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Abstract. We consider the online problem of scheduling patients with
urgencies and preferences on hospital resources with limited capacity. To
solve this complex scheduling problem effectively we have to address the
following sub problems: determining the allocation of capacity to patient
groups, setting dynamic rules for exceptions to the allocation, ordering
timeslots based on scheduling efficiency, and incorporating patient pref-
erences over appointment times in the scheduling process. We present a
scheduling approach with optimized parameter values that solves these
issues simultaneously. In our experiments, we show how our approach
outperforms standard scheduling benchmarks for a wide range of sce-
narios, and how we can efficiently trade-off scheduling performance and
fulfilling patient preferences.

1 Introduction

Due to increase of demand, improving efficiency in hospitals is becoming increas-
ingly important. Besides the number of patients, the service that patients expect
from a hospital is also increasing. Patients want more personalized care, which
includes involvement in selecting appointment-times. In addition to high medical
quality and resource efficiency, a hospital can compete with other hospitals by
providing more patient-oriented services.

Improving efficiency in a hospital can be complex. Due to the distributed
nature of a hospital, departments have local objectives and scheduling policies.
Local scheduling has to solve a mix of patients with varying properties, hospital-
wide performance depends on how local schedulers interact with each other.

We focus on scheduling patients to central diagnostic resources, which is
often a bottleneck in patient pathways. Access time to these resources has a
large influence on overall hospital performance as it will influence many other
departments. The capacity of diagnostic resources is limited, and expensive to
extend. To make efficient use of the resource, appointment-based systems are
used, although in current practice the actual scheduling is often done by hand.

The basis of our scheduling problem is that different patient groups require
different access times. Some patients need an appointment within a few days,
others within a few weeks. We focus not only on efficient scheduling, we also want
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to have opportunities for patients to select their preferred timeslot. This can be
achieved by dynamically controlling the freedom in selecting timeslots. We find
a trade-off between scheduling most efficiently and fulfilling patient preferences.

In this paper, we present an approach where the combination of scheduling
performance and fulfilling patient preferences is optimized. Our scheduling solu-
tion consists of four main parts that we optimize simultaneously. First, resource
capacity is allocated to patient groups, which allows us to have different access
times per group. Second, we set dynamic rules for when an exception to the
allocation can be made, this improves the overall scheduling efficiency. Third,
we determine a scheduling heuristic for ordering timeslots based on efficiency.
The fourth part is the use this ordering of timeslots in trading-off scheduling
efficiency and fulfilling patient preferences. A number of parameters controls
each part. We optimize the parameter values to automatically find a complete
scheduling solution for each specific problem case we consider.

We show in our simulation experiments how our approach outperforms typi-
cal scheduling benchmarks, for a wide range of scenarios. Furthermore, we show
how we can efficiently trade-off scheduling performance and fulfilling patient
preferences for different patient preference models. Setting this trade-off allows
hospital departments to remain in control of the scheduling, which is important
for acceptance of our system in practice.

Most approaches to efficiency improvement in the hospital are from the op-
erations research and operations management field [1]. Typical problems are
strategic planning, operating room planning, capacity planning, staff schedul-
ing, see e.g. [2]. They mostly focus on static problems, and typically do not con-
sider online decision making, with exceptions such as [3]. They do not consider
how to optimize scheduling performance in combination with patient prefer-
ences. Solutions for dynamic optimization problems usually come from the field
of computational intelligence such as evolutionary algorithms [4, 5].

The theoretical background of resource problems can be found in the field
of queuing theory [6]. Related is the question of pooling or separating capacity
and dynamic rules such as overflow rules [7]. The difference is that in our prob-
lem a timeslot must be determined upon arrival, which in a queuing system is
only achieved with observable workload and FCFS scheduling. Our scheduling
solution is not bound to FCFS but can select future timeslots per arriving job.

In Section 2 we will discuss the problem and our approach for scheduling
patients with urgencies. In Section 3 we discuss how we extend the scheduling
problem and our approach to include patient preferences.

