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Connectedness is one of the most important grouping criteria that allow the visual system to 
segregate objects from each other and from the background. We review algorithms for the 
detection of connectedness from a physiological point of view. Connectedness detection by a 
feedforward network is physiologically implausible. Instead, we present evidence that visual 
cortical neurons label connected image regions serially, by exhibiting an enhanced firing 
rate. This suggests an intimate relationship between connectedness detection and visual 
attention.  

 
1 Introduction 
 
Typical natural visual scenes contain many objects, which need to be segregated 
from each other and from the background. Components of a single object are usually 
related to each other by numerous perceptual grouping criteria, including colinearity 
and connectedness. The visual system is well adapted to exploit these grouping 
criteria in order to recover image regions occupied by one of the objects. Indeed, the 
visual system readily groups image regions together that are connected to one 
another@1, as is illustrated in Fig. 1. Image elements that are connected to one 
another are easily segregated from other image regions. This is important, since other 
functions of the visual system, like object recognition, depend on proper 
segmentation of the visual image. In this chapter we will consider the physiological 
mechanisms that allow the visual system to detect connections among image regions.  

Minsky and Papert@2 were among the first to recognize that connectedness 
detection is not a trivial task for a neural network, like the visual cortex. They 
studied the detection of connectedness by perceptrons, simple neural networks that in 
many ways resemble the multilayered feedforward neural networks that have become 
rather popular nowadays@3,@4. Minsky and Papert were able to show that the 
computation of connectedness using perceptrons is problematic in that the number of 
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units required for the computation scales very unfavourably with the size of the 
retina on which images are displayed. Using perceptrons, the number of units that 
would be required for the computation of connectedness on a realistic retina is likely 
to exceed the number of neurons of the entire visual cortex. In the present chapter we 
will argue that the difficulties that perceptrons have with computing connectedness 
are shared, to some extent, by other multilayered feedforward network architectures. 

In contrast, serial algorithms, which can be implemented using recurrent 
networks, offer a rather cheap solution for the computation of connectedness in terms 
of the number of processing units required, even for retinas of realistic size as was 
shown, for example, by Minsky and Papert@2. Ullman@5 also suggested that the 
visual system should be equipped with a special serial contour-tracing operator in 
order to detect connectedness relationships. We will review evidence in favour of a 
particular implementation of this contour-tracing operator. Our hypothesis is that a 
special label is spread among all neurons that respond to a connected image 
component. The label distinguishes the neurons from cells that respond to other, 
disconnected image components.  

Although our computational considerations strongly suggest that recurrence is 
crucial for connectedness detection, we also provide psychophysical and 
physiological evidence in support of our hypothesis. Processing in a feedforward 
network is completed as soon as information arrives at the top layer of the network. 
In contrast, processing in a recurrent network is not completed within a 
predetermined amount of time. We review evidence that the detection of connections 
between image regions by human observers is associated with prolonged reaction 
times. Moreover, we demonstrate that neurons at the earliest levels of the visual 
processing hierarchy are influenced from outside their classical receptive field during 
the detection of connectedness. Therefore, there is also direct evidence for the 
recurrence of visual cortical processing.  

A CB D

Figure 1: Connectedness as a grouping criterion. A-D, Subtle and local changes in the visual image 
may exert a pronounced effect on the process of image segmentation. In A the two grey tiles are 
connected and perceived as belonging to a single image region. Local alterations in the image, as in B 
and C, give rise to a different segmentation of the image: now the grey tiles belong to different image 
components. D, When both alterations are combined the grey tiles are connected once more, 
illustrating that for the computation of connectedness many local decisions need to be integrated. 
 



  3 

2 Representation of connectedness 

 
Before considering how connectedness should be computed, it should be discussed 
how connectedness is represented by visual cortical neurons. One of the strategies is 
to represent connectedness with dedicated neurons. The visual cortex may contain 
'connectedness detectors’; neurons whose activity depends on connections between 
image regions. However, there are a number of disadvantages associated with 
representing connectedness using dedicated cells. First, realistic images are usually 
composed of many connected and disconnected regions. It is therefore critical how 
these putative connectedness detectors indicate which of these regions are connected 
and which are not. An obvious and straightforward solution to this ambiguity is to 
reserve a neuron for each combination of image locations that may be connected. 
However, since the number of combinations of image locations scales as the square 
of the sampling resolution, the visual cortex would have to reserve a huge number of 
cells for the representation of connectedness. Even more unrealistic cell numbers are 
required when connectedness relationships among more than two image locations 
need to be represented by dedicated cells. This indicates that connectedness 
represents a severe case of the 'binding problem' in the spatial domain. 

Second, properties of connectedness detectors constrain their location in the 
visual hierarchy. If a cell's response depends on the presence or absence of a 
connection between two image regions then, by definition, its receptive field 
includes these image regions and the path between them. This implies that the 
receptive field of a connectedness detector should comprise the entire visual field, 
since a connecting path may run anywhere. At face value, this indicates that cells 
sensitive to connectedness among image regions must reside in the higher areas of 
the visual cortex, where receptive fields are largest. This is at odds with the fact that 
grouping processes are an early, 'preattentive' visual function on which much of the 
subsequent visual processing depends, at least when one adopts a primarily 
feedforward view of visual cortical processing (e.g. ref. @6).  

An alternative representation of connectedness is to label neurons that respond 
to a connected image component. Two labels that are plausible from a physiological 
point of view are an enhanced firing rate (Fig. 2A), and synchrony of neural 
discharges (Fig. 2B). The synchronization label was proposed by Abeles@7 and von 
der Malsburg@8,@9 and, in a preliminary form, also by Milner@10. These authors 
pointed out that the precise timing of action potentials could be utilized in order to 
label a group of neurons that respond to a single object. The hypothesis was put 
forward that neurons that respond to the various features of a single image 
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component should synchronize their discharges on a fine temporal scale, whereas 
neurons that respond to different image components should not fire in synchrony. In 
the case of connectedness detection this proposal suggests that neurons responsive to 
connected image components fire in synchrony, whereas neurons responding to 
disconnected image components do not. Synchronization provides multiple labels, 
and therefore, each connected image component can, in principle, receive a different 
label (Fig. 2B). 

