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Abstract
In this thesis we conduct a network analysis of bilateral tax treaties. We are given
tax data of 108 countries. Companies often send money from country to country via
indirect routes, because then the tax that must be paid might be lower. In the thesis
we will study the most important of these ‘tax’ routes. Questions that we will answer
are, for example:

1. Which countries are the most important ‘conduit’ countries in the network?

2. How can a country maximize the amount of money that companies send through
this country?

The thesis is mainly theoretical: the focus is on the mathematics and the algorithms
used for the network analysis. At the end of each chapter we apply the algorithms
to the CPB-network of 108 countries. The thesis is a collaboration between the CWI
(Centrum voor Wiskunde en Informatica) and the CPB (Netherlands Bureau for Eco-
nomic Policy Analysis).
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Introduction: A network of countries

Is the Netherlands a tax haven for multinational enterprises? Articles in the press give the
impression that this is indeed the case. ‘The Netherlands is a tax haven for many multina-
tionals’ [Waa11], ‘The Netherlands is an attractive tax country ’ [NOS14], ‘Dutch masters of tax
avoidance’ [GM11], are some examples of headers that may point in this direction.

To investigate whether the Netherlands is indeed a tax haven, the CPB (Netherlands Bu-
reau for Economic Policy Analysis) conducted a research (see [RL14] and in particular [RL13]).
Companies mainly use the Netherlands as an intermediary country to send money through on
a route from one country to another country. In this sense, the Netherlands is not a tax haven
(a destination country where the money is stored) like the Bahamas or Bermuda, but a conduit
country (an intermediary country on a route via which companies send their money).

In this thesis, we will study algorithms for the network analysis of bilateral tax treaties
from a mathematical perspective. Furthermore, we will apply the algorithms to investigate the
role of the Netherlands and other countries as conduit countries, using data provided by the
CPB.
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Figure 1: All countries/jurisdictions in the CPB-dataset are colored green.

Model

We are given data of 108 countries/jurisdictions1, and we are given the tax rates that a company
must pay when sending money from one country to another country. The countries in our

1Strictly spoken, not all of the given jurisdictions are countries. An example is Hong Kong (HKG). However,
in this thesis we will use the term ‘country’ to refer to one of the 108 jurisdictions in our data, even if this
jurisdiction area is in fact not a country.
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dataset are shown in Figure 1. Each country is labeled by a code consisting of three letters.
For example: the code ‘NLD’ stands for the country ‘the Netherlands’. In the Appendix one
can see the country names that correspond to the three-letter codes used throughout the thesis.
Let G = (V,E) be a complete directed graph2, with V consisting of these 108 countries. The
graph G is complete and directed, i.e. for every two countries u, v ∈ V there are directed
edges (u, v) and (v, u) in E.

Suppose that a company from home country v has made profits in some other host coun-
try u, for example because this company started a subsidiary company in country u. If the
company wants to return its profits from u to v, it might have to pay some tax (possibly af-
fected by bilateral tax treaties between u and v). Let tu,v be the tax (as a fraction between 0
and 1) that the company must pay if it sends its profits directly from u to v. The CPB provided
us with these tax rates. The CPB-data only contains tax rates that companies must pay when
sending their profits (dividends) from one country to another country. Hence, we do not take
other tax-constructions (for example, royalties) into account (see [RL14]). Tax rates are usually
given as percentages between 0 and 100. We divide this percentage by 100 to obtain a fraction
between 0 and 1. Furthermore, we define a function r : E → [0, 1] by

r(u, v) = 1− tu,v for each e = (u, v) ∈ E.

That is, r(u, v) is the fraction of money that, when sent directly from u to v, arrives at v. We
call the function r a reliability function.3

Example. A multinational wants to return its profits from country A (the ‘host’ country) to
country B (the ‘home’ country). Countries A and B have a bilateral tax agreement, in which
they have agreed that 20 percent tax must be payed on profits that a company sends from
country A to B, i.e. r(A,B) = 1 − 0.20 = 0.8. Country C has bilateral tax agreements with
country A as well as with country B. On profits that are sent from A to C, 10 percent must be
payed. On profits from C to B also 10 percent tax is levied. Now, the company can send the
money from A to C and then from C to B. Therefore

r(A,C) = r(C,B) = 1− 0.10 = 0.9.

The following network represents the above situation (where we only draw the relevant edges):

A

B

C

0.9

0.8

0.9

Figure 2: Route A− C −B has reliability 0.9 · 0.9 = 0.81, while route A−B has reliability 0.8.

