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Abstract

We present a dynamic and distributed approach to
the hospital patient scheduling problem: the multi-agent
Pareto-improvement appointment exchanging algorithm,
MPAEX. It respects the decentralization of scheduling au-
thorities and is capable of continuously adjusting the dif-
ferent patient schedules in response to the dynamic environ-
ment. We present models of the hospital patient scheduling
problem in terms of the “health care cycle” where a doctor
repeatedly orders sets of activities (partial plans) to diag-
nose and/or treat a patient. We introduce the Theil index to
the health care domain to characterize different hospital pa-
tient scheduling problems in terms of the degree of relative
workload inequality between required resources. In exper-
iments that simulate a broad range of stylized hospital pa-
tient scheduling problems, we extensively compare the per-
formance of MPAEX to a set of heuristics. The distributed
and dynamic MPAEX has performances almost as good as
the best centralized and static scheduling heuristics.

1 Introduction

The first thing that one encounters when seeking medical
assistance in a hospital is a schedule: the scheduled medical
professionals to consult, time-slots for possible diagnostic
or therapeutic machines, and availability of resources like
examination rooms. Depending on capacity, these sched-
ules may be more or less congested. In particular, in coun-
tries like The Netherlands and Greece, demand regularly ex-
ceeds capacity and substantial waiting lists exist for many
medical procedures. Still, even in these situations medical
professionals report many schedule inefficiencies. Effective
scheduling algorithms should decrease waiting-lists signifi-
cantly, while increasing hospital efficiency ([20, 9]).

Traditional industrial scheduling techniques are studied
in the field of Operations Research (OR). OR techniques are
very effective for solving well-defined centralized optimiza-
tion problems, where the algorithm can determine the opti-
mal schedule for all parties involved. Scheduling solutions

based on OR have been implemented in specific targeted
health-care problems, like staff planning (for an overview,
see [17]). However, OR techniques have so far found little
favor in hospital patient scheduling, in great part due to the
inherent distribution of authority in hospitals [13].

In hospital patient scheduling, the scheduling problem
is dynamic and in flux: operations take more or less time
than anticipated, crucial staff may not be available, equip-
ment breaks down, and new urgent patients arrive. Not
unimportantly, hospitals are also organized around different
autonomous departments (wards, ancillary units) each with
their own specialty, and each department essentially has au-
thority over their own schedule. Thus, hospital scheduling
has strong decentralized characteristics.

The dynamic nature of hospital patient scheduling, and
the decentralization of scheduling authority, suggests that a
more suitable approach to hospital patient scheduling may
be one that fits the problem domain better: a distributed
multi-agent system [12]. Here, we take a first step towards
developing a multi-agent hospital agent scheduling solution
that respects the current distribution of scheduling authority,
and that is capable of continuously adjusting the different
schedules in response to the dynamic environment.

The general idea of an agent system [21] is that each
party — e.g. doctors, patients, resources — is represented
by a software entity — the agent — that acts autonomously on
behalf of its owner. Each agent “knows” the preferences and
constraints of its owner. The goal of multi-agent scheduling
is to design the agents and the interaction rules such that
together, the agents can arrive at effective schedules.

Related work has studied parts of this multi-agent
scheduling problem: Decker & Li [5] consider resource
conflicts in patient scheduling. They design a specific inter-
action mechanism for resource-representing agents to pre-
vent such conflicts. The implementation of this mechanism
is shown to achieve substantial productivity gains.

Some distributed constraint solving approaches are also
specifically applied to health care scheduling. In [6] re-
source and patients constraints and preferences (soft con-



straints) are formally represented and agents use off-the-
shelf constraints solvers locally, but a central solver to co-
ordinate constraints is also needed. Additionally, this is a
static approach as it only solves an initial scheduling prob-
lem and appointments are assumed to be fixed after that.