2 Scheduling with Urgencies

2.1 Problem definition

The problem we research is how to schedule each arriving patient, such that
patients are scheduled on time. For most patients, a diagnostic test must be
performed before the next consult with the physician. Most consulting hours
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are scheduled on a weekly basis, and the next consult is often in a week or two
weeks’ time. For patients with more urgent conditions, it is important that the
test results are known within a few days. For the most urgent category in the
hospital no appointment is scheduled. Either separate capacity is available in the
emergency department or reserved on the resource calendar, see [8]. We focus
only on patients for which an appointment must be scheduled.

In our model, patients have different urgencies, with urgency defined as the
time between a patient’s arrival time and required due-date. A patient is sched-
uled ‘on time’ if his appointment is before the due-date. Patients with different
urgencies are scheduled to the same limited resource capacity. We assume an
appointment must be made as soon as the need for the appointment is known,
which we also call ‘patient arrival’. This allows the hospital to provide the service
of immediately communicating the appointment-time to the patient.

For non-urgent patients we set a minimum access time (mat): the number
of days between arrival and the first allowed appointment date. This allows
patients to arrange their return visit to the hospital. This means that we can
only schedule urgent patients to any timeslots left over on days before mat.

Part of the problem’s stochastic nature is caused by the closure of the re-
source in the weekend. Urgent patients will often have to be scheduled before
the weekend, as the following Monday will be too late given their due-date. This
causes an unequal demand over the week: at the end of the week the demand
from urgent patients is larger. In our model, without losing the complexity of
online scheduling with urgencies, we assume that all resource capacity can be
used interchangeably and use unit-time duration for all appointments.

We formulate our model with the following. Patients arrive according to a
Poisson process with arrival rate λ. Each patient p belongs to a patient group
gp ∈ G according to a patient-group distribution DG. The urgency of a patient
is given by its group up = U(gp), with up the number of days between the arrival
day and due-date. Minimum access time for non-urgent patients is given by mat

in days. Resource capacity is C number of timeslots on each working day.

The performance measure is based on the service levels of patient groups. Ser-
vice level SLg is the fraction of patients in group g scheduled on time (before or
on their due-date). Scheduling performance is given by MSL = min(SL0, ..., SL|G|),
where we take the minimum service level (MSL) over all patient groups.

2.2 Approach

We present a parameterized approach to the scheduling problem outlined above.
To enable a different access time per patient group, resource capacity is allocated
to groups, and patients are scheduled only to timeslots allocated to their group.
In this way, the service level per group SLg is controlled by allocating capacity
ag,d (for group g on weekday d). The relation between service level and capacity
depends on group size, urgency level, and stochastic arrival. Finding an optimal
allocation is the first step in this scheduling problem (and in many hospitals it
is the only step).
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In our approach we use a more flexible variation of this static capacity alloca-
tion: nested capacity allocation, patients can be scheduled to timeslots allocated
to equal and lower urgency levels. Nested capacity is more flexible than strictly
separated capacity as timeslots allocated to lower urgencies can be used by more
patients. This reduces variability in demand, and improves resource efficiency.
The optimal allocation of nested capacity can be different from the optimal
allocation of static capacity.

In our approach, capacity usage is made even more efficient with conditional
exceptions to the nested capacity allocation: capacity allocated to higher ur-
gencies is also available if its utilization is below a certain threshold tg,d. Such
dynamic rules have been shown to improve performance [9]. It reduces the chance
of timeslots allocated to higher urgencies being wasted.

Besides the number of timeslots allocated, the positioning of those timeslots
within a day can also influences scheduling performance. Timeslots positioned
at the end of the day have a higher chance of being used by a patient arriving
during that day. Therefore the position at the end of the day is most beneficial
for more urgent groups. We use this fact in our approach by positioning the
timeslots for urgent patient at the end of the day. In Section 3 we will discuss a
different positioning to take patient preferences into account.

Capacity allocation (nested with overflow) determines for each patient which
timeslots are available for scheduling. To actually schedule we have to select a
timeslot from those available timeslots. From a scheduling performance point of
view, we want a scheduling method that selects a timeslot such that performance
is maximized over time. In Section 3, we discuss how patient preferences are
involved in this selection process.