If the company sends money directly from A to B, a fraction of 0.8 of this money will arrive at B.
But if the company sends money via the route A−C−B, a fraction of 0.9 ·0.9 = 0.81 will arrive

2See the preliminaries for a definition of graphs.
3Often with a ‘reliability function’ is meant a function that gives the probability that a given item operates

for a certain amount of time without failure. However, we will use the term ‘reliability function’ throughout the
whole thesis in another context: the share of money that, when sent from one country to another country, arrives
at the destination country.
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at C. Therefore it is more profitable for the company to use the route A−C−B than the direct
route A−B. In tax percentages: on profits sent over route A−C−B a percentage of 100−81 =
19% tax is withheld. Over route A − B the imposed tax is 100 − 80 = 20%. Therefore it is
more profitable for the company to send its money over the indirect route A − C − B. The
example shows that the most profitable route for a company is not always the direct route.
Multinationals can use indirect routes to reduce the tax they must pay. This is called tax treaty
shopping.

In this thesis we will conduct a network analysis of these ‘tax’ routes. To investigate which
countries are the most important conduit countries, we will study a notion for measuring the
centrality of a vertex (country) in the network: betweenness centrality. When computing the
betweenness centrality we consider all ‘most profitable’ tax-routes for companies. On what
fraction of these ‘most profitable’ routes does a country appear as a conduit country, i.e. on
what fraction of the most profitable routes is a country situated between the starting point
and the end point of the route? This will give a measure for the ‘centrality’ of a country
in the network. We will in particular consider weighted betweenness centrality. In weighted
betweenness centrality, paths that start and end at important countries (measured according to
the size of their economies) get a higher weight and count more for the betweenness centrality
than paths between less relevant countries (countries with smaller economies).
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BW = 0

BW = 0.5

BW = 1

BW = 2

BW = 5

BW = 15

Figure 3: The countries that are more central in the network have a higher weighted betweenness
centrality value BW .

Structure of the thesis

We give an overview of the structure of the thesis.

(C1.) Chapter 1 contains the preliminaries. Readers with some knowledge of graphs, complexity
theory and approximation algorithms can skip this chapter.

(C2.) In Chapter 2 adaptations of known shortest path algorithms to the CPB-network will
be given and we will study a tool for measuring the centrality of a vertex (country) in
the network: betweenness centrality. In computing the betweenness centrality we consider
all ‘most profitable’ tax-routes for companies. On what fraction of these ‘most profitable’
routes does a country appear as a conduit country? This gives a measure for the ‘centrality’
of a country in the network.
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(C3.) Our network contains a lot of edges with reliability 1, i.e. edges along which companies
can send money for free. This makes counting maximum reliability paths difficult, as the
maximum reliability path graph then can contain cycles. In Chapter 3 we will identify
‘clusters’ of countries that have many edges with reliability 1 between them and we shortly
consider an approach of ‘shrinking’ these clusters to deal with the difficulty of counting
paths.

(C4–5.) In Chapter 4 and 5 we study the following question: what if we are not only interested in
the most profitable routes, but also in routes that are almost ‘most profitable’? Finding
all simple s, t-paths within a certain range is #P -complete. We will find a ‘restricted
relative range notion’ to compute ‘relevant paths’ in polynomial time.

(C6.) A country may be interested in maximizing the amount of money that companies send
through this country to other countries. This will attract jobs in the financial sector to this
country4. In our model the amount of money that companies send through a country will
equal the weighted betweenness centrality. We will see that the problem of maximizing
the (weighted) betweenness of one node by setting the reliability of at most k outgoing
edges to 1 is NP -hard. We will derive a 1 − 1/e-approximation algorithm based on the
approximation algorithm for Maximum Coverage. It turns out that the function we try to
maximize is a submodular nondecreasing set function. We will finally test this algorithm
to maximize the amount of money that companies send through the Netherlands. This
all is done in Chapter 6.

(C7.) In Chapter 7 we think about what a country must do in order to maximize the tax it
receives on the money that is send through this country. Often countries might be not
very interested in maximizing this tax: in order to attract jobs in the financial sector,
countries have low taxes for sending money through them. Nevertheless the problem of
maximizing tax revenues is interesting from a theoretical point of view.

(C8.) Which countries are the most important in our network? We return to this question in
Chapter 8. We will study a new measure from a recent article [SMR12], the Shapley-value
based betweenness centrality. The original betweenness centrality measures the importance
of an individual vertex in the network. How severe are the consequences for the possibility
to communicate between vertices in the network if this particular vertex fails? It is argued
(see [SMR12]) that the original betweenness centrality is not an adequate measure for
many applications, since in practice many nodes can fail simultanuously. The Shapley-
value based betweenness centrality deals with this limitation: it is a measure that measures
the importance of a vertex as a member of all possible subsets of vertices in G. We will
study this measure and apply it to our network of countries.

The end of each chapter (except for the preliminaries and Chapter 7) will contain a small section
‘Results’. There we apply the algorithms to the CPB-network of 108 countries. For example,
at the end of Chapter 2 we will consider the most important conduit countries, countries that
are frequently used to send money through.

