
A Survey of Computational Steering Environments

Jurriaan D. Mulder
�����

, Jarke J. van Wijk
� ���

, Robert van Liere
�����

�
Center for Mathematics and Computer Science CWI, P.O. Box 94079, 1090 GB

Amsterdam, the Netherlands	
Faculty of Mathematics and Computer Science, Eindhoven University of Technology, the

Netherlands

Abstract

Computational steering is a powerful concept that allows scientists to interactively con-
trol a computational process during its execution. In this paper, a survey of computational
steering environments for the on-line steering of ongoing scientific and engineering sim-
ulations is presented. These environments can be used to create steerable applications for
model exploration, algorithm experimentation, or performance optimization. For each envi-
ronment the scope is identified, the architecture is summarized, and the concepts of the user
interface is described. The environments are compared and conclusions and future research
issues are given.

Keywords: Computational Steering

1 Introduction

Computational steering can be defined as the interactive control over a computa-
tional process during execution. In an interactive computational process, a sequence
of specification, computation, and analysis is performed. For each adaption that is
to be made to the computational model, this process has to repeated. Computational
steering closes the loop such that scientists can respond to results as they occur by
interactively manipulating the input parameters. Computational steering enhances
productivity by greatly reducing the time between changes to parameters and the
viewing of the results [11], it enables the user to explore a what-if analysis [4], and
as changes in parameters become more instantaneous, the cause-effect relationships
become more evident [14].

��
mullie|robertl @cwi.nl�
vanwijk@win.tue.nl

Preprint submitted to Elsevier Science 10 July 1998

Computational steering is applicable in many areas of computational science. In a
broad perspective, all interactive computational processes can be regarded as a form
of steering. Examples in this regard are the on-line debugging of source codes, in-
teractive scientific visualization, and computer games. We confine ourselves to the
steering of ongoing scientific and engineering simulations. In this area, three main
uses of computational steering can be distinguished: model exploration, algorithm
experimentation, and performance optimization. With model exploration, computa-
tional steering is used to explore parameter spaces and simulation behavior to gain
additional insight in the simulation. In algorithm experimentation, computational
steering allows the user to adapt program algorithms in run time, for instance to ex-
periment with different numerical solving methods. In performance optimization,
steering is used to manually improve an application’s performance, e.g. to perform
load balancing interactively in parallel applications.

Computational steering has been recognized as an important issue for over a decade.
The influential report of the US National Science Foundation on scientific visual-
ization published 1987 [12], stated computational steering to be a valuable tool for
scientific discovery. Brooks expressed the need for generalized tools for interactive
steering for large computations in 1988 [3]. Over the years, many computational
steering applications and systems have been developed. The results can be classified
into application specific computational steering systems, domain specific computa-
tional steering systems, and more generally applicable computational steering envi-
ronments. An example of an early computational steering application is described
by Marshall et al. [11]. They present a system for the visualization and steering of
a 3D turbulence model of Lake Erie. More general but application domain specific
computational steering systems have for instance been developed for molecular dy-
namics simulation. Bergman et al. [1] describe the VIEW system, an exploratory
molecular visualization system with user-definable interaction sequences. Leech et
al. [9] presented SMD, a system for the interactive steering of molecular dynam-
ics calculations of protein molecules. Vetter composed an annotated bibliography
focussed on computational steering research issues, systems, and applications [19].

In this paper, we present an overview of several general computational steering
environments that have been developed and presented over the years. The environ-
ments we discuss are: VASE, SCIRun, Progress, Magellan, CUMULVS, VIPER,
and CSE. This list of steering environments is not exhaustive, but it is typical for
the systems encountered in computational steering research. The environments will
be compared on characteristics involving the scope of the environments, their ar-
chitectures, and their user interfaces. We will first describe the principle concepts
of general computational steering environments, and define the characteristics on
which the environments will be discussed. In section 3, a short description is given
of each of the environments. Section 4 summarizes and discusses the main similar-
ities and differences between the environments. Conclusions and issues for future
research are given in section 5.

