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Abstract— The design of neural networks that are able

to efficiently detect conjunctions of features is an important

open challenge. We develop a feed-forward spiking neural

network that requires a constant number of neurons for

detecting a conjunction irrespective of the size of the reti-

nal input field, and for up to four simultaneously present

feature-conjunctions.

I. Introduction

The representation of structured information in neural
networks has so far not been satisfactory solved, though it
is thought to be required for efficiently solving a number
of notoriously hard problems [1]. In a linguistic sentence
like The red apple and the green pear, grammar implies
the structuring of elements “red”, “green”, “apple”, and
“pear” into semantic composites, e.g. structure denoted
with brackets: {{red,apple}, {green,pear}}. The binding-
problem refers to the problem of how to encode and detect
such structured representations in neural networks. We
can easily identify elements like red, green, apple, and pear
each with a neuron that is activated when the element is
used. However, the embodiment of the structural brackets
has been much debated, as far back as Hebb [2]. Some
have even argued that such structural representation is
impossible in neural networks [3].
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Fig. 1. Global conjunction detection via aggregation of activity in
local feature detectors.

In the context of visual perception, the main concern is
how to represent and/or detect conjunctions such as red
and apple on a retina, where this conjunction of features
can essentially appear anywhere. Creating a red apple de-
tector for every location on the retina seems too expensive,
at least for every sensible conjunction [1]. The straight-
forward solution, as also depicted in figure 1, would seem
to first create global apple and red detectors by combin-
ing the responses of the respective local detectors, and
then detect the red apple conjunction from these global

detectors. However, this architecture is prone to errors in
the presence of multiple conjunctions, since there are no
structuring “brackets” present in the encoding by neural
activation (e.g. [1], [4]): the implicit links between red
and apple, and green and pear are not represented.

For example, the presence of a “triangle-star” and a
“hexagon-square” conjunction on the grid of figure 1
would activate the global “triangle” and “square” neurons,
and hence wrongly the “triangle-next-to-square” neuron.
(“ghosting”). The loss of local structure information, the
“brackets”, in global detectors is also referred to as the
“superposition catastrophe”.

In this paper, we present a feed-forward architecture
based on spiking neurons that detects feature-conjunctions
using global feature-detectors. It can detect these conjunc-
tions also in the presence of multiple other conjunctions.
Importantly, we observe that spiking neurons are more
suitable for the superposition of inputs from multiple loca-
tions than traditional sigmoidal neurons: a spiking neuron
that receives single timed spikes from n input locations can
superimpose these n inputs by emitting n timed spikes.
Thus, all n values are preserved, whereas a sigmoidal
neuron would squash the n values into a single output
value. We use this property in combination with a local
procedure for encoding the (local) presence of a feature-
conjunction. In [5], Rachkovskij and Kussul describe a
procedure for encoding feature-binding via Context De-
pendent Thinning (CDT) operating on vectors of activity.
We design a feed-forward CDT procedure for vectors of
timed-spikes via conditional shunting. This procedure is
implemented in local universal conjunction-detectors that
locally perform feature-binding. In the architecture, the
local presence of a feature is signaled via an activity vec-
tor of timed-spikes. The detectors process these vectors as
the neural data-structure. Our local universal conjunction
detector receives two such vectors as input. It outputs a
vector generated by the CDT-procedure, if the inputs in-
dicate the presence of any local feature-conjunction (with-
out identifying the actual features). We aggregate these
output-vectors in global universal conjunction-detectors.
With vector-based local and global feature-detectors, the
presence of specific feature-conjunctions can then be de-
tected in specialized global feature conjunction detectors.

We demonstrate our architecture in an example that
binds features based on relative proximity, as on the grid
of fig. 1. In this architecture, a global detector for the
conjunction of say {triangle,square} consists of some N



neurons, a value independent of the number of input lo-
cations. With such global detectors, we can detect up
to about 4 or 5 similar conjunctions simultaneously, but
visual processing seems to be limited in the same way [6].

In this paper, we outline the architecture in section II,
and the implementation in section III. The detection of
conjunctions is demonstrated in section IV. We discuss
and conclude the architecture in sections V and VI.

