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ABSTRACT
This paper provides a comprehensive study of the structure and dy-
namics of online advertising markets, based on a dataset of spon-
sored search queries provided by Microsoft Research. The study
was performed using techniques from agent-based computing, data
mining and from the emergent discipline of complex systems anal-
ysis. First, we look at how the display rank of a URL link influ-
ences its click frequency, for both sponsored search and organic
search. Second, we study the market structure that emerges from
these queries, especially the market share distribution ofdifferent
advertisers. We show that the sponsored search market is highly
concentrated, with less than 5% of all advertisers receiving over
2/3 of the clicks in the market. Furthermore, we show that both the
number of ad impressions and the number of clicks follow power
law distributions of approximately the same coefficient. However,
we find this result does not hold when studying the same distri-
bution of clicks per rank position, which shows considerable vari-
ance, due to the way advertisers divide their budget on different
keywords. Finally, we turn our attention to how such sponsored
search data could be used to provide decision support tools for bid-
ding for combinations of keywords. We provide a method to visu-
alize keywords of interest in graphical form, as well as a method to
partition these graphs to obtain desirable subsets of search terms.

1. INTRODUCTION
Sponsored search, the payment by advertisers for clicks on text-

only ads displayed alongside search engine results, has become a
very important part of the Web. It now represents the main source
of revenue for large search engines, such as Google, Yahoo! and
Microsoft and it receives a rapidly increasing share of advertising
budgets worldwide. But problems that arise from sponsored search
also present exciting research opportunities, for fields asdiverse as
economics, artificial intelligence and multi-agent systems.

In the field of multi-agent systems, researchers have been work-
ing for some time on topics such as designing automated auction
bidding strategies in uncertain and competitive environments (e.g.
[4, 14]). Another emergent field which studied such topic is agent-
based computational economics (ACE), where significant research
effort has focused on the dynamics of electronic markets through
agent-based simulations. One particular topic of researchfor the
ACE community is how order and macro-level market structurecan
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emerge from the micro-level actions of individual users. However,
most existing work has been based on simulations, as there are few
sources of large-scale, empirical data from real-world automated
markets. In this context, empirical data made available from spon-
sored search provides an excellent opportunity to test the assump-
tions made in such models in a real market.

In this paper, which is based on large-scale Microsoft sponsored
search data, we provide a detailed empirical analysis of such data.
To do this, we make use of several techniques derived from compu-
tational economics, and especially complex systems theory. Com-
plex systems analysis (which we briefly review below) has been
shown to be an excellent tool for analyzing large social, technolog-
ical and economic systems, including web systems [12, 10, 6].

1.1 The data set
The study provided in this paper is based on a large dataset of

sponsored search queries, obtained from the website Live.com1.
The search data provided consists of two distinct data sets:a set of
sponsored search dataset (URLs returned are allocated to advertis-
ers, through an auction mechanism) and an organic search dataset
(standard, unbiased web search). The sponsored search datacon-
sists of 101,171,081 distinct impressions (i.e. single displays of
advertiser links, corresponding to one web query), which intotal
received 7,822,292 clicks. This sponsored dataset was collected
for a roughly 3-month period in the autumn of 2007. The organic
search data set consists of 12,251,068 queries, and was collected in
a different 3-month interval in 2006 (therefore the two datasets are
chronologically disjoint).

It is important to stress that in the results reported in thispaper
are based mostly on the sponsored search data set2. Furthermore,
the sponsored search data we had available only provides partial
information, in order to protect the privacy of Microsoft Live.com
customers and business partners. For example, we have no infor-
mation about financial issues, such the prices of different keywords,
how much different advertisers bid for these keywords, the bud-
gets they allocate etc. Furthermore, while the database provides an
anonymized identifier for each user performing a query, thisdoes
not allow us to trace individual users for any length of time.

Nevertheless, one can extract a great deal of useful information
from the data. For example, the identities of the bidders, for which
keyword combinations their ads were shown (i.e. the impressions),
for which of these combinations they received a click, the position
their sponsored link was in when clicked etc. Insights gained from
analyzing this information forms the main topic of this paper.

