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ABSTRACT

This paper provides a comprehensive study of the struchd ey
namics of online advertising markets, based on a datasgtoni-s
sored search queries provided by Microsoft Research. Ty st
was performed using techniques from agent-based compaitg
mining and from the emergent discipline of complex systena-a
ysis. First, we look at how the display rank of a URL link influ-
ences its click frequency, for both sponsored search ananarg
search. Second, we study the market structure that emexgas f
these queries, especially the market share distributiatifigrent
advertisers. We show that the sponsored search markettis/ hig
concentrated, with less than 5% of all advertisers recgiaver
2/3 of the clicks in the market. Furthermore, we show thah ltlo¢
number of ad impressions and the number of clicks follow powe
law distributions of approximately the same coefficientwidwer,
we find this result does not hold when studying the same distri
bution of clicks per rank position, which shows considesalari-
ance, due to the way advertisers divide their budget onrdifite
keywords. Finally, we turn our attention to how such spoedor
search data could be used to provide decision support toolsd-
ding for combinations of keywords. We provide a method tavis
alize keywords of interest in graphical form, as well as alodtto
partition these graphs to obtain desirable subsets ofs¢éanms.

1. INTRODUCTION

Sponsored search, the payment by advertisers for clickexn t
only ads displayed alongside search engine results, hasrieea
very important part of the Web. It now represents the maimcou
of revenue for large search engines, such as Google, Yahab! a
Microsoft and it receives a rapidly increasing share of dikiag
budgets worldwide. But problems that arise from sponsoeadch
also present exciting research opportunities, for fielddivasse as
economics, artificial intelligence and multi-agent system

In the field of multi-agent systems, researchers have beek wo
ing for some time on topics such as designing automatedaaucti
bidding strategies in uncertain and competitive enviromsi€e.g.
[4, 14]). Another emergent field which studied such topicgera-
based computational economics (ACE), where significarareh
effort has focused on the dynamics of electronic marketsutin
agent-based simulations. One particular topic of resefmcthe
ACE community is how order and macro-level market structaire
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emerge from the micro-level actions of individual usersweer,
most existing work has been based on simulations, as thefewr
sources of large-scale, empirical data from real-worldiatted
markets. In this context, empirical data made availablefspon-
sored search provides an excellent opportunity to testd¢benap-
tions made in such models in a real market.

In this paper, which is based on large-scale Microsoft spats
search data, we provide a detailed empirical analysis df data.
To do this, we make use of several techniques derived fronpagem
tational economics, and especially complex systems thé&&myn-
plex systems analysis (which we briefly review below) hasnbee
shown to be an excellent tool for analyzing large sociahnetog-
ical and economic systems, including web systems [12, 10, 6]

1.1 The data set

The study provided in this paper is based on a large dataset of
sponsored search queries, obtained from the website bivé.c
The search data provided consists of two distinct data aetst of
sponsored search dataset (URLSs returned are allocatedediad
ers, through an auction mechanism) and an organic searabedat
(standard, unbiased web search). The sponsored searcbotata
sists of 101,171,081 distinct impressions (i.e. singlgldiss of
advertiser links, corresponding to one web query), whictotal
received 7,822,292 clicks. This sponsored dataset wasoted
for a roughly 3-month period in the autumn of 2007. The organi
search data set consists of 12,251,068 queries, and wastedllin
a different 3-month interval in 2006 (therefore the two dsts are
chronologically disjoint).

It is important to stress that in the results reported in pisEiper
are based mostly on the sponsored search dataBetthermore,
the sponsored search data we had available only providéslpar
information, in order to protect the privacy of Microsoftveicom
customers and business partners. For example, we haveare inf
mation about financial issues, such the prices of differeymords,
how much different advertisers bid for these keywords, thé-b
gets they allocate etc. Furthermore, while the databasede®an
anonymized identifier for each user performing a query, dioiss
not allow us to trace individual users for any length of time.

Nevertheless, one can extract a great deal of useful infisma
from the data. For example, the identities of the bidderswfiich
keyword combinations their ads were shown (i.e. the imjoas},
for which of these combinations they received a click, theifpm
their sponsored link was in when clicked etc. Insights gaiinem
analyzing this information forms the main topic of this pape

1This data was kindly provided to us by Microsoft researchtigh
“Beyond Search" award

The only exception is a plot on the distribution number ol
vs. display rank in Sect. 3, included for comparison reasons



