
Computing with Spiking Neuron Networks

Hélène Paugam-Moisy1 and Sander Bohte2

Abstract Spiking Neuron Networks (SNNs) are often referred to as the 3rd gener-
ation of neural networks. Highly inspired from natural computing in the brain and
recent advances in neurosciences, they derive their strength and interest from an ac-
curate modeling of synaptic interactions between neurons, taking into account the
time of spike firing. SNNs overcome the computational power of neural networks
made of threshold or sigmoidal units. Based on dynamic event-driven processing,
they open up new horizons for developing models with an exponential capacity of
memorizing and a strong ability to fast adaptation. Today, the main challenge is to
discover efficient learning rules that might take advantage of the specific features
of SNNs while keeping the nice properties (general-purpose, easy-to-use, available
simulators, etc.) of traditional connectionist models. This chapter relates the his-
tory of the “spiking neuron” in Section 1 and summarizes the most currently-in-use
models of neurons and synaptic plasticity in Section 2. The computational power of
SNNs is addressed in Section 3 and the problem of learning in networks of spiking
neurons is tackled in Section 4, with insights into the tracks currently explored for
solving it. Finally, Section 5 discusses application domains, implementation issues
and proposes several simulation frameworks.

1 Professor at Universit de Lyon Laboratoire de Recherche en Informatique - INRIA - CNRS bat.
490, Universit Paris-Sud
Orsay cedex, France e-mail: hpaugam@lri.fr
2 CWI
Amsterdam, The Netherlands e-mail: sbohte@cwi.nl

1

Contents

Computing with Spiking Neuron Networks . 1
Hélène Paugam-Moisy1 and Sander Bohte2

1 From natural computing to artificial neural networks 4
1.1 Traditional neural networks . 4
1.2 The biological inspiration, revisited 6
1.3 Time as basis of information coding 7
1.4 Spiking Neuron Networks . 9

2 Models of spiking neurons and synaptic plasticity 10
2.1 Hodgkin-Huxley model . 11
2.2 Integrate-and-Fire model and variants 12
2.3 Spike Response Model . 15
2.4 Synaptic plasticity and STDP . 17

3 Computational power of neurons and networks 19
3.1 Complexity and learnability results 20
3.2 Cell assemblies and synchrony . 24

4 Learning in spiking neuron networks . 26
4.1 Simulation of traditional models . 27
4.2 Reservoir Computing . 31
4.3 Other SNN research tracks . 36

5 Discussion . 37
5.1 Pattern recognition with SNNs . 37
5.2 Implementing SNNs . 38
5.3 Conclusion . 39

References . 40

3

4 Contents

1 From natural computing to artificial neural networks

1.1 Traditional neural networks

Since the human brain is made up of a great many of intricately connected neurons,
its detailed workings are the subject of interest in fields as diverse as the study of
neurophysiology, consciousness, and of course artificial intelligence. Less grand in
scope, and more focused on the functional detail, artificial neural networks attempt
to capture the essential computations that take place in these dense networks of
interconnected neurons making up the central nervous systems in living creatures.

The original work of McCulloch & Pitts in 1943 [110] proposed a neural network
model based on simplified “binary” neurons, where a single neuron implements a
simple thresholding function: a neuron’s state is either “active” or “not active”, and
at each neural computation step, this state is determined by calculating the weighted
sum of the states of all the afferent neurons that connect to the neuron. For this
purpose, connections between neurons are directed (from neuron Ni to neuron N j),
and have a weight (wi j). If the weighted sum of the states of all the neurons Ni
connected to a neuron N j exceeds the characteristic threshold of N j, the state of N j
is set to active, otherwise it is not (Figure 1, where index j has been omitted).

soma

dendrites

dendrites

axon

somaaxon

connection
synaptic

Elementary scheme of biological neurons

x

x

x

w

w

w

2

1

n

2

n

1

weights
inputs sum transfer

Σ θ

threshold

θ
ii

y = 1 if w x >Σ

y = 0 otherwise

First mathematical model of artificial neuron

Fig. 1 The first model of neuron picked up the most significant features of a natural neuron: All-
or-none output resulting from a non-linear transfer function applied to a weighted sum of inputs.

1

0

saturation neuron

piecewise−linear function

sigmoidal neuron

hyperbolic tangent

1

0

logistic function

1

0

threshold neuron

Heaviside function
sign function

Neuron models based on the
distance || X − W || computation

ArgMin function
Winner−Takes−All

gaussian functions
multiquadrics

RBF center (neuron)

spline functions

Neuron models based on the dot product < X, W > computation

Fig. 2 Several variants of neuron models, based on a dot product or a distance computation, with
different transfer functions.

Subsequent neuronal models evolved where inputs and outputs were real-valued,
and the non-linear threshold function (Perceptron) was replaced by a linear input-

Contents 5

output mapping (Adaline) or non-linear functions like the sigmoid (Multi-Layer
Perceptron). Alternatively, several connectionist models (e.g. RBF networks, Ko-
honen self-organizing maps [84, 172]) make use of “distance neurons” where the
neuron output results from applying a transfer function to the (usually quadratic)
distance ‖ X −W ‖ between the weights W and inputs X instead of the dot product,
usually denoted by < X ,W > (Figure 2).

Remarkably, networks of such simple, connected computational elements can
implement a wide range of mathematical functions relating input states to output
states: With algorithms for setting the weights between neurons, these artificial neu-
ral networks can “learn” such relations.

A large number of learning rules have been proposed, both for teaching a network
explicitly to do perform some task (supervised learning), and for learning interest-
ing features “on its own” (unsupervised learning). Supervised learning algorithms
are for example gradient descent algorithms (e.g. error backpropagation [140]) that
fit the neural network behavior to some target function. Many ideas on local un-
supervised learning in neural networks can be traced back to the original work on
synaptic plasticity by Hebb in 1949 [51], and his famous, oft repeated quote:

When an axon of cell A is near enough to excite cell B or repeatedly or persistently takes
part in firing it, some growth process or metabolic change takes place in one or both cells
such that A’s efficiency, as one of the cells firing B, is increased.

Unsupervised learning rules inspired from this type of natural neural processing are
referred to as Hebbian rules (e.g. in Hopfield’s network model [60]).

In general, artificial neural networks (NNs) have been proved to be very power-
ful, as engineering tools, in many domains (pattern recognition, control, bioinfor-
matics, robotics), and also in many theoretical issues:

• Calculability: NNs computational power outperforms a Turing machine [154]
• Complexity: The “loading problem” is NP-complete [15, 78]
• Capacity: MLP, RBF and WNN1 are universal approximators [35, 45, 63]
• Regularization theory [132]; PAC-learning2 [171]; Statistical learning theory,

VC-dimension, SVM3 [174]

Nevertheless, traditional neural networks suffer from intrinsic limitations, mainly
for processing large amount of data or for fast adaptation to a changing environ-
ment. Several characteristics, such as iterative learning algorithms or artificially de-
signed neuron model and network architecture, are strongly restrictive compared
with biological processing in natural neural networks.

1 MLP = Multi-Layer Perceptrons - RBF = Radial Basis Function networks - WNN = Wavelet
Neural Networks
2 PAC learning = Probably Approximately Correct learning
3 VC-dimension = Vapnik-Chervonenkis dimension - SVM = Support Vector Machines

6 Contents

1.2 The biological inspiration, revisited

A new investigation in natural neuronal processing is motivated by the evolution of
thinking regarding the basic principles of brain processing. When the first neural
networks were modeled, the prevailing belief was that intelligence is based on rea-
soning, and that logic is the foundation of reasoning. In 1943, McCulloch & Pitts
designed their model of neuron in order to prove that the elementary components
of the brain were able to compute elementary logic functions: Their first applica-
tion of thresholded binary neurons was to build networks for computing boolean
functions. In the tradition of Turing’s work [168, 169], they thought that complex,
“intelligent” behaviour could emerge from a very large network of neurons, com-
bining huge numbers of elementary logic gates. History shows us that such basic
ideas have been very productive, even if effective learning rules for large networks
(e.g. backpropagation for MLP) have been discovered only at the end of the 1980’s,
and even if the idea of boolean decomposition of tasks has been abandoned for a
long time.

Separately, neurobiological research has greatly progressed. Notions such as as-
sociative memory, learning, adaptation, attention and emotions have unseated the
notion of logic and reasoning as being fundamental to understanding how the brain
processes information, and time has become a central feature in cognitive process-
ing [2]. Brain imaging and a host of new technologies (micro-electrode, LFP4 or
EEG5 recordings, fMRI6) can now record rapid changes in the internal activity of
brain, and help elucidate the relation between brain activity and the perception of
a given stimulus. The current consensus agrees that cognitive processes are most
likely based on the activation of transient assemblies of neurons (see Section 3.2),
although the underlying mechanisms are not yet understood well.

Fig. 3 A model of spiking neuron: N j fires a spike whenever the weighted sum of incoming EPSPs
generated by its pre-synaptic neurons reaches a given threshold. The graphic (right) shows how the
membrane potential of N j varies through time, under the action of the four incoming spikes (left).

With these advances in mind, it is worth recalling some neurobiological detail:
real neurons spike, at least, most biological neurons rely on pulses as an important
part of information transmission from one neuron to another neuron. In a rough and

4 LFP = Local Field Potential
5 EEG = ElectroEncephaloGram
6 fMRI= functional Magnetic Resonance Imaging

Contents 7

non-exhaustive outline, a neuron can generate an action potential – the spike – at
the soma, the cell body of the neuron. This brief electric pulse (1 or 2ms duration)
then travels along the neuron’s axon, that in turn is linked up to the receiving end
of other neurons, the dendrites (see Figure 1, left view). At the end of the axon,
synapses connect one neuron to another, and at the arrival of each individual spike,
the synapses may release neurotransmitters along the synaptic cleft. These neuro-
transmitters are taken up by the neuron at the receiving end, and modify the state
of that postsynaptic neuron, in particular the membrane potential, typically making
the neuron more or less likely to fire for some duration of time.

The transient impact a spike has on the neuron’s membrane potential is generally
referred to as the postsynaptic potential, or PSP, and the PSP can either inhibit the
future firing – inhibitory postsynaptic potential, IPSP – or excite the neuron, mak-
ing it more likely to fire – an excitatory postsynaptic potential, EPSP. Depending
on the neuron, and the specific type of connection, a PSP may directly influence
the membrane potential for anywhere between tens of microseconds and hundreds
of milliseconds. A brief sketch of the typical way a spiking neuron processes is
depicted in Figure 3. It is important to note that the firing of a neuron may be a
deterministic or stochastic function of its internal state.

Many biological details are omitted in this broad outline, and they may or may
not be relevant for computing. Examples are the stochastic release of neurotrans-
mitter at the synapses: depending on the firing history, a synaptic connection may
be more or less reliable, and more or less effective. Inputs into different parts of the
dendrite of a neuron may sum non-linearly, or even multiply. More detailed accounts
can be found in for example [99].

Evidence from the field of neuroscience has made it increasingly clear that in
many situations, information is carried in the individual action potentials, rather
than aggregate measures such as “firing rate”. Rather than the form of the action
potential, it is the number and the timing of spikes that matter. In fact, it has been
established that the exact timing of spikes can be a means for coding information,
for instance in the electrosensory system of electric fish [52], in the auditory system
of echo-locating bats [86], and in the visual system of flies [14].

1.3 Time as basis of information coding

The relevance of the timing of individual spikes has been at the center of the debate
about rate coding versus spike coding. Strong arguments against rate coding have
been given by Thorpe et al. [165, 173] in the context of visual processing. Many
physiologists subscribe to the idea of a Poisson-like rate code to describe the way
that neurons transmit information. However, as pointed out by Thorpe et al., Poisson
rate codes seem hard to reconcile with the impressively efficient rapid information
transmission required for sensory processing in human vision. Only 100− 150ms
are sufficient for a human to respond selectively to complex visual stimuli (e.g.
faces or food), but due to the feedforward architecture of visual system, made up of

8 Contents

multiple layers of neurons firing at an average rate of 10ms, realistically only one
spike or none could be fired by each neuron involved in the process during this time
window. A pool of neurons firing spikes stochastically as a function of the stimulus
could realize an instantaneous rate code: a spike density code. However, maintaining
such a set of neurons is expensive, as is the energetic cost of firing so many spikes
to encode a single variable [124]. It seems clear from this argument alone that the
presence and possibly timing of individual spikes is likely to convey information,
and not just the number, or rate, of spikes.

From a combinatorial point of view, precisely timed spikes have a far greater
encoding capacity, given a small set of spiking neurons. The representational power
of alternative coding schemes has been pointed out by Recce [134] and analysed by
Thorpe et al. [164]. For instance, consider that a stimulus has been presented to a set
of n spiking neurons and that each of them fires at most one spike in the next T (ms)
time window (Figure 4).

t

1

1

1

1

1

0

1

5

6

7

5

1

3

5

6

4

1

23

count ranklatency

__
G

E

D

C

A

F

B

Numeric count binary timing rank
examples: code code code order

left (opposite) figure
n = 7, T = 7ms 3 7 ≈ 19 12.3

Thorpe et al. [164]
n = 10, T = 10ms 3.6 10 ≈ 33 21.8

Number of bits that can be transmitted
by n neurons in a T time window.

Fig. 4 Comparing the representational power of spiking neurons, for different coding schemes.
Count code: 6/7 spike per 7ms, i.e. ≈ 122 spikes.s−1 - Binary code: 1111101 - Timing code:
latency, here with a 1ms precision - Rank order code: E ≥ G≥ A≥ D≥ B≥C ≥ F .

Consider some different ways to decode the temporal information that can be
transmitted by the n spiking neurons. If the code is to count the overall number of
spikes fired by the set of neurons (population rate coding), the maximum amount of
available information is log2(n + 1), since only n + 1 different events can occur. In
the case of a binary code, the output is an n-digits binary number, with obviously n
as information coding capacity. A higher amount of information is transmitted with
a timing code, provided that an efficient decoding mechanism is available for de-
termining the precise times of each spike. In practical cases, the available code size
depends on the decoding precision, e.g. for a 1ms precision, an amount of informa-
tion of n× log2(T) can be transmitted in the T time window. Finally, in rank order
coding, information is encoded in the order of the sequence of spike emissions, i.e.
one among the n! orders that can be obtained from n neurons, thus log2(n!) bits can
be transmitted, meaning that the order of magnitude of capacity is n log(n). How-
ever this theoretical estimate must be alleviated when considering the unavoidable
bound on precision required for distinguishing two spike times [177], even in com-
puter simulation.

Contents 9

1.4 Spiking Neuron Networks

In Spiking Neuron Networks (SNNs)7, the presence and timing of individual spikes
is considered as the means of communication and neural computation. This com-
pares with traditional neuron models where analog values are considered, repre-
senting the rate at which spikes are fired.