II. Encoding with Activity Vectors

In this section, we outline a feedforward architecture
for the global detection of feature-conjunctions. It is then
implemented in spiking neural networks in section III.

A. Architecture.

We propose an architecture as shown in figure 2. We in-
troduce two local universal conjunction-detectors, denoted
(X|Y )R and (Y |X)L, in addition to the local feature-
detectors, denoted A, B, C, etc. . . The local conjunction-
detectors detect and signal the presence of a conjunction
of any two features. In our example, we consider the bind-
ing of shape-right-next-to-shape; the same framework can
be applied to binding say color-to-shape. The signals of
the local detectors are aggregated in respective global de-
tectors, denoted ΣA, ΣB, Σ(X|Y )R etc... The presence
of particular feature-conjunctions is then detected from
the combined information of the global universal conjunc-
tion and feature-detectors in dedicated, global detectors
(ΣAB, ΣCA, ΣBA etc..). As we will show, the vector
nature of the neural activity processed in these detectors
enables the detection of the correct feature-conjunctions,
also in the presence of multiple other conjunctions.
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Fig. 2. Architecture for global detection of conjunctions.

The local detection of features can easily be considered
in terms of activity-vectors. We assume that all (discrete)
locations on an input-grid are populated with identical
sets of diversely tuned basic neurons (e.g. grid in fig. 1).
The presence of a feature like A is then characterized by
the activity (spikes) it elicits in such a set of basic neurons.
The timings of the spikes of the neurons for each set are
collected in a vector, where each vector-element contains
the activity of one neuron. The detectors in the proposed
architecture process such spike-time vectors.

At the level of local detectors, we have local feature-
detectors that look for a specific feature, say A, B, C
etc. . .. Each such detector looks at one set of basic neu-
rons. If it detects that the local input vector sufficiently
matches the preferred vector, it propagates the input-
vector, with some delay due to computation: only if pre-
sented with input ~A, a local A-detector outputs ~A.

We also have local detectors that detect and signal the
conjunction of any two features. These detectors consider
two sets of basic neurons. The idea is that they detect
the presence of features in both locations by only consid-
ering the actual amount of activity. In our example, these
nodes look at two locations next to each other in the grid.
We have complementary right- and left-facing detectors
(X|Y )R and (Y |X)L. In the presence of say A-next-to-B,

these detectors respectively output vectors ~A\b and ~B\a,

which each look like ~A resp. ~B (def. in section II-C).

The next level in the architecture combines the results
of the local detectors. Here we exploit a specific property
of spiking neurons: suppose we have two spike-trains each
containing k spikes, then the combined spike-train can
contain 2k spikes (if the spikes all have different times).
Thus, we can obtain global aggregate vectors by combin-
ing the local vectors, where the use of spiking neurons al-
leviate the “superposition catastrophe” encountered with
sigmoidal neurons [1].

The vectors from the respective local detectors are com-
bined to the output-vectors of global feature detectors
(“there is a triangle”) and global conjunction-presence de-
tectors (“there are two active consecutive locations”). In
the output-vector of a global detector, an element con-
tains to the collected vector of (active) spikes in the cor-
responding elements from the local detector-vectors. Fi-
nally, the vectors from the global detectors are used to
detect the presence of specific consecutive features in a
global feature-conjunction detector.

The detection of the specific-features next-to-each-other
from the global detectors is possible, because we make
use of a special local procedure: the output vector of a
local universal conjunction-detector resembles the vector
associated with one of the two features, but this vector is
“watermarked” with the vector associated with the other
feature. This “watermarking” entails the removal of some
spikes in one feature-vector due to the presence of the
other feature-vector. The detector and “watermarking”-
details are given below, the idea of global conjunction de-
tection via (conditional) vector-propagation is depicted in
figure 3, with detector outputs denoted as vectors.

B. Neural data-structure.

The presence of feature like triangle is characterized by
the distributed activity vector that its presence elicits in
the local set of basic neurons. We let these basic neurons
each emit at most one, precisely timed spike. The col-
lected spikes of n neurons then yield a spike-time vector :
~S =< t1, t2, . . . , tn >, with ti the time of the spike emitted



Fig. 3. Vector propagation in a vector-based architecture: correct
global conjunction detection.

by neuron i. Should a neuron emit multiple spikes, then
the spike-time vector generalizes to a spike-train vector :
S(~t) =< ~t1, ~t2, . . . , ~tn >, where ~ti is a vector of spike-times.
Detectors in the architecture operate on these spike-train
vectors, i.e., this is the neural data-structure.