Given the distributed and decentralized nature of hospi-
tal patient scheduling, the use of a market mechanism for
scheduling seems a more natural fit: markets can efficiently
distribute scarce resources, they can facilitate dynamic en-
vironments, and only price-quotes need to be exchanged
between participants, rather than complex constraints and
preferences. In [22] a first step is taken in developing a
framework for using virtual markets to solve distributed
scheduling problems. Different types of auction mecha-
nisms (and additionally bidding strategies [14]) are ana-
lyzed. The results show that it is hard to find a general so-
lution. Alternatively in [15] a contracting model for agent-
based scheduling is discussed. The search space in this case
is very large and a search bias must be set accurately.

A first market-based approach to hospital patient
scheduling is taken by Paulussen et al. [13]. They introduce
software agents that represent the interests of the patients.
Resources where medical actions take place are represented
by resource agents. To distribute resources amongst patient
agents, Paulussen ef al. use a market mechanism where
patient agents communicate their (private) utility for time-
slots on a resource via a price mechanism.

Apart from questionable scalability of the system in [13],
the use of a utility-function for patient well-being is a prob-
lem. Clearly, when optimizing a schedule in health-care
the question is what metric to optimize against, and patient
well-being is an obvious choice [13]. Quantifying rela-
tive patient well-being however, is notoriously hard and any
choice will be controversial with both doctors and patients.

Here, we develop a scheduling method that offers sub-
stantial gains without having to consider this difficult issue.
We observe that often patients have multiple appointments
(e.g. [10]): a patient may need to get an x-ray and an MRI
scan, and then consult with a doctor to discuss the results.
We note that the time of the last appointment effectively de-
termines the patient’s “waiting-time” and a scheduling algo-
rithm can potentially move his/her other appointments with-
out any negative effect on the waiting time for the patient.

Guaranteeing “not-worse” for schedule changes means
that patients actually have an incentive to cooperate. In any
practical implementation, patient cooperation will be essen-
tial to make sure patients actually willing to come to the
hospital at the new appointment time. Being able to guar-
antee “not-worse” schedule changes thus gives us an oppor-
tunity to improve patient waiting times while avoiding the
difficult comparison of which patient’s well-being benefits
how much from an improvement in waiting-time.

We present a scheduling method that exploits this oppor-

tunity by designing agents that exchange appointment times
such that no patient is worse off then before, in economics
such “nobody-worse” improvement is called a Pareto im-
provement [11]. Thus, we present a Multi-agent Pareto Ap-
pointment EXchanging algorithm: MPAEX.

In the multi-agent system that we develop, patients are
assigned an initial schedule for their required treatments.
Then, agents acting on behalf of individual patients attempt
to exchange the time-slots of the initial appointments with
better appointments occupied by other patients. The other
patient’s agent accepts a proposed exchange of appoint-
ments if the resulting schedule is not worse for the patient.

In simulations of (many) hospital patient scheduling
problems, we show that when we let patient agents try to
improve their patient’s schedule, the agents collectively im-
prove the overall patient waiting time.

Based on practical cases, we introduce our hospital pa-
tient scheduling model. It represents autonomous depart-
ments and resources, as well as individual patients and
activities. We present a semi-dynamic hospital patient
scheduling setting to gain fundamental insights and allow
comparison with standard centralized static techniques.

A robust simulation of the distribution of workloads over
the various resources in a hospital is a crucial aspect in
evaluating scheduling solutions for hospital patient schedul-
ing. For example, the patient scheduling problem may be
fundamentally different if either an MRI scan would be a
very busy resource, relative to the other resources, or all re-
sources are equally busy. Different hospitals will have dif-
ferent workloads, depending on patient population and the
available mix of resources and doctors/staff. To assess ac-
curately how useful different scheduling solutions are, we
consider a large distribution of different workloads.

As a contribution of this paper, we present a measure for
characterizing different workloads: we introduce the Theil
index [18] within the hospital scheduling setting. In eco-
nomics, the Theil index is a common measure of inequal-
ity motivated by the notion of entropy. The inequality in a
workload can be interpreted as the degree to which bottle-
necks are present in the available resources. By conducting
experiments for a large range of Theil indices, we obtain a
representative sample of the problem space. The characteri-
zation of different workloads by their Theil index allows us
to compare MPAEX methodically with other (more central-
ized) scheduling methods.