In SNNs, new input-output notions have to be developed that assign meaning to
the presence and timing of spikes. One example of such coding that easily compares
to traditional neural coding, is temporal coding8. Temporal coding is a straightfor-
ward method for translating a vector of real numbers into a spike train, for example
for simulating traditional connectionist models by SNNs, as in [96]. The basic idea
is biologically well-founded: the more intensive the input, the earlier the spike trans-
mission (e.g. in visual system). Hence a network of spiking neurons can be designed
with n input neurons Ni whose firing times are determined through some external
mechanism. The network is fed by successive n-dimensional input analog patterns
x = (x1, . . . ,xn) - with all xi inside a bounded interval of R, e.g. [0,1] - that are
translated into spike trains through successive temporal windows (comparable to
successive steps of traditional NNs computation). In each time window, a pattern x
is temporally coded relative to a fixed time Tin by one spike emission of neuron Ni
at time ti = Tin− xi, for all i (Figure 5). It is straightforward to show that with such
temporal coding, and some mild assumptions, any traditional neural network can be
emulated by an SNN. However, temporal coding obviously does not apply readily
to more continuous computing where neurons fire multiple spikes, in spike trains.

t

3

6

output vector

1

t

Spiking

Network

Neuron

5

6

7

5

1

3

4

input vector

input spike train output spike train

Fig. 5 Illustration of the temporal coding principle for encoding and decoding real vectors in spike
trains.

Many SNN approaches focus on the continuous computation that is carried out
on such spike trains. Assigning meaning is then less straightforward, and depending
on the approach. However, a way to visualize the temporal computation processed
by an SNN is by displaying a complete representation of the network activity on a
spike raster plot (Figure 6): With time on the abscissa, a small bar is plotted each
time a neuron fires a spike (one line per neuron, numbered in Y-axis). Variations

7 SNNs are sometimes referred to as Pulsed-Coupled Neural Networks (PCNNs) in literature
8 sometimes referred to as “latency coding” or “time-to-first-spike”

10 Contents

and frequencies of neuronal activity can be observed in such diagrams, in the same
way as natural neurons activities can be observed in spike raster plots drawn from
multi-electrode recordings. Likewise, other representations (e.g. time-frequency di-
agrams) can be drawn from simulations of artificial networks of spiking neurons, as
is done in neuroscience from experimental data.

 0

 20

 40

 60

 80

 100

 120

 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200

Fig. 6 On a spike raster plot, a small bar is plotted each time (in abscissa) that a neuron (numbered
in ordinates) fires a spike. For computational purpose, time is often discretized in temporal ∆ t
units (left). The dynamic answer of an SNN, stimulated by an input pattern in temporal coding -
diagonal patterns, on bottom - can be observed on a spike raster plot (right) [from Paugam-Moisy
et al. [127]].

Since the basic principle underlying SNNs is so radically different, it is not sur-
prising that much of the work on traditional neural networks, such as learning rules
and theoretical results, has to be adapted, or even has to be fundamentally rethought.
The main purpose of this Chapter is to give an exposition on important state-of-the-
art aspects of computing with SNNs, from theory to practice and implementation.

The first difficult task is to define “the” model of neuron, as there exist numerous
variants already. Models of spiking neurons and synaptic plasticity are the subject
of Section 2. It is worth mentioning that the question of network architecture has
become less important in SNNs than in traditional neural networks. Section 3 pro-
poses a survey of theoretical results (capacity, complexity, learnability) that argue
for SNNs being a new generation of neural networks that are more powerful than the
previous ones, and considers some of the ideas on how the increased complexity and
dynamics could be exploited. Section 4 addresses different methods for learning in
SNNs and presents the paradigm of Reservoir Computing. Finally, Section 5 focuses
on practical issues concerning the implementation and use of SNNs for applications,
in particular with respect to temporal pattern recognition.

2 Models of spiking neurons and synaptic plasticity

A spiking neuron model accounts for the impact of impinging action potentials –
spikes – on the targeted neuron in terms of the internal state of the neuron, as well

Contents 11

as how this state relates to the spikes the neuron fires. There are many models of
spiking neurons, and this section only describes some of the models that have so far
been most influential in Spiking Neuron Networks.

2.1 Hodgkin-Huxley model

The fathers of the spiking neurons are the conductance-based neuron models, such
as the well-known electrical model defined by Hodgkin & Huxley [57] in 1952 (Fig-
ure 7). Hodgkin & Huxley modeled the electro-chemical information transmission
of natural neurons with electrical circuits consisting of capacitors and resistors: C is
the capacitance of the membrane, gNa, gK and gL denote the conductance parame-
ters for the different ion channels (sodium Na, potassium K, etc.) and ENa, EK and
EL are the corresponding equilibrium potentials. The variables m, h and n describe
the opening and closing of the voltage dependent channels.

C
du
dt

=−gNam3h(u−ENa)−gKn4(u−EK)−gL(u−EL)+ I(t) (1)

τn
dn
dt

=−[n−n0(u)], τm
dm
dt

=−[m−m0(u)], τh
dh
dt

=−[h−h0(u)]

Dynamics of spike firing

Fig. 7 Electrical model of “spiking” neuron as defined by Hodgkin and Huxley. The model is able
to produce realistic variations of the membrane potential and the dynamics of a spike firing, e.g. in
response to an input current I(t) sent during a small time, at t < 0.

Appropriately calibrated, the Hodgkin-Huxley model has been successfully com-
pared to numerous data from biological experiments on the giant axon of the squid.
More generally, it has been shown that the Hodgkin-Huxley neuron is able to model
biophysically meaningful properties of the membrane potential, respecting the be-
haviour recordable from natural neurons: an abrupt, large increase at firing time,
followed by a short period where the neuron is unable to spike again, the absolute
refractoriness, and a further time period where the membrane is depolarized, which
makes renewed firing more difficult, i.e. the relative refractory period (Figure 7).

12 Contents

The Hodgkin-Huxley model (HH) is realistic but far too much complex for the
simulation of SNNs. Although ODE9 solvers can be applied directly to the system
of differential equations, it would be intractable to compute temporal interactions
between neurons in a large network of Hodgkin-Huxley models.

2.2 Integrate-and-Fire model and variants

Integrate-and-Fire (I&F) and Leaky-Integrate-and-Fire (LIF)

Derived from the Hodgkin-Huxley neuron model are Integrate-and-Fire (I&F) neu-
ron models, that are much more computationally tractable (see Figure 8 for equation
and electrical model).

I(t) input current

CR V

u being the membrane potential,

C
du
dt

=− 1
R

(u(t)−urest)+ I(t)

spike firing time t(f) is defined by

u(t(f)) = ϑ with u′(t(f)) > 0

Fig. 8 The Integrate-and-Fire model (I&F) is a simplification of the Hodgkin-Huxley model.

An important I&F neuron type is the Leaky-Integrate-and-Fire (LIF) neuron [87,
162]. Compared to the Hodgkin-Huxley model, the most important simplification in
the LIF neuron implies that the shape of the action potentials is neglected and every
spike is considered as a uniform event defined only by the time of its appearance.
The electrical circuit equivalent for a LIF neuron consists of a capacitor C in parallel
with a resistor R driven by an input current I(t). In this model, the dynamics of the
membrane potential in the LIF neuron are described by a single first-order linear
differential equation:

τm
du
dt

= urest −u(t)+RI(t), (2)

where τm = RC is taken as the time constant of the neuron membrane, modeling
the voltage leakage. Additionally, the firing time t(f) of the neuron is defined by a
threshold crossing equation u(t(f)) = ϑ , under the condition u′(t(f)) > 0. Immedi-
ately after t(f), the potential is reset to a given value urest (with urest = 0 as a common
assumption). An absolute refractory period can be modeled by forcing the neuron

9 ODE = Ordinary Differential Equations

Contents 13

to a value u = −uabs during a time dabs after a spike emission, and then restarting
the integration with initial value u = urest .

Quadratic-Integrate-and-Fire (QIF) and Theta neuron

Quadratic-Integrate-and-Fire (QIF) neurons, a variant where du
dt depends on u2, may

be a somewhat better, and still computationally efficient, compromise. Compared to
LIF neurons, QIF neurons exhibit many dynamic properties such as delayed spiking,
bi-stable spiking modes, and activity dependent thresholding. They further exhibit
a frequency response that better matches biological observations [25]. Via a simple
transformation of the membrane potential u to a phase θ , the QIF neuron can be
transformed to a Theta neuron model [42].

In the Theta neuron model, the neuron’s state is determined by a phase, θ .
The Theta neuron produces a spike with the phase passes through π . Being one-
dimensional, the Theta neuron dynamics can be plotted simply on a phase circle
(Figure 9).

π

Spiking
Region

Refractory
Region

Quiescent
Region

0

θFP

+

θFP

-

Fig. 9 Phase circle of the Theta neuron model, for the case where the baseline current I(t) < 0.
When the phase goes through π , a spike is fired. The neuron has two fixed points: a saddle point
θ

+
FP, and an attractor θ

−
FP. In the spiking region, the neuron will fire after some time, whereas in

the quiescent region, the phase decays back to θ
−
FP unless input pushes the phase into the spiking

region. The refractory phase follows after spiking, and in this phase it is more difficult for the
neuron to fire again.

The phase-trajectory in a Theta-neuron evolves according to:

dθ

dt
= (1− cos(θ))+αI(t)(1+ cos(θ)), (3)

where θ is the neuron phase, α is a scaling constant, and I(t) is the input current.
The main advantage of the Theta-neuron model is that neuronal spiking is de-

scribed in a continuous manner, allowing for more advanced gradient approaches,
as illustrated in Section 4.1.

14 Contents

Izhikevich’s neuron model

In the class of spiking neurons defined by differential equations, the two-dimensional
Izhikevich neuron model [66] is a good compromise between biophysical plausibil-
ity and computational cost. It is defined by the coupled equations

du
dt

= 0.04u(t)2 +5u(t)+140−w(t)+ I(t)
dw
dt

= a(bu(t)−w(t))
(4)

with after-spike resetting: if u≥ ϑ then u← c and w← w+d

This neuron model is capable to reproducing many different firing behaviors that
can occur in biological spiking neurons (Figure 10)10.

On spiking neuron model variants

Besides the models discussed here, there exist many different spiking neuron models
that cover the complexity range between the Hodgkin-Huxley model and LIF mod-
els, with decreasing biophysical plausibility, but also with decreasing computational
cost (see e.g. [67] for a comprehensive review, or [160] for an in-depth comparison
of Hodgkin-Huxley and LIF subthreshold dynamics).

Whereas the Hodgkin-Huxley models are the most biologically realistic, the LIF
and - to a lesser extend - QIF models have been studied extensively due to their
low complexity, making them relatively easy to understand. However, as argued by
Izhikevic [67], LIF neurons are a simplification that no longer exhibit many im-
portant spiking neuron properties. Where the full Hodgkin-Huxley model is able
to reproduce many different neuro-computational properties and firing behaviors,
the LIF model has been shown to only be able to reproduce 3 out of the 20 firing
schemes displayed on Figure 10: the “tonic spiking” (A), the “class 1 excitable” (G)
and the “integrator” (L). Note that although some behaviors are mutually exclusive
for a particular instantiation of a spiking neuron model - e.g. (K) “resonator” and
(L) “integrator” - many such behaviors may be reachable with different parameter
choices, for a same neuron model. The QIF model is already able to capture more
realistic behavior, and the Izhikevich neuron model can reproduce all of the 20 fir-
ing schemes displayed in Figure 10. Other intermediate models are currently being
studied, such as the gIF model [138].

The complexity range can also be expressed in terms of the computational re-
quirements for simulation. Since it is defined by four differential equations, the
Hodgkin-Huxley model requires about 1200 floating point computations (FLOPS)
per 1ms simulation. Simplified to two differential equations, the Morris-LeCar or
FitzHugh-Nagumo models have still a computational cost of one to several hun-
dreds FLOPS. Only 5 FLOPS are required by the LIF model, around 10 FLOPS for

10 Electronic version of the original figure and reproduction permission are freely available at
www.izhikevich.com

Contents 15

(A) tonic spiking

input dc-current

(B) phasic spiking (C) tonic bursting (D) phasic bursting

(E) mixed mode (F) spike frequency (G) Class 1 excitable (H) Class 2 excitable
adaptation

(I) spike latency (J) subthreshold (K) resonator (L) integrator

(M) rebound spike (N) rebound burst (O) threshold (P) bistability
variability

oscillations

(Q) depolarizing (R) accommodation (S) inhibition-induced (T) inhibition-induced
after-potential spiking bursting

DAP

20 ms

Fig. 10 Many firing behaviours can occur in biological spiking neurons. Shown are simulations of
the Izhikevich neuron model, for different external input currents (displayed under each temporal
firing pattern) [From Izhikevich [67]].

variants such as LIF-with-adaptation and quadratic or exponential Integrate-and-
Fire neurons, and around 13 FLOPS for Izhikevich’s model.

2.3 Spike Response Model

Compared to the neuron models governed by coupled differential equations, the
Spike Response Model (SRM) as defined by Gerstner [46, 81] is more intuitive to
understand and more straightforward to implement. The SRM model expresses the
membrane potential u at time t as an integral over the past, including a model of re-
fractoriness. The SRM is a phenomenological model of neuron, based on the occur-

16 Contents

rence of spike emissions. Let F j = {t(f)
j ;1≤ f ≤ n}= {t | u j(t) = ϑ ∧ u′j(t) > 0}

denote the set of all firing times of neuron N j, and Γj = {i | Ni is presynaptic to N j}
define its set of presynaptic neurons. The state u j(t) of neuron N j at time t is given
by

u j(t) = ∑
t(f)
j ∈F j

η j(t− t(f)
j)+ ∑

i∈Γj

∑
t(f)
i ∈Fi

wi jεi j(t− t(f)
i)+

∫
∞

0
κ j(r)I(t− r)dr︸ ︷︷ ︸

if external input current

(5)

with the following kernel functions: η j is non-positive for s > 0 and models the po-
tential reset after a spike emission, εi j describes the membrane potential’s response
to presynaptic spikes, and κ j describes the response of the membrane potential to
an external input current. Some common choices for the kernel functions are:

η j(s) =−ϑ exp
(
− s

τ

)
H (s),

or, somewhat more involved,

η j(s) =−η0 exp
(
− s−δ abs

τ

)
H (s−δ

abs)−KH (s)H (δ abs− s),

where H is the Heaviside function, ϑ is the threshold and τ a time constant, for
neuron N j. Setting K→ ∞ ensures an absolute refractory period δ abs and η0 scales
the amplitude of relative refractoriness.

