Virtual Reality on aLinux Desktop

Robert van Liere
Jurriaan D. Mulder
Center for Mathematics and Computer Science CWI,
Amsterdam, Netherlands
email{robertl,mullie} @cwi.nl

Abstract

In this paper we discuss a Linux desktop implementation of a near-field virtual
environment, the Personal Space Station (PSS), We evaluate different hardware
platforms by discussing implications each platform has on optical tracking laten-
cies.

The PSS consists of a mirror in which stereoscopic images are reflected. The
user reaches under the mirror to interact with the virtual world. Two cameras are
used to track the space in which the interaction takes place. A fully configured PSS
will consist of a high end stereo enabled graphics running at 1280x1024 @ 120Hz
(for graphics rendering), two high end frame grabbers with cameras @ 60 Hz in
PAL resolution (for interaction tracking), an acoustic tracker (for head tracking),
and three foot pedals connected to the parallel port (for button clicks).

1 Introduction.

Virtual reality shows great promise as a research tool in computational science and
engineering. The analysis of 3D data sets (read from disk or computed on the fly) may
benefit from the interface styles provided by virtual reality. By providing additional
depth and viewing cues, the virtual reality interface can aid the unambiguous display
of 3D structures. In addition, virtual reality interaction styles allow for direct and
intuitive exploration of the data.

In this paper we discuss the implementation of a near-field virtual environment, the
Personal Space Station (PSS) [1], on a desktop PC running Linux. Near-field virtual
reality allows users to interact with virtual objects within arm’s reach of the user. Inter-
active tasks in the PSS are done in a direct and intuitive way using task specific input
devices.

Reducing end-to-end system latency, the total time required for the displayed im-
age to change in response to a user interaction or head movement, is one of the most
challenging technical problems of a VR system. When latency is too high the user
may have a feeling of moving an object, but actually see their virtual pointer move at
a significantly later time. In the PSS, interaction is based on optical tracking using two
cameras to track input devices. End-to-end optical tracking latency is computed as the

sum of various latencies in the data pipeline associated with image acquisition, image
processing, and displaying data. We will show that acceptable latency levels can be
realized when using only commodity desktop components.

The format of the paper is as follows: In sections 2 and 3 we review the concept
of the PSS and briefly discuss the PVR, a multi-threaded software environment which
drives the PSS. In section 4, we report on the end-to-end latencies when using a VRML
viewer. Finally, in section 5 we discuss some pros and cons of implementing the PSS
on PC platforms.

2 Personal Space Station.

3

Mirror

Figure 1: The Personal Space Station prototype. Left: concept. Right: prototype.

The design of the PSS and a prototype implementation is shown in Figure 1. The
design distinguishes between three spaces: the visual space (defined as the virtual space
that the user can visually perceive), the interaction space (the area in which the user
performs 3D interaction), the tracking space (the area covered by the cameras).

Visual Space The mirror reflects the display surface of the CRT monitor into a virtual
focus plane in front of the user. Depending on the application requirements, the CRT
monitor and the mirror can be mounted at a different positions and orientations in the
chassis. Changing these positions and orientations will result in a different position
and orientation of the virtual focus plane with respect to the chassis.

A Logitech acoustic head tracker is used for head tracking. The ultrasound emitter
is mounted in the chassis above the mirror and the receiver is mounted on the user’s
shutter glasses.

Interaction Space The interaction space is restricted to the area that the user can
reach with his hands or with the input devices. The design goal is to position the

interaction workspace such that 3D interaction can be realized comfortably, i.e. the user
is seated behind a desk, his elbows are rested on the desk top, and he should not need
to over-reach into the virtual world to perform 3D interaction. Important parameters in
this respect are the position and height of the chair and table in combination with the
user’s physical characteristics such as his upper and lower arm length.