2. COMPLEX SYSTEMS ANALYSIS APPLIED e The “organic” search results are usually returned as 10 URL

TO THE WEB AND ECONOMICS links/page (a user can opt to change this setting, but very fe
. S actually do).
Complex systems represents an emerging research disgiptin

the intersection of diverse fields such as Al, economicstiragent All the sponsored links are allocated based on an aucti@n-li
simulations, but also physics and biology [2]. The genegict of mechanism between the set of interested advertisers (sdidt a
studies in the field of complex systems is how macro-leveicstr ~ Pplay, in any position is called in “impression”). Howeveretad-
ture can emerge from individual, micro-level actions perfed by vertisers only pay if their link actually gets clicked - i.gay per
a large number of individual agents (such as in an electnoic click” model. The exact algorithm used by the engine to deitee

ket). For web phenomena, complex systems techniques hawve be the winners and which advertiser get which position is a demp
successfully used before to study phenomena such as caltaleo mechanism design problem and not all details are made public

tagging [10] or the formation of online social groups [1]. However, in general, it depends on such factors as the e t
One of the phenomena that are indicative to such complex dy- bidder is willing to pay per click, the relevance of the quemher
namics is the emergence of scale-free distributions, ssg@owaer set of terms, and her past performance in terms of “clickibho

laws. The emergence of power laws in such a system usually in- rate” (i.e. how often links of that user were clicked in thetpéor
dicates that some sort of complex feedback phenomena (ech. s @ given keyword). By contrast, in organic search, returresults
as a preferential attachement phenomena) is at work. Thisiis ~ are ranked simply based on relevance to the user’s query.

ally one of the criteria used for describing the system astjgex" . . . . .
[2, 6]. Research in disciplines such as econophysics angh@gom 3.1 Results on dlsplay pOSItIOI’] bias and inter

tational economics discusses how such power laws can erirerge pretation
large-scale economic systems (see [6, 12] for a detailedstson). Results for the position bias on click distribution are f#dtin
R Fig. 1. part A (left side) for sponsored search ant part Bh{rig
2.1 Power laws: definition side) for the organic search. Note that both of these are kaiive
A power law is a relationship between two scalar quantities distributions: they were obtained by adding the number ksl
andy of the form: for a link in each position, irrespective of the exact contafxthe
o queries or links that generated them. Furthermore, botlrangn
y=cx @) in the log-log space.
wherea andc are constants characterizing the given power law. _ There are two main conclusions to be drawn from these pisture
Eq. 1 can also be written as: For the sponsored search results (Fig. 1.A). The distobudtross
the 8 slots seems to resemble a straight line, with a slo@epter
logy = alogz +log ¢ (2 aprox.a = 2. However, such a conclusion would be too simplistic:

there is, in fact, a difference between the slope betweelffirte
3 positions (up tdog23, on the horizontal axis), and the last 5
positions. The slope for the first 3 positions is around= 1.4,
while for the last 5 is aroundr2 = 2.5. The most likely reason
for this drop comes from the way the Live.com search interiac
designed. The first 3 slots for sponsored search links arersba
the top of the page, above the organic search results, viglast

5 are shown in a side bar on the right of the page.

Fig. 1.B corresponds to the same plot for organic searchtsesu
the main effect one notices is the presence of several |@hetsh-
olds), corresponding to clicks on different search pages.siiéss
that, since this is a log-log plot, the drop in attention tesw sub-
sequent search pages is indeed very large - about two orflers o
magnitude (i.e. the top-ranked link on the second searck s=g
on average, about 65 times less likely to be clicked thandhke |
ranked link on the first page). The distribution of intra-padjcks,
however, at least for the first page of results, could be riyugph-
proximated by a power law of coefficieat= 1.25.

3. INFLUENCE OF DISPLAY RANK ON CLICK- All this raises of course the question: what do these digtiobs
ING BEHAVIOR mean and what kind of user behaviour could account for tha-eme

The first issue that we studied (for both sponsored and argani 9€nce of such distributions in sponsored search results?, fie
search data) is how the position that a URL link is displayed i should point out that the fact that we find power law distrios

When written in this form, a fundamental property of powsvda
becomes apparent; when plotted in log-log space, power daws
pear as straight lines. As shown by Newman [12] and othees, th
main parameter that characterizes a power law is its slopmrpa
etera. (On a log-log scale, the constant paramet@nly gives
the “vertical shift" of the distribution with respect to tlyeaxis.).
Vertical shift can vary significantly between different ploenena
measured (in this case, click distributions), which ottisefollow
the same dynamics. Furthermore, since the logarithm isexppl
to both sides of the equation, the size of the parametgoes not
depend on the basis chosen for the of the logarithm (althdigh
shifting constant is affected). In the log-log plots shown in this
paper, we have chosen the basis of the logarithm to be 2, since
we found graphs with this low basis the more graphicallyitivte.
But, in principle, the same conclusions should hold if wead®e
the logarithm basis to be, e.gor 10.