Kernel εi j describes the generic response of neuron N j to spikes coming from
presynaptic neurons Ni, and is generally taken as a variant of an α-function11:

εi j(s) =
s−dax

i j

τs
exp
(
−

s−dax
i j

τs

)
H (s−dax

i j),

or, in a more general description:

εi j(s) =
[

exp
(
−

s−dax
i j

τm

)
− exp

(
−

s−dax
i j

τs

)]
H (s−dax

i j),

where τm and τs are time constants, and dax
i j describes the axonal transmission delay.

For the sake of simplicity, εi j(s) can be assumed to have the same form ε(s−dax
i j)

for any pair of neurons, only modulated in amplitude and sign by the weight wi j
(excitatory EPSP for wi j > 0, inhibitory IPSP for wi j < 0).

A short term memory variant of SRM results from assuming that only the last fir-
ing t̂ j of N j contributes to refractoriness, η j (t− t̂ j) replacing the sum in formula (5)
by a single contribution. Moreover, integrating the equation on a small time window
of 1ms and assuming that each presynaptic neuron fires at most once in the time
window (reasonable since refractoriness of presynaptic neurons), reduces the SRM
to the simplified SRM0 model:

11 An α-function is like α(x) = x exp−x

Contents 17

output spike

output spike

EPSP

input spikes

input spikes

θ

u

Fig. 11 The Spike Response Model (SRM) is a generic framework to describe the spike process
(redrawn after [46]).

u j(t) = η j (t− t̂ j)+ ∑
i∈Γj

wi jε(t− t̂i−dax
i j) next firing time t(f)

j = t⇐⇒ u j(t) = ϑ

(6)
Despite its simplicity, the Spike Response Model is more general than Integrate-

and-Fire neuron models and is often able to compete with the Hodgkin-Huxley
model for simulating complex neuro-computational properties.

2.4 Synaptic plasticity and STDP

In all the models of neurons, most of the parameters are constant values, and specific
to each neuron. The exception are synaptic connections that are the basis of adapta-
tion and learning, even in traditional neural network models where several synaptic
weight updating rules are based on Hebb’s law [51] (see Section 1). Synaptic plas-
ticity refers to the adjustments and even formation or removal of synapses between
neurons in the brain. In the biological context of natural neurons, the changes of
synaptic weights with effects lasting several hours are referred as Long Term Poten-
tiation (LTP) if the weight values (also called efficacies) are strengthened, and Long
Term Depression (LTD) if the weight values are decreased. In the second or minute
timescale, the weight changes are denoted as Short Term Potentiation (STP) and
Short Term Depression (STD). In [1], Abbott & Nelson give a good review of the
main synaptic plasticity mechanisms for regulating levels of activity in conjunction
with Hebbian synaptic modification, e.g. redistribution of synaptic efficacy [107] or
synaptic scaling. Neurobiological research has also increasingly demonstrated that
synaptic plasticity in networks of spiking neurons is sensitive to the presence and
precise timing of spikes [106, 12, 79].

One important finding that is receiving increasing attention is Spike-Timing De-
pendent Plasticity, STDP, as discovered in neuroscientific studies [106, 79], espe-
cially in detailed experiments performed by Bi & Poo [12, 13]. Often referred to
as a temporal Hebbian rule, STDP is a form of synaptic plasticity sensitive to the

18 Contents

precise timing of spike firing relative to impinging presynaptic spike times. It relies
on local information driven by backpropagation of action potential (BPAP) through
the dendrites of the postsynaptic neuron. Although the type and amount of long-
term synaptic modification induced by repeated pairing of pre- and postsynaptic
action potential as a function of their relative timing vary from one neuroscience
experiment to another, a basic computational principle has emerged: a maximal in-
crease of synaptic weight occurs on a connection when the presynaptic neuron fires
a short time before the postsynaptic neuron, whereas a late presynaptic spike (just
after the postsynaptic firing) leads to decrease the weight. If the two spikes (pre-
and post-) are too distant in time, the weight remains unchanged. This type of LTP /
LTD timing dependency should reflect a form of causal relationship in information
transmission through action potentials.

For computational purposes, STDP is most commonly modeled in SNNs using
temporal windows for controlling the weight LTP and LTD that are derived from
neurobiological experiments. Different shapes of STDP windows have been used in
recent literature [106, 79, 158, 153, 26, 70, 80, 47, 123, 69, 143, 114, 117]: They
are smooth versions of the shapes schematized by polygons in Figure 12. The spike
timing (X-axis) is the difference ∆ t = tpost − tpre of firing times between the pre-
and postsynaptic neurons. The synaptic change ∆W (Y-axis) operates on the weight
update. For excitatory synapses, the weight wi j is increased when the presynaptic
spike is supposed to have a causal influence on the postsynaptic spike, i.e. when
∆ t > 0 and close to zero (windows 1-3 in Figure 12) and decreased otherwise. The
main differences between shapes 1 to 3 concern the symmetry or asymmetry of the
LTP and LTD subwindows, and the discontinuity or not of ∆W function of ∆ t, near
∆ t = 0. For inhibitory synaptic connections, it is common to use a standard Hebbian
rule, just strengthening the weight when the pre- and postsynaptic spikes occur close
in time, regardless of the sign of the difference tpost − tpre (window 4 in Figure 12).

∆ t

W∆
1

W∆

∆ t

2
W∆

∆ t

3
W∆

∆ t

4

Fig. 12 Various shapes of STDP windows with LTP in blue and LTD in red for excitatory connec-
tions (1 to 3). More realistic and smooth ∆W function of ∆ t are mathematically described by sharp
rising slope near ∆ t = 0 and fast exponential decrease (or increase) towards±∞. Standard Hebbian
rule (window 4) with brown LTP and green LTD are usually applied to inhibitory connections.

There exist at least two ways to compute with STDP: The modification ∆W can
be applied to a weight w according to either an additive update rule w← w + ∆W
or a multiplicative update rule w← w(1+∆W).

The notion of temporal Hebbian learning in the form of STDP appears as a pos-
sible new direction for investigating innovative learning rules in SNNs. However,
many questions arise and many problems remain unresolved. For example, weight
modifications according to STDP windows cannot be applied repeatedly in the same

Contents 19

direction (e.g. always potentiation) without fixing bounds for the weight values,
e.g. an arbitrary fixed range [0,wmax] for excitatory synapses. Bounding both the
weight increase and decrease is necessary to avoid either silencing the overall net-
work (when all weights down) or have “epileptic” network activity (all weights up,
causing disordered and frequent firing of almost all neurons). However, in many
STDP driven SNN models, a saturation of the weight values to 0 or wmax has been
observed, which strongly reduces further adaptation of the network to new events.
Among other solutions, a regulatory mechanism, based on a triplet of spikes, has
been described by Nowotny et al. [123], for a smooth version of the temporal win-
dow 3 of Figure 12, with an additive STDP learning rule. On the other hand, apply-
ing a multiplicative weight update also effectively applies a self-regulatory mech-
anism. For deeper insights into the influence of the nature of update rule and the
shape of STDP windows, the reader could refer to [158, 137, 28].

3 Computational power of neurons and networks

Since information processing in spiking neuron networks is based on the precise
timing of spike emissions (pulse coding) rather than the average numbers of spikes
in a given time window (rate coding), there are two straightforward advantages of
SNN processing. First, SNN processing allows for the very fast decoding of sensory
information, as in the human visual system [165], where real-time signal processing
is paramount. Second, it allows for the possibility of multiplexing information, for
example like the auditory system combines amplitude and frequency very efficiently
over one channel. More abstractly, SNNs add a new dimension, the temporal axis,
to the representation capacity and the processing abilities of neural networks. Here,
we describe different approaches to determining the computational power and com-
plexity of SNNs, and outline current thinking on how to exploit these properties, in
particular in dynamic cell assemblies.

In 1997, Maass [97, 98] proposed to classify neural networks as follows:

• 1st generation: Networks based on McCulloch and Pitts’ neurons as computa-
tional units, i.e. threshold gates, with only digital outputs (e.g. perceptrons, Hop-
field network, Boltzmann machine, multilayer networks with threshold units).

• 2nd generation: Networks based on computational units that apply an activa-
tion function with a continuous set of possible output values, such as sigmoid or
polynomial or exponential functions (e.g. MLP, RBF networks). The real-valued
outputs of such networks can be interpreted as firing rates of natural neurons.

• 3rd generation of neural network models: Networks which employ spiking neu-
rons as computational units, taking into account the precise firing times of neu-
rons for information coding. Related to SNNs are also pulse stream VLSI cir-
cuits, new types of electronic software that encode analog variables by time dif-
ferences between pulses.

20 Contents

Exploiting the full capacity of this new generation of neural network models raises
many fascinating and challenging questions that will be addressed in further sec-
tions.

3.1 Complexity and learnability results

Tractability

To facilitate the derivation of theoretical proofs on the complexity of computing
with spiking neurons, Maass proposed a simplified spiking neuron model with a
rectangular EPSP shape, the “type A spiking neuron” (Figure 13). The type A neu-
ron model can for instance be justified as providing a link to silicon implementations
of spiking neurons in analog VLSI neural microcircuits. Central to the complexity
results is the notion of transmission delays: different transmission delays di j can be
assigned to different presynaptic neurons Ni connected to a postsynaptic neuron N j.

Fig. 13 Very simple versions of spiking neurons: “type A spiking neuron” (rectangular shaped
pulse) and “type B spiking neuron” (triangular shaped pulse), with elementary representation of
refractoriness (threshold goes to infinity), as defined in [97].

Let boolean input vectors (x1, . . . ,xn) be presented to a spiking neuron by a set of
input neurons (N1, . . . ,Nn) such that Ni fires at a specific time Tin if xi = 1 and does
not fire if xi = 0. A type A neuron is at least as powerful as a threshold gate [97, 145].
Since spiking neurons can behave as coincidence detectors12 it is straightforward
to prove that the boolean function CDn (Coincidence Detection function) can be
computed by a single spiking neuron of type A (the proof relies on a suitable choice
of the transmission delays di j):

CDn(x1, . . . ,xn,y1, . . . ,yn) =
{

1, if (∃i) xi = yi
0, otherwise

12 For a proper choice of weights, a spiking neuron can only fire when two or more input spikes
are effectively coincident in time.

Contents 21

In previous neural network generations, the computation of the boolean function
CDn required many more neurons: At least n

log(n+1) threshold gates and at least an

order of magnitude of Ω(n1/4) sigmoidal units.
Of special interest is the Element Distinctness function, EDn:

EDn(x1, . . . ,xn) =

1, if (∃i 6= j) xi = x j
0, if (∀i 6= j) | xi− x j |≥ 1
arbitrary, otherwise

Let real-valued inputs (x1, . . . ,xn) be presented to a spiking neuron by a set of input
neurons (N1, . . . ,Nn) such that Ni fires at time Tin− cxi (cf. temporal coding, de-
fined in Section 1.4). With positive real-valued inputs and a binary output, the EDn
function can be computed by a single type A neuron, whereas at least Ω(n log(n))
threshold gates and at least n−4

2 −1 sigmoidal hidden units are required.
However, for arbitrary real-valued inputs, type A neurons are no longer able to

compute threshold circuits. For such settings, the “type B spiking neuron” (Fig-
ure 13) has been proposed, as its triangular EPSP can shift the firing time of a
targeted post-synaptic neuron in a continuous manner. It is easy to see that any
threshold gate can be computed by O(1) type B spiking neurons. Furthermore, at
the network level, any threshold circuit with s gates, for real-valued inputs xi ∈ [0,1]
can be simulated by a network of O(s) type B spiking neurons.

From these results, Maass concludes that spiking neuron networks are computa-
tionally more powerful than both the 1st and the 2nd generations of neural networks.

Schmitt develops a deeper study of type A neurons with programmable delays in
[145, 102]. Some results are:

• Every boolean function of n variables, computable by a single spiking neuron,
can be computed by a disjunction of at most 2n−1 threshold gates.

• There is no ΣΠ -unit with fixed degree that can simulate a spiking neuron.
• The threshold number of a spiking neuron with n inputs is Θ(n).
• The following relation holds: (∀n ≥ 2) ∃ a boolean function on n variables that

has threshold number 2 and cannot be computed by a spiking neuron.
• The threshold order of a spiking neuron with n inputs is Ω(n1/3).
• The threshold order of a spiking neuron with n≥ 2 inputs is at most n−1.

Capacity

In [98], Maass considers noisy spiking neurons, a neuron model close to the SRM
(cf. Section 2.3), with a probability of spontaneous firing (even under threshold) or
not firing (even above threshold) governed by the difference:

∑
i∈Γj

∑
s∈Fi,s<t

wi jεi j (t− s)− η j
(
t− t ′

)︸ ︷︷ ︸
threshold function

22 Contents

The main result from [98] is that for any given ε,δ > 0 one can simulate any given
feedforward sigmoidal neural network N of s units with linear saturated activation
function by a network Nε,δ of s+O(1) noisy spiking neurons, in temporal coding.
An immediate consequence of this result is that SNNs are universal approximators,
in the sense that any given continuous function F : [0,1]n→ [0,1]k can be approxi-
mated within any given precision ε > 0 with arbitrarily high reliability, in temporal
coding, by a network of noisy spiking neurons with a single hidden layer.

With regard to synaptic plasticity, Legenstein, Näger and Maass studied STDP
learnability in [90]. They define a Spiking Neuron Convergence Conjecture (SNCC)
and compare the behaviour of STDP learning by teacher-forcing with the Percep-
tron convergence theorem. They state that a spiking neuron can learn with STDP
basically any map from input to output spike trains that it could possibly implement
in a stable manner. They interpret the result as saying that STDP endows spiking
neurons with universal learning capabilities for Poisson input spike trains.

Beyond these and other encouraging results, Maass [98] points out that SNNs are
able to encode time series in spike trains, but there are, in computational complexity
theory, no standard reference models yet for analyzing computations on time series.

VC-dimension

13

The first attempt to estimate the VC-dimension of spiking neurons is probably
the work of Zador & Pearlmutter in 1996 [187], where they studied a family of
integrate-and-fire neurons (cf. Section 2.2) with threshold and time-constants as pa-
rameters. Zador & Pearlmutter proved that for an Integrate-and-Fire (I&F) model,
the VCdim(I&F) grows as log(B) with the input signal bandwidth B, which means
that the VCdim of a signal with infinite bandwidth is unbounded, but the divergence
to infinity is weak (logarithmic).

More conventional approaches [102, 98] estimate bounds on the VC-dimension
of neurons as functions of their programmable / learnable parameters, such as the
synaptic weights, the transmission delays and the membrane threshold:

• With m variable positive delays, VCdim(type A neuron) is Ω (m log(m)) - even with
fixed weights - whereas, with m variable weights, VCdim(threshold gate) is Ω(m).