C. Local Feature Binding.

The local universal conjunction detectors (X|Y )R and
(Y |X)L in figure 2 perform local universal feature binding,
and are the first step in enabling correct global detection
of feature-conjunctions. These detectors detect and signal
“there are two active locations next to each other”. To
signal the local conjunction, we adapt the idea of Context
Dependent Thinning(CDT) as in [5]. In [5], it is observed

that the binding of one vector, say ~A, and another vec-
tor, say ~B, can be signaled by setting part of the active
elements (“1’s”) in the vector ~A to inactive (“0’s”), as a

function of ~B. This contextually thinned vector, denoted
by ~A\b is then indicative for the AB conjunction.

We design a feed-forward CDT procedure using spiking
neurons based on shunting inhibition, e.g. [7]. A local
universal conjunction-detector (X|Y )iR receives as input
two spike-time vectors, in our example the spike-time vec-
tors from two consecutive locations, i and i + 1. We de-
note these spike-time vectors with ~X and ~Y respectively.
The detector determines whether there are sufficient spikes
present in ~X and ~Y to assume the presence of two features
(a conjunction). In that case, it propagates ~X, with part of
~X shunted by ~Y . Shunting is defined as follows: a spike in
an element j of ~Y inhibits the propagation of later spikes
in a set Γi

j of elements in ~X, where Γi
j is fixed in terms

of inhibitory connections. With inputs ~X =< tx1 , . . . , t
x
n >

and ~Y =< ty1, . . . , t
y
n >, the spike in txi is propagated if

not shunted, i.e. if ∀k ∈ Γi
j : txi < tyk. The complementary

detector (Y |X)iL shunts ~Y with ~X. Importantly, different

thinned spike-time vectors can be superimposed without
losing the different vector-patterns, thus alleviating the
superposition-catastrophe (up to some point).

D. Conjunction detection.

A global conjunction detector ΣAB for A-left-next-to-
B (AB) consists of an input-layer for detecting corre-
spondence of the input to the conjunction AB, and an
output-layer that propagates the activity in the input-
layer if this activity is larger than some threshold (fig 4,
dark detector). The input-layer consists of N ordered el-
ements. Input elements are exclusively connected to the
corresponding elements in either the ΣA and ΣX|YR de-
tector, or to ΣB and Σ(Y |X)L. A connection to a pair
is made based on the following. When the architecture
is presented with AB, elements are activated in ΣA, ΣB,
Σ(X|Y )L and Σ(Y |X)R. The output vectors of ΣA and

ΣB then correspond to respectively ~A and ~B (when ~A

signals feature A, same for ~B); due to shunting by B,

Σ(X|Y )R contains a particular fraction of the vector ~A,

and vice versa Σ(Y |X)L a particular fraction of ~B. Thus,
for these fractions, corresponding elements i fire coinci-
dently in the output vector of both ΣA and Σ(X|Y )R,
or ΣB and Σ(Y |X)L. An element i in the input layer
of the ΣAB detector is connected to elements i in a Σ-
detector pair, if the pulses from these elements i would
be coincidental when presented with AB. The thresh-
old for the ΣAB input-elements is set to two coincident
pulses, the threshold of the ΣAB output-elements is set
to require the activation of all elements in this input-layer
that are active if the conjunction AB is presented. An
example of such connectivity is depicted in figure 4A,B.
When an active vector contains n active elements/spikes,
the presence of an AB-conjunction activates n/2 elements
in ΣX|YR and in ΣY |XL, which then activate n elements
in the input-layer of AB (e.g. 4A). This n-element pattern
is then propagated by the output-layer. For a BA con-
junction however, the active elements in the global univer-
sal conjunction-detectors are interchanged, and no input-
elements in ΣAB receive synchronous spikes (fig 4B).
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Fig. 4. A) Connectivity for detecting global feature conjunctions.
Dark elements are active. B) Active elements in same global
conjunction-detector for interchanged feature positions.