influences its chances or receiving a click. Note that thitiqa in this context is not completely surprising. Such disttibos have
lar issue has received much attention in existing litemaf8}. To been observed in many web and social phenomena (to giverjest o
briefly explain, Microsoft's Live.com search interfaceoffin which example, in collaborative tagging systems, in the work bg of

the co-authors of this paper [10] and others). In fact, anygleho

of “top to bottom" probabilistic attention behaviour, sieha user

e For sponsored search there are up to 8 available slots (posi-scanning the list of results from top to bottom and leavirggte
tions) in which sponsored URL links can be placed. Three of with a certain probability by clicking one of them could gikise
these positions (ranked as 1-3) appear at the top of the page,to such a distribution. Of course, more fine-grained modelser
above the organic search results, but delimited from thgse b behavior are needed to explaining click behavior in thigext(an
a different background. In addition, the page can display up example of such a model is [8]). But for now we leave this idsue
to 5 additional links in a side bar at the right of the page. further research, and we look at the main topic of this pagechv

the data was collected), is structured as follows:
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Figure 1: Distribution of clicks received by a URL (link), relative to its position on the display, for sponsored and orgaic search.
A(left-side, sponsored search dataset): There are up to 8 epsored advertiser links displayed: 3 on the top of the pageand 5 in a
side bar. B(right, organic search data): There are usually 0 positions displayed per page, with multiple result pages@pearing as
plateaus.

is examining the structure of the sponsored search madait. it Next, we studied the detailed distribution of the numbersrof
pressions (i.e. displayed URLS) and clicks on these imfwess

for the top 10000 distinct advertisers. Results are showrign
4. MARKET STRUCTURE AT THE ADVER- 2.B. (right-hand side graph), using a log-log plot.

TISER LEVEL The main effect that one can see from Fig. 2.B. is that the dis-
In this Section, we look at how sponsored search markets aretribution of impressions and the distribution for clickeeé/ed by
structured, from the perspective of the participants éicxertisers the advertisers form two approximately parallel, straighes in

that buy search slots for their URLSs). More specifically, wedy the log-log space (i.e. they are two power laws of approxéfyat
how relative market shares are distributed across linkdasiver- ~ the same slope coefficienf). There is one important difference,
tisers. We note that in many markets, an often cited rule,iafer- though, which is the size of the “long tail" of the distritwrti. The
mally attributed to Pareto, is that 20% of participants in arket distribution of the number of clicks (lower line), levelsf after
(e.g. customers in a marketplace) drive 80% of the actiVitgre, about 4000-5000 positions. Basically, in data terms, thisms
we call this effect the “market concentration". that advertisers beyond the top 5000 each receive a ndgligiion-

In a sponsored search market, the main “commodity" which pro ber of clicks, at least in the dataset we examined. The refason

duces value for market participants (either advertisedglamsearch ~ this may be that their ads almost always appear in the loveer di
engine) is the number of clicks. Therefore, the first thinaf te play ranks, or simply that they bid on a set of rarely used {ghlly

plotted (first, using normal, i.e. non-logarithmic axestis cumu- ~ SPecialised) search keywords. By contrast, the distobuf im-
lative share of different advertisers (see Fig. 2. A. - lefegraph). pressions still continues for many more positions (alttowg only
From this graph, one can already see that just the top 500tedve ~ epresent the top 10000 dls_tlnct ad\_/ertlser IDs here, asetado
ers get roughly 66% (or about two-thirds) of the total 7.8lionil not play any significant role in the click market).

clicks in the available data Set
Since in our data, there ag least 10000 distinct advertisers 4.2 Distribution of market share per di3p|ay

(most likely, there are many more, but we only considereddpe rank pOSitiOI’]

10000), this means that a percentage of less than 5% of af-adv

tisers have a two-thirds market share. This suggests thatssped

search markets are indeed very concentrated, perhaps eversm

than “traditional” real-world markets.

The previous Section examined the power law distributidns o
the number of clicks each advertiser getsaggregate (i.e. over
all display ranks his/her links are shown in). Here, we lookvh
an advertiser's market share distribution is affected whiken

4.1 Distribution of impressions vs. distribu- down per display rank (an issue we already touched on in Sgct.

. . - However, we first make a slight restriction in the number of ad
tion of clicks for the top advertisers vertisers we consider. As shown in Sect 4.1 above, theredsvamp