Standard scheduling method First Come First Served (FCFS): patients are
scheduled to the earliest available timeslot, maximizes resource utilization. How-
ever with FCFS, all timeslots up to a certain point in time are fully utilized,
resulting in fewer chances for coping with a peak in demand for more urgent pa-
tients. To improve over FCFS, we combine it with a heuristic that counters the
negative effects of FCFS, balanced utilization (BU): patients are scheduled to
the day with the lowest utilization (before the due-date). With BU any available
timeslots are spread out evenly over days, which increases the chances of them
being beneficial for overflow from other groups. To combine the two heuristics,
available timeslots ts are ordered based on a weighted sum of two normalized
values (wg,d = 0 equals FCFS, wg,d = 1 equals a BU):

FCFS+BU(ts) = (1 − wg,d)FCFS(ts) + (wg,d)BU(ts)

FCFS(ts) =
position of ts in FCFS ordering

total number of timeslots

BU(ts) =
(utilization of day of ts) − (lowest utilization)

(highest utilization) − (lowest utilization)
,

where we consider only timeslots and days before the due-date. We find the
optimal value of wg,d per group and weekday, and schedule patients to the first
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timeslot in the calculated ordering of increasing FCFS+BU values. If there are
no available timeslots before the due-date, the patient is scheduled to the earliest
available timeslot after his due-date.

Recall that in our approach, we have the following three parameters per
patient group per weekday: ag,d (number of timeslots allocated to patient group g

each weekday d), tg,d (the utilization threshold for overflow on capacity allocated
to group g on weekday d), wg,d (the weight used in FCFS+BU for scheduling
patients of group g arriving on weekday d).

3 Patient Preferences

We extend the above scheduling problem with urgencies to additionally include
patient preferences. Each non-urgent patient has a preference model Pp over
timeslots, Pp states whether a timeslot is preferred for patient p. We focus on
boolean-type preference model: either a patient is scheduled to a preferred times-
lot or to a non-preferred timeslot. The alternative of quantifying preferences, for
instance with utilities, is hard because it is difficult for patients to put values on
preferences. Moreover it is hard to compare preferences-values between patients.

With taking patient preferences into account, the overall objective O is now
a weighted combination of scheduling performance (MSL), see Section 2, and
patient preferences fulfillment (PP), the fraction of non-urgent patients that are
scheduled to a preferred timeslot: O = (β) ∗ SP + (1 − β) ∗ PP. By setting
β a hospital department can set a preferred combination of objectives. In our
experiments we show the resulting trade-off by varying the value of β.

To maximize O, that is to include patient preferences, we extend our approach
the following way. Instead of scheduling the patient to the first timeslot given
the FCFS+BU ordering, we let the patient select from a number of timeslots:
all timeslots with value of at most the lowest value plus mg are available for
selection. With parameter mg we can control how much selection-freedom a
patient has. Lower values will results in more efficient scheduling, while higher
values will result in more fulfilled patient preferences.

A patient will select a preferred timeslot if it is in the set of offered timeslots,
it will choose uniformly random from multiple preferred timeslots, and uniformly
random if there are no preferred timeslots available.

Some patients could prefer a timeslot at the end of the day, which is incom-
patible with the way we position timeslots within the day (urgent timeslots at
the end of the day, see Section 2.2). We therefore alter the method for positioning
timeslots within the day to the following: the kd number of latest timeslots on
weekday d are reserved for non-urgent patients the rest of the timeslots is posi-
tioned as in Section 2.2. Setting the value of kd in our approach makes a trade-off
between scheduling performance (kd = 0) and patient preferences (kd > 0).

In our experiments, we use three patient preference models Pp based on
discussions with human schedulers in the hospital, described in the following
paragraphs.



6 I.B. Vermeulen et al.

Work/non-work A fraction of patients (nonwork) is available during the
day and prefers an appointment on the middle of the day, avoiding morning
and afternoon traffic rush-hour while traveling to the hospital. The remaining
fraction (1 − nonwork) prefers an early or late appointment to minimize the
effect on their working days. Given the resource openings hours between 8am
and 5pm, early is defined as before 9am, midday as between 10am and 3pm, and
late is defined as after 4pm. Note that in this model there are timeslots which are
not preferred by any patient. We show experimental results for different values
of nonwork.