1This data was kindly provided to us by Microsoft research through
“Beyond Search" award
2The only exception is a plot on the distribution number of clicks
vs. display rank in Sect. 3, included for comparison reasons.



2. COMPLEX SYSTEMS ANALYSIS APPLIED
TO THE WEB AND ECONOMICS

Complex systems represents an emerging research discipline, at
the intersection of diverse fields such as AI, economics, multi-agent
simulations, but also physics and biology [2]. The general topic of
studies in the field of complex systems is how macro-level struc-
ture can emerge from individual, micro-level actions performed by
a large number of individual agents (such as in an electronicmar-
ket). For web phenomena, complex systems techniques have been
successfully used before to study phenomena such as collaborative
tagging [10] or the formation of online social groups [1].

One of the phenomena that are indicative to such complex dy-
namics is the emergence of scale-free distributions, such as power
laws. The emergence of power laws in such a system usually in-
dicates that some sort of complex feedback phenomena (e.g. such
as a preferential attachement phenomena) is at work. This isusu-
ally one of the criteria used for describing the system as “complex"
[2, 6]. Research in disciplines such as econophysics and compu-
tational economics discusses how such power laws can emergein
large-scale economic systems (see [6, 12] for a detailed discussion).

2.1 Power laws: definition
A power law is a relationship between two scalar quantitiesx

andy of the form:

y = cx
α (1)

whereα andc are constants characterizing the given power law.
Eq. 1 can also be written as:

log y = α log x + log c (2)

When written in this form, a fundamental property of power laws
becomes apparent; when plotted in log-log space, power lawsap-
pear as straight lines. As shown by Newman [12] and others, the
main parameter that characterizes a power law is its slope param-
eterα. (On a log-log scale, the constant parameterc only gives
the “vertical shift" of the distribution with respect to they-axis.).
Vertical shift can vary significantly between different phenomena
measured (in this case, click distributions), which otherwise follow
the same dynamics. Furthermore, since the logarithm is applied
to both sides of the equation, the size of the parameterα does not
depend on the basis chosen for the of the logarithm (althoughthe
shifting constantc is affected). In the log-log plots shown in this
paper, we have chosen the basis of the logarithm to be 2, since
we found graphs with this low basis the more graphically intuitive.
But, in principle, the same conclusions should hold if we choose
the logarithm basis to be, e.g.e or 10.

3. INFLUENCE OF DISPLAY RANK ON CLICK-
ING BEHAVIOR

The first issue that we studied (for both sponsored and organic
search data) is how the position that a URL link is displayed in
influences its chances or receiving a click. Note that this particu-
lar issue has received much attention in existing literature [8]. To
briefly explain, Microsoft’s Live.com search interface (from which
the data was collected), is structured as follows:

• For sponsored search there are up to 8 available slots (posi-
tions) in which sponsored URL links can be placed. Three of
these positions (ranked as 1-3) appear at the top of the page,
above the organic search results, but delimited from those by
a different background. In addition, the page can display up
to 5 additional links in a side bar at the right of the page.

• The “organic" search results are usually returned as 10 URL
links/page (a user can opt to change this setting, but very few
actually do).

All the sponsored links are allocated based on an auction-like
mechanism between the set of interested advertisers (such adis-
play, in any position is called in “impression"). However, the ad-
vertisers only pay if their link actually gets clicked - i.e.“pay per
click" model. The exact algorithm used by the engine to determine
the winners and which advertiser get which position is a complex
mechanism design problem and not all details are made public.
However, in general, it depends on such factors as the price the
bidder is willing to pay per click, the relevance of the queryto her
set of terms, and her past performance in terms of “clickthrough
rate" (i.e. how often links of that user were clicked in the past, for
a given keyword). By contrast, in organic search, returned results
are ranked simply based on relevance to the user’s query.

3.1 Results on display position bias and inter-
pretation

Results for the position bias on click distribution are plotted in
Fig. 1: part A (left side) for sponsored search ant part B (right
side) for the organic search. Note that both of these are cumulative
distributions: they were obtained by adding the number of clicks
for a link in each position, irrespective of the exact context of the
queries or links that generated them. Furthermore, both aredrawn
in the log-log space.

