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Abstract

Mass Conservative Motion Reconstruction is a new method for estimating motion in time dependent volume data.
A time dependent vector field representing the movement of the data is computed from a sequence of scalar volume
data sets. The principle of mass conservation in a continuum is used during the reconstruction. Standard flow
visualization techniques are used for the visualization of the derived vector field.
This paper presents the underlying concepts of MCMR, its implementation, its accuracy and applicability.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation
I.3.6 [Computer Graphics]: Methodology and Techniques
Keywords: conservation of mass, motion reconstruction, vector fields, flow visualization, volume visualization.

1. Introduction

Visualization and analysis of time dependent volume data is
of key importance for understanding many scientific prob-
lems such as confocal microscopy and material transport
simulations, e.g. fluid mixing, convection and combustion.
An important aspect in these problems is movement or trans-
port of data. However, often there will be no explicit in-
formation about movement available in the data itself. An-
imated volume rendering techniques are often not sufficient
for understanding complex movement patterns in the data.

We present MCMR: a mass conservative motion recon-
struction method for estimating motion in time dependent
volume data. The objective is to reconstruct the velocity field
representing the movement of the input data. MCMR can be
used in time dependent volume data in which the phenom-
ena within the input data obey the principle of mass con-
servation in a continuum. MCMR is particularly useful in
volumes where complex movements occur, and where no a-
priori knowledge about movement is available from other
sources.

The output of MCMR is a time dependent vector field.
Standard flow visualization techniques are used to visualize
the vector field. For example, particle paths and stream sur-
faces can be used to show the movement and evolution of
interesting phenomena. In addition, the resulting vector field
can serve as a basis for data analysis. Tracking a feature in

the original volume data set is reduced to the computation of
a particle path in the generated vector field.

2. Related work

The derivation of a vector field from two dimensional im-
age data was introduced as optical flow by Gibson1. Optical
flow is the distribution of apparent velocities from movement
of brightness patterns in an image. It provides information
about the spatial arrangement of the objects in the image and
the rate of change of this arrangement. The construction of
an optical flow field from digital image sequences was ad-
dressed by Berthold et al. and Nagel2 � 3. These algorithms
use intensity gradients in the spatial and temporal domain in
combination with additional constraints to obtain the veloc-
ity. One choice for additional constraints is the minimization
of the velocity gradients to ensure the smoothness of the ve-
locity field. Other application dependent criteria can also be
used as constraints.

The problem of the derivation of a vector field from two
subsequent data sets can also be treated as a non-rigid regis-
tration problem. The vector field and displacement field are
equivalent and can be easily transformed into each other.
Much work has been done in this area to match two vol-
ume data sets, for example matching scans of two differ-
ent patients brains using elastic deformation. Several ap-
proaches to this problem have been proposed such as opti-
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cal flow-based methods and the use of smooth basis func-
tions. An overview of non-rigid registration methods can be
found in Dawant4. MCMR is most closely related to elas-
tic deformation methods which rely on a physical model
of the underlying data. Gee uses the Navier equation for
elastically isotropic and homogeneous substances to gov-
ern the deformation5. Davatzikos adapted this method to
permit the spatial adaptation of the elastic properties of
the material6. Christensen et al. use an alternative approach
based on viscous-fluid transformations7.

MCMR differs from these approaches in two ways.
Firstly, MCMR uses conservation of mass in a continuum
as the underlying physical model for the movement of the
data. This leads to a different problem formulation and solv-
ing strategy. Secondly, although MCMR and the mentioned
techniques are general purpose, the application domain is
different. The focus for the mentioned techniques is on med-
ical applications and specifically brain matching. MCMR fo-
cuses on time series of biological data, specifically the move-
ment of chromatin during formation of the cell nucleus of a
newly formed cell.

In a previous paper, we introduced a different method for
the reconstruction of a vector field from scalar volume data8.
The method, called BM3D, uses a block matching algorithm
to find corresponding regions of data in two successive time
steps of volume data. The displacement of the correspond-
ing regions determine the movement in the data. BM3D can
be seen as the 3D extension of the well known 2D block
matching algorithms found, for example, in MPEG encod-
ing. MCMR differs from BM3D in two ways. Firstly, instead
of comparing rigid blocks of data, MCMR takes deformation
occurring in the data into account. Secondly, BM3D matches
data blocks based solely on local information of data values
whereas MCMR is a global technique based on the transport
of data throughout the volume. Both differences result in a
more accurate estimation of the motion, particularly when
deformations of continuous mass movements are involved.