Preferred-day In the preferred-day model, patients have one or more pre-
ferred weekday(s). All timeslots on a preferred weekday are preferred timeslots.
The days are uniformly random drawn. We show experimental results for model
instances where patients each have one or two preferred weekdays.

Patient-calendar In the patient-calendar model, which can be viewed as
a combination of the two previous models, we model black-spots in a patients
calendar. We divide a week in ten parts, 5 weekdays × 2 day-half’s (morn-
ing/afternoon). On a number of those ten day parts the patient will be unavail-
able (uniform randomly drawn). We show experimental results with varying
number of black-spot day parts per patient.

4 Optimization

Our approach is parameterized and we use a search method to find the best
parameter values given a scenario. We found that the problem surface was rel-
atively smooth, and that there was an area of solutions which performed not
significantly worse than the best found solution. Although we had to optimize
over 50 parameters, it was still possible to find a good set of parameters values
in reasonable time (< 24 hours) for a specific scenario. (Note that in practice
the parameter values should be updated only as often as a few times per year.)

In the presented results below, we used an Estimation of Distribution Algo-
rithm (EDA), see [4], with a population size of 150 and 15000 evaluations. This
is a population based search method, where the distribution of each parame-
ter value in a selection of the population is updated each generation, and used
to generate individuals in the next generation. We used pair-wise comparison
during selection, with a different random seed in each generation.

In our experiments, we show results of how our optimized approach (FCFS-
BUdynamic) as described above, compares to the performance of three typical
benchmarks each having their parameter values optimized using the EDA:

– FCFSstatic: scheduling patients First Come First Serve (FCFS) strictly to
capacity allocated to their group. Capacity allocation is optimized.

– FCFSnested: scheduling patients FCFS to capacity of equal or lower urgency.
Capacity allocation is optimized.

– FCFSdynamic: scheduling patient FCFS to capacity of equal or lower ur-
gency with dynamic overflow. Capacity allocation and overflow thresholds
are optimized.
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5 Experiments

We have conducted many experiments to test different properties of our ap-
proach, due to space limitations we only report our main findings. Although
with our EDA we automatically obtain an optimized schedule approach, we can
study the found solutions and their properties. We can make the following prac-
tical conclusions based on observations in our found solutions:

– More urgent timeslots are reserved at the end of the week.
– More urgent timeslots are reserved on Thursday than on Friday.
– Overflow thresholds for urgent groups are relatively constant over the week.
– Overflow thresholds for non-urgent groups are lower on Wednesday.
– For urgent groups scheduling FCFS is more efficient than scheduling BU.
– For non-urgent groups scheduling FCFS and scheduling BU is relatively bal-

anced, except on Fridays where it is more important to schedule FCFS.
– At the end of the week it is more important that urgent timeslots are placed

at the end of the day (variable kd = 0).

In our experiments we use four patient groups, |G| = 4, two urgent (urgencies
U1 = 2 days, U2 = 3 days) an two non urgent groups (urgencies U3 = 5 days,
U4 = 10 days), with relative groups sizes: DG : {D1 = 0.14, D2 = 0.14, D3 =
0.28, D4 = 0.43}. Having more than four different urgencies within a two-week
period has little practical meaning: if groups are too similar in due-date they
can be considered the same group. Minimal access time (mat) for non-urgent
patients is two days. Resource capacity C is 60 timeslots per day on weekdays,
closed on the weekend. Each patient needs an appointment of one timeslot. We
experiment over a number of scenario’s in which we change the arrival rate, the
relative group sizes (DG), and group urgencies (UG).

First we present results on schedule performance without patient preferences.
In Figure 1 we show the average performance (simulation length is 50,000 pa-
tients, averaged over 250 simulation runs) of the four approaches for different
ρ’s, ρ is ratio between the average number of arriving patients and the num-
ber of available timeslots (service rate). For all ρ’s we see our approach clearly
outperforms the benchmarks. The difference between using static capacity and
our dynamic solution can be very large. Importantly, due to stochastic patient
arrival, above a certain ρ performance will not be stable but decrease over time
(a queuing effect where access time builds up). Our experiments indicate (not
shown here) that performance is no longer stable with a ρ of 0.99 or larger.