With the conjunction AB present, the presence of ad-
ditional conjunctions on the input-grid yields additional



spikes in the global conjunction-detectors, but these added
spikes do not disturb the AB spikes that remain present.
With the correct features present in non-related con-
junctions (“ghosting”), the spike-patterns in the global
conjunction-detectors only partially match the AB pat-
tern, and less input elements are activated in the input
layer of AB: hence the AB output-elements do not reach
threshold and the conjunction-detector is not turned “on”.

These conjunction-detectors can correctly detect the
conjunction in the presence of up to some M other, simi-
lar conjunctions on the grid: the presence of conjunctions
AC, AD, AE, etc. . ., gives rise to the additional super-
position of local vectors ~A\c, ~A\d, and ~A\e in Σ(X|Y )L,
which will increasingly “fill in” the locally shunted spikes
in ~A\b (and similarly for ~B\a in Σ(Y |X)R). The value of
M depends on the amount of shunting, i.e. section IV.

Spiking neurons can learn this connectivity via temporal
Hebbian learning rules as in [8]: presented with single
AB conjunction, such a learning rule would translate the
synchronous activation of neurons in either of the detector
pairs into selectively enhanced weights.

III. Implementation

In this section, we detail the implementation of the neu-
ral detectors outlined in Section II in networks of spiking
neurons. Previous research has demonstrated that these
neurons operating on timed spikes can perform useful pat-
tern detection tasks [9], [8], [10], [11], [7]. The spiking
neurons we use are leaky-integrate-and-fire neurons mod-
eled as Spike Response Neurons [12]. These neurons sum
incoming spikes as post-synaptic potentials (PSPs) to cal-
culate an internal variable called “membrane potential”.
When this potential reaches a threshold θ, a spike is gen-
erated and a refractory (negative) response is added to
the potential. The time-constant τ for the decay of the
PSPs is set to 7ms, unless stated otherwise. Connections
between neurons each have a single weight and delay.

In our setup, each location on the grid is populated
with N diversely tuned basic neurons. We denote a basic
neuron j by Sj . When presented with a local feature, some
n ≤ N basic neurons emit a spike, generating a spike-time
vector ~S with elements sj .

A local feature-detector A aims to detect the presence of
a spike-time vector ~A in the input ~S, and then transmit ~S.
The feature detector consists of N spiking neurons. Each
detector neuron, Ai, receives equally weighted input from
all n active elements in ~S = ~A, but with a delay such that
for ~S = ~A, all input spikes arrive at the detector-neuron
simultaneously, e.g. for an input spike-time aj , the delay
dj between Sj and Ai is such that aj + dj = ci, with ci

constant for all connections to Ai. This effectively detects
the temporal pattern, e.g. [8]. The constant ci is set to
ci = c + ai, with c some constant. The result is that an
input vector resembling ~A is effectively propagated (fig.
7A). Additionally, the A detector responds in a graded
manner to A-ish vectors, as increasingly different vectors

are propagated with increasing delay and decreasing ac-
tivity, see also [8], [10].

Fig. 5. A)Local feature detector (dark box): each sphere is a spik-
ing neuron, dark neurons are active. Horizontal ticks are timed
spikes. B) Top: weights and delays of connections to input. Bot-
tom: time-course of membrane-potential for preferred feature.

A local universal conjunction-detector (fig. 6A) receives
input from two consecutive locations. The respective sets
of basic neurons are denoted by S and T , with activity vec-
tors ~S and ~T and neurons Si and Ti. A detector (X|Y )L
consists of N spiking neurons (X|Y )i, where each neuron
is connected to all basic neurons in S and T . We set the
weights from all inputs Sj and Tj to (X|Y )i such that the
summed activity from S and T generates a flat effective
potential in (X|Y )i. The weight of the connection be-
tween Si and (X|Y )i is set such that the PSP of a spike in
Si lets (X|Y )i reach threshold, but only when both S and
T contain some n spikes (indicating the presence of some-
thing). The flat nature of this potential ensures that the
spike-time of Si is propagated. The weights from shunt-
ing inputs Tj ∈ Γi

j are set such that they strongly inhibit
(X|Y )i effectively shunting this element (fig. 6B, bottom).
The input/output spike-times for a (X|Y )L detector for

some ~S and ~T are shown in figure 7B: most of the non-
shunted part of the input spike-time vector is propagated
with a fixed delay. However, late spikes are more likely
to be shunted, and the relative spike times of early spikes
are somewhat delayed due to the still increasing membrane
potential early on.