3. Method

3.1. Problem formulation

Assume a mass distribution ρ defined over a domain Ω. If the
evolution of mass is continuous, then conservation of mass
is satisfied: �

C � S � ρ �V � d �A � δ
δt

�
C �V � ρd �ω (1)

This equation states that the rate of inflow of mass across a
control surface C � S � is equal to the rate of accumulation of
mass inside the volume C �V � enclosed by the control surface.
In differential form, the conservation of mass is captured as:

∂ρ
∂t

���	����
 ρ �V � (2)

in which �V is the vector field over Ω describing the move-
ment of the mass distribution.

For volume data the mass distribution ρ is discretized in
space �x and time t as a sequence of scalar data sets M 
 �x  t � .
The differential form of the conservation of mass equation
can be rewritten in discrete form as

M 
 �x  t � ∆t ��� Φ 
 M 
 �x  t ����V 
 �x  t ����� (3)

in which Φ describes the transport of mass (right hand side
of equation 2).

The objective of MCMR is to compute the vector field
�V 
 �x  t � . Unfortunately, there are many vector fields that sat-
isfy this objective. For example, consider figure 1. Two time
steps of a sphere-like object are drawn in 2D as stippled and
solid lines. The movement of mass can be described as a
rigid rotation of the sphere (left), or as a deformation of the
sphere (right). In this example both vector fields describing
the movements would be a valid solution. Therefore, an ad-
ditional constraint is needed to select one of the two vec-
tor fields. In the example, if a constraint that minimizes the
movement of the data is chosen, then the solution in the right
image would be preferred. When a constraint that assumes
rigid objects is used, then the solution in the left image would
be chosen. We denote this constraint as S 
 �V � .

Figure 1: The movement of a sphere-like object can be de-
scribed as a rigid rotation (left) or as a deformation (right)
of the sphere. If only the movement of mass is known, then
an additional constraint over the vector field is need to dis-
tinguish between these movements.

The computation of �V 
 �x  t � can now be formulated as an
optimization problem:

minimize D 
 M 
 �x  t � ∆t �� Φ 
 M 
 �x  t ����V 
 �x  t ����� sub ject to S 
��V �
M 
 �x  t � ∆t � mass distribution at t � ∆t
Φ 
 M 
 �x  t �� �V 
 �x  t ��� computed mass transport
D 
 M1  M2 � difference metric over M1 and M2

S 
��V � additional constraint over �V 
 �x  t �

3.2. Implementation

The vector field is defined on a regular grid G of nodes over
Ω. A mass distribution at time t � ∆t is computed by using
�V 
 �x  t � to transport mass from M 
 �x  t � . This is realized by
sampling M on a regular grid at a resolution that is a multi-
ple of the number of voxels in M. Each sample is advected
using linear interpolation on G to a position in M � . The data
value for each sample is added to the voxel at the position of
the advected sample in M � . We denote the computed mass
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distribution as M � �
V

 �x  t � ∆t � . The two dimensional case is

illustrated in figure 2.

Figure 2: Computing M � �
V

 �x  t � ∆t � : Φ is applied to a mass

distribution at time t (shown in yellow, left) to compute a new
mass distribution at time t � ∆ (right). Black solid lines indi-
cate nodes in the velocity grid G. Blue dashed lines indicate
voxels in M. Red dots indicate the sampling pattern in each
voxel.

The problem formulation in section 3.1 indicated an addi-
tional constraint which is necessary to uniquely construct the
vector field. The implementation defines the constraint as a
tension function S 
 � over the velocity grid G. The measure
of tension is the distance of the velocity vector to the aver-
age of the neighboring velocity vectors (see figure 3). The
tension at node i  j  k is defined as:
� 
 v 
 i � 1  j  k � � v 
 i  j � 1  k � � v 
 i  j  k � 1 ����� 6 � � v 
 i  j  k � �

in which v 
 i  j  k � denote the velocity at �x. The total tension
in the vector field is the sum of all tension values for the
individual nodes:

S 
��V ��� ∑
i � j � k

S 
 i  j  k �

In this way, nodes in G are forced in the direction of a regular
grid and a solution that minimizes the tension will result in
a vector field that minimizes the movement of mass.