For these hospital patient scheduling simulations, we
find that for initial schedules generated by a pure First-
Come-First-Served scheduler, exchanging appointment
times results in significant improvements for the final sched-
ule after comprehensive appointment exchanging. For ini-
tial schedules with more random initial scheduling (First-
Come-Randomly-Served), we obtain even better solutions
for the final schedule. This random initial scheduling is in-



troduced to better capture the fact that in current practice,
the initial schedule is created in part based on (relatively
stochastic) patient and resource availability.

We compare the performance of the decentralized
MPAEX approach to a set of centralized heuristics and
find that MPAEX performs close to centralized schedul-
ing heuristics. Contrary to these centralized techniques,
MPAEX respects the distributive nature of the scheduling
authority, takes patient preferences into account, and is well
suited for the dynamic nature of hospital scheduling. Also,
unlike centralized OR methods and centralized heuristics,
MPAEX is suitable for dynamic environments where pa-
tients leave and arrive, and where resources may be off-line.

Finally, the approach explored with MPAEX provides us
with a robust basis: for future research, we want to consider
more complex appointment rescheduling environments, the
possible inclusion of (artificial) money to enhance exchange
possibilities, and more dynamic scheduling settings.

2 Problem
2.1 Hospital Patient Scheduling

Hospitals are increasingly working with databases that
record all scheduled activities. The schedules are typically
planned with rosters that are predefined by departments or
individual doctors, e.g. a doctor sets specific hours for
consulting patients, and consults with patients can only be
scheduled in these hours. Authorizations regarding who can
access and/or modify the schedules (and rosters) are dis-
tributed across the organization depending on local prefer-
ences and culture. Most departments are reluctant to allow
other departments to make appointments in their schedule.

Not surprisingly, many of such electronic scheduling
systems are just that: electronic versions of appointment
notebooks. Intelligent (re)planning is mostly done by de-
partments, often by hand, and schedule optimization across
departments is very hard, as each change needs coordina-
tion, usually by phone. Traditional OR techniques are not
equipped to deal with coordination between departments
with local information, authority and preferences, and fail
in such situations. Agent systems are designed for coordi-
nation between autonomous parts with local information.

This current practice of decentralized schedule autho-
rizations in particular leads to complications when a num-
ber of appointments across different departments need to be
scheduled for a patient. It may very well be that simply
switching a scheduled patient in one department to a dif-
ferent time may free up the combination of resources that
is needed for another patient. The “switched patient” may
not even have a preference for one time or another, but this
“free” optimization is currently very hard to achieve. In
practice, patients that need resources across departments are
not effectively scheduled.

2.2 The Health Care Cycle

Any patient walking into a doctor’s office becomes part
of the “health care” cycle: if a real problem is suspected, a
number of actions will be scheduled to diagnose the exact
nature of the problem and/or a treatment plan is scheduled.
Central in the health care cycle is the doctor treating the pa-
tient: the doctor first requests diagnostics or treatments, and
upon completion, the results and patient return to the doc-
tor. In the consult, the doctor then decides what activities
must take place next.

We call the set of activities ordered a partial plan, see
Figure 1. A partial plan can consists of a number of dif-
ferent activities, possibly involving different resources and
with constraints between them. Scheduling patient activi-
ties is a complex task: diagnostic tests may require the co-
operation of a number of people and resources in the hospi-
tal, so appointments have to be scheduled at times when all
these resources are available (and the patient of course).

Consult
(create
partial plan)

Execute
partial plan

Figure 1. Consult-diagnostic(s)-consult cycle.

2.3 Patient Treatment Plans

The scheduling complexities for typical patient treatment
plans that need resources across departments can be illus-
trated by the workflow in two cases that are typically hard to
schedule efficiently. These cases are described in the proto-
cols of the Oncology department of the Academic Medical
Centre in Amsterdam. The consult-diagnostics-consult cy-
cle and the partial plans comprising of multiple diagnostics
are clearly discernable in both cases.

start diagnostics

[ 2 tests: Doppler, Echo ]

consult/decision

4 tests: Endo-Echo, 2 tests:

1 test:
CT-scan, MRI, MRCP||ERCP, Stent|| PTC/PTD

| 2 tests: ERCP, Stent | [ 1 test: PTC/PTD

start treatment

Figure 2.

obstruction.