There are two main conclusions to be drawn from these pictures.
For the sponsored search results (Fig. 1.A). The distribution across
the 8 slots seems to resemble a straight line, with a slope parameter
aprox.α = 2. However, such a conclusion would be too simplistic:
there is, in fact, a difference between the slope between thefirst
3 positions (up tolog23, on the horizontal axis), and the last 5
positions. The slope for the first 3 positions is aroundα1 = 1.4,
while for the last 5 is aroundα2 = 2.5. The most likely reason
for this drop comes from the way the Live.com search interface is
designed. The first 3 slots for sponsored search links are shown on
the top of the page, above the organic search results, while the last
5 are shown in a side bar on the right of the page.

Fig. 1.B corresponds to the same plot for organic search results,
the main effect one notices is the presence of several levels(thresh-
olds), corresponding to clicks on different search pages. We stress
that, since this is a log-log plot, the drop in attention between sub-
sequent search pages is indeed very large - about two orders of
magnitude (i.e. the top-ranked link on the second search page is,
on average, about 65 times less likely to be clicked than the last-
ranked link on the first page). The distribution of intra-page clicks,
however, at least for the first page of results, could be roughly ap-
proximated by a power law of coefficientα = 1.25.

All this raises of course the question: what do these distributions
mean and what kind of user behaviour could account for the emer-
gence of such distributions in sponsored search results? First, we
should point out that the fact that we find power law distributions
in this context is not completely surprising. Such distributions have
been observed in many web and social phenomena (to give just one
example, in collaborative tagging systems, in the work by one of
the co-authors of this paper [10] and others). In fact, any model
of “top to bottom" probabilistic attention behaviour, suchas a user
scanning the list of results from top to bottom and leaving the site
with a certain probability by clicking one of them could giverise
to such a distribution. Of course, more fine-grained models of user
behavior are needed to explaining click behavior in this context (an
example of such a model is [8]). But for now we leave this issueto
further research, and we look at the main topic of this paper which
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Figure 1: Distribution of clicks received by a URL (link), re lative to its position on the display, for sponsored and organic search.
A(left-side, sponsored search dataset): There are up to 8 sponsored advertiser links displayed: 3 on the top of the page,and 5 in a
side bar. B(right, organic search data): There are usually 10 positions displayed per page, with multiple result pages appearing as
plateaus.

is examining the structure of the sponsored search market itself.

4. MARKET STRUCTURE AT THE ADVER-
TISER LEVEL

In this Section, we look at how sponsored search markets are
structured, from the perspective of the participants (i.e.advertisers
that buy search slots for their URLs). More specifically, we study
how relative market shares are distributed across link-based adver-
tisers. We note that in many markets, an often cited rule, also infor-
mally attributed to Pareto, is that 20% of participants in a market
(e.g. customers in a marketplace) drive 80% of the activity.Here,
we call this effect the “market concentration".

In a sponsored search market, the main “commodity" which pro-
duces value for market participants (either advertisers and the search
engine) is the number of clicks. Therefore, the first thing that we
plotted (first, using normal, i.e. non-logarithmic axes) isthe cumu-
lative share of different advertisers (see Fig. 2. A. - left side graph).
From this graph, one can already see that just the top 500 advertis-
ers get roughly 66% (or about two-thirds) of the total 7.8 million
clicks in the available data set3.

Since in our data, there areat least 10000 distinct advertisers
(most likely, there are many more, but we only considered thetop
10000), this means that a percentage of less than 5% of all adver-
tisers have a two-thirds market share. This suggests that sponsored
search markets are indeed very concentrated, perhaps even more so
than “traditional" real-world markets.

4.1 Distribution of impressions vs. distribu-
tion of clicks for the top advertisers

3Note that an advertiser was taken, following the available data, by
the domain URL of the sponsored link. This is a reasonable as-
sumption, in this case. For example, Ebay uses many sponsored
links to different products, each relevant for different search terms.
However, using this technique, Ebay is taken as one advertiser, re-
gardless of how many different items its URLs point to.

Next, we studied the detailed distribution of the numbers ofim-
pressions (i.e. displayed URLs) and clicks on these impressions,
for the top 10000 distinct advertisers. Results are shown inFig.
2.B. (right-hand side graph), using a log-log plot.