Tracking Space Two cameras are used to track the space in which the interaction
takes place. A camera’s field of view is determined by its extrinsic parameters (posi-
tion and orientation) and intrinsic parameters (internal geometry and optical character-
istics). The tracking space is defined as the intersection volume of both cameras’ field
of view. The tracking space is illuminated by rings of IR LEDs mounted closely around
the camera lenses. IR-pass filters in front of the camera lenses are used to cut-off the
light below a chosen wavelength. Retro-reflective markers are applied to all objects to
be tracked. IR light from the LEDs is reflected by the markers into the lens such that,
after thresholding, blobs of white pixels occur in the acquired image.

The steps performed in reconstructing a 3D position from the marker reflections in
the images consists of 2D blob position detection, correction, rectification, correspond-
ing, and 3D re-projection. To facilitate the correspondence problem, retro-reflective
markers are placed in specific patterns.

3 Portable Virtual Reality.

In this section we review PVR, the software which drives the PSS (see Figure 2) [2].
The PVR environment consists of three parts, which are implemented as separate UNIX
processes: (i) one or more device drivers that translate physical device properties into
logical events that describe the state of the device, (ii) one or more PVR allocations,
(iii) SSD, a device daemon that routes logical device events to PVR allocations. In the
case of the PSS there are three device process, the optical tracker, the head tracker, and
the pedals process.

A PVR application consists of one or more threads attached to a bus. Threads
communicate using an event-based mechanism. This mechanism is conceptually easy
to understand: after a thread attaches to the bus, it registers patterns with the bus that
describe the events it is interested in. This allows each thread to set an event filter.
When an event is posted on the bus, it is dispatched to the interested threads. Each
thread is parameterized with a user supplied callback. The bus will invoke the callback
whenever an event occurs that the thread is subscribed to.

Application threads are categorized in one of four types. The render thread is re-
sponsible for rendering. An application defined callback will be executed when a re-
draw is necessary. Device threads are responsible for device handling. An event will
be posted each time the state of a device changes (i.e. button press, sensor motion, etc).
The event report will contain the state of the device. File threads are responsible for
all file 1/0 and 1/O transactions with external services. For example, performing trans-
actions with data base management systems, CORBA servers, or external simulations.
Compute threads are responsible for all other required computation. This may be the

Process Types

R: render
C: compute
D: device
F: /0

Event Filters

Figure 2: Left: The PVR environment. The the case of the PSS the environment
consists of a PVR application and three processes that manage the optical tracking,
the Logitech head tracker, and foot pedals. A device daemon (SSD) is used to route
device events to the PVR application. Right: A PVR application consists of one or
more threads attached to a bus. Each thread subscribes to events through event filters.
A thread posts events to the bus, which in turn publishes these events to interested
threads.

complete simulation itself, or the computation of visualization techniques (streamlines,
iso-surfaces, etc).

A shared data facility allows threads to share data structures. This facility allows
threads to allocate and lock shared data structures in a simple and flexible way. Pointers
to shared data structures can be stored in events.

4 PSS latencies.

In this section we report experimental measurements of the end-to-end latencies of the
PSS for a simple viewer of VRML objects. With this viewer a head-tracked user can
use the cube device to position and orient the VRML object (see Figure 1). The VRML
object used in the experiments consists of 26218 triangles.

Table 1 lists the components of two desktop platforms that have been used. The
graphics engine is configured in full-screen quad-buffered stereo mode. The display is
a 22 inch CRT monitor set to a resolution of 1280x1024 @ 120hz. The tracking engine
consists of two Leutron Vision PictPort H4D dual channel frame grabbers and two
Leutron Vision LV-7500 progressive scan CCD-cameras. Computar HO612FI lenses
with a focal length of 6 mm and an F number of 1.2 are fitted on the cameras.

| CPU | graphics engine | tracking engine |
Pentium4 @ 2.25Ghz | NVidea Quadro4 | dual Leutron Pictport frame grabbers
dual Athalon @ 1.6Ghz ATI FireGL4 dual Leutron Pictport frame grabbers

Table 1: Two desktops used for measuring optical tracking latencies.