2

User
Interface

Application

Computational Steering Environment

Communication
and

Data Transfer

User

Visualization

Input
Handling

Data
Collection

Parameter
Updating

Interpretation

Manipulation

Configuration

Code

Data
and

Parameters

Reconfiguration

Algorithm
Adaption

Fig. 1. Diagram of a computational steering process

2 Environment Characteristics

Figure 1 depicts a diagram of a computational steering process. The computational
steering environment comprises three major components: the user interface, the
application, and the communication and data transfer between the user interface
and the application. These components may be handled by separate processes that
might run in a distributed environment, or they can be united into a single process
running on a single machine. The application to be steered might be a distributed
application itself. Furthermore, the steering process does not have to be limited to
single applications or single users. Several different users might perform collabo-
rative steering of a single or multiple applications simultaneously.

The environment must monitor the application and extract the desired information
to be presented to the user. The type of information can vary depending on the
scope of the steering application. For model exploration, the user will primarily
be interested in the application’s output data and input parameters. For algorithm
experimentation, the user will have to be informed of the application’s program
structure. For performance optimization, the user will have to be informed about
the application’s configuration and progress. In parallel or distributed applications
for instance, the distribution of the application over different processors or plat-
forms has to be known, along with processor and network loads. To actuate steer-
ing actions, the environment must have access to the application’s input parameters,
the application’s execution code, or the application’s configuration. The access to
the monitoring information and the steering items could be synchronous or asyn-
chronous. For instance, application output data to be extracted might not always be
valid, and input parameters might not be adjustable during certain computations.

As computational steering is a highly interactive process, a crucial aspect of a com-

3

putational steering environment is the user interface. The user interface has two
tasks. First, the information extracted from the application has to be presented to
the user. Ideally, this will be accomplished through the use of visualization, al-
though it might also be achieved through simple textual display. The second task
of the user interface is to allow the user to manipulate the steerable items of the
application. This varies from application input parameter manipulation for model
exploration, to code generation for algorithm experimentation, and reconfiguration
for performance optimization. These user actions can be performed through textual
input, through the use of simple graphical input widgets such as sliders and buttons,
or by direct manipulation on the visualization or complex (3D) input widgets.

Computational steering environments can differ in many of the aspects described
above. We have grouped the aspects in three categories: the scope, the architecture,
and the user interface.

Scope
First, the scope of the environment is identified. In particular, the following aspects
are addressed:

– The type of steering to be performed: Is the system designed for model explo-
ration, algorithm experimentation, performance optimization, or a combination
of these?

– Existing or new applications: Can existing applications be incorporated into the
environment, or is the environment intended for the development of new appli-
cations?

– Distribution: Is the system designed to steer distributed applications? Can the
system itself be distributed, e.g. can the user interface and the target application
run on different hosts?

– Multiple applications: Can the environment be used to steer multiple applications
simultaneously?

– Multiple users: Does the environment allow multiple users to steer the same
application?

– User and developer distinction: Does the environment make a distinction be-
tween developers that create the steering application and the end-users?

Architecture
Besides a description of the general layout of the environment, special attention is
given to the aspects of:

– Application annotation: To create a steering application it has to be indicated
which information is to be provided to the user and which steerable items the
user can manipulate.

– Data acquisition: How does the environment extract the monitoring information
from the application?

– Steering access: How does the environment access the steerable items of an ap-

4

plication?
– Synchronization: What concepts are available for synchronization?

User Interface
For each environment, the user interface concepts are identified on the aspects of:

– Data presentation: How is the monitoring information presented to the user?
– User input: What interface concepts are available to the user for the manipulation

of the steerable items?

3 Computational Steering Environments

3.1 VASE

One of the first computational steering environments that has been developed was
VASE [5,7]. VASE stands for Visualization and Application Steering Environment,
and was developed at the University of Illinois. The VASE system evolved from
earlier experience with projects involving high-performance distributed visualiza-
tion systems such as Vista [18] and RIVERS [6].

Scope
VASE was designed for model exploration and algorithm experimentation. The
steering capabilities provided by the VASE system include the altering of the val-
ues of key parameters and the addition of new code at key places in the application.
Existing applications are integrated in the environment by annotation of the ap-
plication’s source code. It is emphasized that this is performed by the application
developer. An abstract program structure that describes the essential algorithms and
data on a high level is created for the end-user to work with. Multiple applications
can run in a distributed heterogeneous environment and be steered simultaneously.
VASE does not provide any specific support for collaborative steering by multiple
users.