3 - ) ) law distribution in the clicks received by the top 4000 adigers,
thhéoh%tmhg}nar&?{?_vg?ltsheer ;"Sgntsgﬁarg mLOWIanﬂstqg gvf‘ég‘sbc')’;‘gg?’e as advertisers ranked beyond this position each receive agitegl
sumption, in this case. For example, Ebay uses many spahsore number of clicks. Therefore, in this Section, we restriat atiien-

links to different products, each relevant for differerdusd terms. tion to the top 4000 advertisers. As these 4000 advertiseesve
However, using this technique, Ebay is taken as one adegrtis- over 80% of all 7.8 million clicks in the data set (see Fig. R ke

gardless of how many different items its URLS point to. do not risk loosing much useful information.
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Figure 2: A (left-side): Cumulative percentage distribution of the number of clicks advertisers in the market receivewrt. to their

rank position, considering the top 5000 advertisers in the rarket (normal scales). B (right): Log-log scale distributions of the number
of impressions, respectively number of clicks, received bihe top 10000 advertisers in the market. Note that both distibutions follow
approximately parallel power laws, but the click distributions levels off in a “long tail" after the first 4000 advertisers, while the
impression distribution has a much longer tail (not all appering in the figure).

Results are shown in Fig. 3. First, in Fig. 3.A. we show again,

more clearly, the power law distribution of the number ofké for
the top 4000 advertisers. Note that this is a “wide" distidn in
the sense that it covers 4000 positions and several ordenagf
nitude. On the right-hand side graph (Fig. 3.B), we show #mes
graph, but now, for each advertiser, we also break down the nu
ber of clicks received by the position his/her sponsored WRls
in when it was clicked.

Surprisingly, perhaps, the smooth power law shape is net fol
lowed at the level of the display rank - in fact, for the lowevels
the variance becomes so great that the distribution breaka,dat
the display rank level. We hypothesize the most likely reaso
this variance is the way each individual advertiser doe®bitiéing
for the preferred keywords at different points in time, o thay
he specifies the way his keyword budget could be used in differ
periods. For example, some advertisers may have a sharirgin
sale campaign, when they will bid aggresively for the preffikey-
word, hence getting the top spot. By contrast, others mdgipte
have longer-running ads, even if they don't get the top spetye
time. Some anecdotal evidence from online marketing sugges
that even just the repeated display of a link of a certain et
on the screen may count: if a user sees an ad repeatedly liethis/
attention space, that may establish the brand as more tibiw

In Fig. 3.B, by loking the the top 4 advertisers in this datasee
can already see that users ranked 2 and 3 utilize a ratheraiff
strategy than “the trend" represented by users 1 and 4. \Wgle
total numer of clicks does follow, approximately the powaw,|
they seem to get, proportionally speaking, more clicks entep-
ranked slot on the page than the rest. While, in order to preske
privacy of the data, we cannot mention who these companees ar
it does seem that users 2 and 3 are actually “aggregatorsd-of a
vertisng demand. By this, we mean online advertising agsnaf
engines (or automated services offered by the platfornif)itset
aggregate demand from different advertisers and do thérigjdoh
their behalf. Apparently, this allows them to capture, mmjon-
ally, more often the top slot for the required keyword. Uinfier

nately, however, we cannot investigate this aspect furtiiece the
dataset provided does not contain any information abouditoggl
budgets or financial information in general.

In the following and last Section of this paper, we turn oterat
tion to a somewhat different problem: how could we use irtsigh
gained from analyzing this query data to provide a biddingisien
support for advertisers taking part in a sponsored searckana

5. USING CLICK DATATO DERIVE SEARCH
TERM RECOMMENDATIONS

The previous Sections of this paper used complex systents ana
ysis to provide a high-level examination of the dynamicspiirs
sored search markets. In this Section, we look at how suctyque
log data could be used to output recommendations to indiidu
advertisers. Such an approach should lead to answers tbanses
such as: What kind of keyword combinations look most prongjsi
to spend one’s budget on, such as to attract a maximum nurhber o
relevant user clicks?

While the previous analysis of power-law formation was done
at a macro-level, in this Section we take a more local petsgec
That is, we do not consider the set of all possible searchsterm
but rather a set that is specific to a domain. This is a reag®nab
model: in practice, most advertisers (which are typicalhire
merchants), are only concerned with a restricted set of &eysv
which are related to what they are actually trying to sell.

For the analysis in this paper, we have chosen as a domain 50
keywords related to the tourism industry (i.e. online bogki of
tickets, travel packages and such). The reason for thigtstlich
of this activity is already fast moving online (e.g. a verpstantial
proportion of, for example, flight tickets and hotel res¢iovas are
now carried out online). Furthermore - and perhaps more impo
tant - there are low barriers of entry and the field is not dat&d
by one major player. This contrasts, for example, other dosna
such as the sale of Ipods and accessories, where Apple Stores
be expected to have a dominant position on the clicks in thkeha



Ranking of advertisers by number of clicks received (Iogz—log2 scale)
20 T

= = = = =
o N S =) e

=

No. of times the links were clicked (all positions)