• With n real-valued inputs and a binary output, VCdim(type A neuron) is O(n log(n)).
• With n real-valued inputs and a real-valued output, pseudodim(type A neuron) is

O(n log(n)).

The implication is that the learning complexity of a single spiking neuron is
greater than the learning complexity of a single threshold gate. As Maass & Schmitt
[103] argue, this should not be interpreted as saying that supervised learning is im-
possible for a spiking neuron, but rather that it is likely quite difficult to formulate
rigorously provable learning results for spiking neurons.

13 see http://en.wikipedia.org/wiki/VC dimension for a definition

Contents 23

To summarize Maass and Schmitt’s work: let the class of boolean functions, with
n inputs and 1 output, that can be computed by a spiking neuron be denoted by S xy

n ,
where x is b for boolean values and a for analog (real) values and idem for y. Then
the following holds:

• The classes S bb
n and S ab

n have VC-dimension Θ(n log(n)).
• The class S aa

n has pseudo-dimension Θ(n log(n)).

At the network level, if the weights and thresholds are the only programmable
parameters, then an SNN with temporal coding seems to be nearly equivalent to
traditional Neural Networks (NNs) with the same architecture, for traditional com-
putation. However, transmission delays are a new relevant component in spiking
neural computation and SNNs with programmable delays appear to be more power-
ful than NNs.

Let N be an SNN of neurons with rectangular pulses (e.g. type A), where all
delays, weights and thresholds are programmable parameters, and let E be the num-
ber of edges of the N directed acyclic graph14. Then VCdim(N) is O(E2), even
for analog coding of the inputs [103]. Schmitt derived more precise results by con-
sidering a feedforward architecture of depth D, with nonlinear synaptic interactions
between neurons, in [146].

It follows that the sample sizes required for the networks of fixed depth are not
significantly larger than for traditional neural networks. With regard to the gen-
eralization performance in pattern recognition applications, the models studied by
Schmitt can be expected to be at least as good as traditional network models [146].

Loading problem

In the framework of PAC-learnability [171, 16], only hypotheses from S bb
n may be

used by the learner. Then, the computational complexity of training a spiking neuron
can be analyzed within the formulation of the consistency or loading problem (cf.
[78]):

Given a training set T of labeled binary examples (X ,b) with n inputs, does there exist
parameters defining a neuron N in S bb

n such that (∀(X ,b) ∈ T) yN = b?

In this PAC-learnability setting, the following results are proved in [103]:

• The consistency problem for a spiking neuron with binary delays is NP-complete
(di j ∈ {0,1}).

• The consistency problem for a spiking neuron with binary delays and fixed
weights is NP-complete.

Several extended results have been developed by Šı́ma and Sgall [155], such as:

14 The directed acyclic graph is the network topology that underlies the spiking neuron network
dynamics.

24 Contents

• The consistency problem for a spiking neuron with non-negative delays is NP-
complete (di j ∈ R+). The result holds even with some restrictions (see [155] for
precise conditions) on bounded delays, unit weights or fixed threshold.

• A single spiking neuron with programmable weights, delays and threshold does
not allow robust learning unless RP = NP. The approximation problem is not
better solved even if the same restrictions as above are applied.

Complexity results versus real-world performance

Non-learnability results such as those outlined above have of course been derived for
classic NNs already, e.g. in [15, 78]. Moreover, the results presented in this section
apply only to a restricted set of SNN models and, apart from the programmability
of transmission delays of synaptic connections, they do not cover all the capabilities
of SNNs that could result from computational units based on firing times. Such re-
strictions on SNNs can rather be explained by a lack of practice for building proofs
in such a context or, even more, by an incomplete and unadapted computational
complexity theory or learning theory. Indeed, learning in biological neural systems
may employ rather different mechanisms and algorithms than common computa-
tional learning systems. Therefore, several characteristics, especially the features
related to computing in continuously changing time, will have to be fundamentally
rethought to develop efficient learning algorithms and ad-hoc theoretical models to
understand and master the computational power of SNNs.

3.2 Cell assemblies and synchrony

One way to take a fresh look at SNNs complexity is to consider their dynamics,
especially the spatial localization and the temporal variations of their activity. From
this point of view, SNNs behave as complex systems, with emergent macroscopic-
level properties resulting from the complex dynamic interactions between neurons,
but hard to understand just looking at the microscopic-level of each neuron pro-
cessing. As biological studies highlight the presence of a specific organization in
the brain [159, 41, 3], the Complex Networks research area appears to provide with
valuable tools (“Small-Word” connectivity [180], presence of clusters [121, 115], of
hubs [7]. . . see [122] for a survey) for studying topological and dynamic complexity
of SNNs, both in natural and artificial networks of spiking neurons. Another promis-
ing direction for research takes its inspiration from the area of Dynamic Systems:
Several methods and measures, based on the notions of phase transition, edge-of-
chaos, Lyapunov exponents or mean-field predictors, are currently proposed to esti-
mate and control the computational performance of SNNs [89, 175, 147]. Although
these directions of research are still in their infancy, an alternative is to revisit older
and more biological notions that are already related to the network topology and
dynamics.

Contents 25

The concept of the cell assembly has been introduced by Hebb [51] in 1949, more
than half a century ago15. However the idea had not been further developed, neither
by neurobiologists - since they could not record the activity of more than one or a
few neurons at a time, until recently - nor by computer scientists. New techniques of
brain imaging and recording have boosted this area of research in neuroscience for
only a few years (cf. special issue 2003 of Theory in Biosciences [182]). In computer
science, a theoretical analysis of assembly formation in spiking neuron network
dynamics (with SRM neurons) has been discussed by Gerstner & van Hemmen in
[48], where they contrast ensemble code, rate code and spike code, as descriptions
of neuronal activity.

A cell assembly can be defined as a group of neurons with strong mutual exci-
tatory connections. Since a cell assembly, once a subset of its neurons are stimu-
lated, tends to be activated as a whole, it can be considered as an operational unit
in the brain. An association can be viewed as the activation of an assembly by a
stimulus or another assembly. Then, short term memory would be a persistent activ-
ity maintained by reverberations in assemblies, whereas long term memory would
correspond to the formation of new assemblies, e.g. by a Hebb’s rule mechanism.
Inherited from Hebb, current thinking about cell assemblies is that they could play
a role of “grandmother neural groups” as a basis of memory encoding, instead of
the old controversial notion of “grandmother cell”, and that material entities (e.g. a
book, a cup, a dog) and, even more abstract entities such as concepts or ideas could
be represented by cell assemblies.

Fig. 14 A spike raster plot showing the dynamics of an artificial SNN: Erratic background activity
is disrupted by a stimulus presented between 1000 and 2000 ms [From Meunier [112]].

Within this context, synchronization of firing times for subsets of neurons inside
a network has received much attention. Abeles [2] developed the notion of synfire
chains, which describes activity in a pool of neurons as a succession of synchro-
nized firing by specific subsets of these neurons. Hopfield & Brody demonstrated

15 The word “cell” was in used at that time, instead of “neuron”.

26 Contents

transient synchrony as means for collective spatio-temporal integration in neuronal
circuits [61, 62]. The authors claim that the event of collective synchronization of
specific pools of neurons in response to a given stimulus may constitute a basic com-
putational building block, at the network level, for which there is no resemblance in
traditional neural computing.

However, synchronization per se – even transient synchrony – appears to be too
restrictive a notion for fully understanding the potential capabilities of information
processing in cell assemblies. This has been comprehensively pointed out by Izhike-
vich, who proposes the extended notion of polychronization [68] within a group of
neurons that are sparsely connected with various axonal delays. Based on the con-
nectivity between neurons, a polychronous group is a possible stereotypical time-
locked firing pattern. Since the neurons in a polychronous group have matching
axonal conduction delays, the group can be activated in response to a specific tem-
poral pattern triggering very few neurons in the group, other ones being activated
in a chain reaction. Since any given neuron can be activated within several poly-
chronous groups, the number of coexisting polychronous groups can be far greater
than the number of neurons in the network. Izhikevich argues that networks with
delays are “infinite-dimensional” from a purely mathematical point of view, thus
resulting in much greater information capacity as compared to synchrony based as-
sembly coding. Polychronous groups represent good candidates for modeling mul-
tiple trace memory and they could be viewed as a computational implementation of
cell assemblies.

Notions of cell assemblies and synchrony, derived from natural computing in
the brain and biological observations, are inspiring and challenging computer scien-
tists and theoretical researchers to search for and define new concepts and measures
of complexity and learnability in dynamic systems. This will likely bring a much
deeper understanding of neural computations that include the time dimension, and
will likely benefit both computer science as well as neuroscience.

4 Learning in spiking neuron networks

Traditionally, neural networks have been applied to pattern recognition, in various
guises. For example, carefully crafted layers of neurons can perform highly accurate
handwritten character recognition [88]. Similarly, traditional neural networks are
preferred tool for function approximation, or regression. The best-known learning
rules for achieving such network are of course the class of error-backpropagation
rules for supervised learning. There also exist learning rules for unsupervised
learning, such as Hebbian learning, or distance based variants like Kohonen self-
organizing maps.

Within the class of computationally oriented spiking neuron networks, we dis-
tinguish two main directions. First, there is the development of learning methods
equivalent to those developed for traditional neural networks. By substituting tradi-
tional neurons with spiking neuron models, augmenting weights with delay lines,

Contents 27

and using temporal coding, algorithms for supervised and unsupervised learning
have been developed. Second, there are networks and computational algorithms that
are uniquely developed for networks of spiking neurons. These networks and al-
gorithms use the temporal domain as well as the increased complexity of SNNs to
arrive at novel methods for temporal pattern detection with spiking neuron networks.

4.1 Simulation of traditional models

Maass & Natschläger [100] propose a theoretical model for emulating arbitrary
Hopfield networks in temporal coding (see Section 1.4). Maass [96] studies a “rel-
atively realistic” mathematical model for biological neurons that can simulate arbi-
trary feedforward sigmoidal neural networks. Emphasis is put on the fast computa-
tion time that depends only on the number of layers of the sigmoidal network, and
no longer on the number of neurons or weights. Within this framework, SNNs are
validated as universal approximators (see Section 3.1), and traditional supervised
and unsupervised learning rules can be applied for training the synaptic weights.

It is worth remarking that, to enable theoretical results, Maass & Natschläger’s
model uses static reference times Tin and Tout and auxiliary neurons. Even if such
artifacts can be removed in practical computation, the method rather appears as an
artificial attempt to make SNNs computing like traditional neural networks, without
taking advantage of SNNs intrinsic abilities to computing with time.

Unsupervised learning in spiking neuron networks

Within this paradigm of computing in SNNs equivalently to traditional neural net-
work computing, a number of approaches for unsupervised learning in spiking neu-
ron networks have been developed, based mostly on variants of Hebbian learning.
Extending on an Hopfield’s idea [59], Natschläger & Ruf [119] propose a learning
algorithm that performs unsupervised clustering in spiking neuron networks, akin
to RBF network, using spike-times as input. Natschläger & Ruf’s spiking neural
network for unsupervised learning is a simple two-layer network of Spike Response
Model neurons, with the addition of multiple delays between the neurons: An in-
dividual connection from a neuron i to a neuron j consists of a fixed number of m
synaptic terminals, where each terminal serves as a sub-connection that is associ-
ated with a different delay dk and weight wk

i j (figure 15). The delay dk of a synaptic
terminal k is defined by the difference between the firing time of the pre-synaptic
neuron i, and the time the post-synaptic potential of neuron j starts rising.

A Winner-Takes-All learning rule modifies the weights between the source neu-
rons and the neuron first to fire in the target layer using a time-variant of Hebbian
learning: If the start of the PSP at a synapse slightly precedes a spike in the target
neuron, the weight of this synapse is increased, as it exerted significant influence on
the spike-time via a relatively large contribution to the membrane potential. Earlier

28 Contents

Fig. 15 Unsupervised learning rule in SNNs: Any single connection can be considered as being
multisynaptic, with random weights and a set of increasing delays, as defined in [120].

and later synapses are decreased in weight, reflecting their lesser impact on the tar-
get neuron’s spike time. With such a learning rule, input patterns can be encoded in
the synaptic weights such that, after learning, the firing time of an output neuron re-
flects the distance of the evaluated pattern to its learned input pattern thus realizing
a kind of RBF neuron [119].

Bohte et al., [20] extend on this approach to enhance the precision, capacity and
clustering capability of a network of spiking neurons by developing a temporal ver-
sion of population coding. To extend the encoding precision and clustering capacity,
input data is encoded into temporal spike-time patterns by population coding, using
multiple local receptive fields like Radial Basis Functions. The translation of inputs
into relative firing-times is straightforward: An optimally stimulated neuron fires
at t = 0, whereas a value up to say t = 9 is assigned to less optimally stimulated
neurons (depicted in Figure 16). With such encoding, spiking neural networks were
shown to be effective for clustering tasks, e.g. Figure 17.

3

a = {*,*,9,2,0,8,*,*,*,*}

Fig. 16 Encoding with overlapping Gaussian receptive fields. An input value a is translated into
firing times for the input-neurons encoding this input-variable. The highest stimulated neuron (neu-
ron 5), fires at a time close to T = 0, whereas less stimulated neurons, as for instance neuron 3, fire
at increasingly later times.

Contents 29

(b) SOM (c) RBF

(a)

Fig. 17 Unsupervised classification of remote sensing data. (a) The full image. Inset: image cutout
that is actually clustered. (b) Classification of the cutout as obtained by clustering with a Self-
Origanizing Map (SOM) (c) Spiking Neuron Network RBF classification of the cutout image.

Supervised learning in multi-layer networks

A number of approaches for supervised learning in standard multi-layer feedfor-
ward networks have been developed based on gradient descent methods, the best
known being error backpropagation. As developed in [18], SpikeProp starts from
error backpropagation to derive a supervised learning rule for networks of spiking
neurons that transfer the information in the timing of a single spike. This learning
rule is analogous to the derivation rule by Rumelhart et al. [139], but SpikeProp
applies to spiking neurons of the SRM type. To overcome the discontinuous na-
ture of spiking neurons, the thresholding function is approximated, thus linearizing
the model at a neuron’s output spike times. As in the unsupervised SNN described
above, each connection between neurons may have multiple delayed synapses with
varying weights (see Figure 15). The SpikeProp algorithm has been shown to be ca-
pable of learning complex non-linear tasks in spiking neural networks with similar
accuracy as traditional sigmoidal neural networks, including the archetypical XOR
classification task (Figure 18).

30 Contents

Fig. 18 Interpolated XOR function f (t1, t2) : [0,6]→ [10,16]. a) Target function. b) Spiking Neu-
ron Network output after training.