Architecture
The VASE system consists of a collection of programming tools and system soft-
ware. With these tools, the developer creates a steerable program structure of the
application program that describes the essential algorithms and data on a high level.
The structure consists of logical blocks representing contiguous source code lines
and arcs that represent the control flow between these blocks. At the arcs, break-
points can be inserted and it can be indicated which data is accessible at that point
for visualization or steering.

Monitoring and steering are performed by breakpoint scripts. Scripts can read and

5

write variables in the application, control the flow of data between processes (e.g.
send data to a visualization process), and call subroutines defined in the application
program. The scripts are executed by the VASE interpreter which is linked directly
into the executable application and therefore has direct access to the application
address space. A script is executed when the running application encounters the
breakpoint, so steering is performed synchronously.

Data communication is performed over data channels between VASE data ports.
The ports are the endpoints for data communication between VASE application
processes. They can be added or removed at any time, breakpoint scripts can refer-
ence them by name, and users can specify connections between them to create data
channels.

User Interface
During a VASE session, the VASE Configuration and Execution Tool is used to
configure and execute VASE executables through a graphical user interface. Con-
figuration includes adding or deleting applications, specifying application hosts,
adding, removing, and modifying data ports and channels, and altering breakpoint
scripts and breakpoint modes.

The actual steering of an application is achieved in a textual manner with the use of
breakpoint scripts. These scripts are written in an extended subset of the C program-
ming language, and are interpreted at run time. VASE does not offer any tools or
utilities for the visualization of application output data. This must be accomplished
with the use of existing visualization packages such as IRIS Explorer. Breakpoint
scripts, data ports, and data channels have to be configured to transfer the data from
the application to the visualization package.

3.2 SCIRun

The second computational steering environment we consider is SCIRun [14,15].
The SCIRun environment was developed at the University of Utah. The name
SCIRun was derived from the Scientific Computing and Imaging research group.

Scope
SCIRun primarily provides steering for model exploration and algorithm experi-
mentation. In addition, some minor functionality for performance optimization is
available. SCIRun was designed for the development of new applications, although
it is possible to incorporate existing applications into the system. A SCIRun ap-
plication is multithreaded and can run on a single multiprocessor system. SCIRun
was not designed to steer multiple applications simultaneously, and no support for
collaborative steering by multiple users is provided. Furthermore, no separation be-
tween application development and application use is applied. SCIRun is intended
as a computational workbench that allows scientists to interactively construct, de-

6

bug, and steer large-scale scientific computations.

Architecture
SCIRun is based on a data flow programming model common to many scientific vi-
sualization packages, such as AVS and IRIS Explorer. The main components in the
SCIRun data flow model are: the module, the port, the data type, and the connec-
tion. A module represents an algorithm or operation. A port provides a connecting
point for routing data to different stages of the computation process. A data type
is a quantity such as a scalar field or matrix. A connection is used to connect two
modules: the output port of a module can be connected to the input port of one or
more other modules.

An application in SCIRun resides in one or more modules. SCIRun is implemented
in C++. Writing a new module involves writing a new C++ class. The constructor
function of this class creates the input and output ports for the module and de-
fines which parameters the user interface may control. To create a steering applica-
tion, the user constructs a network out of the modules using a visual programming
paradigm. The user configures each module and establishes the desired connections
between the modules for the data flow.

Steering actions can be both synchronous and asynchronous. An example of an
asynchronous steering action is the adjustment of some parameter of a single mod-
ule that can be adjusted regardless of the current state of the module computation.
An example of a synchronous steering action is the adjustment of a boundary con-
dition that affects multiple modules that form a loop of a time varying problem.
Such a steering action will be integrated in the next iteration of the loop.

User Interface
The user interface of SCIRun includes several predefined modules for data visu-
alization and program monitoring (progress meters, thread display, memory usage
statistics). For user input, modules are equipped with a Tcl/Tk user interface with
which the steerable items of that module are controlled. In addition, some modules
have predefined 3D widgets for 3D interaction. A key module in this regard is the
Salmon module. Salmon is the graphical viewer that collects the geometric primi-
tives from any number of modules and presents them in a single 3D view. Salmon
has the ability to send messages upstream the data flow network. This allows steer-
ing of upstream module parameters by direct manipulation on the objects displayed
by the Salmon module.