To show our results are robust for different settings, we compare our approach
with the three benchmarks in nine different scenarios. The scenarios differ in rel-
ative group sizes and group urgencies: we increase or decrease the due-dates for
all groups; we vary the group sizes to have more or less urgent patients relative
to non-urgent patients. In Table 1, we show the average performance of the four
approaches with ρ = 0.98, for nine different scenarios. Our approach FCFSBU-
dynamic has the best performance in all scenarios, although the difference is
not significant in one scenario. The relative ordering of the approaches is almost
the same in all scenarios, FCFSdynamic is not always significantly better than
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Fig. 1. Main Results
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Table 1. MSL performance for nine scenarios

urgency urg. group size FCFSBUdynamic FCFSdynamic FCFSnested FCFSstatic

normal normal 0.96 0.87 0.86 0.57

normal smaller 0.95 0.86 0.63 0.02

normal larger 0.96 0.88 0.88 0.24

higher normal 0.74 0.70 0.68 0.38

higher smaller 0.62 0.56 0.00 0.00

higher larger 0.70 0.70 0.70 0.15

lower normal 0.99 0.96 0.88 0.48

lower smaller 0.98 0.94 0.73 0.65

lower larger 0.98 0.95 0.96 0.65

FCFSnested. These results show the adaptiveness of our approach in general,
for various settings and using our optimizer, our approach can be implemented
to achieve the best scheduling results.

We next discuss results of optimizing the trade-off between schedule per-
formance (MSL) and satisfying non-urgent patient preferences. Two additional
variables kd, and mg have to be optimized, see Section 3. Given our three patient
preference models we optimize solutions for different values of β (the weight in
the overall objective) to get a trade-off between the two objectives.

In Figure 2a we show the trade-off between schedule performance and patient
preferences, given that a non-urgent patient has a preference for either a daytime
appointment or an early or late appointment (work/non-work model). We show
results for three values of the non-work fractions: 0.5, 0.75, 0.9. Note that the
fraction of daytime-timeslots on a day is 0.55 and the fraction of early/late-
timeslots on a day is 0.22. For all three values we see a clear trade-off between
patient preferences and schedule performance. The maximum satisfaction level
corresponds with a decrease in MSL of around 0.1. However, because the trade-
off is optimized, we can get close to the maximum amount of fulfilled preferences
with only a very small decrease in schedule performance.
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c) patient calendar preference model
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Fig. 2. Schedule Performance vs. Patient Preferences

In Figure 2b we show the trade-off for our preferred weekday model, where
we consider patients having one or two preferred weekdays. If patients have only
a single preferred weekday, the trade-off is on a large scale. Satisfying 80% of
all patients’ preferences is relatively easy, but an significant decrease in schedule
performance has to be expected if all patients want get a preferred timeslot.
However this effect disappears if patients have two preferred weekdays. In Figure
2c we show the trade-off for our patient calendar model, where we vary the
number of day parts a patient is unavailable. Even if patients are unavailable
for 7 out of 10 day parts, 90% of the patients can get an preferred appointment,
with a limited decrease in schedule performance.

6 Discussion and Conclusions

We provide an automatic optimized solution for the problem of scheduling pa-
tients with different urgencies and preferences. We show how we outperform
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benchmarks, independent of scenario specifics. We are able to find any preferred
trade-off between schedule performance and providing patients with the service
of selecting a preferred timeslot.

We use an approach for allocating capacity, setting overflow thresholds, sched-
ule heuristics, and offering timeslots, for which we optimize all parameter values
simultaneously. We show results for multiple detailed patient preference mod-
els. Previously, in [10], some initial work for some parts of our approach was
conducted, with limited experimental settings and manually set parameters.

The use of automatic optimizer such as the EDA, gives us the opportunity
to find solutions for many parameters in reasonable time, for any setting. This
makes our approach very generic and potentially beneficial in many different
places in hospitals. Our approach is suitable to be extended to include non-
interchangeable resources, and/or appointments with different durations.

The presented method for making a trade-off between schedule performance
and freedom in selecting timeslots gives opportunity to various extensions. Based
on the same trade-off we can also schedule combination-appointments over mul-
tiple departments, which we are researching in future work.
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