Fig. 6. A)The local universal conjunction detector (dark box)
deletes and propagates parts of input S. B) Top: weights and de-
lays of connections to input. Bottom: time-course of membrane-
potential given any two features.

The global feature and universal conjunction-detectors
each consist of a single layer of N spiking neurons. A
neuron Σi is connected only to corresponding neurons i
in the respective local detectors (fig. 8A), and τ is set to
4ms. The threshold is reached by a single spike (fig. 8B).



10 15 20 25 30 35
30

32

34

36

38

40

42

44

46

48

50

t ->
10 15 20 25 30 35

20

25

30

35

40

45

t ->

BA

t o
u
t

t o
u
t

Fig. 7. Vector propagation: input vs. output times. Circles: ac-
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Fig. 8. A) Dark box: global feature or universal conjunction detec-
tor. B) Top: weights and delays of connections to input vector.
Bottom: time-course of membrane-potential for impinging spike.

A global feature-conjunction detector consists of an
input-layer of N spiking neurons, with τ set to 4ms, and
an output-layer of N spiking neurons, with τ set to 7ms.
The input neurons are connected to global feature and
global universal conjunction detectors, as outlined in sec-
tion II, and fig. 4A. The neurons in the output layer are
connected to all neurons in the input-layer, like a feature-
detector, and detect the presence of the n active spikes.

Fig. 9. A) Global conjunction detecting node: dark spheres in-
dicate active neurons, horizontal ticks the timed spikes. B)
Top: weights and delays of connections to input vector. Bottom:
membrane-potential due to two synchronous impinging spikes.

IV. Experiments

We implemented the architecture as outlined in sec-
tion III. We experiment with a conjunction-detector se-
lective for the feature-conjunction triangle-next-to-square,
i.e. our “AB”-conjunction. In the experiments, we place
a number of feature-conjunctions on a grid, and we mea-
sure the number of activated neurons in the input-layer
of AB. The different feature-conjunctions placed on the
grid are shown in figure 10A. Scenes (a) and (b) reflect
the uncluttered conjunction-detection problem. Scene c)
would cause “ghosting” without a special feature-binding
operation, d), e) and f) test increasing feature-conjunction
clutter without and with the target conjunction present.

In the experiments, the neural input vectors were of
length N = 500, with n = 100 active (spiking) neu-

Fig. 10. A) feature-conjunctions on a grid. B) Activation in AB
detector. C) Activation as a function of scene clutter. Error-
bars indicate min/max activation in 10 simulations.

rons. Each separate feature was determined by a randomly
drawn set of spike-times from a normal distribution, with
σ = 3.5ms. In the local universal conjunction-detectors,
approximately half the input spikes were shunted. The
experiment was repeated 10 times and the average acti-
vations in the input-layer of AB are shown in figure 10B:
there is a clear difference between conjunction-scenes that
do not contain the AB-conjunction, but merely its con-
stituent features, and those that do contain the conjunc-
tion. The threshold θ for detecting AB was set to θ ≈ n,
as determined from the uncluttered presentation of AB.

We performed a systematic comparison between config-
urations with and without AB conjunction. Plotted in fig-
ure 10C is the AB-activation for an increasing number of
“distracter” conjunctions, with AB present (circles), and
absent (diamonds). Distracters are defined as AC, DB,
AE, FB etc... The difference in activation in the conjunc-
tion detector becomes too small to reliably discriminate
the two cases for more than 4 conjunctions. A higher “si-
multaneous representation capacity” can be obtained by
increased local shunting, but at the expense of lowering
activation in the conjunction detector as compared to the
original input vectors. Instead, “attentional” mechanisms
could determine a region of interest for a more reliable
detection when presented with too many conjunctions.