An enhanced firing rate is the second candidate tag. According to this proposal, 
neurons that respond to a connected subset of the visual image have an enhanced 
firing rate relative to neurons that respond to the rest of the image (Fig. 2A). There is 
physiological evidence for the involvement of variations in firing rate in perceptual 
grouping. Studies in awake monkeys have revealed that neurons in the primary visual 
cortex exhibit stronger responses to image elements that belong to a figure than to 
image elements that belong to the background@11,@12. A likely psychological 
correlate of this label is visual attention for the respective image region. Responses 
of visual cortical neurons to an attended object are enhanced relative to responses to 
objects that are not attended@13-@16.  Enhanced firing rates provide only a single 
label. When neurons that respond to disconnected image regions would also exhibit 
an enhanced firing rate, the respective image components are spuriously labelled as 

A B

Figure 2: Representation of connectedness using labels. A, Neurons that respond to pixels belonging to 
one of the connected image components have a higher firing rate (black) than neurons responding to 
other components (grey). Unresponsive cells are shown in white. B, Neurons that respond to the same 
image component fire their action potentials (vertical ticks) at the same time, whereas cells that 
respond to different image components do not fire in synchrony. Note that neuronal synchrony can 
provide a different label for each image component (as indicated by linestyle and shading). 
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connected. 
3. Algorithms for the detection of connectedness 
 
Further constraints on connectedness detection can be derived from computational 
considerations. Feedforward networks appear to be particularly inefficient for the 
computation of connectedness. The most primitive representative of such a 
feedforward network is the perceptron, which has been shown to be maladapted for 
computing connectedness by Minsky and Papert@2. Perceptrons have been succeeded 
by parallel distributed processing (PDP) networks for which powerful training 
algorithms exist, like the ubiquitously used backpropagation algorithm@4. We 
therefore investigated whether these feedforward networks are better equipped to 
compute connectedness.  

 
 

3.1 Feedforward networks with a single hidden layer 
 
As a first approach, a feedforward network with three layers was trained to detect 
connectedness between two opposite corners of a square retina (Fig. 3). The first 
layer of the network received input from the retina. The second layer was composed 
of units that were connected to all neurons in the first layer. These units will be 
called hidden units. The third layer consisted of a single decision unit. The task was 
to detect a path between opposite corners that was composed of adjacent black 
pixels. The decision unit should only be activated when the opposite corners were 
connected to each other. During the training procedure patterns like the images of 
Fig. 3A were given as input to the network, and the synaptic weights were adjusted 
according to a version of the back-propagation rule@4. Typically, a subset of all 
possible patterns was used as training set, and subsequently the network was tested 
with a different set of images, which included some images that were not in the 
training set. This allowed us to study whether rules learned by the network would 
also apply to novel images. We were interested in the number of hidden units that 
was required to solve the task, and its dependence on the size of the retina.  

The minimal number of hidden units for a retina of 4x4 pixels, for example, was 
found to be 20. The back-propagation rule did not find a correct solution when a 
smaller number of hidden units were used. In order to understand this strict 
dependence of a solution on the number of hidden units, the pattern of connections 
between the hidden units and the input layer was investigated for a network that had 
converged to a correct solution. Interestingly, units in the second layer were tuned to 
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an entire path connecting the two corner positions (Fig. 4A). Hidden units were 
selective for what we call a principal path. Principal paths are interrupted as soon as 
the color of an arbitrary black pixel is changed to white. For the 4x4 retina the 
number of principal paths is 20, as is shown in Fig. 4A. Thus, the strategy learned by 
the network depends on the detection of principal paths. Indeed, all images in which 
the two corner points are connected contain at least a single principal path. 
Therefore, the two corner points are not connected, if all hidden units remain silent. 
The number of hidden units compares favorably to the 214 possible input images in 
which the two corner points are not varied. The back-propagation rule captured a 
significant amount of the structure inherent in the task. This rule based on the 
detection of principal paths even worked for novel images, which did not appear in 
the training set. Unfortunately, the number of hidden units required for this solution 
grows exponentially with increasing image size, since principal paths can be winding 
(Fig. 4B). This presumably explains why, in our hands, the backpropagation failed to 
find solutions for retinas of 5x5 pixels or larger.  

The results obtained with our feedforward network with a single hidden layer 
illustrate that connectedness is indeed a non-trivial property of the visual image. In 
the case of a 4x4 retina the network was only trained to detect the presence of a 
connection between two corner points. The network would require additional units to 
detect connections between arbitrary locations in the image. However, the largest 
problem of the solution by the three-layer network is the exponential growth of the 
required number of neurons with increasing image size. Fortunately, this exponential 

Decision unit

Hidden units

Input layer

Retina

A B

Figure 3: Three-layer feedforward network for connectedness detection. A, Two of the images on which 
the network was trained. In the upper image the two grey corner points were connected, but in the lower 
image they were not. B, The network consisted of three layers. Neurons of the input layer were 
connected to all units of the hidden layer. During training the strength of all connections was changed 
according to the back-propagation rule. 



  7 

growth is not a property of feedforward networks in general. In the remainder of this 
section we will present feedforward networks with more layers between input and 
output. It will be seen that these network architectures require less units. However, 
all further algorithms that are presented (and that we are aware off) have a more 
natural implementation in a recurrent network than in a feedforward network. 
Therefore, we will first discuss the recurrent versions of these algorithms, and 
subsequently, how they could be implemented in a feedforward network.  