The SpikProp method has been successfully extended to adapt the synaptic de-
lays along the error-gradient, as well as the decay for the α-function and the thresh-
old [149, 148]. Xin et al. [186] have further shown that the addition of a simple mo-
mentum term significantly speeds up convergence of the SpikeProp algorithm. Booij
& Nguyen [21] have, analogously to the method for BackPropagation-Through-
Time, extended SpikeProp to account for neurons in the input and hidden layer to
fire multiple spikes.

McKennoch, Voegtlin and Bushnell [111] derive a supervised Theta-learning rule
for multi-layer networks of Theta-neurons. By mapping QIF neurons to the canon-
ical Theta neuron model (a non-linear phase model - see Section 2.2), a more dy-
namic spiking neuron model is placed at the heart of the spiking neuron network.
The Theta neuron phase model is cyclic and allows for a continuous reset. Deriva-
tives can then be computed without any local linearization assumptions.

Some sample results showing the performance of both SpikeProp and the Theta
Neuron learning rule as compared to error-backpropagation in traditional neural
networks is shown in Table 1. The more complex Theta-neuron learning allows for
a smaller neuronal network to optimally perform classification.

As with SpikeProp, Theta-learning requires some careful fine-tuning of the net-
work. In particular, both algorithms are sensitive to spike-loss, in that no error-
gradient is defined when the neuron does not fire for any pattern, and hence will
never recover. McKennoch et al. heuristically deal with this issue by applying alter-
nating periods of coarse learning, with a greater learning rate, and fine tuning, with
a small learning rate.

As demonstrated in [10], non-gradient based methods like Evolutionary Strate-
gies do not suffer from these tuning issues. For MLP networks based on various
spiking neuron models, performance comparable to SpikeProp is shown. An evolu-
tionary strategy is however very time consuming for large-scale networks.

Contents 31

Table 1 Classification results for the SpikeProp and Theta-neuron supervised learning methods
on two benchmarks, the Fisher Iris dataset and the Wisconsin Breast Cancer dataset. The results
are compared to standard error-backpropagation, BP A and BP B denoting the standard Matlab
backprop implementation with default parameters, where their respective network sizes are set to
correspond to either the SpikeProp or the Theta-neuron neural networks. (taken from [111]).

Learning Method Network Size Epochs Train Test
Fisher Iris Dataset
SpikeProp 50x10x3 1000 97.4% 96.1%
BP A 50x10x3 2.6e6 98.2% 95.5%
BP B 4x8x1 1e5 98.0% 90.0%
Theta Neuron BP 4x8x1 1080 100% 98.0%

Wisconsin Breast Cancer Dataset
SpikeProp 64x15x2 1500 97.6% 97.0%
BP A 64x15x2 9.2e6 98.1% 96.3%
BP B 9x8x1 1e5 97.2% 99.0%
Theta Neuron BP 9x8x1 3130 98.3% 99.0%

4.2 Reservoir Computing

Clearly, the architecture and dynamics of an SNN can be matched, by temporal cod-
ing, to traditional connectionist models, such as multilayer feedforward networks or
recurrent networks. However, since networks of spiking neurons behave decidedly
different as compared to traditional neural networks, there is no pressing reason to
design SNNs within such rigid schemes.

According to biological observations, the neurons of biological SNNs are sparsely
and irregularly connected in space (network topology) and the variability of spike
flows implies they communicate irregularly in time (network dynamics) with a low
average activity. It is important to note that the network topology becomes a simple
underlying support to the neural dynamics, but that only active neurons are con-
tributing to information processing. At a given time t, the sub-topology defined by
active neurons can be very sparse and different from the underlying network archi-
tecture (e.g. local clusters, short or long path loops, synchronized cell assemblies),
comparable to the active brain regions that appear coloured in brain imaging scan-
ners. Clearly, an SNN architecture has no need to be regular. A network of spiking
neurons can even be defined randomly [101, 72] or by a loosely specified archi-
tecture, such as a set of neuron groups that are linked by projections, with a given
probability of connection from one group to the other [114]. However, the nature
of a connection has to be prior defined as an excitatory or inhibitory synaptic link,
without subsequent change, except for the synaptic efficacy. That is the weight value
can be modified, but not the weight sign.

With this in mind, a new family of networks has been developed that is specif-
ically suited to processing temporal input / output patterns with spiking neurons.
The new paradigm is named Reservoir Computing as an unifying term for which
the precursor models are Echo State Networks (ESNs) and Liquid State Machines

32 Contents

(LSMs). Note that the terms “reservoir computing” are not reserved to SNNs since
ESN has been first designed with sigmoidal neurons, but the present chapter mainly
presents reservoir computing with SNNs.

Main characteristics of reservoir computing models

The topology of a reservoir computing model (Figure 19) can be defined as follows:

• a layer of K neurons with input connections toward the reservoir,
• a recurrent network of M neurons, interconnected by a random and sparse set of

weighted links: the so-called reservoir, that is usually left untrained,
• a layer of L readout neurons with trained connections from the reservoir.

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

cells
K input

L output
cells

.

.

.

.

.

.

internal connections

output connections,

input connections

M internal cells

reservoir readout neurons

must be trained

Fig. 19 Architecture of a Reservoir Computing network: the “reservoir” is a set of M internal
neurons, with random and sparse connectivity.

The early motivation of reservoir computing is the well-known hardness to find
efficient supervised learning rules to train recurrent neural networks, as attested by
the limited success of methods like Back-Propagation Through Time (BPTT), Real-
Time Recurrent Learning (RTRL) or Extended Kalman Filtering (EKF). The diffi-
culty stems from the lack of knowledge on the way to control the behavior of the
complex dynamic system resulting from the presence of cyclic connections in the
network architecture. The main idea of reservoir computing is to renounce training
the internal recurrent network and only to pick out, by way of the readout neurons,
the relevant part of the dynamic states induced in the reservoir by the network in-
puts. Only the reading-out of this information is subject to training, usually by very
simple learning rules, such as linear regression. The success of the method is based
on the high power and accuracy of self-organization inherent to a random recurrent
network.

In SNN versions of reservoir computing, a soft kind of unsupervised, local train-
ing is often added by applying a synaptic plasticity rule like STDP inside the reser-
voir. Since STDP has been directly inspired from the observation of natural pro-
cessing in the brain (see Section 2.4), its computation does not require supervised
control nor understanding the network dynamics.

Contents 33

The paradigm of “reservoir computing” is only commonly referred to as such
since approximately 2007, and encompasses several seminal models in the literature
that predate this generalized notion by a few years. The next section describes the
two founding models that have been designed concurrently in the early 2000’s, by
Jaeger for the ESN [71] and by Maass et al. for the LSM [101].

Echo State Network (ESN) and Liquid State Machine (LSM)

The original design of Echo State Network, proposed by Jaeger in 2001 [71], has
been intended to learn time series (u(1),d(1)) , . . . ,(u(T),d(T)) with recurrent neu-
ral networks. The internal states of the reservoir are supposed to reflect, as an
“echo”, the concurrent effect of a new teacher input u(t + 1) and a teacher-forcing
output d(t), related to the previous time. Therefore, Jaeger’s model includes back-
ward connections from the output layer toward the reservoir (see Figure 20 (a)) and
the network training dynamics is governed by the following equation:

x(t +1) = f
(

W inu(t +1)+Wx(t)+W backd(t)
)

(7)

where x(t + 1) is the new state of the reservoir, W in is the input weight matrix, W
the matrix of weights in the reservoir and W back the matrix of feedback weights,
from the output layer to the reservoir. The learning rule for output weights W out

(feedforward connections from reservoir to output) consists of a linear regression
algorithm, e.g. Least Mean Squares: At each step, the network states x(t) are col-
lected into a matrix M, after a washout time t0, and the sigmoid-inverted teacher
output tanh−1d(n) into a matrix T , in order to obtain (W out)t = M†T where M†

is the pseudo-inverse of M. In exploitation phase, the network is driven by novel
input sequences u(t), with t ≥ T (desired output d(t) are unknown), and produces
computed output y(t) with coupled equations like:

xt +1) = f
(

W inu(t +1)+Wx(t)+W backy(t)
)

(8)

y(t +1) = f out (W out [u(t +1),x(t +1),y(t)]
)

(9)

For the method to be efficient, the network must have the “Echo State Property”,
i.e. the properties of being state contracting, state forgetting and input forgetting,
that give it a behavior of “fading memory”. As stated by Jaeger, a necessary (and
usually sufficient) condition is to choose a reservoir weight matrix W with a spectral
radius | λmax | slightly lower than 1. Since the weights are randomly chosen, this
condition is not straightforward; common practice however is to rescale W after
randomly initializing the network connections. An important remark must made:
the condition on the spectral radius is no longer clearly relevant when the reservoir
is an SNN with fixed weights, and totally vanishes when an STDP rule is applied to
the reservoir. A comparative study of several measures for the reservoir dynamics,
with different neuron models, can be found in [175].

34 Contents

ESNs have been successfully applied in many experimental settings, with net-
works no larger than 20 to 400 internal units, e.g. in mastering the benchmark task
of learning the Mackey-Glass chaotic attractor [71]. Although the first design of
ESN was for networks of sigmoid units, Jaeger has also introduced spiking neu-
rons (LIF model) in the ESNs [72, 74]. Results improve substantially over standard
ESNs, e.g. in the task of generating a slow sinewave (d(n) = 1/5sin(n/100)), that
becomes easy with a leaky integrator network [72].

.

.

.

.

.

.

red connections
must be trained

optional

mandatory

connections

connections

dynamical reservoir
(a) ESN

input
u(.)

output
y(t)

L
M

f M

Mx (t)
readout map

(b) LSM

liquid

Fig. 20 Architecture of the two founding models of reservoir computing: ESN and LSM.

The basic motivation of the Liquid State Machine, defined by Maass, Natschläger
and Markram in 2002 [101], was to explain how a continuous stream of inputs u(.)
from a rapidly changing environment can be processed in real time by recurrent cir-
cuits of Integrate-and-Fire neurons (Figure 20 (b)). The solution they propose is to
build a “liquid fiter” LM - the reservoir - that operates similarly to water undertaking
the transformation from the low-dimensional space of a set of motors stimulating
its surface into a higher dimensional space of waves in parallel. The liquid states
xM(t) are transformed by a readout map f M to generate output y(t) that can appear
as stable and appropriately scaled responses given by the network, even if the in-
ternal state never converges to a stable attractor. Simulating such a device on neural
microcircuits, Maass et al. have shown that a readout neuron receiving inputs from
hundreds or thousands of neurons can learn to extract salient information from the
high-dimensional transient states of the circuit and can transform transient circuit
states into stable outputs.

In mathematical terms, the liquid state is simply the current output of some oper-
ator LM that maps input functions u(.) onto functions xM(t). The LM operator can be
implemented by a randomly connected recurrent neural network. The second com-
ponent of an LSM is a “memoryless readout map” f M that transforms, at every time
t, the current liquid state into the machine output, according to equations:

xM(t) =
(
LM(u)

)
(t) (10)

y(t) = f M (xM(t)
)

(11)

The readout is usually implemented by one or several Integrate-and-Fire neurons
that can be trained to perform a specific task using very simple learning rules, such
as a linear regression or the p-delta rule [5].

Contents 35

Often, in implementation, the neural network playing the role of liquid filter is
inspired from biological modeling cortical columns. Therefore, the reservoir has a
3D topology, with a probability of connection that decreases as a gaussian function
of the distance between neurons.

The readout map is commonly task-specific. However, the hallmark feature of
neural microcircuits is their ability to carry out several real-time computations in
parallel within the same circuitry. It appears that a readout neuron is able to build a
sort of equivalence class among dynamical states, and then to well recognize sim-
ilar (but not equal) states. Moreover, several readout neurons, trained to perform
different tasks, may enable parallel real-time computing.

LSMs have been successfully applied to several non-linear problems, such as the
XOR and many others. LSMs and ESNs are very similar models of reservoir com-
puting that promise to be convenient for both exploiting and capturing most tempo-
ral features of spiking neuron processing, especially for time series prediction and
for temporal pattern recognition. Both models are good candidates for engineering
applications that process temporally changing information.

Related reservoir computing work

An additional work that has been linked to the family of “reservoir computing”
models after being published, is the Back-Propagation DeCorrelation rule (BPDC),
proposed by Steil in 2004 [161]. As an extension of the Atiya-Parlos’ s learning rule
in recurrent neural networks [4], the BPDC model is based on a multilayer network
with fixed weights until the last layer. Only this layer has learnable weights both
from the reservoir (the multilayer network) to the readout (the last layer) and recur-
rently inside the readout layer. However the BPDC model has not been proposed
with spiking neurons so far, even if that appears to be readily feasible.

Another approach, by Paugam-Moisy et al. [127], takes advantage of the theoret-
ical results proving the importance of delays in computing with spiking neurons (see
Section 3) for defining a supervised learning rule acting on the delays of connections
(instead of weights) between the reservoir and the readout neurons. The reservoir is
an SNN, with an STDP rule for adapting the weights to the task at hand, where
can be observed that polychronous groups (see Section 3.2) are activated more and
more selectively as training goes on. The learning rule of readout delays is based on
a temporal margin criterion inspired from Vapnik’s theory.

There exist reservoir computing networks that make use of evolutionary compu-
tation for training the weights of the reservoir, such as Evolino [144], and several
other models are currently proposed, with or without spiking neurons [40, 76, 75].
Although the research area is in rapid expansion, several papers [175, 151, 94] pro-
pose valuable surveys.

36 Contents

4.3 Other SNN research tracks

Besides that efforts to apply traditional learning rules to SNNs, and the development
of reservoir computing, there are many research efforts that relate to learning with
spiking neurons.

Much research is for instance carried out on deriving theoretically principled
learning rules for spiking neurons, for instance on Information Bottleneck learning
rules that attempt to maximize measures of mutual information between input and
output spike trains [8, 29, 129, 11, 167, 166, 130, 19, 131, 27]. The aim of this
work on theoretically principled learning is typically to come to easily understood
methods that have spiking neurons carry out some form of Independent Component
Analysis (ICA)[166, 82], or Principal Component Analysis (PCA) [27], or focus on
sparse efficient coding [124, 178, 92, 157].

These methods have variable applicability to real world problems, though some
have demonstrated excellent performance: Smith & Lewicki [157] develop an effi-
cient encoding of auditory in spike-trains based on sparse over-complete dictionar-
ies that outperforms many standard filter based approaches. Forms of reinforcement
learning have been developed based on the combination of reward modulation and
STDP [185, 65, 91]. Many of these algorithms are highly technical and much of this
research is still converging to practical algorithms. We only mention these directions
here, and leave it to the reader to pursue the current state-of-the-art in these areas.