Figure 3: Tension function used to minimize mass move-
ment. Minimizing the tension function will result in a vector
field that minimizes the movement of mass.

The function to compare M1 and M1 is defined as

D 
 M1  M2 ��� ∑
i � voxels

�
M1 
 i � � M2 
 i � �

This function simply computes the sum of differences be-
tween each corresponding voxel in M1 and M2.

Given the tension function S 
 � and difference function
D 
 � , the problem formulated in 3.1 is implemented as the
minimization of

minimize D 
 M 
 t � ∆t �� M � �
V 
 t ���	� S 
 �V �

in which �V 
 �x  t � is the independent variable. For each time
step, the time dependent vector field �V 
 �x  t � is computed
using only data from two subsequent time steps M 
 t � and
M 
 t � ∆t � .

It is possible to solve this minimization problem using, for
example, Marquardt based fitting methods9. However, since
the order of the problem is proportional to 3 times the num-
ber of the nodes in the velocity grid, these direct solution
methods are prohibitively expensive to compute �V 
 �x  t � on a
grid with a fine resolution. Instead, our implementation uses
a grid refinement scheme combined with a hill climbing al-
gorithm to compute an optimal velocity field at each level
of refinement. The hill climbing method was chosen instead
of the Marquardt based methods because these methods re-
quire the evaluation of the gradient of the function. Evalua-
tion of the function consists of a computation of M � and D 
 � ,
which would be very expensive. The number of evaluations
required for the hill climbing method are significantly less.

Figure 4: Improving the fit of a particular node using hill
climbing.

Initially the vector field on a coarse grid is computed.
The velocities found in the coarse grid are propagated as
initial values on the finer grid. Figure 4 illustrates the hill
climbing scheme in 2D. Each of the three velocity compo-
nents are perturbed one at a time for a certain displacement,
and if the fit improves the algorithms continues from that
node. If no improvement occurs for a certain displacement,
the node is subdivided. The fit is computed as D 
 M 
 t �
∆t �� M � �

V

 t ��� � S 
 �V � in which M � �

V

 t ��� computed using the

perturbed vector field (see figure 2).

The pseudo-code of the grid refinement procedure is:

AdaptRefine(G)
{
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if resolution(G) > MAX_RES return

for (i=0; i < MAX_VELO_ITER; i++)
foreach node � G

BestFit (node, XPOS, init_stepsize)

AdaptRefine(RefineGrid(G))
}

The procedure AdaptRefine() describes the grid re-
finement procedure of the velocity grid. If MAX_RES, the
finest resolution, is not reached a relaxation scheme is used
to compute the velocity field. This is realized by com-
puting BestFit() at each node of the refined grid for
MAX_VELO_ITER iterations. Computing an optimal fit at
one node may influence the fit at another node. However,
when a large value for MAX_VELO_ITER is used, then the
best fit on each node will converge to an optimal solution
over the complete velocity grid.

After a velocity field is computed at one level, the grid is
refined and AdaptRefine() is called recursively.

The pseudo-code of the fitting procedure is:

BestFit(node, dir, ssize)
{

if (ssize < MIN_STEP_SIZE) return

fit1 = ComputeFit()

Peturb (node, ssize, dir)
fit2 = ComputeFit ()

if (fit1 < fit2)
{

fit1 = fit2
}
else
{

UndoPeturb(node, ssize, dir)

if (SwapDirection (dir,ssize))
dir = NewDirection(dir)

else
ssize = NewStepSize(ssize)

}
BestFit (node, dir, ssize)

}

This procedure finds the best fit for a node in the velocity
grid using a hill climbing scheme. The vector at the node is
peturbed for a certain step size in one of the six directions.
ComputeFit() computes the difference function using
the peturbed velocity field; i.e. D 
 M 
 t � ∆t �� M � �

V

 t ��� � S 
 �V �

in which M � �
V

 t ��� is computed using the perturbed vector field

(see figure 2). The direction is continued if the fit improves.
If the fit does not improve, then SwapDirection() de-
cides if a new direction or a new step size should be cho-
sen (see figure 2). Possible directions are {XPOS, XNEG,
YPOS, YNEG, ZPOS, ZNEG} The current implemen-
tation reduces the step size by a factor of 0.5.