V. Discussion

We chose the example of feature-binding of consecutive
shapes on an input grid, to demonstrate how our frame-
work allows a “natural” feed-forward network to perform
feature-binding. For this particular example it is espe-
cially clear that the extension of the framework to in-
clude hierarchical compositional integration enables the
efficient recognition of increasingly complex conjunctions
in a global, or position-invariant manner. The details of



such a framework extend beyond the limited space of this
paper, and we refer to the full report [13]. But keeping this
goal in mind, we used two complementary CDT-detectors,
(X|Y )L and (Y |X)R), resulting in two “bound” vectors,

e.g. ~A \ b and ~B \ a. The combination of these two vec-
tors preserves the initial (average) number of spikes in a
feature-vector for processing downstream, that is, if CDT
removes about half the active spikes. The intuition is,
that if less spikes are removed, the feature-conjunction is
signaled weaker; if more are removed, the total number of
spikes that can be used downstream decreases. As noted,
if CDT shunts about half the spikes, the number of similar
conjunctions that can be detected simultaneously is about
4 (sections II-D and IV). We note that the human brain
seems to perform similarly [6].

The “synchrony hypothesis”[1] has so far been the main
theory on dynamic feature-binding, but criticism has been
mounting, e.g. [14]. Our architecture has the advantages
that it uses an inherently distributed code, enables feed-
forward spatial feature-binding, and can be implemented
in biologically reasonable spiking neural networks. We
also remark that the vector-structure is more a formal-
ization than a spatially localized necessity. The required
connectivity only connects similarly tuned neurons from
different locations into global neurons. The collective dis-
tributed activity of neurons thus connected can be inter-
preted as a spike-train vector data-structure.

In the experiments, we used biologically reasonable
spiking neurons implemented in the Spike-Response Model
(SRM). These neurons were used for three reasons: firstly,
their ability to emit multiple spikes to implement the
global universal conjunction detectors. Secondly, the
global feature-conjunction detector uses their ability to de-
tect coincident timing of spike-trains from a pair of global
feature and universal conjunction detectors. Thirdly,
they cam implement the feed-forward CDT procedure via
shunting inhibition. Opposed to traditional sigmoidal
neurons, all these (different) tasks could be implemented
by spiking neurons only differing by threshold and time-
constant τ . Note though that we had to (implicitly) take
into account the limitations of the neurons with regard to
temporal precision and limited firing-frequency. To this
end we used sparse vectors and presented only a limited
number of conjunctions simultaneously. Thus, global neu-
rons only had to superimpose a limited number of spikes,
keeping the firing-rate low, and the subsequent coincidence
detection was not required to be too precise. Sparse codes
are also considered efficient both from an information-
theoretical as well as from a metabolic point of view [15].

The timed precision of individual spikes from real neu-
rons is the subject of much discussion, though increasingly
a remarkable precision of single spike-timings in experi-
ments is reported. We remark that distributed spike-time
vectors as we employ are relatively insensitive to (uncor-
related) noise on individual spike-times.

To detect more than 4 similar conjunctions simultane-
ously, say for further integration, a solution would be to

use multiple copies of the same detector. Importantly, this
would only apply to detectors for features-conjunctions
that are often present in numbers larger than the capacity
of our framework. If seen as a biological model, the predic-
tion then is that the density of feature-detectors sensitive
to particular conjunctions is proportional to the proba-
bility of co-occurrence of multiple such conjunctions. As
such, having to allocate and learn multiple detectors for
often occurring conjunctions seems quite feasible.

VI. Conclusions

In this paper, we have demonstrated how the tempo-
ral dimension of individual spikes combined with the in-
troduction of a novel local feature-binding operator can
be employed to detect feature-conjunctions from position-
invariant (aggregate) feature-detectors, in the presence of
other conjunctions. The weights for feature detection were
set similar to those obtained with temporal Hebbian learn-
ing in [8], [10], suggesting that the architecture could thus
be learned. The incorporation of unsupervised learning
in the framework is thus a logical addition. As noted in
[1], the issue of dynamic binding and structured represen-
tations is important in the field of neural networks and
(sub)symbolic AI. We believe that as such, the framework
developed should enable new ways of dealing with these
issues. We are exploring this angle.
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fication in a layered network of spiking neurons. IEEE Trans.
Neural Networks, to appear. An abstract has appeared in the
proceedings of IJCNN’2000, vol IV, 249–55.

[11] S.M. Bohte, J.N. Kok, and H. La Poutré. Spike-prop: error-
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