Diagnostical plan for gallbladder-



Diagnosis gallbladder obstruction In Figure 2, the diag-
nostical strategy for a patient with an obstructed gallblad-
der is shown [2]. It consists of a series of successive partial
plans where at each point the doctor decides what to do next,
based on the diagnostic results. A patient with gallbladder
obstruction is first diagnosed with an echo+Doppler for the
veins to diagnose for gall stones. If this is the case, treat-
ment can start. Otherwise, to consider the possibility of a
tumor, one of three diagnositical plans is selected: either an
ERCP+Stent, a PTC/PTD test, or a set of four diagnostics
(an endo-echo, a CT-scan, a MRI, and a MRCP) is ordered.
From this point again, the patient goes through progressive
doctor-diagnosis cycles to determine how to operate.

Diagnosis breast cancer Any persisting breast abnormal-
ity requires further diagnostics: the best evaluation of (pal-
pable) mammolesions is through three independent exami-
nations by a surgeon, a radiologist, and a (cyto)pathologist
[1]. Each specialist gives an independent assessment that
are then equally weighted. If this triple diagnostic sus-
pects a malignant tumor, further (definitive) diagnostics
are scheduled, such as a histological or cytological needle
biopsy. Upon a definitive positive diagnosis, it is deter-
mined how to operate, where further diagnostic tests may
be considered depending on the severity of the tumor.

2.4 Model

We abstract hospitals to a set of resources (including
staff), constraints, staff preferences. A hospital is divided
into different departments, each with a level of autonomy
in their actions, and between them common as well as self-
interested goals. Departments want to work as efficiently as
possible, and they want to take their staff’s preferences into
account. We model resources on the level of the combined
requirements for a single schedule, e.g. an entire warden, or
the MRI-schedule including the associated staff etc. From
the medical cases described in the previous subsection, we
can distill a number of stylized facts.

Patient Partial Plan We model a patient plan as consist-
ing of a limited number of subtasks or activities. These
activities can usually be performed in any order, in our
model there are no precedence constraints (as in the cases
described in Section 2.3). Once all activities have been
performed, the responsible doctor determines whether addi-
tional activities are necessary. For our approach, it is irrele-
vant whether sets of activities are new or additional; there-
fore, we will not make the distinction. Henceforth we will
call the set of activities issued at the same time for a single
patient a partial plan. We assume not more than one activity
can be performed at the same time on one patient.

Duration of Activities Different activities make use of
different resources. Consequently, the standard time, which
is reserved for such an activity, may differ from one re-
source to the other. For example, the time necessary for

taking an X-ray or performing an ultrasound examination
may differ. We assume that all activities on the same re-
source take the same amount of time. Between resources,
the activity time varies.

Objective The hospital wants to minimize the comple-
tion times of patients, given the restriction that within a
treatment activities cannot be performed at the same time.
To achieve this objective, online decisions about schedul-
ing and especially rescheduling are needed that improve the
throughput of patients. Completion time of a patient is the
time from the creation of the partial plan to completion time
of the final activity from this plan.

3 Multi-Agent Pareto Appointment Ex-
changing

To schedule the patient activities efficiently, we use a dis-
tributed approach where agents interact with each other to
exchange appointments where none of two interacting par-
ties is worse off: the agents are Pareto-improvers. Worse-
off is defined in subjective terms, as each agent acts ac-
cording to its individual constraints and tries to optimize
preferences. Our scheduling method thus amounts to multi-
agent Pareto Appointment Exchanging, MPAEX. We have
two types of agents: resource agents, and patient agents.