3.3 Progress and Magellan

Progress [20] and Magellan [21] have been developed at the Georgia Institute of
Technology. Progress stands for Program and Resource Steering System. Magellan
is a prototype system designed as the successor of Progress.

7

Scope
The types of steering that can be performed with Progress are model exploration
and performance optimization. Existing high-performance multi-processor appli-
cations can be extended with interactivity by annotation of the application’s source
code. The annotation is performed by the application developer, and is intended
to provide the end-user with an abstraction of the steerable application that only
reveils the important steering parameters and output data. The steerable applica-
tion can be run on a different machine than the user interface. Progress does not
provide any particular support for simultaneous steering of multiple applications or
collaborative steering by multiple users. In Magellan, special attention is devoted
to high performance of the steering process itself. Furthermore, Magellan allows
for multiple applications to be steered simultaneously.

Architecture
To integrate an application into the steering system, the application’s code is an-
notated with Progress library calls to create a steering object model. Several oper-
ations can be performed on the steering objects defined in the object model. The
operations probe (an asynchronous read or write of an object), sense (a synchronous
capture of an object’s state), and actuate (a synchronous modification of a steering
object) can be performed on all objects. Synch points, functions, and scripts are
operations that can be performed on specialized steering objects. Synch points are
used to halt an application. Functions are predefined in the application and can be
used to alter application specific data structures within the executing application
(other than the known steerable objects). Scripts provide users with the functional-
ity of combining other steering operations in a language form for repeated execu-
tion.

At run-time, the system consists of a server and a client. The server executes as a
separate thread in the same memory space as the application. The server has three
basic tasks: interact with the steering client, gather monitoring output from the ap-
plication, and steer the application via the steering objects it has registered. The
client is a single threaded Motif application which can run on a remote machine.
The client has three basic tasks: interact with the user, communicate with the steer-
ing server, and keep relatively consistent state information about the steering ob-
jects. The client is transitory and can connect to the server many times throughout
the server’s (and application’s) existence.

In Magellan, there is a server for each application. A master server is used for the
communication among the different servers and between the servers and clients.
This communication is based on the language ACSL, an Advanced Computational
Steering Language.

User Interface
The client process provides a command and graphical user interface to the end-user
to control the steering server. Simple monitoring and steering commands can be ap-

8

plied to registered steering objects through interface buttons, and a command line is
available for expressions not easily entered in the graphical interface. The client has
only limited graphical display functionality. For more advanced visualizations, the
client must interface to existing program animation or data visualization systems
such as Glyphmaker [17]. The user interface of Magellan is more text oriented than
that of Progress, as the steering commands are specified in ACSL. However, ACSL
statements may also be bound to graphical user interfaces.

3.4 CUMULVS

CUMULVS [4] is developed at the Oak Ridge National Laboratory. The current
CUMULVS system evolved from an earlier prototype system that linked a PVM
application to AVS for floating point data visualization and some simple steering
operations [8].

Scope
The steering capabilities of CUMULVS include model exploration and perfor-
mance optimization. CUMULVS aims at existing single parallel PVM programs.
Multiple users can connect user interface programs to the application for collabo-
rative steering. No explicit distinction is made between the application developer
and the end-user, but application construction is separated from application usage.
CUMULVS distinguishes itself from other environments by providing a mecha-
nism for fault-tolerance. In case of a failure, applications can then roll back to a
saved state, in stead of having to be restarted.

Architecture
The CUMULVS library is divided in two pieces: one for the application program
and one for the visualization and steering front end. These two libraries encom-
pass all the connection and data protocols needed to dynamically attach multiple,
independent visualization and steering front ends to a running application. The ba-
sic principle of CUMULVS is to have the user declare in the application how an
array or field of variables has been decomposed over a collection of parallel pro-
cessors and specify which parameters are allowed to be modified or steered during
the computation. This description of the data and their decomposition is also used
for user-directed checkpointing, i.e. efficiently collect checkpoint information and
restore the application in the event of a failure.

During its initialization, a user interface program gathers information about the
data fields and parameters made available in the desired application and selects the
portion of the data to be collected. To allow steering, the user interface process
creates a loosely synchronized connection with the application which guarantees
that all tasks in the application will apply the steering updates at the same time
or point in the application. To prevent multiple viewers from steering the same

9

parameter simultaneously, a viewer can lock a steerable parameter by obtaining the
steering token of that parameter.