Just as advances in neurosciences have contributed to the re-evaluation of the
significance of the timing and presence of single spikes in neuronal activity, ad-
vances in neuropsychology suggest that brain-like systems are able to carry out at
least some forms of Bayesian inference [83, 36]. As a result, the implementation of
Bayesian inference algorithms in neural networks has received much attention, with
a particular emphasis on networks of spiking neurons.

In this line of research, the activity in neural network is somehow related
representing probability distributions. Much of this research however relies on
noisy, stochastic spiking neurons that are characterized by a spike-density, and
Bayesian inference is implicitly carried out by large populations of such neurons
[9, 188, 141, 183, 133, 49, 17, 64, 95]. As noted by Deneve [38], coding proba-
bilities with stochastic neurons “has two major drawbacks. First,[...], it adds uncer-
tainty, and therefore noise, to an otherwise deterministic probability computation.
Second, [...], the resulting model would not be self-consistent since the input and
output firing rates have different meanings and different dynamics.”

In [38, 39], an alternative approach is developed for binary log-likelihood estima-
tion in an SNN. Such binary log-likelihood estimation in an SNN has some known
limitations: It can only perform exact inference in a limited family of generative
models, and in a hierarchical model, only the objects highest in the hierarchy truly
have a temporal dynamic. Interestingly, in this model neurons still exhibit a Poisson-
like distribution of synaptic events. However, rather than reflecting stochasticity due
to noisy firing mechanism, it reflects the sensory input-noise. Still, this type of SNN
is at the forefront of current developments and many advances in this direction are
to be expected.

Contents 37

5 Discussion

This chapter has given an outline of some of the most important ideas, models and
methods in the development of Spiking Neuron Networks, with a focus on pattern
recognition and temporal data processing, such as time series. By necessity, many
related subjects are not treated in detail here. Variants of the models and methods
described in this chapter, and variants thereof, are increasingly being applied to
real world pattern recognition. Section 4.1 listed some results on SNN algorithms
applied to traditional pattern recognition, where a dataset of numeric vectors are
mapped to a classification. However, as was emphasized in the section on reservoir
computing, many interesting application domains have an additional temporal di-
mension: Not just the immediate data are important, but the sequence of data. An
increasing amount of work deals with applying SNN concepts to various applica-
tion domains with important temporal dynamics, such as speech processing, active
vision for computer, and autonomous robotics.

5.1 Pattern recognition with SNNs

Considerable work has focused on developing SNNs that are suitable for speech
processing [176, 58, 179, 93]. Verstraeten et al. [176] develop a model based on
Liquid State Machines that is trained to recognize isolated words. They compare
several front-end signal encoding methods, and find that a nature-inspired front-
end like a “Lyon Passive Ear” outperforms other methods when an LSM is applied.
Similarly, Holmberg, et al [58] develop a method for automatic speech recognition
grounded in SNNs. As a “front-end”, they simulate a part of the inner ear, and then
simulate octopus spiking neurons to encode the inner-ear signal in a spike-train.
They subsequently use a fairly simple classifier to recognize speech from both the
inner-ear simulation and the spiking neuron spike-trains. Wang & Pavel [179] use
an SNN to represent auditory signals based on using the properties of the spiking
neuron refractory period. In their SNN, they convert amplitude to temporal code
while maintaining phase information of the carrier. They propose that for auditory
signals, the narrow band envelope information could be encoded simply in the tem-
poral inter-spike intervals. Rank order coding with spiking neural networks has been
explored for speech recognition by Loiselle et al. [93]. They show it is an efficient
method (fast response / adaptation ability) when having only small training sets.

One important fact that the speech processing case studies highlight is that tra-
ditional preprocessing techniques do not provide optimal front-ends and back-ends
for subsequent SNN processing. Still, many promising features have been pointed
out, like robustness to noise, and combining SNN processing with other methods is
proposed as a promising research area.

In parallel, a number of SNN-based systems have been developed for computer
vision, for example using spike asynchrony [156]; sparse image coding using an
asynchronous spiking neural network [128]; a synchronization-based dynamic vi-

38 Contents

sion model for image segmentation [6]; saliency extraction with a distributed spik-
ing neural network [32, 108, 31]; and SNNs applied to character recognition [184].

SNN-based systems also develop increasingly in the area of robotics, where fast
processing is a key issue [104, 163, 44, 43, 126, 50], from wheels to wings, or
legged locomotion. The special abilities of SNNs for fast computing transient tem-
poral patterns make them on first line for designing efficient systems in the area of
autonomous robotics. This perspective is often cited but not yet fully developed.

Other research domains mention the use of SNNs, such as Echo State Networks
for motor control (e.g. [142]), prediction in the context of wireless telecommuni-
cations (e.g. [73]) or neuromorphic approaches to rehabilitation, in medecine (e.g.
[85]). In this context, the “Neuromorphic Engineer” newsletter16 often publishes
articles on applications developed with SNNs.

It is worth remarking that SNNs are ideal candidates for designing multimodal
interfaces, since they can represent and process very diverse information in a uni-
fying manner based on time, from such different sources as visual, auditory, speech
or other sensory data. An application of SNNs to audio-visual speech recognition
has been proposed by Séguier and Mercier in [152]. Paugam-Moisy et al [34] have
developed, with traditional NNs, a modular connectionist model of multimodal as-
sociative memory including temporal aspects of visual and auditory data processing
[22]. Such a multi-modal framework, applied to a virtual robotic prey-predator envi-
ronment, with spiking neuron networks as functional modules, has proved capable
to simulate high-level natural behavior such as cross-modal priming [113] or real-
time perceptive adaptation to changing environment [30].

5.2 Implementing SNNs

Since SNNs perform computations in such a different way as compared to tradi-
tional NNs, the way to program an SNN model for application purpose has to be
revised also. The main interest of SNN simulation is to take into account the pre-
cise timing of spike firing, hence the width of the time window used for discrete
computation of the successive network states must remain narrow (see Figure 6 in
Section 1.4), and consequently only a few spike-events occur at each time step: In
Figure 6, only 2 spikes were fired inside the ∆ t time range, among the 64 potential
connections linking the 8 neurons. Hence, inspecting all the neurons and synapses
of the network at each time step is exceedingly time consuming: in this example,
a clock-based simulation (i.e. based on a time window) computes zero activity in
97% of the computations ! An event-driven simulation is clearly more suitable for
sequential simulations of spiking neural networks [181, 109, 105, 136, 135, 111], as
long as the activity of an SNN can be fully described by a set of dated spikes. Nev-
ertheless, event-driven programming requires the next spike time can be explicitly
computed in reasonable time, so that not all models of neurons can be used.

16 Institute of Neuromorphic Engineering newsletter: http://www.ine-web.org/

Contents 39

At the same time, SNN simulation can highly benefit from parallel computing,
substantially more so than traditional NNs. Unlike a traditional neuron in rate cod-
ing, a spiking neuron does not need to receive weight values from each presynaptic
neuron at each computation step. Since at each time step only a few neurons are
active in an SNN, the classic bottleneck of message passing is removed. Moreover,
computing the updated state of membrane potential (e.g. for a SRM or LIF model
neuron) is more complex than computing a weighted sum (e.g. for threshold unit).
Therefore communication time and computation cost are much more well-balanced
in SNN parallel implementation as compared to traditional NNs, as proved by the
parallel implementation of the SpikeNET software [37].

Well-known simulators of spiking neurons are for example GENESIS [23] and
NEURON [54], but they have been designed principally for programming detailed
biophysical models of isolated neurons, rather than for fast simulation of very large
scale SNNs. However, NEURON has been updated with an event-driven mecha-
nism on the one hand [55] and a version for parallel machines on the other hand
[56]. BRIAN (http://brian.di.ens.fr/) is a mainly clock-based simulator with an op-
tional event-driven tool, whereas MVASpike (http://mvaspike.gforge.inria.fr/) is a
purely event-driven simulator [136]. DAMNED is a parallel event-driven simula-
tor [118]. A comparative and experimental study of several SNN simulators can
be found in Brette et al. [24]. Most simulators are currently programmed in C or
C++. Others are Matlab toolboxes, such as Jaeger’s toolbox for ESNs available from
the web page (http://www.faculty.jacobs-university.de/hjaeger/esn research.html) or
the Reservoir Computing Toolbox, available at URL http://snn.elis.ugent.be/node/59
and briefly presented in the last section of [175]. A valuable tool for develop-
ers could be PyNN (http://neuralensemble.org/trac/PyNN), a Python package for
simulator-independent specification of neuronal network models.

Hardware implementations of SNNs are also being actively pursued. Several
chapters in [99] are dedicated to this subject, and more recent work can be found for
instance in [170, 53, 77, 33, 125, 116, 150].

5.3 Conclusion

This chapter has given an overview of the current state-of-the-art in Spiking Neuron
Networks: its biological inspiration, the models that underlie the networks, some
theoretical results on computational complexity and learnability, learning rules, both
traditional and novel, and some current application areas and results. The novelty of
the concept of SNNs means that many lines of research are still open and are actively
being pursued.

40 Contents

References

1. L.F. Abbott and S.B. Nelson. Synaptic plasticity: taming the beast. Nature Neuroscience,
3:1178–1183, 2000.

2. M. Abeles. Corticonics: Neural Circuits of the Cerebral Cortex. Cambridge Univ. Press,
1991.

3. S. Achard and E. Bullmore. Efficiency and cost of economical brain functional networks.
PLoS Computational Biology, 3(2):e17, 2007.

4. A. Atiya and A.G. Parlos. New results on recurrent network training: Unifying the algorithms
and accelerating convergence. IEEE Trans. on Neural Networks, 11(3):697–709, 2000.

5. P. Auer, H. Burgsteiner, and W. Maass. A learning rule for very simple universal approxima-
tors consisting of a single layer of perceptrons. Neural Networks, 21(5):786–795, 2008.

6. H. Azhar, K. Iftekharuddin, and R. Kozma. A chaos synchronization-based dynamic vision
model for image segmentation. In IJCNN’2005, Int. Joint Conf. on Neural Networks, pages
3075–3080. IEEE–INNS, 2005.

7. A. L. Barabasi and R. Albert. Emergence of scaling in random networks. Science,
286(5439):509–512, 1999.

8. D. Barber. Learning in spiking neural assemblies. In S. Becker, S. Thrun, and K. Obermayer,
editors, NIPS*2002, Advances in Neural Information Processing Systems, volume 15, pages
165–172. MIT Press, 2003.

9. M. J. Barber, J. W. Clark, and C. H. Anderson. Neural Representation of Probabilistic Infor-
mation, volume 15. MIT Press, 2003.

10. A. Belatreche, L. P. Maguire, and M. McGinnity. Advances in design and application of
spiking neural networks. Soft Computing-A Fusion of Foundations, Methodologies and Ap-
plications, 11:239–248, 2007.

11. A. Bell and L. Parra. Maximising information yields spike timing dependent plasticity. In
L.K. Saul, Y. Weiss, and L. Bottou, editors, NIPS*2004, Advances in Neural Information
Processing Systems, volume 17, pages 121–128. MIT Press, 2005.

12. G.-q. Bi and M.-m. Poo. Synaptic modification in cultured hippocampal neurons: Depen-
dence on spike timing, synaptic strength, and polysynaptic cell type. J. of Neuroscience,
18(24):10464–10472, 1998.

13. G.-q. Bi and M.-m. Poo. Synaptic modification of correlated activity: Hebb’s postulate re-
visited. Annual Review of Neuroscience, 24:139–166, 2001.

14. W. Bialek, F. Rieke, R. de Ruyter, R.R. van Steveninck, and D. Warland. Reading a neural
code. Science, 252:1854–1857, 1991.

15. A. Blum and R. Rivest. Training a 3-node neural net is NP-complete. In NIPS*1988, Ad-
vances in Neural Information Processing Systems, pages 494–501, 1989.

16. A. Blumer, A. Ehrenfeucht, D. Haussler, and M.K. Warmuth. Learnability and the vapnik-
chervonenkis dimension. Journal of the ACM, 36(4):929–965, 1989.

17. O. Bobrowski, R. Meir, S. Shoham, and Y. C. Eldar. A neural network implementing optimal
state estimation based on dynamic spike train decoding. In NIPS*2006, Advances in Neural
Information Processing Systems, volume 20, 2007.

18. S. M. Bohte, J. N. Kok, and H. La Poutre. Spike-prop: errorbackpropagation in multi-layer
networks of spiking neurons. Neurocomputing, 48:17–37, 2002.

19. S. M. Bohte and M. C. Mozer. Reducing the variability of neural responses: A computational
theory of spike-timing-dependent plasticity. Neural Computation, 19:371–403, 2007.

20. S. M. Bohte, H. La Poutre, and J. N. Kok. Unsupervised clustering with spiking neurons by
sparse temporalcoding and multilayer rbf networks. Neural Networks, IEEE Transactions
on, 13:426–435, 2002.

21. O. Booij and H. tat Nguyen. A gradient descent rule for spiking neurons emitting multiple
spikes. Information Processing Letters, 95:552–558, 2005.

22. Y. Bouchut, H. Paugam-Moisy, and D. Puzenat. Asynchrony in a distributed modular neural
network for multimodal integration. In PDCS’2003, Int. Conf. on Parallel and Distributed
Computing and Systems, pages 588–593. ACTA Press, 2003.

Contents 41

23. J.M. Bower and D. Beeman. The Book of GENESIS: Exploring Realistic Neural Models with
the GEneral SImulation System. Springer, 1998. 2nd edition.

24. R. Brette, M. Rudolph, T. Hines, D. Beeman, J.M. Bower, and et al. Simulation of networks
of spiking neurons: A review of tools and strategies. J. of Computational Neuroscience,
23(3):349–398, 2007.

25. N. Brunel and P. E. Latham. Firing Rate of the Noisy Quadratic Integrate-and-Fire Neuron,
volume 15. MIT Press, 2003.

26. N.J. Buchs and W. Senn. Spike-based synaptic plasticity and the emergence of direction
selective simple cells: Simulation results. J. of Computational Neuroscience, 13:167–186,
2002.

27. L. Büsing and W. Maass. Simplified rules and theoretical analysis for information bottleneck
optimization and pca with spiking neurons. In NIPS*2007, Advances in Neural Information
Processing Systems, volume 20. MIT Press, 2008.

28. H. Câteau and T. Fukai. A stochastic method to predict the consequence of arbitrary forms
of Spike-Timing-Dependent Plasticity. Neural Computation, 15(3):597–620, 2003.

29. G. Chechik. Spike-timing dependent plasticity and relevant mutual information maximiza-
tion. Neural Computation, 15(7):1481–1510, 2003.