Each resource agent represents one resource, and it takes
into account constraints like fixed hours, and preferences
like preferring not to require over-time. When scheduling
an activity to a timeslot on a resource, the resource agent
makes sure no constraints are violated and tries to opti-
mize preferences over resource schedules. Each patient is
also represented by an agent — the patient agent — that has
knowledge of the patient’s needs (activities that need to be
scheduled, availability) and preferences (when, which doc-
tor, own schedule). We envision that the medical priorities
and partial plans in this agent are determined by the consult-
ing doctor, whereas the patient’s preferences, like his/her
schedule, are set by the patient. Patient agents make sure
none of their activities overlap and try to get the best pos-
sible schedule given the patient’s individual constraints and
preferences. To get an initial schedule for their patient, pa-
tient agents interact with resource agents to get timeslots for
the activities in their partial plan. To improve their sched-
ules, patient agents interact with each other to exchange
time-slots. Resource agents do not interact with each other.

In general there are two processes of scheduling: initial
timeslot assignment (Algorithm 1), and patient agents im-
proving their schedules by MPAEX (Algorithm 2). In real-
life dynamic settings, these processes run together. Patients
arrive one by one and are scheduled over the day while pa-
tient agents individually try to improve their patient’s sched-
ule, continuously, or at certain events (such as cancellations,
lifted resources constraints, passing deadlines).



Algorithm 1 describes patient agents asking the different
resource agents one by one an initial timeslot for their ac-
tivities. The timeslots can not be conflicting. MPAEX im-
plements Algorithm 2: patient agents try to improve their
schedule by exchanging appointments for activities. First,
the resource agent is contacted to get a feasible prospective
timeslot for the selected activity. If this timeslot is an im-
provement but occupied by another agent, the other agent
has to agree to exchange the timeslots. No agent will agree
to an exchange that will worsen its schedule.

Algorithm 1 Initial timeslot assignment.

For every patient agent:

1: while not all activities are scheduled do

2 select an unscheduled activity from partial plan
3: ask corresponding resource agent for a timeslot
4: if the timeslot is not conflicting then

5 accept timeslot

6 else goto 3

Algorithm 2 Multi-Agent Pareto Appointment EXchanging
(MPAEX)

For every patient agent: (untill no more exchanges can be
made)

1: select an activity to reschedule
2: ask the corresponding resource agent for a feasible
prospective timeslot

3: if there are no alternative prospective timeslots then
4: goto 1
5: else if the timeslot is empty then
6: accept and reschedule
7: goto 1
8: else get id of patient agent occupying timeslot
9: propose the exchange to patient agent occupying
timeslot
10 if the resulting schedule of patient agent occupy-
ing timeslot is not worse than its current schedule
then
11: both agents reschedule
12: inform resource agent of exchange
13: goto 1
14: else goto 2

4 Simulating Hospital Patient Scheduling

4.1 Semi-Dynamic Patient

Scheduling

Hospital

Here, we focus on a semi-dynamic model of hospital pa-
tient scheduling. Studying this model first gives us funda-
mental insights in the performance of our distributed ap-
proach relative to alternative approaches. Notably, many
state-of-the-art scheduling heuristics are not suitable for
fully dynamic and/or distributed scheduling. Furthermore,

creating a fully dynamic model requires many ad-hoc deci-
sions, making the models representative only for very spe-
cific situations from which it is not straightforward to gen-
eralize to other dynamic scheduling instances.

In our simulations, we use “scheduling patients one by
one” [16]. This approach formally separates the two pro-
cesses described in Algorithm 1 and Algorithm 2: we first
generate a set of partial plans that have to be scheduled se-
quentially, one partial plan at a time, without knowledge of
what partial plans are to be scheduled next. (This is dy-
namic, since one patient has to be scheduled before the next
one.) Once all partial plans are scheduled, there is a feasi-
ble schedule, which is the starting point for MPAEX. Patient
agents will then try to improve their schedule (Algorithm 2).

To analyze the different scheduling approaches in a gen-
eral way, and to compare with centralized and static bench-
marks, constraints and preferences in our model are as fol-
lows: activities can not overlap on a resource schedule, ac-
tivities of a partial plan must all be scheduled and can not
overlap, patient preferences are such that schedules with
earlier completion time (C) are preferred.