The main effect that one can see from Fig. 2.B. is that the dis-
tribution of impressions and the distribution for clicks received by
the advertisers form two approximately parallel, straightlines in
the log-log space (i.e. they are two power laws of approximately
the same slope coefficientα). There is one important difference,
though, which is the size of the “long tail" of the distribution. The
distribution of the number of clicks (lower line), levels off after
about 4000-5000 positions. Basically, in data terms, this means
that advertisers beyond the top 5000 each receive a negligible num-
ber of clicks, at least in the dataset we examined. The reasonfor
this may be that their ads almost always appear in the lower dis-
play ranks, or simply that they bid on a set of rarely used (or highly
specialised) search keywords. By contrast, the distribution of im-
pressions still continues for many more positions (although we only
represent the top 10000 distinct advertiser IDs here, as therest do
not play any significant role in the click market).

4.2 Distribution of market share per display
rank position

The previous Section examined the power law distributions of
the number of clicks each advertiser getsin aggregate (i.e. over
all display ranks his/her links are shown in). Here, we look how
an advertiser’s market share distribution is affected whenbroken
down per display rank (an issue we already touched on in Sect.3).

However, we first make a slight restriction in the number of ad-
vertisers we consider. As shown in Sect 4.1 above, there is a power
law distribution in the clicks received by the top 4000 advertisers,
advertisers ranked beyond this position each receive a negligible
number of clicks. Therefore, in this Section, we restrict our atten-
tion to the top 4000 advertisers. As these 4000 advertisers receive
over 80% of all 7.8 million clicks in the data set (see Fig. 2.A), we
do not risk loosing much useful information.
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Figure 2: A (left-side): Cumulative percentage distribution of the number of clicks advertisers in the market receive,wrt. to their
rank position, considering the top 5000 advertisers in the market (normal scales). B (right): Log-log scale distributions of the number
of impressions, respectively number of clicks, received bythe top 10000 advertisers in the market. Note that both distributions follow
approximately parallel power laws, but the click distribut ions levels off in a “long tail" after the first 4000 advertisers, while the
impression distribution has a much longer tail (not all appearing in the figure).

Results are shown in Fig. 3. First, in Fig. 3.A. we show again,
more clearly, the power law distribution of the number of clicks for
the top 4000 advertisers. Note that this is a “wide" distribution, in
the sense that it covers 4000 positions and several orders ofmag-
nitude. On the right-hand side graph (Fig. 3.B), we show the same
graph, but now, for each advertiser, we also break down the num-
ber of clicks received by the position his/her sponsored URLwas
in when it was clicked.

Surprisingly, perhaps, the smooth power law shape is not fol-
lowed at the level of the display rank - in fact, for the lower levels
the variance becomes so great that the distribution breaks down, at
the display rank level. We hypothesize the most likely reason for
this variance is the way each individual advertiser does thebidding
for the preferred keywords at different points in time, or the way
he specifies the way his keyword budget could be used in different
periods. For example, some advertisers may have a short-running
sale campaign, when they will bid aggresively for the preffered key-
word, hence getting the top spot. By contrast, others may prefer to
have longer-running ads, even if they don’t get the top spot every
time. Some anecdotal evidence from online marketing suggests
that even just the repeated display of a link of a certain merchant
on the screen may count: if a user sees an ad repeatedly in his/her
attention space, that may establish the brand as more trustworthy.

In Fig. 3.B, by loking the the top 4 advertisers in this dataset, one
can already see that users ranked 2 and 3 utilize a rather different
strategy than “the trend" represented by users 1 and 4. Whiletheir
total numer of clicks does follow, approximately the power law,
they seem to get, proportionally speaking, more clicks on the top-
ranked slot on the page than the rest. While, in order to preserve the
privacy of the data, we cannot mention who these companies are,
it does seem that users 2 and 3 are actually “aggregators" of ad-
vertisng demand. By this, we mean online advertising agencies or
engines (or automated services offered by the platform itself) that
aggregate demand from different advertisers and do the bidding on
their behalf. Apparently, this allows them to capture, proportion-
ally, more often the top slot for the required keyword. Unfortu-

nately, however, we cannot investigate this aspect further, since the
dataset provided does not contain any information about bidding,
budgets or financial information in general.

