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Summary. The design of a Multi-Agent System (MAS) to perform well on a col-
lective task is non-trivial. Straightforward application of Reinforcement Learning
techniques in a MAS can lead to sub optimal solutions as agents compete or inter-
fere. The COllective INtelligence (COIN) framework of Wolpert et al. proposes an
engineering solution for MASs where agents learn to focus on actions which support
a common task. Here, we study various dispersion games where fine-grained coordi-
nation between the agents is required. Although we show that the COIN framework
can successfully solve reasonably simple versions of these retrieval problems, the
performance for more complex games – more representative of real-life scenarios – is
less than optimal. We show how the individual agent utility functions can be shaped
to exploit the particular structure of dispersion-type games. These advances to the
COIN framework dramatically improve convergence results for MAS with a large
number of agents. The increased convergence properties for the dispersion games
are competitive with especially tailored strategies for solving dispersion games. The
enhancements to the COIN framework proved to be essential to solve the more com-
plex variants of token retrieval dispersion games, and they point the way to how a
MAS can be applied in real life coordination problems.

1 Introduction

In our increasingly connected world, solving complex computational problems
that involve many parties and many resources is quickly becoming essential for
daily life. Finding conceptual approaches to these problems is both paramount
and difficult. As any computational problem can be considered as a resource
allocation problem (Wellman, 1996a, 1996b), the insight from economics is
that few concepts for resource allocation scale well with increasing complex-
ity of the problem domain. Centralized allocation planning in particular can
quickly reach a point where the design of satisfying solutions becomes com-
plex and intractable. Distributed systems may be one of the few concepts that
do allow for scaling, both of resource allocation, and analogously for solving
complex computational problems.
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Conceptually, an attractive option for resource allocation is to devise a
distributed system where different parts of the system each contribute to the
solution for the allocation problem. Embodied in a so-called distributed Multi-
Agent System (MAS), the aim is to elicit “emergent” behavior in the form
of overall efficient resoure allocation from a collection of individual agents
that each solve a part of the problem. In typical problem settings, individual
agents in the MAS contribute to some part of the collective through their
private actions. The joint actions of all agents derive some reward from the
outside world. To enable local learning, this reward has to be divided amongst
the individual agents where each agent aims to increase its received reward
by some form of learning. However, unless special care is taken as to how this
reward is shared, there is a risk that agents in the collective work at cross-
purposes. For example, agents can reach sub-optimal solutions by competing
for scarce resources or by inefficient task distribution among the agents as
they each only consider their own goals. A prime example of this potential
conflict is embodied in the well known “Tragedy of the Commons” (Hardin,
1968).

A weak point of distributed Multi-Agent systems has however long been
the typical bottom-up type of approach: researchers first build an intuitively
reasonable system of agents and then use heuristics and tuned system pa-
rameters such that – hopefully – the desired type of behavior emerges from
running the system. Only recently has there been work on more top-down
type of approaches to establish the conditions for MASs such that they are
most likely to exhibit good emergent behavior (Barto & Mahadevan, 2003;
Lauer & Riedmiller, 2000; Guestrin, Lagoudakis, & Parr, 2002), see also the
survey in (Panait & Luke, 2005).

The COllective INtelligence (coin) framework, as introduced by Wolpert
et al., suggests how to engineer (or modify) the rewards an agents receives for
its actions (and to which it adapts to optimize) in private utility functions.
Optimization of each agent’s private utility here leads to increasingly effective
emergent behavior of the collective, while discouraging agents from working
at cross-purposes.