Finally, BestFit () is called recursively with the per-
turbed node and a new direction or step size.

4. Results

4.1. Synthetic data

An important aspect of the utility of MCMR is its accuracy.
To get more insight into the accuracy of the method a number
of synthetic data sets were generated. The movement of the
data in these data sets simulate the movement of a parame-
terized Gaussian function G. The movement of the Gaussian
is known analytically, it can be compared with the movement
computed by MCMR.

The parameters of the Gaussian are: initial position �p0,
initial size σ0, velocity �v, mass M, and diffusion rate Rd .
Diffusion was used because it is an often occurring phe-
nomenon in volume data. Diffusion is approximated by de-
creasing the maximum intensity in combination with an in-
creasing sphere size such that the integral over all intensity
values remain constant. This leads to the following equation
for the Gaussian function :

G 
 �x � � M�
π3 
 σ0 � Rdt � 3 exp � � � � �p0 � �vt � �x �

σ0 � Rdt � 2 �
(4)

The initial conditions �p0, σ0, and Rd determine the move-
ment of Gaussian over time. Data sets at a resolution of
64 � 64 � 64 were generated.

Three metrics are used to judge the accuracy of the
method:

1. Absolute velocity error: Compare the difference between
the velocity of the Gaussian function and the MCMR
constructed velocity field. The error is defined as the av-
erage norm of the difference vector at each node in the
velocity grid that are within a distance of σ from the cen-
ter of the Gaussian:

1
N

N

∑
i � 1

� �v 
 i � � ˆ�v 
 i � �
(5)

in which �v 
 i � is the input velocity at node i, ˆ�v 
 i � is the
MCMR computed speed at node i and N is the number of
velocity samples.

2. Relative velocity error: The relative velocity error is com-
puted by dividing the is absolute with the input speed of
the Gaussian.

3. Mass fitting: Compare the mass distributions defined by
the Gaussian and the MCMR estimated mass distribution.
The error is defined as a fitting measure of how well the

c
�

The Eurographics Association 2003.



de Leeuw and van Liere / MCMR: A Fluid View on Time Dependent Volume Data

MCMR method deforms the data at a time step t to fit the
data at time t � ∆t. The fitting metric is computed as

f � 1 � D 
 M 
 t �� M � �
V

 t � �

D 
 M 
 t �� M 
 t � ∆t ��� (6)

in which D 
 � is the difference function given in sec-
tion 3.2. The fitting metric is equal to 1 if the mass dis-
tribution at time t � ∆t perfectly matches the computed
mass distribution at time t subject to the computed vector
field �V

no diffusion diffusion

�v error rel err. fit error rel err. fit

0.5 0.007 0.014 0.88 0.078 0.156 0.90
1.0 0.005 0.005 0.97 0.021 0.021 0.92
1.5 0.052 0.035 0.95 0.084 0.056 0.92
2.0 0.006 0.003 0.97 0.136 0.067 0.92
2.5 0.033 0.013 0.95 0.131 0.052 0.93
3.0 0.108 0.036 0.96 0.106 0.035 0.95
3.5 0.105 0.030 0.96 0.068 0.019 0.94
4.0 0.085 0.021 0.95 0.096 0.024 0.92
4.5 0.092 0.020 0.95 0.076 0.017 0.92
5.0 0.095 0.021 0.95 0.083 0.016 0.92

Table 1: Accuracy of the method

Table 1 shows the results of the tests performed on a data
set in which a single Gaussian moves at various speeds. The
left side of the table tabulates the cases when no diffusion is
involved; i.e. these cases simulate a moving rigid sphere. The
first column gives the absolute velocity error (equation 5)
in voxels. The second column gives the error relative to the
speed. The third column gives the fit (equation 6). The right
side of the table tabulates the cases when diffusion Rd of 1
is used.