A separate process (one per machine) is used to handle fault-tolerance: the check-
pointing daemon. The programmer must specify what variables need to be saved
at the checkpoints and provide the logic to determine if the application is starting
normally or from a checkpoint. CUMULVS manages the details of retrieving the
most current (coherent) checkpoint and loading it into the user’s variables.

User Interface
The visualization and steering front-ends currently provided with the CUMULVS
system are a text-only viewer, a sample custom Tcl/Tk viewer, and a standard AVS-
compatible viewer. The particular user interface methods available in these viewers
for steering are not described, but it can be expected that steering primarily has
to be performed with the text-only viewer, or with a custom built (Tcl/Tk) user-
interface, as AVS is primarily intended for data visualizations. CUMULVS provides
a C language interface to communicate with other viewing and steering interfaces.

3.5 VIPER

VIPER [16] stands for VIsualization of massively Parallel simulation algorithms
for Extended Research. VIPER is developed at Technical University of Munich,
Germany.

Scope
VIPER is primarily aimed at model exploration of existing massively parallel high
performance (CFD) applications. In addition, VIPER allows for the distribution of
the processes in the computational steering process. No support is reported for the
simultaneous steering of multiple applications or by multiple users, and no explicit
distinction is made between the application developer and end-user.

Architecture
VIPER is based on a client/server/client architecture, which they refer to as a Dual
Server model. One client is the computational unit which is the (remote) massively
parallel application. The other client is the visualization unit formed by the pro-
cesses of the user interface. The server is called the connectivity unit and is formed
by the processes of the Dual Server which offers an infrastructure to extract data
out of the application, transfer the data, and hand it out to the visualization unit. The
Dual server consists of multiple multi-threaded processes which can run in parallel
on distributed machines.

The application program is annotated to identify the data and input parameters as
objects. Each object is associated with a synchronization point. When the appli-
cation encounters such a synchronization point, the Dual Server is notified which

10

in turn extracts the data out of the application or restores input parameters. Fur-
thermore, the synchronization between the three different units can be specified,
ranging from fully synchronized to completely asynchronous.

User Interface
For user interaction a graphical interface is supplied. It is however not further spec-
ified which capacities this user interface has for the visualization and parameter
manipulation.

3.6 CSE

CSE [10,22] stands for Computational Steering Environment. The CSE is devel-
oped at the Center for Mathematics and Computer Science in Amsterdam, the
Netherlands.

Scope
The steering capability of the CSE is primarily focussed at model exploration. Mul-
tiple existing applications can be integrated into the environment by annotation of
the application source codes. The applications and multiple user interface processes
can be distributed over different platforms. No strict distinction is made between
application developers and end-users. Although the integration of an application
requires source code annotation, the construction of the final steering application
can be performed by the end-users.

Architecture
The architecture of the CSE is centered around a data manager that acts as a black-
board for communicating data values. Separate processes (called satellites) can
connect to the data manager and exchange data with it. An application is packaged
as a satellite. The application code is annotated to make a connection to the data
manager, to publish its output variables for visualization and its input parameters
for steering, and to indicate when these variables are to be read and/or written.

All data transport and communication is performed through the data manager. The
purpose of the data manager is twofold. First, it manages a data base of variables.
Satellites can create, open, close, read, and write variables. Second, the data man-
ager acts as an event notification manager. Satellites can subscribe to state changes
in the data manager. These functions of the data manager allow the satellites to com-
municate and exchange data with other satellites. Special synchronization variables
can be used to synchronize the different satellite processes. The satellite processes
can run on different hosts in a distributed environment. To reduce network loads,
the actual implementation of the data manager incorporates local data managers
that can run on the same machine as a satellite process. Careful design of the com-
munication protocols between the local data managers ensures that data is only
transported when needed.

11

User Interface
The user interface to visualize and manipulate data is provided by additional satel-
lite processes. The most important user interface satellite is the PGO editor [13].
This satellite is an interactive MacDraw-like graphics editing tool that allows a re-
searcher to create custom 2D, 3D and immersive 3D user interfaces to visualize
and manipulate the data in the data manager. The user draws an initial layout of the
interface with graphics objects. He then specifies how the geometry and attributes
of these objects should be coupled to variables present in the data manager. The
coupling of the objects to the data can be bidirectional. As a result, the user can
manipulate variables (i.e. the simulation steering parameters) by direct manipula-
tion on the object. At the same time, changes in the data in the data manager cause
the object geometries to change, i.e. the objects serve as the visualization of the
simulation output data.