In particular, the work by Wolpert et al. explores the conditions sufficient
for effective emergent behavior for a collective of independent agents, each
employing Reinforcement Learning (RL) for optimizing their private utility.
These conditions relate to (i) the learnability of the problem each agent faces,
as obtained through each individual agent’s private utility function, (ii) the
relative “alignment” of the agents’ private utility functions with the utility
function of the collective (the world utility), and lastly (iii) the learnability of
the problem. Whereas the latter factor depends on the considered problem,
the first two in coin are translated into conditions on how to shape the private
utility functions of the agents such that the world utility is increased when
the agents improve their private utility. This allows an agent to optimize its
reward, without decreasing the utility of the collective.
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Wolpert et al. have derived private utility functions that perform well on
the above first two conditions listed above. The effectiveness of this top-down
approach and their developed utilities are demonstrated by applying the coin
framework to a number of example problems: network routing (D. Wolpert,
Turner, & Frank, 1998), the El Ferrol Bar problem (D. Wolpert & Tumer,
1999), Braess’ paradox (Tumer & Wolpert, 2000), influencing Google pager-
anks (Agogino & Ghosh, 2002), and air traffic control (Tumer & Agogino,
2007). The coin approach proved to be very effective for learning these prob-
lems in a distributed system.

The coin work has been expanded upon to include distributed function
optimization with bounded rational agents, in the form of Probability Col-
lectives (D. Wolpert & Bieniawski, 2004; Lee & Wolpert, 2004; D. Wolpert,
Strauss, & Rajnayaran, 2006). In this formulation, “agents” each optimize a
single variable in a function optimization problem. Such an approach handles
constraints well, and has been shown to outperform Genetic Algorithms for
a number of challenging optimization problems (Huang, Bieniawski, Wolpert,
& Strauss, 2005).

The work on coin and recently on probability collectives by Wolpert et
al. suggests that this framework may be a concept that does scale well, and
they demonstrated this in the case where the problem complexity is increased
by adding more agents into the system. This still leaves open the question of
how coin scales with other problem properties, in particular related to the
amount of cooperation needed between the agents

Here, we study the application of the coin framework to games where
different agents choose distinct actions, so called anti-coordination or dis-
persion games. Such problems are typical for a growing class of large-scale
distributed applications such as load balancing (e.g. (Azar, Broder, Karlin,
& Upfal, 2000)), division of roles within robotics, or application in logistics.
Many niche selection problems studied in economics and evolutionary biol-
ogy are also natural applications of dispersion games (Grenager, Powers, &
Shoham, 2002). Games like minority games (Challet & Zhang, n.d.) or vari-
ants of the El Farol Bar problem (Arthur, 1994) can be modeled as dispersion
games in a straightforward way.

We explore scaling in dispersion games: (Grenager et al., 2002) have shown
near exponential complexity of the empirical performance of many algorithms
for the convergence of the system versus the number of participating agents.
We focus in particular on games where there is agent and action symmetry:
an agent’s preference over outcomes depends only on the overall configuration
of actions and agents, but not on particular identities of the agents or actions
(confer also (Grenager et al., 2002)). We investigate coordination in the form
of task allocation: the allocation of n agents to k tasks. Agents acting in
parallel and using local feedback with no central control must learn to arrive
at an optimal distribution over the available tasks.

Using the standard coin framework, we find increasingly slow convergence
with increasing size of the MAS, and rapidly decreasing performance for more
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complex dispersion games. However, with agent and action symmetry, it is
easy to see that the standard coin utility function – the Wonderful Life Utility
(WLU) – has agents learning at cross-purpose. As a number of agents select a
particular task, all agents effectively receive a penalty for doing so. We show
that taking this into account, and enhancing the WLU function, vastly speeds
up the convergence of the symmetric dispersion problems, and also allows for
better solutions to be found for more complex instantiation of the problem,
where the traditional WLU exhibits highly unsatisfactory performance. As
we remarked, dispersion games model many important natural problems. By
enhancing the coin framework to exploit the inherent symmetry in many of
instantiations of these games, we are able to materially improve convergence
speed and performance for distributed means of solving these problems.

2 COllective INtelligence

Here, we briefly outline the theory of coin as developed by Wolpert et al., e.g.
(D. H. Wolpert, Wheeler, & Tumer, 1999; D. Wolpert & Tumer, 1999, 2001).
Broadly speaking, coin defines the conditions that an agent’s private utility
function has to meet to increase the probability that learning to optimize
this function leads to increased performance of the collective of agents. Thus,
the challenge is to define a suitable private utility function for the individual
agents, given the performance of the collective.

