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Abstract

Virtual environments have shown great promise as a re-
search tool in science and engineering. In this paper we
study a classical problem in mathematics: that of approx-
imating globally optimal Fekete point configurations. We
found a highly interactive virtual environment, combined
with a time-critical computation, can provide valuable in-
sight into the symmetry and stability of Fekete point con-
figurations. We believe that virtual environments provide
more natural interfaces to complex systems, allowing users
to perceive, interpret and interact with the problem more
rapidly.

Keywords: mathematics and visualization, perturbation
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1. Introduction

An ever increasing demand exists for detailed investi-
gation of complex systems. To simulate real-life phenom-
ena accurately, models are established which can be hard
to solve due to their size and complexity. The solutions to
these models often involve large data sets, from which it is
difficult to extract not only whether the model describes the
physical reality accurately, but also whether the model was
solved correctly. In order to test the sensitivity of the so-
lution to changes in parameter settings, the amount of data
increases even more, because multiple data sets have to be
compared. Often it occurs that only a small subset of the
data set contains the interesting features of a simulation, but
it is difficult to determine this subset beforehand.

Virtual environments have shown great promise for the
visualization of these data sets in which exploration plays
an important role. Explorative environments allow users,
motivated by insufficient knowledge of what is contained
in the data, to interactively develop insight into their prob-
lem. Due to the interactive nature of these environments,

they play a predominant role for gaining insight into com-
plex systems, in which a small perturbation of a parameter
setting can result in very different output solutions.

In this paper we study a classical problem in mathemat-
ics: that of approximating globally optimal Fekete point
configurations. This problem contains many ingredients of
a complex system. In the next section we provide some re-
lated work. Section 3 provides a mathematical formulation
of the Fekete problem, and briefly discusses a very efficient
solution method. In section 4 we describe the visualiza-
tion and interaction techniques used to build the virtual en-
vironment. Moreover, we discuss some time-critical perfor-
mance issues that have been used to meet our performance
requirements. Finally, in section 5, we discuss the merits of
using virtual environments for analyzing the Fekete prob-
lem.

2. Related Work

The analysis and determination of elliptic Fekete point
sets has attracted the attention of theoretical and numeri-
cal mathematicians and researchers in scientific modeling.
The problem was originally proposed by Fekete [1], and
has been studied for almost 75 years. It also represents a
long-standing numerical challenge: Pardalos states it as one
of the open problems in global optimization, [2]. There are
many scientific applications that can be modeled as the solu-
tion of the Fekete problem (and its possible modifications).
Erber and Hockney have studied a problem related to the
Fekete problem to find equilibrium configurations of equal
charges on a sphere, [3]. Practical applications include
problems in structural chemistry, the design of multi-beam
laser implosion drives, the optimum placement of commu-
nication satellites, and packing and covering problems.

Recently, virtual environments have been used to study
mathematical problems and objects. For example, Francis
et al. have used distributed CAVEs to study the eversion of
a sphere in a collaborative setting, [4]. Roseman has used



the CAVE to display surfaces in 4-dimensional spaces, [5].
Both systems exploit the additional spatial dimension inher-
ent in a virtual environment to get extra information about
the structure of the displayed mathematical objects. The fo-
cus of our work differs in that we exploit VR interaction
styles to gain insight into behavior of complex systems.

Many researchers have used virtual environments for
real-time exploration. Bryson [6], for example, has exten-
sively studied the application of virtual reality interfaces in
scientific visualization. Although the work has mostly been
related to studies in the virtual wind tunnel, the lessons
have lead to generalized requirements with regard to im-
plementation issues concerning computation, graphics and
data management. Requirements related to real-time per-
formance and natural “anthropomorphic” VR interfaces are
discussed in some detail. More recently, experiments have
been performed to study time management, time-critical
computing and time-critical algorithms, [7, 8].

3. The Fekete Problem

3.1. Formulation

The problem can be formulated as follows: given the unit
sphere � in the Euclidean real space IR

�
, and a positive

integer � , find the � -tuple of points (unit length vectors)
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is called a set of elliptic Fekete points of order � , [1]. We re-
fer to equation (1) as the Fekete (global optimization) prob-
lem.