We use two fundamental methods for initial timeslot as-
signment (Algorithm 1): First-Come-First-Served (FCFS),
and First-Come-Randomly-Served (FCRS). In FCFS, pa-
tients arrive over time and their planned activities are sched-
uled on the first available time-slot on each required re-
source. In FCRS, patients arrive over time and their planned
activities are scheduled to a random time-slot within a fixed
time-window on the required resources'. Whereas at first
sight FCFS seems to relate most closely to current hospi-
tal practice, it ignores the fact that many treatments have
limited medical urgency, and the exact date for the appoint-
ment is determined both by the patient’s schedule and the
first availability of the required resources. To reflect this
stochastic element of patient and resource availability, we
introduce the FCRS schedule. Note that changes in resource
schedules may open up new, better appointment opportuni-
ties for patients that fit in their schedule (Algorithm 2), so
attempting to reschedule still makes sense. Current practice
will fall somewhere between FCFS and FCRS, depending
on the actual hospital situation.

Given the patient preferences for the schedule of a partial
plan (finish as early as possible) we implement Algorithm
2 in MPAEX as follows: Patient agents always select their
last activity for rescheduling. Resources agents will then
propose an alternative time-slot, starting from the earliest
possible timeslot, and the patient agent will try to exchange
his/her time-slot with the patient-agent occupying that time-
slot. The deal will be accepted if neither patient is worse

I'To determine duration of the time-window, FCRS requires a prediction
of the number of activities that can be expected on resources so that after

randomly handing out time-slots, the capacity available on the resource
will be efficiently used; this data is usually available in hospitals.



off according to their preferences, which here means that
completion time will not increase. If not accepted, the pa-
tient agent will request another prospective time-slot from
the resource agent, and will continue doing so until there
are no more prospective time-slots, or a proposed exchange
is accepted. The process is repeated for all patient agents
iteratively until no exchanges can be made any more.

We found that experiments where an exchange can have
more than one activity at a time show very little gain in
performance. It is also possible to consider multilateral
multiple-activities exchanges. The complexity of these
types of exchanges quickly becomes intractable. Because of
the small complexity of bilateral one-activity appointment
exchanges, we only show these results.

4.2 Modeling Hospital Resource Usage

To evaluate the performance of MPAEX fairly, we evalu-
ate hospital patient scheduling performance for a broad dis-
tribution of possible hospital characteristics (e.g. [20]).

Two important properties determine the range of possi-
ble hospital resource scheduling characteristics: the rela-
tive distribution of patients over the resources (how often
are patients scheduled for a particular resource workload
distribution) and the standardized activity time on the re-
source, which determines the capacity of the resource. Dif-
ferent combinations can work in favor of one scheduler or
the other. Next, we develop a means to methodically vary
these parameters such that we can evaluate a representative
cross-section of these properties.

Standard Activity Time We model processing time of
activities on the same resource to be equal; processing
times between resources can vary. Additionally, to cap-
ture a wide range of possible activity distributions, we set
up four schemes of various standard activity times on the
8 resources. They range from equal activity times on all
resources, to large differences: see Table 1.

Table 1. Four schemes of standard activity times
scheme name: on 8 resources:
equal 1,1,1,1,1,1,1,1
small difference 1,1,2,2,3,3,4,4
reasonable difference | 1,2,3,4,5,6,7,8
large difference 1,3,5,7,9,11,13,15

In the “equal” scheme all activities on all resources take
the same time. In the other schemes, activities on some
resources take (much) more time then activities on other
resources. We experiment with all four different schemes.

Unequal Workload Distribution In practice not all re-
sources in a hospital are as busy as others, usually there are
a limited number of crowded resources. Its number of ac-
tivities and the standard activity time determine the work-
load of a resource. By varying the expected number(s) of

activities, given a standard activity time scheme, we create
instances with varying distributions of workload.