4 Summary and Discussion

Table 1 summarizes the computational steering environments on their major charac-
teristics. The table shows that none of the environments provides all three possible
applications of computational steering (model exploration, algorithm experimenta-
tion, and performance optimization). Although some of the systems provide some
functionality for the application of steering in one of the areas not indicated in the
table, they do not provide full functionality in that respect. SCIRun for instance,
does allow some monitoring of a running application and some tweaking of the
data flow network that constitutes the running program. This functionality however
is not sufficient for full performance optimization.

To construct a steering application, all systems except SCIRun require the applica-
tion source code to be manually annotated with program statements by the applica-
tion developer. SCIRun uses visual programming to create a steering application.
However, this only applies to applications that can be constructed out of existing
modules. To integrate an existing application into the system, or when the desired
functionality is not supplied by the standard modules, the application developer has
to program new modules as C++ classes.

For data extraction and parameter access, most environments are based on some
sort of client-server model. In Progress, Magellan, and CUMULVS, the user inter-
face process is regarded as the client which can request and manipulate data and
steerable objects via a server. The server takes care of the actual extraction and ac-
cess to the application data and parameters. In VIPER and the CSE, the client server
model is carried even further. Here, the application is regarded as a kind of client
process as well. The server’s main task is to manage the communication and data
transport between the different client processes. A difference between VIPER and
the CSE is that in VIPER the server is primarily focussed at data transportation in

12

VASE

SCIRun

Progress &

Magellan

CUMULVS

CSE

Scope

Application

Integration

User Interface

m
od

el

ex
pl

or
at

io
n

al
go

ri
th

m

ex
pe

ri
m

en
ts

pe
rf

or
m

an
ce

op
tim

iz
at

io
n

Data and Parameter

Access Model

manual program

annotation to create

abstract steerable

program structure

hybrid control flow and

data flow

visualization through

existing packages;

steering through textual

input..

visual programming for

new applications.

dataflow with feed back

loops

visualization through

visualization modules;

steering through Tcl/Tk

interfaces and widgets.

manual program

annotation to create

steering object model

client server visualization through

existing packages;

steering through

command line and GUI.

manual program

annotation to indicate

data decomposition and

steerable parameters.

client server visualization through

AVS;

steering through textual

and custom (Tcl/Tk) GUI.

manual program

annotation to report data

and parameters to Dual

Server

client server

graphical editor for 2D

visualization and (direct

manipulation) steering.

X

X X

X X

X X

X

X

Architecture

VIPER

manual program

annotation to connect

data and parameters to

Data Manager

client server

GUI.

Synchronization

X

synchronous

breakpoints in

application source code

module firing and

centralized module

scheduler

synchronous sense and

actuate operations

checkpoints in

application code

sync points associated

with data and

parameters in

application code

update locations in

application code

Table
1

S
um

m
ary

of
environm

entcharacteristics

betw
een

the
application

and
user

interface
process,w

hereas
in

the
C

SE
the

server
is

also
used

for
data

storage
and

data
m

anipulations
by

other
clients

(i.e.satellites)
than

the
user

interface
process.

13

Exceptions to the strict client server model are VASE and SCIRun. SCIRun uses a
data flow model known from many existing visualization packages such as AVS and
IRIS Explorer. In SCIRun however, the application resides in multiple (steerable)
modules whereas these visualization packages primarily provide modules needed
for the visualization process. Furthermore, in SCIRun feed back loops have been
introduced to allow upstream communication for steering. VASE provides the user
with a hybrid model of control flow and data flow. The control flow model is used to
provide the user an abstract model of the program structure. The data flow model
is used to direct data streams in between applications and towards visualization
processes.