Experimental insights

The main conclusions of the experimental part of this thesis can be summarized as follows.

(1.) The Netherlands ranks quite high, they are 5th in the ranking according to weighted
betweenness centrality. This seems to give some evidence for the news headers that the
Netherlands is an attractive tax country for companies.

4For example, this country will attract letterbox companies.
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(2.) Great Britain (GBR) is the most central country in the network. Great Britain has a
substantially higher (weighted) betweenness centrality, as well as a substantially higher
Shapley-value based betweenness centrality, than any other country in the network.

(3.) There exist always a ‘most profitable’ route from any country to any other country passing
through at most 3 conduit countries.

(4.) The results remain quite stable if we also take paths into account that are almost ‘most
profitable’.

(5.) If the Netherlands wants to improve its role as a conduit country (measured with weighted
betweenness centrality), it is a good idea to set the outgoing tax rate to India to zero, and
after that to set the the tax rates to China and Brazil to zero. See Chapter 6.

(6.) The Shapley-value based betweenness centrality applied on our network of countries gives
similar results as the original betweenness centrality. However, this measure can differen-
tiate more between vertices that have a low betweenness centrality. Interpretation for this
fact will be given in Chapter 8.

(7.) The algorithms are implemented in Java and run (considerably) faster than the implemen-
tations by the CPB. If the CPB does a follow-up research on [RL14], they will use the
algorithms programmed for this thesis.

The results will be illustrated via color-coded maps, similar to the one in Figure 3.

Mathematical contributions

The most important mathematical contributions of this thesis are the following.

(1.) We will see that the problem of maximizing the betweenness of one node by setting the reli-
ability of at most k outgoing edges to 1 is NP -hard. We will derive a 1−1/e-approximation
algorithm based on the approximation algorithm for Maximum Coverage. It turns out that
the function we try to maximize is a submodular nondecreasing set function. See Chap-
ter 6. This algorithm can be used to investigate how a country can increase its centrality
in the network.

(2.) The problem of counting all simple s, t-paths with distance within a certain range of the
shortest path is #P -complete. We will find a ‘restricted relative range notion’ to compute
‘relevant paths’ in polynomial time.

(3.) We will consider ways of dealing with ‘zero’-cost edges in the shortest path graph (edges
of reliability 1 in the maximum reliability graph). This is done in Chapter 3.

(4.) Suppose a country controls the tax rate on its outgoing edges. At what reliabilities must a
country set its edge reliabilities, so that the tax it receives is maximized? We will formalize
this problem and shortly look into it. See Chapter 7.

(5.) As a minor contribution, we discover a small mistake in a recent article (2012) by P. L.
Szczepánski, T. Michalak and T. Rahwan (see [SMR12]): the article is about computing
the Shapley-value based betweenness centrality in undirected graphs. In the article, an
adaptation to directed graphs is given. We will see that this adaptation is not entirely
correct. See Chapter 8.

This is only an indicatory summary of the mathematical results found in this thesis. I wish the
reader pleasure while reading the whole thesis!

Sven Polak
December 2014
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Chapter 1

Preliminaries

This chapter contains an introduction to basic notions in graph theory, graph search algorithms
and complexity theory used in this thesis. Readers with some knowledge of the mentioned topics
can safely skip this chapter. This chapter freely uses definitions from [Schä13].

1.1 Graphs

A graph G = (V,E) consists of a finite set of vertices V together with a finite set E of edges.
Each edge e ∈ E is associated with a pair (u, v) in V × V . The graph is undirected if the
edges are unordered pairs of vertices1. For an edge e = (u, v) ∈ E, the vertices u and v are the
endpoints of e. In this thesis we will often use the notations n := |V | and m := |E|.

A graph G is said to be directed if the edges e ∈ E are ordered pairs of vertices. In this
case the edge (u, v) ∈ V × V is different from edge (v, u). For a directed edge e = (u, v), the
endpoint u is the tail of e and the endpoint v is the head of e.

A graph is simple if it contains no parallel edges2 and no self-loops3. Throughout this thesis
we will assume that graphs are directed and simple, unless stated otherwise. A subgraph H =
(V ′, E′) of a graph G = (V,E) is a graph with V ′ ⊆ V and E′ ⊆ E.

Example 1.1.1. An example of a graph is the ‘CPB-network’ of 108 countries. The following
picture shows this network, along with some edges. The graph G = (V,E) of countries used in
this thesis is simple, directed and complete. That means that for every u, v ∈ V with u 6= v,
there exist edges (u, v) and (v, u) in E.