End-to-end optical tracking latency is defined as the delay from the moment of an
cube device motion until the moment a frame is redrawn. The three processing steps
involved are summarized as: (i) grab two stereo images, identify corresponding blobs

in the images, compute the pose of the input device from blob patterns, (ii) send event
report to SSD, SSD receives and broadcasts event report to PVR application, receive
event report from SSD, (iii) compute new application state, send redraw event to render
thread, redraw geometry.

120 T T T 120 T T T
— Tracker ——
SSD SSD
* Render -
Latency Latency
100 | B 100 |
80 80
* x o
60 o 60
* -
/ 5 *
H
0 0

e ——
o T N e e 2
it s SRV o
PRI S SRV e s
0 . . . 0

Figure 3: End-to-end optical tracking latencies on a single and dual CPU PC. The y-
axis are milliseconds. The x-axis are seconds of the interactive session. Rendering,
optical tracking, SSD transport times are graphed as dotted, dashed and crossed lines.
The total end-to-end latency is graphed as a solid line.

Figure 3 shows the end-to-end optical tracking latencies during an interactive ses-
sion with the virtual object for the single CPU (left) and the dual CPU case (right). The
times used in each processing step (dot, dash, star lines) and the total end-to-end la-
tency (solid line) is plotted. The overhead involved in sending/receiving events to/from
the SSD is included in the processing time of the SSD.

Single CPU Dual CPU

120 T T T T v
Tracker —— Tracker ——
p—

Render - Render -
Latency Latency
100 [4 100 [

Figure 4: End-to-end acoustic tracking latencies.

Figure 4 show the end-to-end acoustic tracking latencies for each hardware plat-
form. The Logitech acoustic head tracker is connected to the serial port. End-to-end
acoustic tracking latency is defined as the delay from the moment a of head move-

ment until the moment a new frame is redrawn. The three processing steps involved
are summarized as: (i) read event report from acoustic tracking device, (ii) send event
report to SSD, the SSD broadcasts event report to PVR application, (iii) compute new
application state, send redraw event to render thread, redraw geometry.

A number of observations can be made from this data:

The end-to-end interaction latency (optical tracking) is in the range of 100 ms
for the single CPU PC and 60 ms for the dual PC, The end-to-end head tracking
latency (acoustic tracking) is in the range of 60 ms for both platforms.

In the acoustic tracking case where no additional processing is involved, the
single and dual platforms have similar latencies. For optical tracking, where ad-
ditional image processing is required, the single and dual platforms differ. The
end-to-end latencies in the dual case are lower and have smaller fluctuations than
on the single CPU platform. This is probably due to the multi-threaded environ-
ment in which the tracking and rendering threads can be assigned to different
processors.

The rendering latency scales linearly with the number of polygons that are drawn.
In contrast, is optical tracking latency is primarily determined by the time con-
sumed in scanning the image during 2D blob detection. The time used to de-
termine blob correspondence and compute the pose of the cube is negligible to
the time spent in the blob detection itself. Hence, although optical tracking is
seemingly a complicated and time consuming process, the pose of a few cube
devices can be computed within 25 ms.

The bandwidth needed to run the VRML viewer can be computed from the frame
rates. The frame grabbers can acquire 30 images per second on the platforms.
This amounts to 2 * 30 * (640 * 480) bytes per second that need to be transported
over the PCI bus to the cache. The acoustic tracker can generate 50 reports per
second, resulting in 50 * 20 floats that are read from the serial port. The graphics
frame rate is approximately 45 frames per second (22 for the left and 22 for the
right eye). In the case of the virtual object used in the experiment this amounts
to 45 * 26K polygons per second.

The amount of time required by the SSD to receive event reports from the device
processes and send these reports to the PVR application is relatively high (approx
20 ms). Event reports are sent as messages over TCP/IP sockets using reliable,
two-way, connection-based byte streams.

Running the optical tracker on a remote Linux PC will increase the latencies
introduced by the SSD but not tracking or rendering latencies. When used in
a collaborative virtual environment the SSD will broadcast event reports to all
PVR applications subscribed to the event.