According to the classical theorem of Weierstrass, the
Fekete optimization problem has one or more globally opti-
mal solutions. The traditional approach to computing �G<=� ���
is with a constrained optimization package. For large � , this
can be a very expensive computation, see the comparison
in [9].

3.2. Configuration Symmetries

Due to symmetry and rotations, there are infinitely many
solution vector sets �@<=� ��� which satisfy equation (1). In or-
der to compare geometric properties of stable point config-
urations, it is useful to rotate configurations into a rotation-
free canonical form.

For notational purposes we represent arbitrary point con-
figurations in spherical coordinates. The � -tuple ��� � )—
consisting of corresponding unit vectors � � , � �H� ���
�
�
� � —
is denoted by

�
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For each � � , � �Y� ���
���
� � , define the associated partial
energy Z � �)[\N ."^]_ � 3 �
� 5 � " 3 � (2)

We may use this partial energy to give the points a canonical
ordering with respect to certain rotations (see [3]). Suppose
that the � points are ordered such that their partial energies
form a non-decreasing sequence, that is,Z � $ Z � $ ���\� $ Z + �
Choose a point from the set with the lowest energy and ro-
tate the configuration so that this point is placed at the north
pole L � O �`T . Next choose the point from the set of
points with the second lowest partial energy which is clos-
est to the north pole and rotate the entire configuration so
that this second charge is at zero longitude, L �aT .

Two point configurations are deemed equivalent if and
only if the positions of the points in the rotation-free canon-
ical form are equivalent.

3.3. Alternative Formulation

Shub and Smale [10] refer to numerical difficulty of find-
ing the globally optimal configuration �b<=� ��� , for a given—
not too small— � . Difficulties arise due to several reasons:
eg, the above mentioned various symmetries of the func-
tion

*�+
, and—more essentially—its inherent multiextremal-

ity. The number of local extrema increases drastically with� [3]. Furthermore, the difference in extremal values of* <=� ��� is very small, and the energy landscape is shallow
near extrema, making any perceivable numerical solution
procedure inherently tedious.

An alternative formulation of the problem has been pre-
sented in [9]. The � -tuple ��� ��� is represented as a set of� repellent particles, which move on the unit sphere under



influence of an adhesion force. To describe the dynamic be-
havior of the particles, the coordinates of the particles are
parameterized by a time variable � . Introducing the veloc-
ity vectors � � , the resulting system can be described by the
following set of differential-algebraic equations:

�� � � � ��� � � 5�� � �05�� D��
	 �,� � 5 V=� ���S� (3)T � � � 9 � � 5 �
Here, the notation

���
��@����� � is used to denote differen-
tiation with respect to time, 5�� � represents the adhesion
force, V���� � � represents the normal force associated with the
the constraint 3 ���Q� ��� 3 � � , and the potential energy of the
repellent force field 	 ��� � is defined by

	 ��� �-� 5 [�N .�#/0�21 " / +43 �
� 5 � " 3 �
Due to the adhesion force, the solution of the dynamical
system (3) will approach a steady state such that � 	 �,�G< �-�T . If, in addition, 	�� � �,��< � is positive definite, then �@< will be
a local minimum of 	 ��� � . Clearly, minimization of 	 ��� � is
equivalent to maximization of

* + �,��� ����� .
3.4. Solver

A very efficient algorithm is proposed that exploits the
special structure and retains certain physical properties of
the dynamical system (see [11] for details). To give a flavor
of the numerics involved, we briefly discuss this solution
method.

The dynamical system (3) can be seen as a constant
energy (Hamiltonian) system to which damping has been
added. The constrained Hamiltonian dynamics are de-
scribed by �� � ��� ��� � � 5�� D��
	 �,� � 5 V=� ���S�T � �
� 9 �
� 5 � (4)

where � � is a Lagrange multiplier. Research conducted over
the last ten years has shown the importance of preserving
the symplectic structure to effectively simulate such a sys-
tem, [12]. The remaining part of (3) is a system of pure
damping: �� �)T�� � 5�� � (5)

with exact solution ��� ���:� ��� T@� � � � ��� ����������� � T@� � Our ap-
proach is to use a symmetric splitting method to propagate
the solution to (3), with three steps:

1. Solve (5) exactly over an interval of length � ��V��
2. Solve (4) approximately over an interval of length �

with the symplectic leapfrog method described below.