 
 
3.2 Networks composed of connectedness detectors 
 
Connectedness can be computed using connectedness detectors, units that signal the 
presence of a connection between two locations in an image. Representational 
considerations dictate that a unit is reserved for each pair of image locations, as was 
discussed above. The design of such a network is illustrated in Fig. 5. Neurons in the 
first layer of the network (layer 0) are activated in the first iteration of the algorithm. 
They signal adjacent black pixels, and are reproduced for each pair of adjacent 
image locations. Neurons in the next layer (layer 1) are selective for a connection 
between image locations that are separated by two pixels. A unit (Pi-Pj) of layer 1, 
which is selective for a connection between image locations Pi and Pj, can be 
activated from layer 0. This occurs when one of the neighboring positions Pk of both 
Pi and Pj contains a black pixel. In this case (Pi-Pk) and (Pj-Pk) are in layer 0 and 
are activated in the first iteration. Therefore, (Pi-Pj) is activated in iteration 2. This 
wiring scheme is repeated in higher layers. The algorithm proceeds by activating all 
cells (Pi-Pj) for which there is a location Pk, such that (Pi-Pk) and (Pj-Pk) are both 
active. When Pi to Pj are connected through the shortest possible path, there is 
always a location Pk, such that (Pi-Pk) and (Pj-Pk) are the next lower layer. In this 

ΒΑ

Figure 4. A, Receptive fields of the 20 units of the hidden layer. All units were selective for a principal 
path: an entire path connecting the two grey pixels. B, Example of a principal path for an 8x8 retina. 
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situation (Pi-Pj) will be activated one iteration later than (Pi-Pk) and (Pj-Pk). 
An important observation can be made for situations in which image locations 

are connected via a detour. Suppose that Pi and Pj are separated by 2 pixels, but 
connected through Pk, which is separated by a larger distance in the image (Fig. 5C). 
A connection between Pi and Pk on the one hand and a connection between Pj and 
Pk on the other hand, implies a connection between Pi and Pj. Thus, neurons (Pi-Pk) 

Α Β

Pi-Pj

Pi-Pk Pi-Pl Pj-PlPj-Pk

Pi-Pk Λ Pj-Pk

Layer n (2n-1+1  d  2n)≤ ≤

Layer 2 (3  d  4)≤ ≤

Layer 1 (d = 2)

Layer 0 (d = 1)

Retina

Χ
1 2 3 4 5Πι

Πϕ

Πκ

Ιτερατιονσ

Pi-Pl Λ Pj-Pl

Figure 5: Detection of connectedness using dedicated neurons. A, Neurons are reserved for each 
combination of image positions. Neurons detecting connections between adjacent image positions are 
situated in layer 0. In subsequent layers connections between positions that are separated by a larger 
distance (d) in the image are represented. B, In each iteration of the algorithm those units (Pi-Pj) are 
activated for which there is an image location Pk, such that neurons (Pi-Pk) and (Pj-Pk) are both active. 
This can be achieved by reserving a linear threshold unit for each triplet (Pi, Pj, Pk) of image locations. 
Note that neurons (Pi-Pk) and (Pj-Pk) can, in principle, be located in a higher layer than (Pi-Pj). (C) 
Image, in which locations Pi and Pj are connected via a detour through Pk. Right, subset of units that are 
activated in successive iterations. Note that the rightmost unit, which is activated in the 5th iteration, is 
located in layer 1 of the network (see A).  
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and (Pj-Pk) should activate (Pi-Pj) (Fig. 5B). However, units (Pi-Pk) and (Pj-Pk) are 
in a higher layer of the network than (Pi-Pj), which is in layer 1. Thus, activation of 
(Pi-Pj) depends on feedback from higher layers. Indeed, the order in which 
connectedness detectors (Pa-Pb) are activated is determined by the distance between 
Pa and Pb as measured along the current path, rather than by the actual distance 
between Pa and Pb. It can be seen that if Pa and Pb are connected by a path of length 
L, then (Pa-Pb) is activated in iteration t, where t = 2log L + 1. This has two 
important implications. First, feedback from higher to lower layers is essential for 
images with pixels that are connected via a detour. Second, the order in which 
connectedness detectors are activated depends on the layout of paths in the image. 
These considerations imply that there is an inherent seriality in the detection of 
connectedness (see also ref. @5).  

The algorithm requires N2·M2 units for an N·M retina. There are 106 axons in the 
optic nerve, and this provides a rough estimate of N·M in human vision. In order to 
implement this algorithm, the human visual cortex would have to reserve about 1012 
neurons, which is implausible from a physiological point of view. Unfortunately, the 
activation rule by which neurons (Pi-Pk) and (Pj-Pk) activate (Pi-Pj) is non-linear, 
and therefore, N2·M2 linear threshold units cannot carry out the algorithma. It can be 
implemented using O(N3·M3) linear threshold units (Fig. 5B). Therefore, the 1012 
neurons required for implementing this algorithm in the human visual system 
provides a lower bound, since it seems unlikely that the non-linear version of the 
dendritic integration rule can be carried out by cortical neurons. 

Any serial algorithm that is completed within a limited number of iterations can 
also be carried out by a feedforward network. Therefore, it is possible, albeit 
somewhat artificial, to implement this algorithm in a feedforward network. For the 
implementation, a layer is reserved for each iteration of the algorithm. The maximal 
number of iterations is O(log(N·M)), since the maximal length of a path in the image 
is O(N·M). Units selective for a particular connection (Pa-Pb) have to reappear in 
almost every layer, because the order in which connectedness detectors are activated 
varies between images. A feedforward network composed of linear threshold units 
would require O(N3·M3 log (N·M)) units in O(log (N·M)) layers. Nonetheless, the 
number of units scales much more favorably with the size of the retina than in the 
three-layer feedforward network that was discussed above. 
 