We introduce the use of the Theil index [18] as used in
economics, to systematically investigate scheduling perfor-
mance for various settings of relative resource “busyness”.
In our methodology, the Theil index expresses the inequal-
ity of the workload distribution. The Theil index is a value
between 0 and 1, which is calculated based on the individual
workloads of the resources with the formula:

_lNw w;

T—mzw*logw, (1)
where m is the number of resources, w; the workload of re-
source j and w the average workload of all resources. This
value is a measure of entropy; equal workload corresponds
to values near 0, very unequal distributions go towards 1.
In Figure 3 we show three distributions of workload of re-
sources (ordered on x-axis) for different Theil indices.

In our experiments in Section 5, instances are created
with Theil indices from 0 to 0.6 and ordered in six equal
ranges. We will present our results averaged over different

runs for each range of Theil indices.

45
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Figure 3. Examples of relative workload distribution,
each bar represents the workload on a resource.

4.3 Comparison to Centralized Heuristics

We will benchmark the performance of MPAEX rela-
tive to centralized and static schedule optimization meth-
ods. The semi-dynamical hospital patient scheduling model
of Section 4.1 allows us to explicitly compare and contrast
with more traditional centralized techniques. These central-
ized heuristics do not have the restriction that patients must
be scheduled in order of arrival, nor that the final schedule
must be a pareto improvement considering all patients.

Scheduling problems can be solved with exact solvers
or heuristics [4]. Exact solutions like Branch and Bound
(B&B) [8] require exponential time and solving larger prac-
tical relevant instances (like 100 patients on 8 resources) op-
timally is intractable. In practice, we could only run B&B
on small problems: i.e., up to 10 patients on 4 resources.
Since we are interested in problems of more realistic size,
we turn to well established scheduling heuristics to get good
performance in reasonable time. From the literature, we
use three centralized heuristics: least increment dispatch-
ing (LI) where priority is based on least increment in the



overall objective [7], and two local search algorithms: a hill
climber (HC) and simulated annealing (SA) [3].

All three heuristics (LI, HC, SA) need centralized infor-
mation. Although that means they are not algorithms ap-
plicable in practice, we use them as a comparison for our
distributed appointment exchanging approach.

5 Experiments

In this Section, we compare the scheduling performance
of our decentralized dynamic MPAEX approach to the cen-
tralized static heuristics described in Section 4.3. We use
instances of hospital patient schedules as developed in Sec-
tion 4.1, each instance is characterized by the relative re-
source workload as discussed in Section 4.2. We generate
instances over a broad range of relative resource workload
measured by the Theil index.

We took instances with 100 patients having to be sched-
uled on 8 resources, and where patients have between one
and four activities (uniformly distributed) as default. We
motivate these numbers from the cases of Section 2.3: pa-
tients are usually issued a partial plan with a limited number
of activites selected from somewhere between 5 and 15 pos-
sible resources (here 8). The number of patients (here 100)
is significantly larger than the number of resources 2.

In our experiments we study MPAEX with FCFS for ini-
tial scheduling: MPAEX(FCFES), as well as with FCRS for
initial scheduling: MPAEX(FCRS). We let each scheduling
algorithm (FCFS, FCRS, MPAEX(FCFS), MPAEX(FCRS),
LI, HC and SA) solve the same generated hospital patient
scheduling instance, for a large number of instances.

The overall objective is to minimize the unweighted
sum of all individual patients’ objectives (min ), C;). We
measure performance for each instance by comparing the
schedule result (o) of the different distributed approaches
(FCFS, FCRS, MPAEX(FCFS), MPAEX(FCRS)), with the
best found schedule (¢*) from all centralized heuristics (LI,
HC, or SA). For most instances, the SA algorithm found
the best solution, on a few occasions LI was slightly bet-
ter. The performance of the distributed approaches relative
to the best heuristic solution is computed as ¢*/o® per in-
stance and then averaged over 50 instances per Theil index
range (for each standard activity time scheme). It means
that higher values represent better performance; the best
centralized heuristic performance is set to 1.