6 " " " " "
0 2 4 6 8 10

Rank of the advertiser by total number of times her links were clicked

12

Ranking of advertisers by number of clicks received, in total and for different positions
20 T T T T

T
Total clicks
Position 1 ||
Position 2
Position 3 ||
Position 4
Position 5
Position 6 ||
Position 7
Position 8 ||

181

16—

e ‘ |
12F

iy

i

M
W

mh Wh»,”

"'Wl M W Wi M‘
i | | | M i

11
0 2 4 6 10
Rank of the advertiser by the number of times her links were clicked

|

W[\m

'\‘w

\E i

1“ !
|

Number of times links of the advertiser were clicked
5
T

N
T

12

Figure 3: Distribution of advertiser market share, based ontheir ordered rank vs. the number of clicks their links receive (log-log
scales). The left-hand side plot (part A) gives the total nuroer of clicks an advertiser received for all impressions of kr links,
regardless of the position they were in. The right-hand sid¢part B) gives the number of clicks received, both in total, lnt also when
her ads were displayed on a specific position on the page (ampthe 8 ranked slots of the sponsored search interface).

5.1 Deriving distances from co-occurrence in
sponsored click logs

Given a large-scale query log, one of the most useful pietes o
information it provides is the co-occurence of words in efiént
gueries. Much previous work has observed that the fact that t
search keywords frequently appear together in the samg givers
rise to some implicit semantic distance between them [10].

In this paper, we take a slightly different perspective ds s
sue, since, in computing the distances, we only use thosgegque
which received at least one sponsored search click for ttieatss
(i.e. URLSs) displayed alongside the results. We argue $shéssub-
tle but very important difference from simply using co-omce
in organic search logs. The fact that queries containingesoom-
bination of query words lead to a click on a sponsored URL iespl
not only a purely semantic distance between those keywordse
important for an advertiser, the fact that users searchimthose
combinations of keywords have the possible intention ofitogy
things online.

Formally, letN (73, T;) denote the number of times two search
termsT; andT); appear jointly in the same query, if that query re-
ceived at Ieast one sponsored search click. X€T;) and N (T5)

denote the same number of queries leading to a click, in which

termsT;, respectivelyl; appear in total (i.e. regardless of other
terms they co-occur with). Then, the cosine similarity aliste be-
tween termgl; and7; can be defined as:

N(TMTJ)

Sim(T;,Tj) = W

©)

5.2 Constructing keyword correlation graphs

The most intuitive way to represent similarity distancebisugh
a keyword correlation graph. The results from our subsetOof 5
travel-related terms are shown in Fig. 4. In this graph, ke s

of each node (representing one query term) is proportianéie
absolute frequency of the keyword in all queries in the logne T
distances between the nodes are proportional to the sityitis-
tance between each pair of terms, computed Eq. 3, where thie wh
graph is drawn according to a so called “spring embeddgré-ty
algorithm. In this type of algorithm, edges can be conceiasd
“springs"”, whose strength is indirectly proportional teithsimi-
larity distance, leading to cluster of edges similar to eettter to
be shown in the same part of the graph.

There are several commercial and academic packages dwailab
to draw such complex networks. The one we think is most sigitab
- and which was used for graph Fig. 4 - is Pajek (see [3] for a
description). Note that not all edges are considered in thed fi
re520 = 1225 possible
pairwise similarities (edges), one for each potential kaapair.
Most of these dependencies are, however, spurious (theysemut
just noise in the data), and our analysis benefits from usitg o
the top fraction, corresponding to the strongest depenegndn
the graph shown in Fig. 4, containing 50 nodes, only the tdp 15
strongest dependencies were considered in the visualizati

graph. Even for 50 nodes, there

5.3 Graph correlation graphs: results

There are several conclusions that can be drawn from the visu
alization in Fig. 4 constructed based on the Live.com sp@tso
search query logs. First, notice that each node was labebéed
only with the term or keyword it corresponds to, but also wita
aggregate click-through rate (CTR), specific for that keydvda-
sicallly, this is the percentage of all the queries that ubederm
which generated at least one click to a sponsored search WRL d
played with that query.

Note that these click-through rates may, at a first glaneamsm
the low side: in general only a few percent of all queries altju
lead to a click on an sponsored (i.e. advertiser) link. Neness,
as a search engine receives millions of queries in a rathat sh
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Figure 4: Visualization of a search term correlation graph, for a set of search terms related to the tourism industry. Eab search
term is assigned one colored dot. The size of the dots gives relative weight (in total number of clicks received), whik the distances
between the dots are obtained through a spring-embedder typalgorithm and are proportional to the co-occurrence of thewo search
terms in a query. Each dot is marked with its success rate (peentage of the total number of impressions associated witthat query

word that received a click).

period of time, even a 5%-10% click-through rate can be cgige
nificant. Note that some keywords (such a “cheap") have aehigh
click-through rate than others. The reason for this may heplo-
ple searching for “cheap"” things (e.g. cheap airline tiskeheap
holiday packages, hotel rooms etc.) may already have thation

to buy something online, and therefore are more likely tsdghl
click on sponsored links.