                                                           
a Linear threshold units sum their inputs after scaling by the synaptic weights and are activated when the 
sum crosses a threshold (e.g. ref @2). 
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3.3 Connectedness detection using labels 
 
Connectedness can also be represented by labelling neurons that respond to a 
connected image region. The most powerful algorithms that are available for the 
computation of connectedness on parallel computers use such labels (e.g. ref. @17). 
These algorithms are rather economic in terms of the number of units that are 
required. Here, we discuss a simple version of a label-spreading algorithm, which is 
readily implemented in a neural network with a single layer. Cells in the network of 
Fig. 6 are activated from a particular image location, and importantly, units that 
receive input from adjacent image positions are reciprocally connected. The 
algorithm presupposes that a tag is spread through these 'horizontal' connections, but 
only among units that are activated by the image. This implies that a connection is 
only effective if both the pre- and postsynaptic cell is active.  It is convenient to refer 
to the subset of connections that are switched on in this way as the interaction 
skeleton (thick lines in Fig. 6C,D). At step one of the algorithm, one of the 
responsive neurons receives the tag. It is easy to see that in subsequent iterations the 
tag spreads to precisely those neurons that respond to connected image regions. The 
algorithm relies on the use of two distinct signals for each position of the image. The 
first signal which depends on the colour of the pixel at a particular image location is 
the activation of network units. The second signal is the label that spreads through 
the interaction skeleton, the nature of which will be discussed in a later section of 
this chapter. Note that the spread of the tag is not determined by local features of the 
image but, in accordance with the nature of connectedness, by the global pattern of 
activated cells, which determines the composition of the interaction skeleton. Small 
differences in the image may lead to drastic changes in connectedness relations 
among image regions (as was demonstrated in Fig. 1). However, these differences 
are reflected in equivalent changes in the composition of the interaction skeleton 
(Fig. 6).  

The number of units necessary to carry out the algorithm equals N·M for a retina 
of size N·M, and does not require more neurons than is physiologically plausible. 
However, the number of iterations required by the algorithm is proportional to the 
length of the path where tag-spreading is initiated. Thus, it requires more iterations 
than the algorithm based on connectedness detectors that was discussed above. It can 
be speeded up, however, by the addition of additional layers, as will be discussed in 
the next section.  

The tag-spreading algorithm can also be improved by the introduction of 
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multiple labels. This allows the network to represent multiple connected image 
components at the same time. Shiloach and Vishkin@17 showed that the number of 
iterations can be reduced to O(log (N·M)) by using multiple labels on a parallel 
computer. However, in order to obtain this computational speed, each unit needs to 
be connected to every other unit, and the number of available labels has to be 
proportional to the number of pixels. We refrain from going into the details of these 
extremely cost-effective algorithms, because they lack physiological plausibility.  

Obviously, tag-spreading can also be carried out by a feedforward network. For 
each iteration of the recurrent algorithm a layer should be reserved in the 
feedforward network. Therefore, the number of layers in the feedforward network 
should be proportional to N·M, since the maximal number of iterations of the 
recurrent algorithm is proportional to the longest possible path, which is O(N·M). 
Thus, the feedforward version of the algorithm requires O(N·M) layers with N·M 
units per layer. The total number of units is O(N2·M2), which is physiologically 
implausible. Nonetheless, this feedforward algorithm can be carried out by 

Α

Β
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∆

Time

Figure 6: A tag-spreading algorithm for connectedness detection. A, Image in which the two grey tiles 
are connected. B, Slightly modified image in which the two grey tiles are not connected. C, Schematic 
illustration of the interaction skeleton. Neurons (circles) with adjacent receptive fields are reciprocally 
coupled (lines). Neurons that are activated by the image have been indicated in grey. The interaction 
skeleton consists of those tag-spreading connections that link active neurons (thick lines). In order to 
detect connectedness, a label (black) is spread among activated neurons, starting at the arrow. The label 
will only propagate to neurons that respond to image locations that are connected to the tile that is 
indicated by the arrow. Note that the tag spreading process could be initiated anywhere in the interaction 
skeleton. D, A local change (between C and D) in the image results in a global change in the 
composition of the interaction skeleton, and in an equivalent change in the tag spreading process. 
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O(N2·M2) linear threshold units, which is less than the O(N3·M3 log (N·M)) required 
by the feedforward network composed of connectedness detectors, that was 
discussed above.  
 
 
3.4 Pyramid algorithms 
 
In regions where the path along which the label should spread is relatively straight, 
and different image components remote, additional layers in the network can speed 
up tag-spreading. Edelman@18 described an algorithm that takes advantage of this 
possibility, and can be implemented on a pyramid computer. Fig. 7 illustrates such a 
pyramid algorithm, schematically. The lowest layer of the pyramid corresponds to 

t = 1

t = 3

t = 5

t = 1

t = 3

t = 5

A B

Figure 7: Pyramid algorithm for the detection of connectedness. A, Three layers of a pyramid network 
are shown. Neurons in higher layers are reciprocally connected to 9 neurons of the next lower layer. 
These neurons are only active if it can be excluded (on the basis of simple heuristics) that there are 
multiple disconnected image components in their receptive field. The interaction skeleton is shown as 
thick lines. Only a subset of the connections to the neurons in the upper layer is depicted. Note that the 
higher layers speed up tag-spreading. B, The presence of disconnected image components deactivates 
part of the pyramid. This retards tag-spreading considerably. 
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the tag-spreading network described in the previous section. However, additional 
layers are included, which receive input from a number of neurons (9 neurons in Fig. 
7) of the next lower layer. Units in higher layers have larger receptive fields, but are 
only active when it can be verified, on the basis of simple heuristics, that there is a 
single connected image component in their receptive field. An example of such an 
heuristic is the requirement that all pixels within the receptive field are on the same 
horizontal or vertical row (Fig 7A)a. More complicated heuristics, which also can be 
computed by the pyramid in a feedforward way, have been described 
previously@18,@19. Valid heuristics establish that there is a single connected 
component within the receptive field of neuron.  However, when a neuron remains 
silent, disconnected image components within its receptive field may nonetheless be 
connected, for example through a detour outside the receptive field. Activity in 
higher layers can speed up the tag-spreading process considerably, as is illustrated in 
Fig. 7A. Since receptive fields are larger in higher layers, adjacent receptive fields 
are separated by a larger distance in the visual field. Thus, larger distances in the 
visual field are bridged within a single iteration. For straight paths, the time that is 
required by a pyramid algorithm can be reduced to O(log(L)), where L is the length 
of the path that should be labelled@18. However, when the path is not straight, or 
other image elements are nearby, tag-spreading requires high resolution information, 
and only occurs in the lower layer(s) of the pyramid. This reduces the speed to a few 
pixels per iteration (Fig. 7B). Thus, the time required by a pyramid algorithm 
depends on the visual input, and varies between O(log(L)) and O(L). 
 