3. Solve (5) exactly over an interval of length � �=V��
Here it is assumed that the output of each step serves as the
input to the succeeding step. Repeated application of the
algorithm produces a discrete representation of the solution
which is second order accurate in the time stepsize � �

The leapfrog method for the constrained system (4) is
defined by first solving simultaneously (for the unknowns� +�� �� , �
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for � � � �
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� � � and then solving simultaneously (for the
unknowns �
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for � �?� �
�
��� � � where the Lagrange multipliers �P� and & �
are chosen (in the case of � � by solving a scalar quadratic
equation) to satisfy the algebraic constraints.

This method is shown to exactly preserve the evolution
of the symplectic structure, suggesting that we obtain the
“proper” equilibrium configuration associated with a given
initial condition.

If the trajectories of two points should make a close
approach (or if during interaction two points should be
placed nearby each other), the resulting accelerations may
cause the algorithm to break down unless the stepsize is
adjusted accordingly. To do this while maintaining the
symmetric structure of the overall integration scheme re-
quires care. For this purpose we have used an adaptive ver-
sion of leapfrog based on introducing a transformation of
time, [13].

4. Virtual Fekete Point Configurations

We have implemented the Fekete problem in a virtual en-
vironment. The implementation consists of two tightly cou-
pled components: the user interface and the computation.
Interaction with the computation is performed by changing
parameters or the state of a configuration. These changes
will immediately be taken into account by the computation;
i.e., computational steering is supported.

The goal of the interface is to provide a highly interactive
environment which will allow the user to study the dynam-
ics of Fekete point configurations. Since there are multiple
rotation-free stable configurations, the user must have the
ability to study the sensitivity to perturbation of stable con-
figurations. In this section we present various interactive
visualization techniques used to implement the interface. In



section 5, we discuss the merits of using virtual environ-
ments for analyzing the dynamics of Fekete point configu-
rations.

4.1. Presentation

Figure 1 shows the basic user interface of the virtual
environment. A point configuration is presented as a set
of small spheres, a convex hull and trajectories from each
sphere. The positions of the spheres indicate the Fekete
points. The convex hull is used to visualize connectivity
relationships between points. In addition, the convex hull
is used as an important depth cue to determine the position
of a point. Trajectories show the path the points have taken
during a finite number of time steps. The mean velocity
of a point can be estimated by examining the length of its
trajectory.

Figure 1. A 36 point configuration with convex
hull and trajectories.

The user interface also supports the concept of a local
moonscape, see figure 2. A local moonscape computes and
displays the energy of the configuration in the neighborhood
of a point. At a stable configuration the energy values on
the local moonscape will always be greater or equal to the
energy value of the point. However, when a configuration
has not yet reached a stable state, the energies in the local
moonscape will differ. The point will tend to move to those
areas on the moonscape that have lower energies.

The moonscape is drawn as a shaded mesh. Height and
color are used to indicate when the energy is higher (green)

or lower (red) than the energy in the point.

Figure 2. Local moonscape around a point.
The moonscape visualizes the stability
around the point.

4.2. Interaction

Users may perturb a configuration by dragging a selected
point to a new position. During this interaction the config-
uration will not be updated. Only when the interaction is
finished (defined by releasing the selected point), will the
computation will immediately continue with the perturbed
configuration. In this way the user can gain insight into the
stability of a configuration; i.e. the perturbed configuration
may converge to the previous configuration or it may con-
verge to a different configuration.

In addition to the simple method of perturbing a configu-
ration, we have added a technique that we call snap conver-
gence. This technique computes and displays the converged
configuration while the user is perturbing a configuration.
Figure 3 illustrates snap convergence. A selected point (in-
dicated by the yellow sphere and a red line as a pointer from
the wand) in the current configuration is being dragged to
a new location. The upper left hand corner of the image
shows a list of stable configurations that have been encoun-
tered. One configuration in the list is highlighted (in yellow)
to indicate the configuration which the current configuration
will converge to if the selected point is to be released. When
the user drags the point to a new location a different config-
uration may be highlighted.