In particular, the work by Wolpert et al. explores the conditions sufficient
for effective emergent behavior for a collective of independent agents, each
employing, for example, Reinforcement Learning (RL) for optimizing their
private utility. These conditions relate to (i) the learnability of the problem
each agent faces, as obtained through each individual agent’s private utility
function, (ii) the relative “alignment” of the agents’ private utility functions
with the utility function of the collective (the world utility), and lastly (iii)
the learnability of the problem. Whereas the latter factor depends on the
considered problem, the first two in coin are translated into conditions on
how to shape the private utility functions of the agents such that the world
utility is increased when the agents improve their private utility.

Formally, let ζ be the joint moves of all agents. A function G(ζ) provides
the utility of the collective system, the world utility, for a given ζ. The goal is
to find a ζ that maximizes G(ζ). Each individual agent η has a private utility
function gη that relates the reward obtained by the collective to the reward
that the individual agent collects. Each agent will act such as to improve its
own reward. The challenge of designing the collective system is to find private
utility functions such that when individual agents optimize their payoff, this
leads to increasing world utility G, while the private function of each agent is
at the same time also easily learnable (i.e. has a high signal-to-noise ratio, an
issue usually not considered in traditional mechanism design). In this paper,
ζ represents the choice of which of the k tasks each of the n agent chooses
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to execute and the challenge is to find a private function for each agent such
that optimizing the local payoffs optimizes the total task execution.

Following a mathematical description of this issue, Wolpert et al. propose
the Wonderful Life Utility (WLU) as a private utility function that is both
learnable and aligned with G, and that can also be easily calculated.

WLUη(ζ) = G(ζ)−G(CLSeff
η

(ζ)) (1)

The function CLSeff
η

(ζ) as classically applied “clamps” or suspends the
choice of task by agent η and returns the utility of the system without the
effect of agent η on the remaining agents η̂ with which it possibly interacts.
For our problem domain, the clamped effect set are those agents η̂ that are
influenced in their utility by the choice of task of agent η. Hence WLUη(ζ) for
agent η is equal to the value of all the tasks executed by all the agents minus
the value of the tasks executed by the other agents η̂. If agent η picks a task
τ , which is not chosen by the other agents, then η receives a reward of V (τ),
where V assigns a value to a task τ . If this task is however also chosen by
any of the other agents, then the first term G(ζ) of Equation 1 is unchanged
while the second term increases with the value of V (τ) as agent η no longer
competes for completion of the task as η is clamped. Agent η then receives a
penalty −V (τ) for competing for a task targeted by one of the other agents
η̂. The WLU hence has a built in incentive for agents to find an unfulfilled
task and hence for each agent to strive for a high global utility in its search
for maximizing its own rewards.

Compared to the WLU function, other payoff functions have been consid-
ered in the literature for distributed Multi-Agent Systems: the Team Game
utility function (TG), where the world-utility is equally divided over all par-
ticipating agents, or the Selfish Utility (SU), where each agent only considers
the reward that it itself collects through its actions. The TG utility can suffer
from poor learnability, as for larger collectives it becomes very difficult for
each agent to discern what contribution is made (low signal-to-noise ration),
and the SU suffers from – potentially – poor alignment with the world-utility,
i.e. agents can work at cross purposes. TG and SU are representative for types
of utility often found in the literature. We compare the performance of the
SU and TG relative to the variants of the WLU.

We use Q-learning (Sutton & Barto, 1998) as RL algorithm for each of the
n agents in the MAS. A learner’s input space consists of the available k tasks.
Q-learning that proved to work well for dispersion games; COIN learners have
also been implemented with other RL methods, such as e.g. Q(λ) (Hoen &
Bohte, 2003), as the COIN principles are generically implementable by any
sufficiently powerful RL method. In our Q-learning implementation, the policy
π is stochastic according to a softmax function; in the policy, a random task
ki is chosen for state s and constant c (set at 50) with normalized chance in
[0, 1] of cQ(s,ki)P

j cQ(s,kj) . As each agent only must choose one task/action, we use a

single state per agent. The discount factor γ is set to 0.95. The learning rate
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α, unless specified otherwise, is set at 1 as this produced best results for all
the utility functions considered. The next section presents application of the
RL learners for a MAS task assignment problem.