 
3.5 Comparison of the various algorithms 
 
Obviously, we cannot discuss the plethora of algorithms that can be designed for the 
detection of connectedness. It is possible, if not likely, that algorithms which require 
fewer units or which are faster will be found in the future. Nonetheless, we believe 
that our considerations strongly indicate that recurrent networks have advantages 
over feedforward networks for the computation of connectedness. Networks that 
compute connectedness using 'connectedness detectors' as well as networks that use 
tag-spreading benefit from recurrence. This is presumably related to an inherent 
seriality in the computation of connectedness (see ref. @5). 

                                                           
a For human vision, equivalent requirements are that (1) all image elements within a receptive field are 
approximately colinear, and (2) there are no line terminations. 
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 It is our aim in the remainder of this chapter to compare the algorithms that 
were introduced to physiological and psychophysical data. Let us therefore 
recapitulate the distinctive features of the various algorithms. First, algorithms differ 
in the number of image regions in which connectedness computations take place 
simultaneously. The number of image regions that can be labelled by tag-spreading 
algorithms is equal to the number of available labels. In contrast, algorithms that use 
connectedness detectors exhibit no limitation in this respect, since computations can 
be performed in parallel on all image regions. Second, there are differences in the 
number of iterations required by the various network types, and their dependence on 
the visual input. This should allow a comparison between the number of iterations 
that algorithms require, and human reaction times in tasks that require connectedness 
detection. Third, algorithms implemented in recurrent networks predict that the 
effects of feedback, and within-layer interactions can be measured at the earliest 
levels of the visual cortical processing hierarchy. In contrast, neurons in the early 
layers of the feedforward implementations that were discussed above are tuned to 
local features of the image. Fourth, there are differences in the number of units that 
are required to perform the computations. In this respect tag-spreading algorithms 
are clearly superior over algorithms based on connectedness detectors. Tag-
spreading allows the network to segregate an entire connected image component 
from other components and the background. This is beneficial for subsequent visual 
processes like, for example, object-recognition. In the network composed of 
connectedness detectors, on the other hand, only pair-wise connections are explicitly 
represented. The required neural hardware would grow beyond bounds if dedicated 
units should represent triplets or larger numbers of connected pixels. In other words, 
connectedness representation is the spatial version of the binding problem.  

 
 

4 Physiology of connectedness detection 
 
There is, to our knowledge, no physiological evidence bearing on the computation of 
connectedness using connectedness detectors. Therefore, it is imperative to restrict 
our discussion of physiological data to the tag-spreading algorithms.  

 
 

4.1 Evidence for synchrony as a label for connectedness 
 
It has been suggested that neuronal synchrony might label responses to related 
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features and demarcate these responses from responses to unrelated features@7-

@10,@20. The suggestion that synchrony might label connected image regions is in 
accordance with this hypothesis. Thus, neurons responding to a connected image 
region should fire their action potentials at approximately the same time, whereas 
neurons responsive to unconnected image regions should not fire in synchrony (Fig. 
2B). Neuronal synchrony allows simultaneous labelling of multiple image regions, 
since synchronization can occur selectively between the responses to connected 
image regions, and not between responses to non-connected regions. There is 
physiological evidence in support of this hypothesis. Neurons in the primary visual 
cortex fire in synchrony when they respond to segments of the same visual contour. 
However, when the same neurons respond to separate contour segments the strength 
of synchrony is reduced@21-@24.  

A prediction from this hypothesis is that whenever synchronization among visual 
cortical neurons is disturbed, the detection of connectedness should be impaired. 
This begs the question whether there are selective disturbances of neuronal 
synchrony, sparing further aspects of visual cortical processing. Strabismic 
amblyopia appears to be such a disorder. It is a condition that develops in a 
proportion of humans and animals with a squint. In order to avoid double vision, 
these individuals develop a strategy in which they continuously suppress vision with 
one of their eyes, and fixate objects with the other eye. The non-fixating eye 
develops a form of amblyopia that is characterised by a reduced acuity, and 
distortions of visual perception@25,@26. In contrast to other types of amblyopia@27, 
strabismic amblyopia is not associated with a loss of neurons that are activated 
through the affected eye. Paradoxically, fine gratings that cannot be perceived with 
the amblyopic eye still evoke responses from visual cortical neurons that are as 
vigorous as responses evoked through the normal eye@28-@31. In a recent study, 
patterns of synchrony were explored among neurons of the primary visual cortex of 
cats with strabismic amblyopia@32. The strength of synchrony among responses 
evoked through the amblyopic eye was lower than the strength of synchrony among 
responses evoked through the normal eye. Furthermore, the loss of synchrony among 
responses of neurons activated through the amblyopic eye was most pronounced for 
fine gratings, which exceeded the threshold of the amblyopic eye. These results 
indicate that strabismic amblyopia is indeed associated with a selective loss of 
neuronal synchrony among neurons at the lowest level of the visual cortical 
hierarchy@32.  