Also, a history of red or yellow crosses are drawn on
the path taken by the dragged point. The color of the cross
indicates the configuration which will be converged too at
that location. In this way, a user can interactively construct
colored regions which denote the energy surface.

Figure 3. Snap convergence during perturba-
tion of a configuration. The small red con-
figurations on the upper left are a list of con-
verged configurations. The yellow configura-
tion is the configuration to which the current
configuration will converge. Small yellow and
red crosses are drawn on the path taken by
the dragged point to indicate the stable con-
figuration at the location of the cross.

Snap convergence can be used to gain insight into how
much a configuration must be perturbed before it will con-
verge to a different configuration. Snap convergence anno-
tated with colored crosses can be used to provide an indica-
tion of the global energy landscape.

4.3. Performance Issues

The Fekete environment is implemented on top of PVR,
a modular library for developing portable VR applica-
tions, [14]. PVR provides support for multiple processing,

allowing the rendering module(s) to be decoupled from the
computational and device management modules.

The goal was to implement the Fekete virtual environ-
ment which would achieve an update rate of minimally 10
frames/sec. Time critical computational algorithms have
been essential for obtaining this responsiveness. We de-
scribe some computational issues that are performance crit-
ical, and discuss tradeoffs that have been made to realize the
performance goals:

� computation

Solving the system (3) by standard differential-
algebraic equations software works well in that these
packages find larger values for

* <�� ��� in less com-
puting time than off-the-shelf optimization packages.
The algorithm given in section 3.4, however, performs
better than standard differential-algebraic equations
solvers by orders of magnitude. For example, for a ran-
dom initial configuration and a relatively small number
of points, the algorithm can find a stable configuration
in a few seconds.

In addition, the algorithm is, as far as we know, the
most robust way to solve the Fekete problem. We rely
on its robustness property when perturbing a configu-
ration.

� local moonscapes

Local moonscapes define the energy values in a neigh-
borhood of a point. A moonscape is defined as a mesh,
parameterized with its radius, and the number of rings
�

it contains. Each ring � adds V�� � � points to the
mesh. Each subsequent ring � is connected to ring � 5 �
by a triangle strip of V����	� triangles. The first ring de-
fines a triangle fan of four triangles with the particle as
the center point. Hence, V�
 � � 5�� additional energy
computations are required to compute the moonscape.

Increasing the number of rings will result in a more
accurate representation of the energy in the neighbor-
hood of a point. The trade-off is performance versus
accuracy. We have chosen to adaptively decrease the
accuracy when a configuration is not yet in a stable
state; i.e., when the animation is (quickly) changing.
When the configuration converges, the accuracy of the
moonscape will increase.

� snap convergence

A configuration is perturbed by dragging a point to a
new location. Snap convergence does an on-the-fly
convergence computation of a configuration while it
is being perturbed. For each new location a new con-
verged configuration will need to be computed. Snap
convergence is realized by running the computation in



time-critical mode. It is important that solver can com-
pute a converged configuration a few times per second.

In order to achieve this, the solver has been adapted
in three ways. First, the time step parameter has been
relaxed. This allows larger time steps to be taken, re-
sulting in a faster computations. However, in some
cases, larger time steps may compromise the accuracy
and robustness of the computation. Second, the toler-
ance used in comparing rotation free canonical forms
is relaxed, so that similar configurations can be found
faster. Third, the number of iterations needed to con-
verge to a solution is bounded to an upper limit. This
allows the computation to always return in a maximal
number of iterations.

The techniques used to speed up snap convergence
compromise the computation, in that the correct con-
verged configuration is found. This is a trade-off be-
tween computational accuracy and interactive perfor-
mance. It is also possible that a converged configu-
ration may not be found within the time constraints
posed by snap convergence. In this case, no config-
uration will be highlighted.