In the following and last Section of this paper, we turn our atten-
tion to a somewhat different problem: how could we use insights
gained from analyzing this query data to provide a bidding decision
support for advertisers taking part in a sponsored search market.

5. USING CLICK DATA TO DERIVE SEARCH
TERM RECOMMENDATIONS

The previous Sections of this paper used complex systems anal-
ysis to provide a high-level examination of the dynamics of spon-
sored search markets. In this Section, we look at how such query
log data could be used to output recommendations to individual
advertisers. Such an approach should lead to answers to questions
such as: What kind of keyword combinations look most promising
to spend one’s budget on, such as to attract a maximum number of
relevant user clicks?

While the previous analysis of power-law formation was done
at a macro-level, in this Section we take a more local perspective.
That is, we do not consider the set of all possible search terms,
but rather a set that is specific to a domain. This is a reasonable
model: in practice, most advertisers (which are typically online
merchants), are only concerned with a restricted set of keywords
which are related to what they are actually trying to sell.

For the analysis in this paper, we have chosen as a domain 50
keywords related to the tourism industry (i.e. online bookings of
tickets, travel packages and such). The reason for this is that much
of this activity is already fast moving online (e.g. a very substantial
proportion of, for example, flight tickets and hotel reservations are
now carried out online). Furthermore - and perhaps more impor-
tant - there are low barriers of entry and the field is not dominated
by one major player. This contrasts, for example, other domains,
such as the sale of Ipods and accessories, where Apple Storescan
be expected to have a dominant position on the clicks in the market.
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Figure 3: Distribution of advertiser market share, based ontheir ordered rank vs. the number of clicks their links receive (log-log
scales). The left-hand side plot (part A) gives the total number of clicks an advertiser received for all impressions of her links,
regardless of the position they were in. The right-hand side(part B) gives the number of clicks received, both in total, but also when
her ads were displayed on a specific position on the page (among the 8 ranked slots of the sponsored search interface).

5.1 Deriving distances from co-occurrence in
sponsored click logs

Given a large-scale query log, one of the most useful pieces of
information it provides is the co-occurence of words in different
queries. Much previous work has observed that the fact that two
search keywords frequently appear together in the same query gives
rise to some implicit semantic distance between them [10].

In this paper, we take a slightly different perspective on this is-
sue, since, in computing the distances, we only use those queries
which received at least one sponsored search click for the text ads
(i.e. URLs) displayed alongside the results. We argue this is a sub-
tle but very important difference from simply using co-occurence
in organic search logs. The fact that queries containing some com-
bination of query words lead to a click on a sponsored URL implies
not only a purely semantic distance between those keywords,more
important for an advertiser, the fact that users searching on those
combinations of keywords have the possible intention of buying
things online.

Formally, letN(Ti, Tj) denote the number of times two search
termsTi andTj appear jointly in the same query, if that query re-
ceived at least one sponsored search click. LetN(Ti) andN(Tj)
denote the same number of queries leading to a click, in which
termsTi, respectivelyTj appear in total (i.e. regardless of other
terms they co-occur with). Then, the cosine similarity distance be-
tween termsTi andTj can be defined as:

Sim(Ti, Tj) =
N(Ti, Tj)

p

N(Ti) ∗ N(Tj)
(3)

5.2 Constructing keyword correlation graphs
The most intuitive way to represent similarity distances isthrough

a keyword correlation graph. The results from our subset of 50
travel-related terms are shown in Fig. 4. In this graph, the size

of each node (representing one query term) is proportional to the
absolute frequency of the keyword in all queries in the log. The
distances between the nodes are proportional to the similarity dis-
tance between each pair of terms, computed Eq. 3, where the whole
graph is drawn according to a so called “spring embedder"-type
algorithm. In this type of algorithm, edges can be conceivedas
“springs", whose strength is indirectly proportional to their simi-
larity distance, leading to cluster of edges similar to eachother to
be shown in the same part of the graph.