This disruption of tag-spreading should be associated with a failure of 
connectedness detection in patients with strabismic amblyopia. Hess et al.@33 
explored visual distortions that patients with strabismic amblyopia perceive when 
viewing with their affected eye. They asked amblyopic observers to look with their 
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amblyopic eye at gratings of various spatial frequencies and to make drawings of the 
distorted percepts. Examples of such drawings are shown in Fig. 8. Apparently, 
amblyopic patients fail to perceive connections among contours that are connected, 
and vice versa, perceive connections among contours that are actually disconnected. 
These visual distortions are most pronounced for fine gratings. Taken together, these 
results indicate that a loss of synchrony is associated with a pronounced deterioration 
of connectedness detection. 

 
 

4.2 Evidence for rate enhancement as a label for connectedness 
 
The second, physiologically plausible label that the visual cortex could utilize is an 
enhanced firing rate. Physiological studies have shown that the visual cortex can 
indeed label image regions using an enhanced firing rate@11,@12. Thus, according to 
this proposal, neurons that respond to a particular connected image region should 
exhibit a response enhancement relative to neurons that respond to other image 
regions (Fig. 2A).  

In order to strengthen the link between connectedness detection and tag-
spreading, we have recently started to record the activity of neurons in the primary 
visual cortex of awake monkeys who were trained in a task that requires the 
detection of connections among image regions@34. The animals had to find a visual 

1 c/d 4 c/d 10 c/d

4º

Figure 8: Spatial distortions of amblyopic vision. Gratings of various spatial frequencies were shown to 
the amblyopic eye of a patient with strabismic amblyopia. After looking at these patterns, the patient 
was asked to open the normal eye and to draw his impression of the visual stimulus. Shown in this 
figure are the drawings of gratings with different spatial frequencies. The scale bar denotes the size of 
the presented stimuli in degrees of visual angle. Note that with increasing spatial frequency the 
distortions become more severe. The patient reports on seeing connections between contour segments 
that are actually disconnected. Conversely, to the amblyopic eye elongated contours appear interrupted 
(reproduced with permission from ref. @33). 
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target,  which was connected to a fixation point through a curve (Fig. 9A). Activity 
in the primary visual cortex was recorded while the monkeys performed this task. 
The firing rate of neurons in the primary visual cortex was influenced by the 
connectedness relationships. In particular, neurons exhibited an enhanced response 
when the curve that connected the fixation point to the target crossed their receptive 
field. Thus, the curve that was relevant for the monkeys, since it indicated the correct 
eye movement, was labelled using an enhanced firing rate. Response enhancement 
occurred after a latency of about 200 ms, which is long after the onset of visual 
responses in the primary visual cortex. The additional delay is presumably related to 
the temporal constraints on the tag-spreading process. The primary visual cortex is at 
the lowest level of visual cortical processing hierarchy. Therefore, these results 
provide direct evidence for the recurrence of tag-spreading.  

 
 

4.3 Temporal constraints on tag-spreading 
 
The results in cats and humans with amblyopic vision suggested neuronal synchrony 
as a label for connected image regions, whereas the results of the trained monkeys 
indicated that rate enhancement is the label. We would like to propose that temporal 
constraints on the tag-spreading process need to be taken into account in order to 
understand this discrepancy.  

Let us first consider how the synchrony label spreads through the interaction 
skeleton. Closely located neurons in the visual cortex exhibit a tendency to fire their 
action potentials at approximately the same time@23. This suggests that local cortical 
circuits are laid out to allow for cooperativity of firing among these local cell groups 
(see also ref. @35). Thus, neurons that have reached the firing threshold are likely to 
activate others that are also close to the threshold rapidly, thus starting a burst of 
activity@36. It seems likely that such bursts, or neuronal avalanches as they may be 
called, travel some distance along the interaction skeleton (Fig. 6, 7). Then they die 
out, for example because inhibition builds up or because they collide with 
avalanches that started at other positions. These bursts of activity would provide a 
mechanism for synchronizing neurons that are connected through the interaction 
skeleton. The course that an avalanche can take is constrained by the layout of the 
interaction skeleton. Neurons that are not connected by the interaction skeleton 
cannot participate in the same avalanche, and will not synchronize their discharges.  

In order to synchronize neurons that are separated by a large number of 
synapses, an avalanche should have enough time to develop. Many studies have 
reported burst durations of approximately 8-10 ms@20-@24,@37,@38. In such a short time 
an avalanche cannot, with all likelihood, spread further than 6-8 synapses. However, 
a prolongation of the average avalanche duration may help to synchronize neurons 
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that are separated by many synapses. Nelson et al.@39 found that visual cortical 
neurons synchronize their discharges on a variety of timescales. In their study the 
synchronization patterns were subdivided in three categories: T-, C- and H-type 
coupling. T-type coupling (T for tower) was most precise, and associated with an 
average burst duration of 3 ms. The average precision of synchronization for C-type 
coupling (C for castle) was 30 ms, and for H-type coupling (H for hill) 400 ms. The 
spread of synchrony was found to be larger for H- and C- type coupling than for T-
type coupling. Thus, longer avalanches are associated with a more extensive spread 
of synchrony through the interaction skeleton. The range of possible avalanche 
durations can be extended even further, since rate changes that covary among 
neurons on a timescale of even seconds have been found@40,@41. 

There is, however, also a disadvantage associated with long avalanche durations. 
A new burst of activity should only be initiated after the last avalanche died out. 
Therefore, long avalanche durations need to be accompanied by a low probability of 
their initiation. If by chance avalanches simultaneously occur in unconnected regions 
of the interaction skeleton, the respective image regions are spuriously labelled as if 
they are connected. Thus, when the avalanche duration is too long, disconnected 
image components cannot be labelled simultaneously on a perceptually relevant time 
scale. There is a trade-off between the duration of avalanches, the frequency with 