However, the most interesting effect to observe in Fig. 4tlaee
term clusters that emerge in different parts of the grapimfthe
application of the spring-embedder visualization aldont For ex-
ample, the leftmost part of the graph has 4 terms related &hee
such as “warm", “tropical" and “exotic". On the top left paft
the graph, one can find terms such as “entertainment", “iifig/ht
“party” and “fun”, while very bottom part includes relatestms
as such “climbing", “hiking" and “mountain”. The top-rigpgrt
includes commercial terms such as: “ticket", “tickets",igffit",
“cheap", “last", “minute". The central part of the graph lurdes
terms such a “beach", “sand", “sea", “resort", “ocean")dims!"
etc. Additionally, pairs of terms one would naturally asate do
indeed appear close together, such as “romantic" and “ggtaw
and “sunset" and “sunrise” and “ocean".

In the following, we discuss an algorithm that can detechsuc
clusters automatically. More precisely, we would like agoaithm
that selects combinations of tags that look promising iraating
queries and clicks.

5.4 Automatic identification of sets of keywords

In this Section, we show how keyword graphs could be automat-
ically partitioned into relevant keyword clusters. Thehteiue we
use for this purpose is the so called “community detectidgb-a
rithm [13], also inspired by complex systems theory. In regtnor
graph-theoretic terms, a community is defined as a subsetdafa
that are connected more strongly to each other than to thefes
the network (i.e. a disjoint cluster). If the network anagzs a
social network (i.e. vertexes are people), then “commurtigs
an intuitive interpretation. However, the network-thamr&otion
of community detection algorithm is broader, has been siotig
applied to domains such as networks of items on Ebay [11]i4pub
cations on arXiv, food webs [13] etc.

5.4.1 Community detection: a formal discussion

Let the network considered be represented a gt@ph (V, E),
when|V| = n and|E| = m. The community detection problem
can be formalized as a partitioning problem, subject to atramt.
Eachv € V must be a assigned to exactly one group (i.e. commu-
nity or cluster)Ct, Ca, ...Cy, Where all clusters are disjoint.

In order to compare which partition is “optimal”, the metnged
is modularity, henceforth denoted bg. Intuitively, any edge that
in a given partition, has both ends in the same cluster dorigs
to increasing modularity, while any edge that “cuts acrafssters
has a negative effect on modularity. Formally,dgt, i, j = 1..nc
be the fraction of all edge weights in the graph that connlesters



Cluster 1 Cluster 2 Cluster 3 | Cluster 4| Cluster 5| Cluster 6 | Cluster 7| Cluster 8| Cluster 9
beach party package | weather | getaway diving cruise show last
luxury | entertainment vacation exotic | romantic | swimming | sunrise | tickets minute
hotel nightlife holidays | tropical sunset ticket visit
island fun destination| warm cheap

resort Hawaii deal flight

sun Oahu tour
mountain offer

ocean great

hiking

climbing

sea

sand

Keywords eliminated to increase modularity: holiday, talis, relaxation, trip.

Figure 5: Optimal partition of the set of travel terms in semantic ¢

lusters, when the top 150 edges are considered. The pigion

was obtained by applying Newman’s automated “community degction" algorithm to the graph from Fig 4. This partition has a

clustering coefficient Q=0.59.

Algorithm 1 GreedyQ Partitioning: Given a graphG
(V,E),|V| = n,|E| = mreturns partition< C1,...Cp >

. C»L = {’UZ‘},Vi = 1,TL
.nc=n

. Vi, j, e;; initialized as in EqQ. 5
. repeat

< Cy, Cj >=argmax; c, (eij +ej; — 20,»;0,]')
AQ = maxcl.,cj (eij +eji — 2(12‘(1]‘)

Ci = Cz‘ UCj, Cj = (Z)//mergeCi and Cj

. nc=nc—1

L untilAQ <0

1
2
3
4
5.
6
7
8
9
10maz@ = Q(C1,..Cny)

iandj and leta; = > - e;; be the fraction of the ends of edges
in the graph that fall within cluster The modularityQ of a graph
|G| with respect to a partition’ is defined as:

Q(G,C)=> (eii —a3)

i

4)

Informally, @ is defined as the fraction of edges in the network
that fall within clusters, minus the expected value of tlzefion of
edges that would fall within the same cluster, if all edgesi\de
assigned using a uniform, random distribution.