All environments provide synchronous access to the application data and parame-
ters. Except for SCIRun, the access points are indicated in the application source
code. In VASE for instance, the locations of the breakpoints indicate the position
where the data and parameters are accessible. In SCIRun, the modules provide the
output data when valid. Module execution after a steering action is synchronized by
a central module scheduler. Progress and Magellan are the only two environments
that allow asynchronous access to the application data and parameters. It is left to
the application developer to ensure that such asynchronous access is a valid opera-
tion. In all the client-server based systems, synchronization between the client and
server processes is available but not mandatory. In the CSE for instance, different
satellite processes can run asynchronously, while trigger variables can be used to
synchronize different satellite processes via the data manager.

On the aspect of the user interface, CSE distinguishes itself from all other envi-
ronments by providing a graphical editor for the creation of customized 2D and
3D interfaces. The interfaces are used for both the visualization of the application
results as for the steering of the application input parameters by direct manipula-
tion on the visualization. The other environments mostly rely on existing packages
for the visualization of the monitoring information and use command-line, textual,
or basic graphical user interfaces for steering of the input parameters. SCIRun is
an exception in this regard as it supplies a limited number of predefined graphical
widgets for the visualization and manipulation of steerable parameters, next to per
module Tcl/Tk interfaces.

5 Conclusion and Future Research

It is impossible to order the different environments in a ranking from best to worst.
They each have their own strong and weak points, and differ in their approaches de-
pending on the envisioned application and wishes and demands of the user. There-
fore, we only give global guidelines to which environments seem most suitable for
particular types of applications.

14

In regard of the ease of use of the environments, SCIRun has the advantage as it uses
a visual programming paradigm for the construction of the application and the vi-
sualization. Furthermore, SCIRun provides some functionality for steering through
direct manipulation on (predefined) 3D graphical widgets . Two major disadvan-
tages of SCIRun are that it does not allow the different processes in the steering
application to be distributed over multiple machines, and that it is cumbersome to
integrate existing applications into the system.

In this regard, CSE might be a better choice. In CSE, existing applications can be
integrated with limited annotation of the application’s source code, and the appli-
cation can be run on a remote (super) computer while the user interface resides
on a graphical workstation. An additional advantage of CSE is that it allows for
the full customization of the user interface through graphical editing, and that it
provides steering by direct manipulation on the 2D or 3D (user defined) interface
widgets. VIPER resembles the approach of CSE but is targeted more towards paral-
lel (CFD) applications. VIPER however, is not equipped with a fully customizable
visualization and direct manipulation steering interface.

SCIRun, CSE, and VIPER provide only limited support for algorithm experimen-
tation. In SCIRun, modules containing different algorithms can be interchanged
while in CSE a number of different satellite processes can manipulate the same
data in the data manager. The environment that provides the richest capabilities for
algorithm experimentation is VASE, which enables the user to write scripts to be
inserted at the breakpoints in the control structure of the application.

If performance optimization is a major target of the steering process next to model
exploration, Progress and Magellan are very suitable. If the particular application
is a massively parallel application built on PVM, CUMULVS is the environment of
choice.

As stated in the previous section, integrating an existing application into a steering
environment requires manual programming. As a result, to be able to construct a
steering application, the user is required to have a high level of knowledge of the
simulation application code and the steering environment’s libraries. It would be a
valuable contribution to each of the environments if the integration of an existing
application could be automated, or at least provide the developer with a higher level
user interface to assist in the annotation of the application.

CUMULVS distinguishes itself from the other environments by providing a mech-
anism for fault-tolerance. However, this mechanism aims at recovering from faults
that may occur in the running application. Because computational steering aims
at giving the user the power to experiment with the application, a fault-tolerance
mechanism aimed at user actions could be a valuable addition to a steering envi-
ronment. Such a mechanism would allow the user to scroll back in time in the case
the user has performed an erroneous steering operation, or if he simply wants to

15

restart the application from a previous state to experiment with different parameter
settings from that point on. Some initial research in this regard has already been
presented by Brodlie et al. [2]. They studied how backtracking can be used in a
framework for the management of a problem solving process.

References

[1] L.D. Bergman, J.S. Richardson, D.C Richardson, and F.P. Brooks, Jr. VIEW - an
exploratory molecular visualization system with user-definable interaction sequences.
In Computer Graphics (SIGGRAPH ’93 Proceedings), volume 27, pages 117–126,
1993.

[2] K. Brodlie and L. Brankin. GRASPARC - a problem solving environment
integrating computation and visualization. In G.M. Nielson and D. Bergeron, editors,
Visualization ’93 (Proceedings of the 1993 Visualization Conference), pages 102–109,
1993.