A B

Figure 9: Tasks that probe connectedness detection. A, Task used in ref. @34. Monkeys were trained to 
fixate a small point (black circle) and to make an eye movement to a target (white circle) that was 
connected to the fixation point. B, Curve tracing task employed by Jolicoeur and coworkers (ref. 
@19,@42,@43). The image consists of a pair of curves, one of which is connected to the fixation point 
(black circle). A target (white circle) could appear on the same curve as the fixation point at various 
distances. The circular target could also appear on the other curve. During the actual experiment the 
target appeared only at a single of these eight possible locations. Moreover, the curves differed between 
successive trials. Subjects were required to indicate whether the target was on the same or on a different 
curve as the fixation point. 
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which they can be initiated, and the probability of spurious synchronization. One of 
the virtues of the synchrony label, the possibility for simultaneous representation of 
multiple objects on a perceptual timescale, is sacrificed with very long avalanche 
durations. However, this cannot be avoided if image components are elongated, and 
many synapses need to be bridged by the tag-spreading process. More prolonged 
changes in firing rates in a connected compartment of the interaction skeleton are a 
likely correlate of shifts of visual attention@13-@16. It is plausible that image 
components encoded by neurons that did not participate in avalanches for a 
perceptually relevant time-span are temporarily excluded from conscious visual 
perception. At these timescales the synchrony label is similar, if not identical, to the 
label of enhanced firing rates. The only distinction between the two labels is the 
timescale on which neurons in unconnected regions of the interaction skeleton may 
alternate, the timescale for the synchrony label being considerably shorter than the 
timescale of attentive shifts. Thus, the two labelling mechanisms have a highly 
similar computational structure, and can rely on the same architecture of tag-
spreading connections.  

Taken together, the physiological data strongly suggest that the visual cortex 
evaluates connectedness relationships using tag-spreading. In order to strengthen this 
conclusion, and to discriminate between the various tag-spreading algorithms we will 
now review human performance in tasks that require connectedness detection. 

 
 
 

5 The psychophysics of connectedness detection 
 
Jolicoeur and coworkers@19,@42,@43 investigated human performance in curve tracing 
tasks. In these tasks, observers have to judge whether a circular targets is on the 
same, or on a different curve as a fixation point (Fig. 9B). Thus, tracing tasks probe 
the capabilities of humans in detecting connections between image regions. Reaction 
times exhibit an almost linear dependence on the distance between target and 
fixation point, when both are on the same curve@19,@42. Large distances between the 
fixation point and the target, as measured along the curve, can increase the reaction 
time by as much as 300 ms. These results provide evidence against algorithms which 
are completed within a fixed number of iterations, and also against algorithms which 
require O(log(L)) iterations (where L is the length of the curve to be traced).  

The performance of the pyramid algorithm, on the other hand, is largely 
consistent with the pattern of human reaction times. A particularly important result in 
this respect is the finding that the speed of tracing depends on the curvature of a 
curve, and on its distance from other image components. Indeed, when a curve is 
contorted or other curves are nearby, tracing speed is reduced@19. Moreover, reaction 
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time data suggest that curve tracing can only be performed for a single curve at a 
time@43. This is evidence against algorithms based on connectedness detectors, 
because these algorithms can simultaneously perform their calculations in different 
image regions. It also argues against tag-spreading algorithms that utilize multiple 
tags, since this also allows simultaneous computations for disconnected image 
regions.  

In summary, results on curve tracing largely corroborate the physiological data, 
which suggested that connectedness is detected by tag-spreading. The algorithm 
based on connectedness detectors is inconsistent with a linear dependence of reaction 
times on the length of the curve to be traced, and erroneously predicts that tracing 
can take place in multiple image regions at the same time. With respect to the tag-
spreading algorithms, the reaction time data are in good agreement with the 
predictions of the pyramid algorithm with a single label.  
 
 
6 Concluding remarks 
 
We have indicated how connectedness can be represented efficiently and 
economically by labelling responses of neurons to connected image regions. Tag-
spreading algorithms evaluate connectedness relationships by spreading these labels 
through the interaction skeleton. The architecture of corticocortical connections is in 
accordance with the requirements of the tag-spreading algorithms. Indeed, 
synchronization between spatially separate neurons depends on the integrity of 
corticocortical connections (reviewed in ref. @44). The physiological and 
psychophysical data reviewed here are also in agreement with the tag-spreading 
algorithms.  

When an elongated curve is traced, neurons that respond to it exhibit an 
enhanced firing rate@34. Rate modulations are well established correlates of shifts of 
visual attention@13-@16. Thus, the propagation of the enhanced firing rate label along 
the interaction skeleton might be associated with a spread of visual attention over the 
respective connected image component. There is psychophysical and 
neuropsychological  evidence in support of this hypothesis.  

Patients with lesions of the parietal cortex sometimes fail to perceive visual 
objects, when other objects are presented at the same time. This symptom is called 
extinction, and is usually interpreted as a failure to shift visual attention from one 
object to another@45. Extinction can be prevented, however, when the respective 
image components are connected to each other@46, which suggests that the 
connection aids in propagating visual attention from one image component to 
another. Experiments in healthy individuals provide evidence that is in accordance 
with this interpretation. Kramer and Jacobson@47 asked subjects to discriminate 
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between features of contour segments. Different linestyles of a target contour were 
associated with right and left button presses. A target contour could be flanked by 
distractors, which possessed response-compatible or response-incompatible features. 
On trials with response-incompatible distractors, for example, a target contour with a 
linestyle that required a left button response would be flanked by distractors which 
required a right button response. These response-incompatible distractors increased 
reaction times substantially, and in particular when they were connected to the target 
contour. Thus, it is difficult to disregard irrelevant contour segments that are 
connected to an attended contour. Taken together, these results strengthen the 
proposal that visual attention has a tendency to spread from attended image regions 
to image elements that are connected to these regions, as a direct consequence of the 
tag-spreading process.  

One of most important functions of visual attention is to select image features 
that belong to a single object@48. Connectedness is one of  the Gestalt criteria which 
allow the visual system to decide which image elements belong to a single object. 
Therefore, spreading an enhanced firing rate through the interaction skeleton 
provides a mechanism for the attentive selection of entire objects, in other words, 
object-based attention (see also ref. @49). 