2.1 Dispersion Games

Dispersion games (Alpern, 2001; Grenager et al., 2002) are a general class of
problems where n agents each have to decide which of the k tasks they are to
undertake. We follow the formal definition of dispersion games of (Grenager
et al., 2002), where a dispersion game is defined as a subclass of normal form
games. We investigate the case where n = k and the agents are fully symmet-
ric (i.e. it does not matter which agents executes which task). This type of
dispersion game is called the full dispersion game. Full utility is achieved only
when all k tasks are chosen by exactly one of the n agents.

2.2 Exploiting Symmetry in Dispersion Games

We observe that the WLU is symmetric when there is action and agent sym-
metry in the game, as in the dispersal games we study. If, for example, two
agents a1 and a2 both choose task ki, then both agents, according to equation
1, receive a penalty when calculating WLUa1(ζ) and WLUa2(ζ) respectively.
This however can lead to slower convergence as both agents then may be forced
to target different tasks while only one of the agents need choose a different
task. This slower convergence becomes more dramatic as more than one agent,
say l > 2 agents, focuses on the same task and l− 1 agents need to “switch”.

We break the symmetry in the penalties of the WLU in two ways. First
of all, we consider the case where one of the agents η targeting a task k is
randomly chosen as the winner and is awarded the positive reward while the
other η̂ agents choosing the same task k are penalized. We name this the
WLUr as we consider a random winner in which of the agents happen to
arrive at a specific task. Secondly, as a more refined variant of the WLUr, we
consider the case where the positive reward is assigned to the agent that is
most likely to choose action k. We reward agent η with the highest Q-value
for this task. We name this the WLUm from most likely. Conceptually, no
internal knowledge of the agent is needed with the WLUr, whereas the WLUm
requires access to the actual RL strategy of the individual agents to compute
the respective agent utilities.

3 coin for Dispersion Games

We first discuss some results from (Grenager et al., 2002) for the n = k
dispersion game setting where agents use different strategies for choosing their
tasks1. As analyzed in (Grenager et al., 2002), for n = k, the expected time
1 See (Grenager et al., 2002) for details and references.



Collective Coordination in Multi-Agent Dispersion Games 7

to successful allocation for a naive strategy with random choices by agents
is nn/n!. This is exponential in n. Similar long time to convergence results
where found for Fictitious play, even with slight modifications to the updates
of beliefs to avoid oscillatory behavior within sets of suboptimal outcomes.
Better results where found using RL with a Q-learning Algorithm with a
Boltzmann exploration policy. The agents learned the expected reward for
choosing a specific task. The (selfish) reward for each of the agents is a function
of the number of agents that use the same action. For this setting, with a well
chosen temperature decay trajectory, a polynomial time to convergence was
found for convergence to the optimal solution. Similar convergence results are
found for the Freeze strategy where an action is chosen randomly by an agent
until the first time it is alone in choosing an action, at which point the agent
replays that action indefinitely. Best results where found for the Basic Simple
Strategy (BS) and the Extended Simple Strategy (ES) where agents quickly
focus on a task when they are the only candidate and otherwise stochastically
choose from the remaining tasks that are still under contention. See Figure 1
for an overview of the results.
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Fig. 1. Log-log plot of the emperical performance of different strategies in symmetric
dispersion games. Results reprinted from (Grenager et al., 2002), with permission.

Figure 2 shows the results for the WLU for increasing number of agents
and corresponding number of tasks (n = k). The reward for executing a task
by an agent is 1. The convergence results improve on the used reinforcement
learning algorithm of (Grenager et al., 2002) and are competitive with the
BS en ES strategies, with however a much more local signal as tasks that
still need to be resolved are not communicated to the agents and an agent
will have to explore for its “own” task. The RL signal for agent η is purely
based upon how many agents η̂ choose the same task. Agents using the SU
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quickly reach a maximum fitness of ≈ 0.8 (figure 3a). The agents using the SU
however have difficulty in targeting the last 20% of the tasks as they continue
to compete for tasks. The TG utility (figure 3b) performs even worse as a
maximum utility of 0.7 is reached for 10 agents and a utility of ≈ 0.65 for a
larger number of agents as the signal-to-noise ratio decreases. In contrast, the
penalties imposed by the WLU successfully drive agents to efficiently disperse.
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Fig. 2. WLU for dispersion games