As shown in[13], if@ = 0, then the chosen partitionshows
the same modularity as a random division. A valué)afloser to 1
is an indicator of stronger community structure - in realweks,
however, the highest reported valugjs= 0.75. In practice, [13]
found (based on a wide range of empirical studies) that gatdie
@ above around 0.3 indicate a strong community structurehier t
given network. In our case, the edges that we consideredein th
graph (remember only the strongest 150 edges are cons)denesl
a weight, defined as shown in Eq. 3 above. For the purpose of the
clustering algorithm, this weight has to be normalized by sbm
of all weights in the system, thus we assign initial values;jas:

®)

€ij = mszmu

5.5 The graph partitioning algorithm
The algorithm we use to determine the optimal partition & th

“community identification" algorithm described in [13], rfoally

specified as Alg. 1 above. Informally described, the albanit
runs as follows. Initially, each of the vertexes (in our casach
keyword) is assigned to its own individual cluster. Thergaxth it-
eration of the algorithm, two clusters are selected whialngrged,
lead to the highest increase in the modulatyf the partition. As
can be seen from lines 5-6 of Alg. 1, because exactly two clus-
ters are merged at each step, it is easy to compute this g&iea

Q as: AQ = (61’]' + ej; — Qaiaj) or AQ = 2% (61’]' — aiaj)

(the value ofe;; being symmetric). The algorithm stops when no
further increase i) is possible by further merging.

Note that it is possible to specify another stopping créteéni
Alg. 1, line 9, e.g. it is possible to ask the algorithm to rata
minimum number of clusters (subsets), by letting the atborirun
until nc reaches this minimum value. Furthermore, this algorithm
is computationally very efficient, since it is basicallydar in the
size of the graph (number of keywords considered), hen@nibe
applied even to very large datasets.

5.6 Discussion of graph partitioning results

The results from the graph partitioning algorithm, showihg
partition maximises the modularity for this setting, is shown in
Fig. 5. Note that this is not the only possible way to patitio
this graph - if one would consider a different number of sgest
dependencies to begin with (in this case we selected the36p 1
edges, for 50 keywords), or a different stopping criterize onay
get a somewhat different result. Furthermore, note thatskey-
words, which were very general and could fit in several chsste
(shown below the figure), were pruned in order to improve modu
larity, through a separate algorithm not shown here.

Still, the partition results shown in Fig. 5 match well what -
tuition would describe as interesting combinations of slederms,
for such a setting. There is one large central cluster, ofsehat all
have reasonably strong relations to each other, and a setaif, s
marginal clusters on the side. The large cluster in the raidduld
be further broken by the partition algorithm, but only if werde
some other stop criteria than maximum modularity (such ara ¢
tain number of distrinct clusters).

The partition in Fig. 5 fits well with what can be graphically
observed in Fig. 4: actually, most of the clusters obtaingdraat-
ically after partition can be identified on different parfstee graph.
This does not have to be a one-to-one mapping, however, $ecau
in a 2D drawing, the layout of the nodes after “spring embegldi
may vary considerably and, furthermore, there are keywatdsh



could fit well into 2 clusters, and were assigned to one ashthat
a slightly higher modularity.

6. DISCUSSION
6.1 Contribution of the paper & related work

they are selling. For example, we could apply our “commudéy
tection" algorithm to partition not only sets of search keyus, but
also sets of bidders (advertisers) interested in those t&wgy This
should allow us to derive more in-depth insights into thectre
of sponsored search.

Our work can be seen as related to several other directions of7- ACKNOWLEDGEMENTS

research. Similar techniques to the ones used in this paper h
been succesfully applied to analyze large-scale collabertag-
ging systems [10] and preference networks for Ebay itemjs [11

The amount of work which is specifically geared to sponsored
search auctions, especially empirical studies, has safar bather
limited (probably not least due to lack of extensive datwsgethis
field). Much of the previous work, e.g. [8] looks mostly at thias
introduced by a link’s display rank on clicking behaviouugk as
discussed in Sect. 3 of this paper). Another important toe®f
work uses existing intuitions about user clicking behavitwude-
sign different allocation mechanisms for this problem -vitoek of
[5] is a good example of this approach. By comparison to oukwo
the approach taken by [5] studies mostly at mechanism désign
sues arising from computational advertising, rather thenfiopm a
data mining or empirical examination of such markets.

One paper that is related in scope to ours, since it also geevi
an empirical study of search engine advertising marke®isthis
work takes, however, a different perspective on this problalso
due to the different type of data the authors had availabjecd-
trast to our work, the data that [9] use comes from a singtgela
scale advertiser. This means they do get access to mordedetai
information (including financial one) and can say more alsmit
tual bidding behaviour. By comparison, the data availabled
for this study does not contain any detailed financial infation,
but, unlike [9] it allows us to have a global level view of thbele
market (from the perspective of the search engine, not jestgie
advertiser). This provides very important insights abbet struc-
ture of sponsored search markets.