The absolute error varies over the speed and diffusion pa-
rameters, however it remains well below one fifth of a voxel.
The relative error is within 4 percent of the input velocity
for the rigid motion of the Gaussian and 6 percent in the
case when diffusion is involved. The case of �v � 0 � 5 with
diffusion results in an significantly higher error. The most
probable cause is the relatively large diffusion speeds out-
weigh the relatively low translation speed of the Gaussian.

The table shows that the fit is usually between 0.9 and 1.0.
For the case in which the Gaussian moves at a speed of 0.5
with no diffusion a lower fit is found. In this particular case,
the rigid Gaussian moves less than one voxel per time step
and small errors introduced sampling do weigh strong on the
result.

4.2. Chromatin decondensation

MCMR was used to analyze the movement of chromatin dur-
ing formation of the cell nucleus of a newly formed cell.
Chromatin was visualized in living cells and movement was
followed using 3D confocal microscopy.

The data set consists of a series of 134 3D data sets. Each
time step consists of a stack of 32 optical sections of 256� 256 pixels. Due to physical characteristics of a confocal
microscope the resolution along the z-axis is four times less
than in the x-y plane. The 3D images are corrected for this
by scaling in the z-direction during rendering.

MCMR was applied to the decondensation data set. The
number of fitting iterations performed was 12 and the initial
resolution of the velocity grid was 5 � 5 � 3. The resolution
of the final velocity grid is 129 � 129 � 25. The used sam-
pling density was 3 � 3 � 3 � 27 samples per voxel. The
average fit improvement was 0 � 85.

The average time to compute a time step of the vector
field was approximately 1.5 hours on a single CPU desktop
PC. The total time to compute the complete time dependent
vector field was 8 days.

Figure 5 shows the decondensation process at various
stages. The top row shows 4 time steps of the process us-
ing volume rendering on the original data. The bottom row
shows the same time steps using particle paths extracted
from the MCMR computed vector field. Particle paths are
drawn as red/white line segments, with each line segment
representing one time step in the data.

Figure 6 shows a combination of volume rendering and
particle paths. Particle paths are traced backward in time
starting from the 21 highest local maximum values in the
final time step of the time series. Volume rendering shows
the scalar field at the initial time step.

Figure 7 shows two stream tubes in the data. Each tube is
constructed by advecting a ring of seed points in the vector
field. Color represents time: red is used at the start of the
advection and blue is used at the end. A checkerboard pattern
was used to indicate the speed and divergence/convergence
of the data. The length of a checkerboard cell represents the
movement of data in the advected direction. The width of a
checkerboard cell represents divergence. Checkerboard cells
are initialized with equal widths.

Various relevant biological insights can be obtained from
these images:

� The particle paths and stream tubes clearly show the de-
condensation process. The stream tubes show that differ-
ent chromatin regions in the cell nucleus drift apart whilst
keeping a more or less coherent shape. This insight seems
support the theory that that the expansion of chromatin
is linear and reorganization of the cell nucleus does not
occur during this phase.
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Figure 5: The process of decondensation visualized using volume rendering (top) and particle paths (bottom). The red/white
segments in the particle paths show the dynamics of the data movement. Seed points are drawn as small green spheres.

Figure 6: The origin of dense chromatin regions: The data at the initial time step is shown using volume rendering. The 21
highest local maximum values in the final time of the data are chosen as seed points for the particle paths. Paths are traced
backward in time. End points of the particle path are drawn as small green spheres.

� Individual particle path segments and stream tube
checkerboard cells show that chromatin movement is not
uniform. The shape of checkerboard cells also clearly
shows the variation in divergence of the flow.

� Interactive positioning of seed points of particle paths al-
low a user to trace the origin of dense chromatin regions.
The end points of the particle path show the position of
these dense areas in the condensed cell at the start of the
decondensation. Also, the paths of these dense regions can
be easily followed through time without the need of ani-
mation.

5. Discussion

In this paper, we have presented Mass Conservative Motion
Reconstruction, a method for estimating motion in time de-
pendent volume data. The resulting vector field can be used
to trace the evolution of points and lines, which can be visu-
alized as particle paths and stream surfaces.