3.1 Dispersal WLU

From figure 2, we can see that using the standard coin framework, as the
number of agents increases, the point at which individual agents choose a
task is delayed. Agents compete for tasks for longer periods in their early
exploratory behavior and the penalties incurred cannot yet push unsuccess-
ful agents to unfulfilled tasks, while this incentive for correct dispersion is
necessary for the system to quickly converge. This phenomenon partially ex-
plains the trend in slower convergence of the WLU for an increasing number
of agents in Figure 2. To improve on convergence of the coin framework, we
investigate application of the enhanced WLUm and WLUr utility functions.

In Figure 3.1 we show typical results for the new utility functions, in
this case for 2500 agents.2 The WLUr and WLUm converge dramatically
faster than the classic WLU, even for a large number of agents. The WLUm

2 We did not explore settings with more agents due to memory restrictions with
the current implementation.
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Fig. 3. Dispersion games: (a) agents using Selfish Utility utility (b) agents using
Team Game.



10 Pieter Jan ’t Hoen and Sander M. Bohte

outperforms the WLUr similarly in all experiments for the range of agents
studied in Figure 2. Agents using the WLUm can most quickly converge to a
task and drive other agents to choose another task. Note that the adaptions of
the WLU’s still only involve local use of information per task in the problem
domain and no global information is used while the WLUr and WLUm are
competitive with the ES and BS strategies of (Grenager et al., 2002).
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Fig. 4. Improved convergence for the full dispersion games for n=k=2500.

We investigate the influence of the adaption for the WLUm to the SU,
which we name SUm. Like for the WLUm, the agent most likely to choose
a task is given the reward. Penalties to contenders for the same task are
however not given. In Figure 3.1 we show typical results for a 100 agents
(similar results held for 10, 1000, 1500, and 2500 agents). The performance
of the SUm is inbetween that of the WLUr and WLUm while all learning
methods converge in the limit to optimal results. In Section 3.2 we show that
this property does however not hold for the SUm in the more difficult task
choice problems. As we will show, COIN-like utilities are needed to solve these
type of problems.

In the above experiments we found best convergence results for all RL
algorithms while using a large learning rate α for the individual Q learners.
Increasing α from 0.1 to 1 with increments of 0.1 led to continuous increased
performance as agents then most quickly choose an individual task to execute.
Such large values of α are less suitable for applications where the agent re-
ceives reward from a sequence of actions (e.g. (Sutton & Barto, 1998),(Tumer,
Agogino, & Wolpert, 2002)). For dispersal games, which have no such sequen-
tial property, this is not an issue.
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Fig. 5. Performance of SUm for n = k = 100, as compared to WLU(m/r).

3.2 El Farol Dispersion

In the original El Farol Bar problem (Arthur, 1994), agents have to decide on
what day week they will visit one of a given set of bars. Good solutions can
be hard to reach in a distributed setting as agents oscillate in their choice of
attendance:

No one goes there nowadays, it’s too crowded. (Yogi Berra)

.
Inspired by this problem, we here devise a dispersion problem that is

harder than the previously discussed example. In our “El Farol Dispersion
game”, we have n agents that have to choose between 7 tasks that each give a
reward of 1 to the first n/7 agents that choose the task. Reward for attendance
is however only given if at least n/7 agents choose a task. Compared to the
previously studied dispersion game, this game is harder in that the agents
have a less gradual, more discontinuous reward signal to learn from. In terms
of dispersion games, we study k = 7 tasks that require 7c−1 agents to fulfill
for a total of n = 7c agents, for some constant c ≥ 1.

