triggers → get_m → si?v → S<v >
E )

4.6.8. Remarks on EVENT mode.

� The table below shows the alphabets of the processes in the specification of EVENT mode input.
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� The application process EVENT is very similar to the corresponding process for SAMPLE mode
input. The application can decide when to ask for an input value. In the EVENT case however, the
storage component does not immediately request the current value of the measure; instead it looks to
see if a value is stored or if not, awaits the arrival of a new event until a timeout expires.

� The measure and trigger processes are identical to those in REQUEST mode. The operator process
is similar except that in EVENT mode a trigger firing does not terminate the interaction with the dev-
ice, so the operator may generate more than one value. It is an application program action which ter-
minates the device. The difference in behaviour is accounted for by the different storage com-
ponents in the two systems and the different application process behaviours.

4.7. Multiple Devices

Although the specification given here only considers a single logical input device, multiple devices can
easily be described by amending the description of the process AP and introducing clones of the other
processes, with appropriate names (for example prefixed by the device name which is unique). If the dev-
ices are independent, then the event names need to be prefixed by the device name to make them unique. If
the devices are not independent, for example if two devices share the same trigger, then events which are
common have the same name. Recall that in CSP events which are in the alphabets of two processes
require their simultaneous participation. Thus in this example, the trigger firing would automatically go to
both devices because it is in the alphabets of the operator and device processes.

5. Extensions

5.1. Introduction.

In this section some simple extensions to the input model are discussed. Essentially these involve replacing
components in the framework described here. The extensions to be discussed are logical input device types
and composite devices, storage strategies and the interaction between input and output.
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5.2. New device types.

As noted earlier, the GKS input model defines six classes of logical input device, each corresponding to a
particular type of input value. The type of the logical input value associated with the logical input device
has not featured at all in the specification given here. In fact the specification is completely independent of
the type of the input value, provided that the type is consistent throughout the specification. This means
that new classes of logical input device can be introduced very easily, merely by substituting components
which can handle the new datatype. No change is needed to the specification to describe such systems.

In EVENT mode input, GKS allows any particular trigger to be associated with more than one meas-
ure process. Then when the trigger fires, multiple event reports are added to the queue and marked as
simultaneous events. There is no analogue of this mechanism in SAMPLE or REQUEST modes. This res-
triction is unfortunate because this mechanism provides a nice way to accommodate devices such as the
Tektronix cross-hairs and the mouse, each of which can be viewed as a composite of a LOCATOR and
CHOICE device.

Such devices can be incorporated into this specification fairly easily. There are two ways to do this,
the first involves generalizing the framework given here to incorporate multiple measure processes, one for
each of the basic measure types which make up the device. A slightly more elegant way to do this comes
from the recognition that there is one measure value associated with the device, which happens to be com-
posed to two basic types, LOCATOR and CHOICE. We will illustrate this with the mouse device. Sup-
pose we have a three-button mouse. The value of the device can be expressed as a LOCATOR and
CHOICE value, as an ordered pair of the form (l, c), where l is of type LOCATOR, indicating the position
of the device, and c is of type CHOICE, indicating which, if any, of the buttons are depressed. The
specification of such a device can be obtained from that given here by consistently substituting (l, c) for v
throughout the specification.

Note that the operator now generates events of the form

m!(l, c)

so the operator has been implicitly retrained! Notice that this works perfectly well in SAMPLE and
REQUEST modes as well as EVENT mode and that the notion of simultaneous events has been replaced
by the simpler notion of cartesian product datatypes. All we need is a way of delivering values of this type
to the application program. If the only mechanism for doing this in a particular programming language
involves a notion of simultaneous events, then this should not be cluttering the specification for more flexi-
ble programming languages.

The three buttons on the mouse might also act as triggers for the device. Suppose the events
trigger 1, trigger 2, trigger 3, denote the action of depressing the respective buttons. If each of these can
trigger REQUEST or EVENT input, we can describe this by substituting a process T with the following
description:

T = ( trigger 1 → triggers → T ) | ( trigger 2 → triggers → T ) | ( trigger 3 → triggers → T )

5.3. Storage strategies.

The second extension we discuss here concerns storage strategies. It has been seen that the form of the
process S plays an important role in determining the overall system behaviour. Interesting systems can be
obtained by taking the framework given here and substituting a different storage component. A simple
example will illustrate the point. In GKS EVENT mode input, the storage strategy is a queue. For what-
ever reason, one might want to use a last-in-first-out strategy or stack, instead. A component to do this has
a very simple description:

Ss<v>
E = (get_s → so!v → Ss

E)
S<>

E = ( get_s → ( time_out → so!NONE → S<>
E | triggers → get_m → si?v → so!v → S<>

E ))
| ( triggers → get_m → si?v → S<v >

E )
Ss

E = ( triggers → get_m → si?v → Ss<v>
E )

This is a simple example but hopefully it illustrates the point that by changing components, usefully dif-
ferent functionality can be obtained.
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5.4. The relationship between input and output.

A workstation display surface can be represented as a process D, which can accept display events gen-
erated by the application program (through the output pipeline of the graphics system). This behaviour
could be described by:

Dp = ( display?p ′ → Dp&p ′ )

Here the process D is receiving communications along channel display. The values passed are rendered
output primitives, denoted by the variable p ′. The primitive p ′ is combined with the existing state of D to
yield a new state p &p′ which represents the display space incorporating the new output primitive. The
operator ‘&’ is not further defined here.

The echo process also generates graphical output, and the interaction between the echo and display
processes could be expressed by:

Dp = ( display?p ′ → Dp&p ′ ) | ( echo?p ′ → Dp&p ′ )
E = ( e?v ′ → echo!r(v ′) → E )

Here the function r generates the rendered primitive corresponding to the current measure value v ′. In real-
ity the operations necessary to update an echo are more complicated than those given here, but the above
behaviours should give a flavour for how this approach could be used.

Following on from this, it is clear how interactions between other processes in the input model and
the display process could be described. It should also be clear that if the output pipeline is described in a
similar manner, then interactions between input and output can be readily described; for example the echo
process might interact with the output pipeline at a higher level using facilities in the output pipeline to
construct the graphical object representing the echo. It should also be clear that this approach could be
used to describe systems in which values derived from input devices are used to control the graphical out-
put, for example to determine the parameters of transformations, by introducing appropriate communica-
tions. This suggests some interesting directions for further work.

6. Conclusions

This paper has demonstrated how a Component/ Frameworks style description of the GKS input model can
be given in the CSP notation. The specification clearly demonstrates how it is possible to substitute com-
ponents within a framework and some simple interesting extensions to the model have been described.

The exercise has deepened the authors’ understanding of the input model, and it is hoped the readers’
also, by demonstrating the role of the storage component in each of the input modes and showing precisely
where, and by whom, choices may be made in each of the operating modes.
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