 
 
 

Acknowledgements  
 

We thank Dr. R. Goebel for the permission to use his Neurolator software. The 
research of Dr. Roelfsema has been made possible by a fellowship of the Royal 
Netherlands Academy of Arts and Sciences. 
 
 
References 
 

@1. I. Rock and S. Palmer, Sci. Am. 263 (6), 48 (1990). 
@2. M.L. Minsky & S.A. Papert, Perceptrons (MIT Press, Cambridge, 1969).  
@3. F. Crick, Nature 337, 129 (1989). 
@4. D.E. Rumelhart and J.L. McClelland, Parallel distributed processing (MIT Press, 

Cambridge, 1986). 
@5. S. Ullman, Cognition 18, 97 (1984). 
@6. E.T. Rolls and M.J. Tovée, Proc. R. Soc. Lond. B 257, 9 (1994). 
@7. M. Abeles, Local cortical circuits (Springer-Verlag, Berlin, 1982). 
@8. C. von der Malsburg, The correlation theory of brain function (Internal report 81-2, 



  22 

Max-Planck-Institute for Biophysical Chemistry, Göttingen, 1981). 
@9. C. von der Malsburg and W. Schneider, Biol. Cybern. 54, 29 (1986).  
@10. P.M. Milner, Psychol. Rev. 81, 521 (1974). 
@11. V.A.F. Lamme. J.Neurosci. 15, 1605 (1995). 
@12. K. Zipser, V.A.F. Lamme and P.H. Schiller. J.Neurosci. 16, 7376 (1996). 
@13. J.H.R. Maunsell, Science 270, 764 (1995). 
@14. W.T. Newsome, Curr. Biol. 6, 357 (1996). 
@15. M.I. Posner and S. Dehaene, Trends Neurosci. 17, 75 (1994). 
@16. S.P. Wise and R. Desimone, Science 242, 736 (1988). 
@17. Y. Shiloach and U. Vishkin, J. Algorit. 3, 57 (1982). 
@18. S. Edelman, Comp. Vision Graph. Image Process. 40, 169 (1987). 
@19. P. Jolicoeur, S. Ullman and M. Mackay, J. Exp. Psychol.: Hum. Percept. Perform. 17, 

997 (1991). 
@20. W. Singer and C.M. Gray, Annu. Rev. Neurosci. 18, 555 (1995). 
@21. M. Brosch, R. Bauer and R. Eckhorn, Cereb. Ctx. 7, 70 (1997). 
@22. W.A. Freiwald, A.K. Kreiter and W. Singer, Neurorep. 6, 2348 (1995). 
@23. C.M. Gray, P. König, A.K. Engel and W. Singer, Nature 338, 334 (1989). 
@24. M.S. Livingstone, J. Neurophysiol. 75, 2467 (1996). 
@25. R. Sireteanu, W.D. Lagrèze, D.H. Constantinescu, Vision Res. 33, 677 (1993). 
@26. G.K. von Noorden, Binocular vision and ocular motility. Theory and management of 

strabismus. (Blackwell, Oxford, 1990). 
@27. D.H. Hubel and T.N. Wiesel, J. Physiol. 206, 419 (1970). 
@28. C. Blakemore and F. Vital-Durand, Ophtal. Physiol. Opt. 12, 83 (1992). 
@29. Y.M. Chino, M.S. Shansky, W.L. Jankowski and F.A. Banser, J. Neurophysiol. 50, 265 

(1983). 
@30. D.P. Crewther and S.G. Crewther, Exp. Brain Res. 79, 615 (1990). 
@31. R.D. Freeman and T. Tsumoto, J. Neurophysiol. 49, 238 (1983). 
@32. P.R. Roelfsema, P. König, A.K. Engel, R. Sireteanu and W. Singer, Eur. J. Neurosci. 6, 

1645 (1994). 
@33. R.F. Hess, F.W. Campbell and T. Greenhalgh, Pflügers Arch. 377, 201 (1978). 
@34. P.R. Roelfsema, V.A.F. Lamme and H. Spekreijse, Soc. Neurosci. Abstr. 23, 1544 

(1997). 
@35. D.C. Somers, S.B. Nelson and M. Sur, J. Neurosci. 15, 5448 (1995). 
@36. P.C. Bush and R.J. Douglas, Neural Comp. 3, 19 (1991). 
@37. R. Eckhorn et al, Biol. Cybern. 60, 121. 
@38. D.Y. Ts'o, C.D. Gilbert and T.N. Wiesel, J. Neurosci. 6, 1160 (1986). 
@39. J.I. Nelson, P.A. Salin, M.H.J. Munk, M. Arzi and J. Bullier, Vis. Neurosci. 9, 21 



  23 

(1992). 
@40. F. Amzica and M. Steriade, J. Neurophysiol. 73, 20 (1995). 
@41. M. Bach and J. Krüger, Exp. Brain Res. 61, 451 (1986). 
@42. P. Jolicoeur, S. Ullman and M. MacKay, Mem.Cognit. 14, 129 (1986). 
@43. P. Jolicoeur In Computational Processes in Human Vision: An Interdisciplinary 

Perspective, ed. Z. Pylyshyn, p. 133-168 (Ablex, Norwood NJ, 1988). 
@44. P.R. Roelfsema, A.K. Engel, P. König and W. Singer, J. Cognit. Neurosci. 8, 603 

(1996). 
@45. M.J. Farah, Visual Agnosia  (MIT Press, Cambridge, 1990). 
@46. G.W. Humphreys and M.J. Riddoch, In Attention and Performance XIV, pp. 143-162 

(MIT Press, Cambridge, 1993). 
@47. A.F. Kramer and A. Jacobson,  Percept. Psychophys. 50, 267 (1991). 
@48. A.M. Treisman and G. Gelade, Cogn. Psychol. 12, 97 (1980). 
@49. J. Duncan, J. Exp. Psychol.: Gen. 113, 501 (1984). 