Figure 6 shows the results for the various learning algorithms for 49 agents
(c = 2). Each bar is interpreted as a task that requires 7 agents for a total
reward of 7, or 1 per agent helping to accomplish the “task”. The SU and
TG perform badly as both cannot locally interpret the RL signal to optimize
their actions. The original WLU performs well, though it takes considerable
time to converge. The WLUm converges significantly faster than the WLU,
at the same performance; the WLUr also converges significantly faster, but
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seems to achieve a lower level of world utility as compared to the WLUm.
We remark that this is in fact an artifact of scale, as the WLUr also achieves
full world utility, but only very slowly, after > 20, 000 epochs. The SUm,
which showed comparable performance for the previous dispersion tasks, only
slightly improves on the admittedly poor performance of the original SU. It
converges to a maximum utility of 0.8 after 30, 000 epochs. The issuing of
penalties as defined for the WLU’s seems fundamental for convergence to a
high world utility.
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Fig. 6. Bar attendance for 49 (72) agents

In Figure 7, we show results for 343 (73) agents. The WLUr and WLUm
as exceptions are both able to achieve good results. We however only achieved
these best convergence results for all RL utilities by changing the used learning
rate α to an unconventional high level of 10. Both optimizations resulted in
stronger convergence by forcing an agent to choose a task. The original WLU,
however did not improve beyond its shown level even after 150, 000 epochs.
The WLUr for this problem shows surprising results in performance in that as
in the smaller setting, it first seems to converge quickly to a lower performance
level than the WLUm. After many many epochs though, the WLUr manages
to converge to maximal world utility.

As the WLUr exhibits more exploration as compared to the WLUm, just
by the mere fact that the winning agent is selected randomly, this successful
but slow learning demonstrates the difficulty of the setting. It also demon-
strates the trade-off between quicker learning, as the WLUm does, compared
to more exploration, as per the WLUr utility.
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For this interpretation of the El Farol dispersion problem with such a large
number of agents we are reaching the limit of the straightforward application
of the WLU and even of the proposed enhancements and we had to resort
to modifications in the parameters of the learning algorithm We are hence
reaching a point where we are moving beyond straightforward application of
the coin framework as an engineering approach. This problem hence merits
further study to arrive at more fundamental solutions and insights.
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Fig. 7. El Farol dispersion game world utility for 343 (73) agents

4 Discussion

We studied the COllective INtelligence (coin) framework of Wolpert et al. for
a standard full dispersion game (Grenager et al., 2002) and a harder dispersion
problem based on the EL Farol Bar problem. The essence of dispersion prob-
lems is that agents have to learn to choose which individual tasks to execute.
We observed that for complex problems the coin framework is able to solve
fairly difficult MAS problems where fine-grained coordination between the
agents is required, in contrast to multi-agent systems that use more common
decentralized coordination.

We enhanced the coin framework to dramatically improve both conver-
gence speed and performance for difficult dispersion problems by taking ad-
vantage of the symmetry in both the standard WLU in coin, and the cor-
responding agent and action symmetry in the dispersion games we consider.
The increased convergence properties for the dispersion games are competitive
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with especially tailored strategies for solving these task assignment problems.
The generic enhancements to the coin framework proved to be essential to
solve the more complex variant of the El Farol Bar-like problem using the
coin framework.

We believe the dispersion games of (Grenager et al., 2002) form an impor-
tant testbed for learning methods applied to Multi-Agent Systems (MASs),
with application for many natural and important problem domains. The task
assignment for n agents to k tasks is straightforward to implement, yet can
quickly become difficult for distributed approaches due to parallel, asyn-
chronous learning by the agents and the lack of global information. A fun-
damental question for learning methods is at what point to they begin to
fail as the problems are scaled (increasing n or more difficult tasks). Can this
point be delayed by increasing communication between the agents and at what
cost? MAS learning is a growing research area. Dispersion games can form an
interesting benchmark problem to research the limits and possibilities of this
new field.

As future work we consider boot-strapping techniques for single agent RL
to the coin framework. RL in general can significantly benefit from directed
exploration ((Mitchell, 1997; Thrun, 1992) and (Wiering, 1999)). Sub-goal
detection as in (Menache, Mannor, & Shimkin, 2002) can also greatly speed up
the learning of complex tasks. For example, in (Menache et al., 2002) an agent
learns to focus in learning on critical points in the task which form bottlenecks
for good overall performance. An open question is how the above work can
be integrated in the (extended) coin Framework for task with bottlenecks
occurring due to dynamic interactions in a MAS.
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