30. S. Chevallier, H. Paugam-Moisy, and F. Lemaı̂tre. Distributed processing for modelling real-
time multimodal perception in a virtual robot. In PDCN’2005, Int. Conf. on Parallel and
Distributed Computing and Networks, pages 393–398. ACTA Press, 2005.

31. S. Chevallier and P. Tarroux. Covert attention with a spiking neural network. In ICVS’08,
Computer Vision Systems, volume 5008 of Lecture Notes in Computer Science, pages 56–65.
Springer, 2008.

32. S. Chevallier, P. Tarroux, and H. Paugam-Moisy. Saliency extraction with a distributed spik-
ing neuron network. In ESANN’06, Advances in Computational Intelligence and Learning,
pages 209–214, 2006.

33. E. Chicca, D. Badoni, V. Dante, M. d’Andreagiovanni, G. Salina, L. Carota, S. Fusi, and
P. Del Giudice. A VLSI recurrent network of integrate-and-fie neurons connected by plastic
synapses with long-term memory. IEEE Trans. on Neural Networks, 14(5):1297–1307, 2003.

34. A. Crépet, H. Paugam-Moisy, E. Reynaud, and D. Puzenat. A modular neural model for
binding several modalities. In H. R. Arabnia, editor, IC-AI’2000, Int. Conf. on Artificial
Intelligence, pages 921–928, 2000.

35. G. Cybenko. Approximation by superpositions of a sigmoidal function. Math. Control,
Signal Systems, 2:303–314, 1988.

36. N. D. Daw and A. C. Courville. The pigeon as particle filter. In NIPS*2007, Advances in
Neural Information Processing Systems, volume 20. MIT Press, 2008.

37. A. Delorme, J. Gautrais, R. Van Rullen, and S. Thorpe. SpikeNET: A simulator for modeling
large networks of integrate and fire neurons. Neurocomputing, 26–27:989–996, 1999.

38. S. Deneve. Bayesian spiking neurons i: Inference. Neural Computation, 20:91–117, 2008.
39. S. Deneve. Bayesian spiking neurons ii: Learning. Neural Computation, 20:118–145, 2008.
40. A. Devert, N. Brèdeche, and M. Schoenauer. Unsupervised learning of Echo State Networks:

A case study in artificial embryogeny. In N. Montmarché et al., editor, Artificial Evolution,
Selected Papers, volume 4926/2008 of Lecture Notes in Computer Science, pages 278–290,
2007.

41. V. M. Eguı́luz, G. A. Chialvo, D. R.and Cecchi, M. Baliki, and A. V. Apkarian. Scale-free
brain functional networks. Physical Review Letters, 94(1):018102, 2005.

42. G. B. Ermentrout and N. Kopell. Parabolic bursting in an excitable system coupled with a
slow oscillation. SIAM Journal on Applied Mathematics, 46:233, 1986.

43. D. Floreano, Y. Epars, J.-C. Zufferey, and C. Mattiussi. Evolution of spiking neural circuits
in autonomous mobile robots. Int. J. of Intelligent Systems, 21(9):1005–1024, 2006.

44. D. Floreano, J.C. Zufferey, and J.D. Nicoud. From wheels to wings with evolutionary spiking
neurons. Artificial Life, 11(1-2):121–138, 2005.

45. K. Funahashi. On the approximate realization of continuous mapings by neural networks.
Neural Networks, 2(3):183–192, 1989.

42 Contents

46. W.. Gerstner. Time structure of the activity in neural network models. Physical Review E,
51:738–758, 1995.

47. W. Gerstner and W.M. Kistler. Mathematical formulations of hebbian learning. Biological
Cybernetics, 87(5-6):404–415, 2002.

48. W. Gerstner and J.L. van Hemmen. How to describe neuronal activity: Spikes, rates or
assemblies? In J. D. Cowan, G. Tesauro, and J. Alspector, editors, NIPS*1993, Advances in
Neural Information Processing System, volume 6, pages 463–470. MIT Press, 1994.

49. S. Gerwinn, J. H. Macke, M. Seeger, and M. Bethge. Bayesian inference for spiking neuron
models with a sparsity prior. In NIPS*2006, Advances in Neural Information Processing
Systems, volume 19. MIT Press, 2007.

50. C. Hartland and N. Bredèche. Using Echo State Networks for robot navigation behavior
acquisition. In ROBIO’07, Sanya, Chine, 2007.

51. D.O. Hebb. The Organization of Behaviour. Wiley, New York, 1949.
52. W Heiligenberg. Neural Nets in Electric Fish. MIT Press, 1991.
53. H. H. Hellmich, M. Geike, P. Griep, M. Rafanelli, and H. Klar. Emulation engine for spiking

neurons and adaptive synaptic weights. In IJCNN’2005, Int. Joint Conf. on Neural Networks,
pages 3261–3266. IEEE-INNS, 2005.

54. M.L. Hines and N.T. Carnevale. The NEURON simulation environment. Neural Computa-
tion, 9:1179–1209, 1997.

55. M.L. Hines and N.T. Carnevale. Discrete event simulation in the NEURON environment.
Neurocomputing, pages 1117–1122, 2004.

56. M.L. Hines and N.T. Carnevale. Translating network models to parallel hardware in NEU-
RON. J. Neurosci. Meth., 169:425–455, 2008.

57. A.L. Hodgkin and A.F. Huxley. A quantitative description of ion currents and its applications
to conduction and excitation in nerve membranes. J. of Physiology, 117:500–544, 1952.

58. M. Holmberg, D. Gelbart, U. Ramacher, and W. Hemmert. Isolated word recognition using a
liquid state machine. In EuroSpeech’2005, European Conference on Speech Communication,
2005.

59. J. J. Hopfield. Pattern recognition computation using action potential timing for stimulus
representation. Nature, 376:33–36, 1995.

60. J.J. Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Proc. Natl. Acad. Sci., 79(8):2554–2558, 1982.

61. J.J. Hopfield and C.D. Brody. What is a moment ? “Cortical” sensory integration over a brief
interval. Proc. Natl. Acad. Sci., 97(25):13919–13924, 2000.

62. J.J. Hopfield and C.D. Brody. What is a moment ? Transient synchrony as a collective
mechanism for spatiotemporal integration. Proc. Natl. Acad. Sci., 98(3):1282–1287, 2001.

63. K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal
approximators. Neural Networks, 2(5):359–366, 1989.

64. Q. J. M. Huys, R. S. Zemel, R. Natarajan, and P. Dayan. Fast population coding. Neural
Computation, 19:404–441, 2007.

65. E. M. Izhikevich. Solving the distal reward problem through linkage of STDP and dopamine
signaling. Cerebral Cortex, 2007.

66. E.M. Izhikevich. Simple model of spiking neurons. IEEE Trans. in Neural Networks,
14(6):1569–1572, 2003.

67. E.M. Izhikevich. Which model to use for cortical spiking neurons? IEEE Trans. in Neural
Networks, 15(5):1063–1070, 2004.

68. E.M. Izhikevich. Polychronization: Computation with spikes. Neural Computation,
18(2):245–282, 2006.

69. E.M. Izhikevich and N.S. Desai. Relating STDP and BCM. Neural Computation,
15(7):1511–1523, 2003.

70. E.M. Izhikevich, J.A. Gally, and G.M. Edelman. Spike-timing dynamics of neuronal groups.
Cerebral Cortex, 14:933–944, 2004.

71. H. Jaeger. The “echo state” approach to analysins and training recurrent neural networks.
Technical Report TR-GMD-148, German National Research Center for Information Tech-
nology, 2001.

Contents 43

72. H. Jaeger. Tutorial on training recurrent neural networks, covering BPTT, RTRL, EKF and
the “echo state network” approach. Technical Report TR-GMD-159, German National Re-
search Center for Information Technology, 2002.

73. H. Jaeger and H. Haas. Harnessing nonlinearity: Predicting chaotic systems and saving
energy in wireless telecommunication. Science, pages 78–80, 2004.

74. H. Jaeger and M. Lukoševičius. Optimization and applications of echo state networks with
leaky-integrator neurons. Neural Networks, 20(3):335–352, 2007.

75. F. Jiang, H. Berry, and M. Schoenauer. Supervised and evolutionary learning of Echo State
Networks. In G. Rudolph et al., editor, Parallel Problem Solving from Nature (PPSN’08),
Lecture Notes in Computer Science, 2008.

76. F. Jiang, H. Berry, and M. Schoenauer. Unsupervised learning of Echo State Networks:
Balancing the double pole. In C. Ryan et al., editor, Genetic and Evolutionary Computation
Conference (GECCO), 2008.

77. S. Johnston, G. Prasad, L. Maguire, and McGinnity. Comparative investigation into classical
and spiking neuron implementations on FPGAs. In ICANN’2005, Int. Conf. on Artificial
Neural Networks, volume 3696 of LNCS, pages 269–274. Springer-Verlag, 2005.

78. J.S. Judd. Neural network design and the complexity of learning. MIT Press, 1990.
79. R. Kempter, W. Gerstner, and J. L. van Hemmen. Hebbian learning and spiking neurons.

Physical Review E, 59(4):4498–4514, 1999.
80. W.M. Kistler. Spike-timing dependent synaptic plasticity: a phenomenological framework.

Biological Cybernetics, 87(5-6):416–427, 2002.
81. W.M. Kistler, W. Gerstner, and J.L. van Hemmen. Reduction of hodgkin-huxley equations

to a single-variable threshold model. Neural Computation, 9:1015–1045, 1997.
82. S. Klampfl, R. Legenstein, and W. Maass. Spiking neurons can learn to solve information

bottleneck problems and to extract independent components. Neural Computation, 2008. in
press.

83. K. P. Koerding and D. M. Wolpert. Bayesian integration in sensorimotor learning. Nature,
427:244–247, 2004.

84. T. Kohonen. Self-organized formation of topologically correct feature maps. Biological
Cybernetics, 43:59–69, 1982.

85. J.J. Kutch. Neuromorphic approaches to rehabilitation. The Neuromorphic Engineer, 1(2):1–
2, 2004.

86. N. Kuwabara and N. Suga. Delay lines and amplitude selectivity are created in subthalamic
auditory nuclei: the brachium of the inferior colliculus of the mustached bat. J. of Neuro-
physiology, 69:1713–1724, 1993.

87. L. Lapicque. Recherches quantitatives sur l’excitation électrique des nerfs traité comme une
polarization. J. Physiol. Pathol. Gen., 9:620–635, 1907. cited by Abbott, L.F., in Brain Res.
Bull. 50(5/6):303–304.

88. Y. LeCun, L. D. Jackel, L. Bottou, C. Cortes, J. S. Denker, H. Drucker, I. Guyon, U. A.
Muller, E. Sackinger, and P. Simard. Learning algorithms for classification: A comparison
on handwritten digit recognition, volume 276. Singapore, 1995.

89. R. Legenstein and W. Maass. What makes a dynamical system computationally powerful?
In S. Haykin, J. C. Principe, T.J. Sejnowski, and J.G. McWhirter, editors, New Directions in
Statistical Signal Processing: From Systems to Brain. MIT Press, 2005.

90. R. Legenstein, C. Näger, and W. Maass. What can a neuron learn with Spike-Time-
Dependent Plasticity? Neural Computation, 17(11):2337–2382, 2005.

91. R. Legenstein, D. Pecevski, and W. Maass. Theoretical analysis of learning with reward-
modulated Spike-Timing-Dependent Plasticity. In NIPS*2007, Advances in Neural Informa-
tion Processing Systems, volume 20. MIT Press, 2008.

92. M. S. Lewicki. Efficient coding of natural sounds. Nature Neuroscience, 5:356–363, 2002.
93. S. Loiselle, J. Rouat, D. Pressnitzer, and S. Thorpe. Exploration of rank order coding with

spiking neural networks for speech recognition. In IJCNN’2005, Int. Joint Conf. on Neural
Networks, pages 2076–2080. IEEE–INNS, 2005.

94. M. Lukoševičius and H. Jaeger. Overview of reservoir recipes. Technical Report 11, Jacobs
University Bremen, July 2007.

44 Contents

95. W. J. Ma, J. M. Beck, and A. Pouget. Spiking networks for bayesian inference and choice.
Current Opinion in Neurobiology, 2008.

96. W. Maass. Fast sigmoidal networks via spiking neurons. Neural Computation, 10:1659–
1671, 1997.

97. W. Maass. Networks of spiking neurons: The third generation of neural network models.
Neural Networks, 10:1659–1671, 1997.

98. W. Maass. On the relevance of time in neural computation and learning. Theoretical Com-
puter Science, 261:157–178, 2001. (extended version of ALT’97, in LNAI 1316:364-384).

99. W. Maass and C.M. Bishop, editors. Pulsed Neural Networks. MIT Press, 1999.
100. W. Maass and T. Natschläger. Networks of spiking neurons can emulate arbitrary Hopfield

nets in temporal coding. Network: Computation in Neural Systems, 8(4):355–372, 1997.
101. W. Maass, T. Natschläger, and H. Markram. Real-time computing without stable states:

A new framework for neural computation based on perturbations. Neural Computation,
14(11):2531–2560, 2002.

102. W. Maass and M. Schmitt. On the complexity of learning for a spiking neuron. In COLT’97,
Conf. on Computational Learning Theory, pages 54–61. ACM Press, 1997.

103. W. Maass and M. Schmitt. On the complexity of learning for spiking neurons with temporal
coding. Information and Computation, 153:26–46, 1999.

104. W. Maass, G. Steinbauer, and R. Koholka. Autonomous fast learning in a mobile robot. In
Sensor Based Intelligent Robots, pages 345–356. Springer, 2000.

105. T. Makino. A discrete event neural network simulator for general neuron model. Neural
Computation and Applic., 11(2):210–223, 2003.

106. H. Markram, J. Lübke, M. Frotscher, and B. Sakmann. Regulation of synaptic efficacy by
coincidence of postsynaptic APs and EPSPs. Science, 275:213–215, 1997.

107. H. Markram and M.V. Tsodyks. Redistribution of synaptic efficacy between neocortical
pyramidal neurones. Nature, 382:807–809, 1996.

108. T. Masquelier, S. J. Thorpe, and K. J. Friston. Unsupervised learning of visual features
through spike timing dependent plasticity. PLoS Comput Biol, 3:e31, 2007.

109. M. Mattia and P. Del Giudice. Efficient event-driven simulation of large networks of spiking
neurons and dynamical synapses. Neural Computation, 12:2305–2329, 2000.

110. W.S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity.
Bulletin of Mathematical Biophysics, 5:115–133, 1943.

111. S. McKennoch, T. Voegtlin, and L. Bushnell. Spike-timing error backpropagation in theta
neuron networks. Neural Computation, pages 1–37, 2008.