The physically based principle of mass conservation in
a continuum govern the implementation of MCMR. Given
only a sequence of mass distributions, it is not possible to
determine the velocity field underlying the data movement.
However, the principle of mass conservation assures that the
computed velocity field is a valid solution to this problem.
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Figure 7: The movement of two chromatin regions: stream tubes show movement in two different regions. The shape of checker-
board cells in each stream tube show the dynamics of the data movement. The shape of stream tube can be compared to get
insight to the dynamics of two different chromatin regions.

We now discuss a number of issues related to the MCMR
method itself and how MCMR compares with other tech-
niques that combine motion analysis and visualization:

� MCMR parameters
The efficiency and accuracy of MCMR rely on three pa-
rameters:

– sampling density
The implementation describes a regular grid is used to
sample M. Each sample in M is advected to a position
in M � and the data value at each sample is added to
the voxel at the position of the advected sample in M � .
If the sampling density is to low; i.e. the regular grid
does not have a sufficient resolution, then aliasing of
the data in M � will occur. In the examples given in
section 4 we used 3x3x3 = 27 samples per voxel in M.
The sampling density is a trade-off between accuracy
and computation time.

– velocity grid
The implementation uses grid refinement to compute
the velocity field. Initially, a grid with a coarse resolu-
tion is used which is subsequently refined. The resolu-
tion of the finest grid relates to the maximum velocity
gradient in the data.
It would seem that a velocity grid with a high resolu-
tion will require more relaxation iterations, resulting
in higher computation times. However, by restricting
the evaluation of M � to only a neighborhood which
is influenced by the node, the evaluation time for D 
 �

decreases as the resolution of G increases. Hence, the
total computation time remains almost constant.

– tension strength
The tension strength used in the implementation is re-
lated to the mobility of the data. A low tension strength
will allow data to move rapidly, while a high tension
strength will result in low mobility.

� Performance
MCMR is a time consuming method. Computing the vec-
tor field in the decondensation example took more than
eight days. However, the process of acquiring data sets
in confocal microscopy is also very time consuming and
these data sets are not generated on a daily basis.
MCMR is a pre-processing step and once the velocity field
is computed, flow visualization techniques can be used in-
teractively.
The computation of velocity field time steps are inde-
pendent and could be done in parallel. Parallelizing these
computations is trivial.

� Usage
MCMR can be applied to any time dependent volume data
in which mass is conserved. MCMR is particularly useful
in volumes where complex movements occur, such as de-
formations. Faster and more accurate methods are avail-
able for pure rigid body movements.
A more elaborate transport equation must be used for
those data sets in which mass is not conserved For exam-
ple, the transport equation can be extended with complex
evolution models in which chemical reactions influence
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mass equilibrium in the data. However, such extensions
will require domain knowledge.

� Feature tracking
MCMR can be compared with feature tracking as a
method for the analysis of motion in time dependent vol-
ume data. The essential differences between these meth-
ods is that MCMR provides movement information of ev-
ery voxel in the data set, whereas feature tracking provides
information of individual features. In addition, MCMR
does not require domain knowledge to compute the vec-
tor field, whereas most physically based feature tracking
algorithms require domain knowledge to be effective.
On the other hand, feature tracking algorithms provide an
explicit set of events and features that can be useful to rea-
son about properties of the data. MCMR does not provide
this information and additional methods will be needed
to extract this information from the data or velocity field.
For example, in order visualize meaningful particle paths
methods will be needed to generate their seed points.

6. Conclusions

MCMR is a new method for estimating motion in time de-
pendent volume data. The physically based principle of mass
conservation in a continuum assure that the MCMR velocity
field represents the movement of mass.

Standard flow visualization techniques, such as particle
paths and stream surfaces, can be used to show the dynamics
of the data movement. The vector field can be used as a basis
for to automated detection and quantification methods; e.g.
feature tracking, flux computations, bifurcations, etc.

MCMR is particularly useful in volumes where complex
movements occur, such as reorganization or mixing, and
where no a-priori knowledge about movement is available.
We have shown that MCMR is very accurate by comparing
the generated vector field with a known vector field in an
synthetic example. MCMR was instrumental in the formula-
tion of many conjectures about chromatin decondensation in
living cells.
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