There are several commercial and academic packages available
to draw such complex networks. The one we think is most suitable
- and which was used for graph Fig. 4 - is Pajek (see [3] for a
description). Note that not all edges are considered in the final

graph. Even for 50 nodes, there are

„

50
2

«

= 1225 possible

pairwise similarities (edges), one for each potential keyword pair.
Most of these dependencies are, however, spurious (they represent
just noise in the data), and our analysis benefits from using only
the top fraction, corresponding to the strongest dependencies. In
the graph shown in Fig. 4, containing 50 nodes, only the top 150
strongest dependencies were considered in the visualization.

5.3 Graph correlation graphs: results
There are several conclusions that can be drawn from the visu-

alization in Fig. 4 constructed based on the Live.com sponsored
search query logs. First, notice that each node was labellednot
only with the term or keyword it corresponds to, but also withthe
aggregate click-through rate (CTR), specific for that keyword. Ba-
sicallly, this is the percentage of all the queries that usedthe term
which generated at least one click to a sponsored search URL dis-
played with that query.

Note that these click-through rates may, at a first glance, seem on
the low side: in general only a few percent of all queries actually
lead to a click on an sponsored (i.e. advertiser) link. Nevertheless,
as a search engine receives millions of queries in a rather short
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Figure 4: Visualization of a search term correlation graph, for a set of search terms related to the tourism industry. Each search
term is assigned one colored dot. The size of the dots gives its relative weight (in total number of clicks received), while the distances
between the dots are obtained through a spring-embedder type algorithm and are proportional to the co-occurrence of thetwo search
terms in a query. Each dot is marked with its success rate (percentage of the total number of impressions associated with that query
word that received a click).

period of time, even a 5%-10% click-through rate can be quitesig-
nificant. Note that some keywords (such a “cheap") have a higher
click-through rate than others. The reason for this may be that peo-
ple searching for “cheap" things (e.g. cheap airline tickets, cheap
holiday packages, hotel rooms etc.) may already have the intention
to buy something online, and therefore are more likely to [also]
click on sponsored links.

However, the most interesting effect to observe in Fig. 4 arethe
term clusters that emerge in different parts of the graph, from the
application of the spring-embedder visualization algorithm. For ex-
ample, the leftmost part of the graph has 4 terms related to weather,
such as “warm", “tropical" and “exotic". On the top left partof
the graph, one can find terms such as “entertainment", “nightlife",
“party" and “fun", while very bottom part includes related terms
as such “climbing", “hiking" and “mountain". The top-rightpart
includes commercial terms such as: “ticket", “tickets", “flight",
“cheap", “last", “minute". The central part of the graph includes
terms such a “beach", “sand", “sea", “resort", “ocean", “island"
etc. Additionally, pairs of terms one would naturally associate do
indeed appear close together, such as “romantic" and “getaway"
and “sunset" and “sunrise" and “ocean".

In the following, we discuss an algorithm that can detect such
clusters automatically. More precisely, we would like an algorithm
that selects combinations of tags that look promising in attracting
queries and clicks.

5.4 Automatic identification of sets of keywords
In this Section, we show how keyword graphs could be automat-

ically partitioned into relevant keyword clusters. The technique we
use for this purpose is the so called “community detection" algo-
rithm [13], also inspired by complex systems theory. In network or
graph-theoretic terms, a community is defined as a subset of nodes
that are connected more strongly to each other than to the rest of
the network (i.e. a disjoint cluster). If the network analyzed is a
social network (i.e. vertexes are people), then “community" has
an intuitive interpretation. However, the network-theoretic notion
of community detection algorithm is broader, has been succesfully
applied to domains such as networks of items on Ebay [11], publi-
cations on arXiv, food webs [13] etc.