112. D. Meunier. Une modélisation évolutionniste du liage temporel (in French). PhD thesis,
University Lyon 2, http://demeter.univ-lyon2.fr/sdx/theses/lyon2/2007/meunier d, 2007.

113. D. Meunier and H. Paugam-Moisy. A “spiking” Bidirectional Associative Memory for mod-
eling intermodal priming. In NCI’2004, Int. Conf. on Neural Networks and Computational
Intelligence, pages 25–30. ACTA Press, 2004.

114. D. Meunier and H. Paugam-Moisy. Evolutionary supervision of a dynamical neural network
allows learning with on-going weights. In IJCNN’2005, Int. Joint Conf. on Neural Networks,
pages 1493–1498. IEEE–INNS, 2005.

115. D. Meunier and H. Paugam-Moisy. Cluster detection algorithm in neural networks. In
ESANN’06, Advances in Computational Intelligence and Learning, pages 19–24, 2006.

116. S. Mitra, S. Fusi, and G. Indiverti. A VLSI spike-driven dynamic synapse which learns only
when necessary. In ISCAS’2006, IEEE Int. Symp. on Circuits and Systems, 2006. (to appear).

117. A. Mouraud and H. Paugam-Moisy. Learning and discrimination through STDP in a top-
down modulated associative memory. In ESANN’06, Europ. Symp. on Artificial Neural Net-
works, pages 611–616, 2006.

118. A. Mouraud, H. Paugam-Moisy, and D. Puzenat. A Distributed And Multithreaded Neural
Event Driven simulation framework. In PDCN’2006, Int. Conf. on Parallel and Distributed
Computing and Networks, pages 212–217, Innsbruck, AUSTRIA, February 2006. ACTA
Press.

Contents 45

119. T. Natschläger and B. Ruf. Online clustering with spiking neurons using Radial Basis
Functions, chapter 4 in “Neuromorphic Systems: Engineering Silicon from Neurobiology”
(Hamilton & Smith, Eds). World Scientific, 1998.

120. T. Natschläger and B. Ruf. Spatial and temporal pattern analysis via spiking neurons. Net-
work: Comp. Neural Systems, 9(3):319–332, 1998.

121. M. E. J. Newman and M. Girvan. Finding and evaluating community structure in networks.
Phys. Rev. E, 69:026113, 2004.

122. M.E.J. Newman. The structure and function of complex networks. SIAM Rev., 45:167–256,
2003.

123. T. Nowotny, V.P. Zhigulin, A.I. Selverston, H.D.I. Abardanel, and M.I. Rabinovich. En-
hancement of synchronization in a hibrid neural circuit by Spike-Time-Dependent Plasticity.
The Journal of Neuroscience, 23(30):9776–9785, 2003.

124. B. A. Olshausen. Emergence of simple-cell receptive field properties by learning a sparse
code for natural images. Nature, 381:607–609, 1996.

125. M. Oster, A.M. Whatley, S.-C. Liu, and R.J. Douglas. A hardware/software framework for
real-time spiking systems. In ICANN’2005, Int. Conf. on Artificial Neural Networks, volume
3696 of LNCS, pages 161–166. Springer-Verlag, 2005.

126. C. Panchev and S. Wermter. Temporal sequence detection with spiking neurons: towards
recognizing robot language instructions. Connection Science, 18:1–22, 2006.

127. H. Paugam-Moisy, R. Martinez, and S. Bengio. Delay learning and polychronization for
reservoir computing. Neurocomputing, 71(7-9):1143–1158, 2008.

128. L. Perrinet and M. Samuelides. Sparse image coding using an asynchronous spiking neural
network. In ESANN’2002, Europ. Symp. on Artificial Neural Networks, pages 313–318,
2002.

129. J.-P. Pfister, D. Barber, and W. Gerstner. Optimal hebbian learning: A probabilistic point
of view. In O. Kaynak, E. Alpaydin, E. Oja, and L. Xu, editors, ICANN/ICONIP 2003, Int.
Conf. on Artificial Neural Networks, volume 2714 of Lecture Notes in Computer Science,
pages 92–98. Springer, 2003.

130. J.-P. Pfister and W. Gerstner. Beyond pair-based STDP: a phenomenological rule for spike
triplet and frequency effects. In NIPS*2005, Advances in Neural Information Processing
Systems, volume 18, pages 1083–1090. MIT Press, 2006.

131. J.-P. Pfister, T. Toyoizumi, D. Barber, and W. Gerstner. Optimal Spike-Timing-Dependent
Plasticity for precise action potential firing in supervised learning. Neural Computation,
18(6):1318–1348, 2006.

132. T. Poggio and F. Girosi. Networks for approximation and learning. Proceedings of the IEEE,
78(9):1481–1497, 1989.

133. R. P. N. Rao. Hierarchical bayesian inference in networks of spiking neurons. NIPS*2004,
Advances in Neural Information Processing Systems, 17:1113–1120, 2005.

134. M. Recce. Encoding information in neuronal activity, chapter 4 in “Pulsed Neural Networks”
(Maass & Bishop, Eds). MIT Press, 1999.

135. J. Reutimann, M. Giugliano, and S. Fusi. Event-driven simulation of spiking neurons with
stochastic dynamics. Neural Computation, 15(4):811–830, 2003.

136. O. Rochel and D. Martinez. An event-driven framework for the simulation of networks of
spiking neurons. In ESANN’03, European Symposium on Artificial Neural Network, pages
295–300, 2003.

137. J. Rubin, D.D. Lee, and H. Sompolinsky. Equilibrium properties of temporal asymmetric
hebbian plasticity. Physical Review Letters, 86:364–366, 2001.

138. M. Rudolph and A. Destexhe. Event-based simulation strategy for conductance-based synap-
tic interactions and plasticity. Neurocomputing, 69:1130–1133, 2006.

139. D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by
back-propagating errors. Nature, 323:533–536, 1986.

140. D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Parallel Distributed Processing: Explo-
rations in the microstructure of cognition, volume I, chapter Learning internal representa-
tions by error propagation, pages 318–362. MIT Press, 1986.

46 Contents

141. M. Sahani and P. Dayan. Doubly distributional population codes: Simultaneous representa-
tion of uncertainty and multiplicity. Neural Computation, 15:2255–2279, 2003.

142. M. Salmen and P.G. Plöger. Echo State Networks used for motor control. In ICRA’2005, Int.
Joint on Robotics and Automation, pages 1953–1958. IEEE, 2005.

143. A. Saudargiene, B. Porr, and F. Wörgötter. How the shape of pre- and postsynaptic signals
can influence STDP: a biophysical model. Neural Computation, 16(3):595–625, 2004.

144. J. Schmidhuber, D. Wiestra, D. Gagliolo, and M. Gomez. Training recurrent networks by
evolino. Neural Computation, 19(3):757–779, 2007.

145. M. Schmitt. On computing boolean functions by a spiking neuron. Annals of Mathematics
and Artificial Intelligence, 24:181–191, 1998.

146. M. Schmitt. On the sample complexity of learning for networks of spiking neurons with
nonlinear synaptic interactions. IEEE Trans. on Neural Networks, 15(5):995–1001, 2004.

147. B. Schrauwen, L. Büsing, and R. Legenstein. On computational power and the order-chaos
phase transition in Reservoir Computing. In NIPS*08, 2009. (to appear).

148. B. Schrauwen and J. Van Campenhout. Extending spikeprop. In Neural Networks, 2004.
Proceedings. 2004 IEEE International Joint Conference on, volume 1, 2004.

149. B. Schrauwen and J. Van Campenhout. Improving spikeprop: Enhancements to an error-
backpropagation rule for spiking neural networks. In Proceedings of the 15th ProRISC
Workshop, volume 11, 2004.

150. B. Schrauwen, M. D’Haene, D. Verstraeten, and J. Van Campenhout. Compact hardware for
real-time speech recognition using a liquid state machine. In Neural Networks, 2007. IJCNN
2007. International Joint Conference on, pages 1097–1102, 2007.

151. B. Schrauwen, D. Verstraeten, and J. Van Campenhout. An overview of reservoir comput-
ing: theory, applications and implementations. In ESANN’07, Advances in Computational
Intelligence and Learning, pages 471–482, 2007.

152. R. Séguie and D. Mercier. Audio-visual speech recognition one pass learning with spiking
neurons. In ICANN ’02, Int. Conf. on Artificial Neural Networks, pages 1207–1212. Springer-
Verlag, 2002.

153. W. Senn, H. Markram, and M. Tsodyks. An algorithm for modifying neurotransmitter release
probability based on pre- and post-synaptic spike timing. Neural Computation, 13(1):35–68,
2001.

154. H.T. Siegelmann. Neural networks and analog computation, beyond the Turing limit.
Birkhauser, 1999.

155. J. Sima and J. Sgall. On the nonlearnability of a single spiking neuron. Neural Computation,
17(12):2635–2647, 2005.

156. Thorpe S.J. and J. Gautrais. Rapid visual processing using spike asynchrony. In M. Mozer,
Jordan M.I., and T. Petsche, editors, NIPS*1996, Advances in Neural Information Processing
Systems, volume 9, pages 901–907. MIT Press, 1997.

157. E. C. Smith and M. S. Lewicki. Efficient auditory coding. Nature, 439:978–982, 2006.
158. S. Song, K.D. Miller, and L.F. Abbott. Competitive hebbian learning through spike-time

dependent synaptic plasticity. Nature Neuroscience, 3(9):919–926, 2000.
159. O. Sporns, G. Tononi, and R. Kotter. The human connectome : A structural description of

the human brain. PLoS Comp. Biology, 1(4):e42, 2005.
160. D.I. Standage and T.P. Trappenberg. Differences in the subthreshold dynamics of leaky

integrate-and-fire ans Hodgkin-Huxley neuron models. In IJCNN’2005, Int. Joint Conf. on
Neural Networks, pages 396–399. IEEE–INNS, 2005.

161. J.J. Steil. Backpropagation-Decorrelation: Online recurrent learning with O(n) complexity.
In IJCNN’2004, Int. Joint Conf. on Neural Networks, volume 1, pages 843–848. IEEE–INNS,
2004.

162. R.B. Stein. A theoretical analysis of neuronal variability. Biophys. J., 5:173–194, 1965.
163. F. Tenore. Prototyping neural networks for legged locomotion using custom aVLSI chips.

The Neuromorphic Engineer, 1(2):4, 8, 2004.
164. S. Thorpe, A. Delorme, and R. Van Rullen. Spike-based strategies for rapid processing.

Neural Networks, 14:715–725, 2001.

Contents 47

165. S. Thorpe, D. Fize, and C. Marlot. Speed of processing in the human visual system. Nature,
381(6582):520–522, 1996.

166. T. Toyoizumi, J.-P. Pfister, K. Aihara, and W. Gerstner. Generalized Bienenstock-Cooper-
Munro rule for spiking neurons that maximizes information transmission. Proc. Natl. Acad.
Sci. USA, 102(14):5239–5244, 2005.

167. T. Toyoizumi, J.-P. Pfister, K. Aihara, and W. Gerstner. Spike-timing dependent plasticity
and mutual information maximization for a spiking neuron model. In L.K. Saul, Y. Weiss,
and L. Bottou, editors, NIPS*2004, Advances in Neural Information Processing Systems,
volume 17, pages 1409–1416. MIT Press, 2005.

168. A.M. Turing. Systems of logic based on ordinals. Proceedings of the London Mathematical
Society, 45(2):161–228, 1939.

169. A.M. Turing. Computing machinery and intelligence. Mind, 59:433–460, 1950.
170. A. Upegui, C.A. Peña Reyes, and E. Sanchez. An FPGA platform for on-line topology

exploration of spiking neural networks. Microprocessors and Microsystems, 29:211–223,
2004.

171. L.G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142,
1984.

172. M. van Hulle. Faithful Representations and topographic maps: From distortion- to
information-based self-organization. New York: Wiley, 2000.

173. R. Van Rullen and S. Thorpe. Rate coding versus temporal order coding: what the retinal
ganglion cells tell the visual cortex. Neural Computation, 13:1255–1283, 2001.

174. V.N. Vapnik. Statistical learning theory. Wiley, 1998.
175. D. Verstraeten, B. Schrauwen, M. D’Haene, and D. Stroobandt. An experimental unification

of reservoir computing methods. Neural Networks, 20(3):391–403, 2007.
176. D. Verstraeten, B. Schrauwen, and D. Stroobandt. Isolated word recognition using a liquid

state machine. In ESANN’05, European Symposium on Artificial Neural Network, pages
435–440, 2005.

177. T. Viéville and S. Crahay. Using an hebbian learning rule for multi-class SVM classifers. J.
of Computational Neuroscience, 17(3):271–287, 2004.

178. M. Volkmer. A pulsed neural network model of spectro-temporal receptive fields and popu-
lation coding in auditory cortex. Natural Computing, 3:177–193, 2004.

179. G. Wang and M. Pavel. A spiking neuron representation of auditory signals. In IJCNN’2005,
Int. Joint Conf. on Neural Networks, pages 416–421. IEEE–INNS, 2005.

180. D. Watts and S. Strogatz. Collective dynamics of “small-worl” networks. Nature, 393:440–
442, 1998.

181. L. Watts. Event-driven simulation of networks of spiking neurons. In J. D. Cowan,
G. Tesauro, and J. Alspector, editors, NIPS:1993, Advances in Neural Information Process-
ing System, volume 6, pages 927–934. MIT Press, 1994.

182. T. Wennekers, F. Sommer, and A. Aertsen. Editorial: Cell assemblies. Theory in Biosciences
(special issue), 122:1–4, 2003.

183. S. Wu, D. Chen, M. Niranjan, and S. Amari. Sequential bayesian decoding with a population
of neurons. Neural Computation, 15:993–1012, 2003.

184. S. G. Wysoski, L. Benuskova, and N. Kasabov. Fast and adaptive network of spiking neurons
for multi-view visual pattern recognition. Neurocomputing, 71(13-15):2563–2575, 2008.

185. X. Xie and H.S. Seung. Learning in neural networks by reinforcement of irregular spiking.
Physical Review E, 69(041909), 2004.

186. J. Xin and M. J. Embrechts. Supervised learning with spiking neuron networks. In Proceed-
ings of the IJCNN 2001 IEEE International Joint Conference on Neural Networks, Washing-
ton DC, volume 3, pages 1772–1777, 2001.

187. A.M. Zador and B.A. Pearlmutter. VC dimension of an integrate-and-fire neuron model.
Neural Computation, 8(3):611–624, 1996.

188. R. S. Zemel, P. Dayan, and A. Pouget. Probabilistic interpretation of population codes.
Neural Computation, 10:403–430, 1998.