5. Discussion

The virtual environment has been used to study the dy-
namics of the alternative formulation of the Fekete problem.
In Table 1 we list some important notions that provide in-
sight into the mathematics of the model (left) and the cor-
responding interactive visualization techniques used to dis-
play these notions. For example, the convex hull is a very
useful technique to gain insight into regularities and sym-
metries of a configuration. Also, combining a moonscape
with dragging and animating the solution of a configuration
gives insight into the stability and sensitivity to perturbation
of a configuration.

5.1. Why virtual environments?

The remaining question is: what is the added value of a
virtual environment for studying the Fekete problem?

First, we list some concrete benefits we found:

� Motion parallax (obtained via head coupling with the
display) has proved to be an essential visual depth cue
to interpreting the convex hull. Users can search for
regularities in configurations by simply moving the
head to a different location. It is doubtful that this ef-
fect can be achieved via non-head coupled displays by
using 3D graphics rotation techniques, such as “rock-
ing” or variations of “grand tour”.

insight to problem visualization techniques
stability moonscape
regularities/symmetry convex hull
velocity of points trajectories, animation
interactions between points hull, moonscape, animation
surface count hull
convergence paths trajectory
sensitivity to perturbation dragging + animation
global energy landscape snap convergence

Table 1. Notions that provide insight to the
Fekete problem (left) and their corresponding
interactive visualization techniques (right).
Motion parallax, spatial input and interactive
performance are essential ingredients to pro-
vide a natural interface for the visualization
techniques.

� Spatial input is used when perturbing a configuration.
Dragging a point with spatial input devices has proven
to be more intuitive, efficient, and accurate than with
two dimensional input devices.

� Other advantages of using for a virtual environments
are the additional depth cues when interpreting trajec-
tories and small local disturbances on a moonscape.

Also, a number of more general features can be identi-
fied:

� Due to the more “natural” environment, the user can
perceive and interpret visualization cues more rapidly.
For example, by taking advantage of motion parallax
it was possible to observe the slow convergence of a
number of points to their equilibrium locations in a
plane, by moving the observation point to a location
on the plane. This was done quite subconsciously by
the observer, and is something which would probably
never have been noticed using more conventional visu-
alization techniques.

� Due to the intuitive representation of the dynamics of
configurations, more information can be represented
in the interface. For example, the history of a con-
figuration (i.e. trajectories), the current configuration
(i.e. hull) and the neighborhood of a point (i.e. moon-
scapes) can be shown in one image. It is difficult to
provide his amount of information on a 2D display due
to, among others, hidden lines and surfaces.

� The fast and intuitive interaction invites the user to ex-
periment and explore the dynamics of a configuration.



5.2. Evaluation

The implemented virtual environment is being used ex-
tensively. Users find that the environment provides a more
natural interface, allowing them to perceive, interpret and
interact with point configurations more rapidly. The explo-
rative nature environment of the environment allows users
to see relationships and test hypotheses of configurations in
detail. In addition, various pathological configurations that
converge very slowly could be analyzed.

The environment is used in two ways. First, as discussed
above, it allowed users to gain insight into the complex dy-
namics of the Fekete problem. Second, the environment
was used for the development and validation of the model
and the solver themselves. Developers were able to test and
debug many solving strategies, in particular, how to deal
with variable stepsizes during integration.

Nevertheless, there are also a number of drawbacks of
this environment. First, the current interface contains only
minimal quantitative information. Quantitative values such
as point positions and velocities, plots of energy history, etc
are absent. Providing this information in a fixed area in
the workspace would not be an adequate solution, since the
user would need to switch viewing directions to examine
this information. Second, the development of the interface
was not done by the same people that developed the numer-
ical codes. Programming VR interfaces is still very cum-
bersome for experienced programmers that do not have the
required skills.

6. Conclusion

In this paper we discussed a virtual environment that al-
lows the user to analyze the dynamics of Fekete point con-
figurations. We found that a highly interactive environment,
combined with a time-critical computation, provides valu-
able insight into the symmetry, stability and sensitivity of
the point configurations. We believe that the virtual envi-
ronment provides a more natural interface to complex prob-
lems, allowing users to perceive, interpret and interact with
the problem more rapidly.
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