5.4.1 Community detection: a formal discussion
Let the network considered be represented a graphG = (V, E),

when|V | = n and |E| = m. The community detection problem
can be formalized as a partitioning problem, subject to a constraint.
Eachv ∈ V must be a assigned to exactly one group (i.e. commu-
nity or cluster)C1, C2, ...CnC

, where all clusters are disjoint.
In order to compare which partition is “optimal", the metricused

is modularity, henceforth denoted byQ. Intuitively, any edge that
in a given partition, has both ends in the same cluster contributes
to increasing modularity, while any edge that “cuts across"clusters
has a negative effect on modularity. Formally, leteij , i, j = 1..nC

be the fraction of all edge weights in the graph that connect clusters



Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 Cluster 9
beach party package weather getaway diving cruise show last
luxury entertainment vacation exotic romantic swimming sunrise tickets minute
hotel nightlife holidays tropical sunset ticket visit
island fun destination warm cheap
resort Hawaii deal flight
sun Oahu tour

mountain offer
ocean great
hiking

climbing
sea

sand
Keywords eliminated to increase modularity: holiday, holidays, relaxation, trip.

Figure 5: Optimal partition of the set of travel terms in semantic clusters, when the top 150 edges are considered. The partition
was obtained by applying Newman’s automated “community detection" algorithm to the graph from Fig 4. This partition has a
clustering coefficient Q=0.59.

Algorithm 1 GreedyQ Partitioning: Given a graphG =
(V, E), |V | = n, |E| = m returns partition< C1, ...CnC

>

1. Ci = {vi}, ∀i = 1, n

2. nC = n

3. ∀i, j, eij initialized as in Eq. 5
4. repeat
5. < Ci, Cj >= argmaxci,cj

(eij + eji − 2aiaj)
6. ∆Q = maxci,cj

(eij + eji − 2aiaj)
7. Ci = Ci

S

Cj , Cj = ∅ //merge Ci and Cj

8. nC = nC − 1
9. until ∆Q ≤ 0
10.maxQ = Q(C1, ..CnC

)

i andj and letai = 1

2

P

j
eij be the fraction of the ends of edges

in the graph that fall within clusteri. The modularityQ of a graph
|G| with respect to a partitionC is defined as:

Q(G,C) =
X

i

(ei,i − a
2

i ) (4)

Informally, Q is defined as the fraction of edges in the network
that fall within clusters, minus the expected value of the fraction of
edges that would fall within the same cluster, if all edges would be
assigned using a uniform, random distribution.

As shown in[13], ifQ = 0, then the chosen partitionc shows
the same modularity as a random division. A value ofQ closer to 1
is an indicator of stronger community structure - in real networks,
however, the highest reported value isQ = 0.75. In practice, [13]
found (based on a wide range of empirical studies) that values of
Q above around 0.3 indicate a strong community structure for the
given network. In our case, the edges that we considered in the
graph (remember only the strongest 150 edges are considered) have
a weight, defined as shown in Eq. 3 above. For the purpose of the
clustering algorithm, this weight has to be normalized by the sum
of all weights in the system, thus we assign initial values toeij as:

eij =
1

P

ij
simij

simij (5)

5.5 The graph partitioning algorithm
The algorithm we use to determine the optimal partition is the

“community identification" algorithm described in [13], formally

specified as Alg. 1 above. Informally described, the algorithm
runs as follows. Initially, each of the vertexes (in our case, each
keyword) is assigned to its own individual cluster. Then, ateach it-
eration of the algorithm, two clusters are selected which, if merged,
lead to the highest increase in the modularityQ of the partition. As
can be seen from lines 5-6 of Alg. 1, because exactly two clus-
ters are merged at each step, it is easy to compute this increase in
Q as: ∆Q = (eij + eji − 2aiaj) or ∆Q = 2 ∗ (eij − aiaj)
(the value ofeij being symmetric). The algorithm stops when no
further increase inQ is possible by further merging.

Note that it is possible to specify another stopping criteria in
Alg. 1, line 9, e.g. it is possible to ask the algorithm to return a
minimum number of clusters (subsets), by letting the algorithm run
until nC reaches this minimum value. Furthermore, this algorithm
is computationally very efficient, since it is basically linear in the
size of the graph (number of keywords considered), hence it can be
applied even to very large datasets.

5.6 Discussion of graph partitioning results
The results from the graph partitioning algorithm, showingthe

partition maximises the modularityQ for this setting, is shown in
Fig. 5. Note that this is not the only possible way to partition
this graph - if one would consider a different number of strongest
dependencies to begin with (in this case we selected the top 150
edges, for 50 keywords), or a different stopping criteria, one may
get a somewhat different result. Furthermore, note that some key-
words, which were very general and could fit in several clusters
(shown below the figure), were pruned in order to improve modu-
larity, through a separate algorithm not shown here.