In Figure 4 we present the average results per Theil range
for two of the four standard activity times schemes of Table
1. We present performance values for the two initial assign-
ment rules (FCFS, FCRS) as well as the improvement af-
ter MPAEX (MPAEX(FCFS), MPAEX(FCRY)), relative to

2The presented results are robust for reasonable variations in the num-
ber of patients and resources [19]. Also time complexity of MPAEX scales
very well in the number of patients < O(n?), because for each patient
agent the first found exchange that is a pareto improvement is accepted.
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Figure 4. Relative Performances for different Theil
ranges compared to the best centralized static heuristic.

centralized scheduling approaches. The two other standard
activity times schemes (not shown) had very similar results,
see [19] for more details.

The decentralized, dynamic approach of MPAEX per-
forms very close to the best centralized static heuristics.
We find that the MPAEX(FCRS) distributed scheduling ap-
proach obtains between 92% and 95% of the best perfor-
mance of the best centralized heuristic (with a typical stan-
dard deviation of 2%). Due to space limitations we refer the
reader to [19] for more detailed outcomes.

In general, we observe that the results are similar for a
wide range of problem instances. For problem instances
from a Theil index of 0.4 upwards, the difference between
all four approaches and the best heuristic decreases. Only
with the scheme of equal activity times and a Theil index
between 0 and 0.1 we see a small decrease in performance
of the four approaches.

We find that MPAEX(FCRS) outperforms
MPAEX(FCFS), although FCFS is the more efficient
initial schedule, it also leaves fewer opportunities for
MPAEX to improve upon. As the initial FCFS schedule
is not that good compared to centralized heuristics, the
improve schedule, MPAEX(FCFS) is not that much better.
FCRS leaves more improvement opportunities, and the
quality of the final schedule MPAEX(FCRS) is (almost)
similar to that of the centralized heuristics. In our opinion,
this improvement over MPAEX(FCFS) demonstrates the
rescheduling quality of the MPAEX approach.



6 Conclusions

We have presented a multi-agent Pareto appointment ex-
changing algorithm, MPAEX, as a robust, dynamic and
distributed solution for patient activity scheduling and
rescheduling that actively exploits the Pareto improving
scheduling opportunities that are present in hospital patient
schedules where patients undergo multiple activities.

Models of the hospital patient scheduling problem were
discussed in terms of the “health care cycle” where a doctor
repeatedly orders sets of activities to diagnose and/or treat
a patient. Additionally, we presented two models for the
current practice of initial patient scheduling.

We introduced the Theil index to the hospital patient
scheduling domain, to capture the degree of inequality
in terms of relative workload between resources that are
needed for patient scheduling. In this manner, we demon-
strate how a broad range of possible scheduling problems
with different relative workloads can be generated.

To compare against existing scheduling solutions, we
presented a stylized semi-dynamical version of the actual
dynamic problem: first, we schedule patients in order, and
then we improve on that schedule with MPAEX.

In experiments over a broad range of such semi-dynamic
hospital patient scheduling problems, we show that the
MPAEX algorithm arrives at scheduling solutions that are
almost as good as centralized solutions.

Unlike centralized heuristics for solving scheduling
problems, our multi agent approach can straightforwardly
be used in a dynamic environment. Agents can interact con-
currently, with local dynamic information (such as: cancel-
lations, disruptions, expired resource constraints).

In health care preferences on resource utilization (such
as: rosters, staff preferences) and of patients (combina-
tion appointments, online patient calendars) are inherently
distributed. Multi agent systems can capture such dis-
tributed preferences: agents try to optimize the schedule for
their owner according to the preferences within the rules of
scheduling. They will not accept a schedule that is worse
than its current one. This is of great value to get collabora-
tion of patients and system acceptance.

We have shown results on a semi-dynamic model to pro-
vide fundamental insights in the character of hospital pa-
tient scheduling and the performance of decentralized dy-
namic approaches versus traditional centralized static ap-
proaches. The setup we developed also provides a proper
setting for future approaches and solutions. On the other
hand, it is clear that real life problems are fully dynamic.
Modeling such fully dynamic scheduling problems involve
many more parameters that need to be set and fit to an actual
case. In practice, much care has to be taken to obtain gener-
alizable results from such fully dynamic models. In future
research we will develop dynamic cases in our studies in
actual hospitals.
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