[3] F.P. Brooks. Grasping reality through illusion – interactive graphics serving science.
In Proceedings of the CHI ’88, ACM Conference on Human Factors in Computer
Systems, pages 1–11. ACM, 1988.

[4] G.A. Geist II, J.A. Kohl, and P.M. Papadopoulos. CUMULVS: Providing fault
tolerance, visualization, and steering of parallel applications. The International
Journal of Supercomputer Applications and High Performance Computing,
11(3):224–235, 1997.

[5] R. Haber, B. Bliss, D. Jablonowski, and C. Jog. A distributed environment for run-
time visualization and application steering in computational mechanics. Computing
Systems in Engineering, 3(1–4):501–515, 1992.

[6] R.B. Haber. Scientific visualization and the RIVERS project at the national center for
supercomputing applications. IEEE Computer, 22:84–89, August 1989.

[7] D.J. Jablonowski, J.D. Bruner, B. Bliss, and R.B. Haber. VASE: The visualization
and application steering environment. In Proceedings of Supercomputing ’93, pages
560–569, 1993.

[8] J.A. Kohl and P.M. Papadopulos. A library for visualization and steering of distributed
simulations using PVM and AVS. In V. Van Dongen, editor, Proceedings of the High
Performance Computing Symposium, Montreal, Canada, pages 243–254, 1995.

[9] J. Leech, J.F. Prins, and J. Hermans. SMD: Visual steering of molecular dynamics for
protein design. IEEE Computational Science & Engineering, 3(4):38–45, 1996.

[10] R. van Liere, J.D. Mulder, and J.J. van Wijk. Computational steering. Future
Generation Computer Systems, 12(5):441–450, April 1997.

[11] R. Marshall, J. Kempf, S. Dyer, and C.-C. Yen. Visualization methods and simulation
steering for a 3D turbulence model of Lake Erie. Computer Graphics, 24(2):89–97,
1990.

16

[12] B.H. McCormick, T.A. DeFanti, and M.D. Brown. Visualization in scientific
computing. Computer Graphics, 21(6), November 1987.

[13] J.D. Mulder and J.J. van Wijk. 3D computational steering with parametrized
geometric objects. In G.M. Nielson and D. Silver, editors, Visualization ’95
(Proceedings of the 1995 Visualization Conference), pages 304–311, 1995.

[14] S.G. Parker and C.R. Johnson. SCIRun: a scientific programming environment for
computational steering. In Proceedings of Supercomputing ’95, 1995.

[15] S.G. Parker, D.M. Weinstein, and C.R. Johnson. The SCIRun computational
steering software system. In E. Arge, A.M. Bruaset, and H. P. Langtangen, editors,
Modern Software Tools for Scientific Computing, pages 1–40. Birkhäuser Verlag AG,
Switzerland, 1997.

[16] S. Rathmayer and M. Lenke. A tool for on-line visualization and interactive steering of
parallel hpc applications. In Proceedings of the 11th International Parallel Processing
Symposium, IPPS 97, pages 181–186, 1997.

[17] W. Ribarsky, E. Ayers, J. Eble, and S. Mukherjea. Glyphmaker: Creating customized
visualizations of complex data. IEEE Computer, 27(4):57–64, July 1994.

[18] A. Tuchman, D. Jablonowski, and G. Cybenko. Run-time visualization of program
data. In Visualization ’91 (Proceedings of the 1991 Visualization Conference), pages
255–261, October 1991.

[19] J. Vetter. Computational steering annotated bibliography. SIGPLAN Notices,
32(6):40–44, June 1997.

[20] J. Vetter and K. Schwan. Progress: a toolkit for interactive program steering. In
Proceedings of the 1995 International Conference on Parallel Processing, pages 139–
142, 1995.

[21] J. Vetter and K. Schwan. High performance computational steering of physical
simulations. In Proceedings of the 11th International Parallel Processing Symposium,
IPPS 97, pages 128–132, 1997.

[22] J.J. van Wijk and R. van Liere. An environment for computational steering. In
G.M. Nielson, H. Müller, and H. Hagen, editors, Scientific Visualization: Overviews,
Methodologies, and Techniques, pages 89–110. Computer Society Press, 1997.

17