Still, the partition results shown in Fig. 5 match well what our in-
tuition would describe as interesting combinations of search terms,
for such a setting. There is one large central cluster, of terms that all
have reasonably strong relations to each other, and a set of small,
marginal clusters on the side. The large cluster in the middle could
be further broken by the partition algorithm, but only if we force
some other stop criteria than maximum modularity (such as a cer-
tain number of distrinct clusters).

The partition in Fig. 5 fits well with what can be graphically
observed in Fig. 4: actually, most of the clusters obtained automat-
ically after partition can be identified on different parts of the graph.
This does not have to be a one-to-one mapping, however, because
in a 2D drawing, the layout of the nodes after “spring embedding"
may vary considerably and, furthermore, there are keywordswhich



could fit well into 2 clusters, and were assigned to one as thathad
a slightly higher modularity.

6. DISCUSSION

6.1 Contribution of the paper & related work
Our work can be seen as related to several other directions of

research. Similar techniques to the ones used in this paper have
been succesfully applied to analyze large-scale collaborative tag-
ging systems [10] and preference networks for Ebay items [11].

The amount of work which is specifically geared to sponsored
search auctions, especially empirical studies, has so far been rather
limited (probably not least due to lack of extensive datasets in this
field). Much of the previous work, e.g. [8] looks mostly at thebias
introduced by a link’s display rank on clicking behaviour (such as
discussed in Sect. 3 of this paper). Another important direction of
work uses existing intuitions about user clicking behaviour to de-
sign different allocation mechanisms for this problem - thework of
[5] is a good example of this approach. By comparison to our work,
the approach taken by [5] studies mostly at mechanism designis-
sues arising from computational advertising, rather than perform a
data mining or empirical examination of such markets.

One paper that is related in scope to ours, since it also provides
an empirical study of search engine advertising markets is [9]. This
work takes, however, a different perspective on this problem, also
due to the different type of data the authors had available. By con-
trast to our work, the data that [9] use comes from a single, large-
scale advertiser. This means they do get access to more detailed
information (including financial one) and can say more aboutac-
tual bidding behaviour. By comparison, the data available to us
for this study does not contain any detailed financial information,
but, unlike [9] it allows us to have a global level view of the whole
market (from the perspective of the search engine, not just asingle
advertiser). This provides very important insights about the struc-
ture of sponsored search markets.

Finally, there exists previous work that has applied similar co-
occurence-based techniques to organic search logs or tagging sys-
tems [7, 10]. However, our focus in this paper is different: we do
not aim to to merely deduce what is the semantic distance between
keywords in the general sense, but what kind of combinationsof
keywords are financially interesting for a sponsored searchadver-
tiser to bid on. This is the reason why the size of the nodes and
distances computed in Fig. 4 are built using only queries which
lead to an actual click on a sponsored ad. Basically, this is equiv-
alent to filtering only the “opinion" (expressed through queries) of
the subset of users that are likely to buy something online, rather
than all search engine users. To our knowledge, this is the first
paper to use sponsored search click data in this way.

6.2 Future work
This work, being somewhat preliminary, leaves many aspects

open to future research, of which we only mention a few possi-
bilities. On such aspect would be is the issue ofexternalities: how
the presence of links by competing advertisers influences the click-
through rates of other bidders. As the competition is basically on
customers’ attention space, externalities play an important role in
the efficacity of sponsored search impressions.

Another very interesting topic would be to study the structure of
sponsored search markets (in terms of advertiser market share etc.)
not only at the global, macro-level, but at the level of individual
sets of keywords. In fact, sponsored search can be seen not only
as one market, as a network of markets, since most advertisers are
interested in (and bid on) a specific set of keywords related to what

they are selling. For example, we could apply our “communityde-
tection" algorithm to partition not only sets of search keywords, but
also sets of bidders (advertisers) interested in those keywords. This
should allow us to derive more in-depth insights into the structure
of sponsored search.
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