5 Discussion

In the previous sections we have discussed some issues of implementing the PSS on a
Linux PC desktop. We have demonstrated that end-to-end latencies are reasonable on
both single and dual CPU platforms.

Many of the state-of-the-art virtual environments require large, expensive and cum-
bersome equipment. For example, the popular CAVE environment requires at least 4
large Barco-like projectors driven by a multi-processor SGI Onyx with at least 4 graph-
ics pipes. Interaction is mostly realized with wire-based 6 degrees-of-freedom input
devices, such as a wand, equipped with a magnetic tracker. Interaction techniques that
use these devices are often indirect, difficult to use, and lack precision. Furthermore,
the CAVE will need to be placed a large darkened room.

In contrast, the motivation for using desktop PCs for the PSS was to address the
issues of ergonomics and costs. With respect to ergonomics, it has been our desire to
make the design ‘user and office-friendly’. This includes keeping the system compact
and portable, being able to use it in normal office conditions. With respect to costs,
the hardware of the prototype amounts to approximately 13 kEuro. Although still
expensive, this is a fraction of what special purpose VR environments cost.

With respect to latency it can be argued the experiments given in section 4 only
report the system latency of processing data in the system, and not the total time re-
quired for the displayed image to change in response to a user interaction. Indeed, our
measurements do not report the precise moment a device changes a pose. Rather, our
measurements approximate the time that the CCDs of the cameras are filled with infor-
mation to be processed. Similarly, our measurements do not report the precise moment
that the monitor is refreshed. Rather, the time that the GLUT call *glutSwapBuffers()’
returns is used. In both cases an additional temporal latency of a few milliseconds may
occur. To take these cases into account, a technique that visually measures system la-
tency must be implemented. For example, Liang et al. built a pendulum and use a video
camera to record the periodic motion of the pendulum in the real and virtual world. In
this way they could compute the total end-to-end latency by comparing the pendulum’s
position in the real world and the position in the virtual world, [3]. Variations of this
technique have also been implemented by others, eg. [4].

Linux has proved to be an excellent environment for the development of the PSS.
We use out-of-the-box the Redhat 7.X Linux distribution with standard released de-
vice drivers from Leutron, NVidea and ATI. The PVR environment requires the GLUT
and OpenGL libraries for rendering support, POSIX for multi-threading support, libC
and libm for miscellaneous support such as memory management, socket 1/0 and math
routines. Linux has allowed us to experiment with different commodity components
by providing the flexibility of interchanging and upgrading individual hardware com-
ponents.

Future work includes replacing the acoustic head tracker and high-end Leutron
framegrabbers with multiple Firewire cameras. It is not yet clear what frame rate and
system latencies will be achieved when using four Firewire cameras. In addition, a
half-silvered mirror will be mounted in the chassis. This will require a more accurate
calibration of the cameras.

References

[1] J.D. Mulder and R. van Liere. The personal space station: Bringing interaction
within reach. In S. Richer, P. Richard, and B. Taravel, editors, Proceedings of the
Virtual Reality International Conference, VRIC 2002, pages 73-81, 2002.

[2] R. van Liere and J.D. Mulder. PVR - an architecture for portable VR applica-
tions. In M. Gervautz, A. Hildebrand, and D. Schmalstieg, editors, Virtual Envi-
ronments "99, Proceedings of the Virtual Environments Conference & 5th Euro-
graphics Workshop, pages 125-135. Springer Verlag, 1999.

[3] J. Liang, C. Shaw, and M. Green. On temporal-spatial realism in the virutal reality
environment. In Proceedings of the Symposium on User Interface Software and
Technology, pages 19-25. ACM/SIGGRAPH, 1991.

[4] C. Swindells, J. Dill, and K. Booth. System lag tests for augmented and virtual
environments. In Proceedings of the Symposium on User Interface Software and
Technology, pages 161-170. ACM/SIGGRAPH, 2000.