Finally, there exists previous work that has applied simila-
occurence-based techniques to organic search logs ontaggs-
tems [7, 10]. However, our focus in this paper is differene do
not aim to to merely deduce what is the semantic distancedsgtw
keywords in the general sense, but what kind of combinatains
keywords are financially interesting for a sponsored seadser-

tiser to bid on. This is the reason why the size of the nodes and

distances computed in Fig. 4 are built using only queriesciwhi
lead to an actual click on a sponsored ad. Basically, thigjisve
alent to filtering only the “opinion” (expressed through des) of
the subset of users that are likely to buy something onliataer
than all search engine users. To our knowledge, this is tke fir
paper to use sponsored search click data in this way.

6.2 Future work

This work, being somewhat preliminary, leaves many aspects

open to future research, of which we only mention a few possi-
bilities. On such aspect would be is the issuedérnalities: how
the presence of links by competing advertisers influenceslitk-
through rates of other bidders. As the competition is bégica
customers’ attention space, externalities play an imporale in
the efficacity of sponsored search impressions.

Another very interesting topic would be to study the struetof
sponsored search markets (in terms of advertiser market sha)
not only at the global, macro-level, but at the level of indial
sets of keywords. In fact, sponsored search can be seen Iyot on
as one market, as a network of markets, since most advertser
interested in (and bid on) a specific set of keywords relaiedhat

The authors thank Microsoft Research for their supporthe t

framework of a ‘Beyond Search" award. We also wish to thank

Nicole Immorlica and Renato Gomes (Nortwestern Univeysiy
many useful discussions in the preliminary stages of thikwo

8. REFERENCES

[1] A. Baldassarri, A. Barrat, A. Cappocci, H. Halpin,
U. Lehner, J. Ramasco, V. Robu, and D. Taraborelli. Power
laws and emerging structure in flickr groups, 2008. Dagstuhl
Seminar on Social Web Communitie Report.
[2] Y. Bar-Yam. The dynamics of complex systems (studies in
nonlinearity) Westview Press, 2003.
[3] V. Batagelj and A. Mrvar. Pajek - A program for large
network analysisConnections, 21:47-57, 1998.
S. M. Bohte, E. Gerding, and J. L. Poutré. Market-based
recommendation: Agents that compete for consumer
attention ACM Trans. Internet Technol., 4(4):420-448, 2004.
C. Borgs, J. Chayes, N. Immorlica, K. Jain, O. Etesamil an
M. Mahdian. Dynamics of bid optimization in online
advertisement auctions. WW\W ' 07: Proc. 16th Int. Conf.
World Wide WWeb, pages 531-540. ACM Press, 2007.
[6] T. Carter. A short trip through entropy to power laws, 200
Complex Systems Summer School, Santa Fe Institute, NM.
R. L. Cilibrasi and P. M. B. Vitanyi. The google similayit
distancel EEE Trans. on Knowl. and Data Eng.,
19(3):370-383, 2007.
N. Craswell, O. Zoeter, M. Taylor, and B. Ramsey. An
experimental comparison of click position-bias models. In
WSDM ’08: Proc. Int. Conf. on Web search and data mining,
pages 87-94. ACM Press, 2008.
[9] A. Ghose and S. Yang. Analyzing search engine advedisin
firm behavior and cross-selling in electronic markets. In
WWW’08: Proc. of the 17th Int. Conf. on World W de Web,
pages 219-226. ACM Press, 2008.
H. Halpin, V. Robu, and H. Shepherd. The complex
dynamics of collaborative tagging. Rroc. 16th Int. World
Wide Web Conf. (WMAWV 07), pages 211-220. ACM, 2007.
R. K.-X. Jin, D. C. Parkes, and P. J. Wolfe. Analysis of
bidding networks in eBay: Aggregate preference
identification through community detection. Rnoc. AAAI
Workshop on Plan, Activity and Intent Recognition, 2007.
M. Newman. Power laws, pareto distributions and zijdis.
Contemporary Physics, 46:323-351, 2005.
[13] M. E. J. Newman. Fast algorithm for detecting community
structure in networks?hys. Rev., E 69, 066133, 2004.
[14] V. Robu and H. La Poutré. Designing bidding strategies i
sequential auctions for risk averse agentsAdent-Mediated
Electr. Commerce,, pages 76—89. Springer LNBIP 13, 2007.

(4]

(5]

(7]

(8]

[10]

[11]

[12]