A path P = 〈v1, . . . , vj〉 in a graph G = (V,E) is a sequence of vertices such that for all i ∈
{1, . . . , j − 1} it holds that (vi, vi+1) is an edge of G. We also say that P contains the edges
(vi, vi+1), i = 1, . . . , j−1. We call P a v1, vj-path. If every vertex appears in P at most once, P
is called simple. If P1 = 〈s = v1, . . . , u = vj〉 is an s, u-path and P2 = 〈u,w1, . . . , t = wk〉, then
we call the s, t-path 〈s = v1, . . . , u = vj = w1, . . . , t = wk〉 the concatenation of P1 and P2.

A cycle C = 〈v1, . . . , vj = v1〉 is a path that start and ends at the same vertex. A graph
is said to be acyclic if it does not contain a cycle. In this thesis we often talk about directed
acyclic graphs (or shortly DAGs). We will see that they have a nice property: it is possible to
count simple paths in a directed acyclic graph very efficiently.

A tree T is an undirected graph in which any two vertices are connected by exactly one
path. A rooted tree is a tree in which there is a root s ∈ V (T ) (where V (T ) stands for the vertices
of T ) and all edges have an orientation that is either away from or towards the root. Hence, a
rooted tree is a directed graph. In this thesis we will assume (unless otherwise mentioned) that

1That is, (u, v) is the same edge as (v, u).
2Two undirected edges are parallel if they have the same endpoints. Two directed edges are parallel if their

tails and their heads are the same.
3A self-loop is an edge in which both endpoints are equal.
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Figure 1.1: The CPB-network we study contains 108 countries (vertices). Every vertex is connected to
each other vertex by a directed edge. For simplicity, only some outgoing edges of the Netherlands are
depicted.

all trees are rooted trees with orientation away from the root. If a vertex u is on the (unique)
path from the root s to a vertex v, then u is called an ancestor of v and v is called a descendant
of u. For any node v 6= s in a tree (with s as root), the predecessor u of v on the unique s, v-path
is called the parent of v, and v is the child of u.

1.2 Discrete optimization problems and algorithms

In this section we define discrete optimization problems. After that, we will introduce algorithms
to solve these problems.

Definition 1.2.1 (Discrete optimization problem). A discrete (minimization or maximization)
optimization problem A is given by a set of instances I. Every instance I ∈ I specifies

(i) a discrete4 set F of feasible solutions,

(ii) a cost function c : F → R.

Suppose we are given an instance I = (F , c). The goal is to find a feasible solution F ∈ F such
that c(F ) is minimum (in the case of a minimization problem) or maximum (in the case of a
maximization problem). Such a solution is called an optimal solution of I.

Example 1.2.1. The Shortest Path Problem is a minimization problem. An instance is a
graph G = (V,E) with edge costs c : E → R, a source vertex s ∈ V , a sink node t ∈ V , with

F = {P ⊂ V : P is an s, t-path in G} and c(P ) =
∑
e∈P

c(e).

The goal is to find a simple s, t-path in G of minimal cost. The next chapter will be about a
multiplicative version of the shortest path problem.

Now we have defined discrete optimization problems, we can talk about algorithms to solve
them.

Definition 1.2.2 (Algorithm). An algorithm for a discrete optimization problem A is a proce-
dure (a sequence of instructions) that solves every given instance I.5

4A discrete set is a countably inifinite or finite set.
5This definition is somewhat informal. The formal model of ‘Turing machines’ we will not define here.
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We care about the efficiency of the algorithm, i.e. about the running time of the algorithm.
This time is measured in the number of basic operations. We focus on the worst case running
time. The size |L(I)| of an instance I we define as the number of bits that are needed to store I
on a computer using encoding L. Throughout this thesis we measure the size of an instance not
in bits, but in the number of objects (for example vertices and edges).

Remark 1.2.1. The storage space required by a certain instance often relies on the underlying
datastructure. For example, a graph G = (V,E) can be stored in different ways. We give two
examples. We write V = {v1, . . . , vn}.

(i) A graph can be stored by an adjacency matrix A of size |V | × |V |. The adjacency matrix
contains on the i, j-th position a 1 if there exists an edge (vi, vj) and a 0 if there does
not exists such an edge. This representation of a graph takes |V |2 storage space. An
advantage of this representation is that one can see in constant time whether there is an
edge (vi, vj) in E: one just needs to look at the i, j-th entry of A. To find all neighbours
of one vertex vi, one needs time |V |, since the entire i-th row of A must be scanned.

(ii) A graph can be stored by adjacency lists. For every vertex v ∈ V , a list of neighbours is
kept. A vertex w is a neighbour of vertex v if and only if there is an edge (v, w) in E. This
representation can be done in |V |+ 2|E| storage space for undirected graphs and |V |+ |E|
storage space for directed graphs. A disadvantage of this representation is that one needs
time bounded by |Li| (where Li is the adjacency list of vertex i) to check whether there
exists an edge (vi, vj) in E: the edges in the adjacency list of vi need to be scanned. An
advantage of this representation is that it only takes time |Li| to find all neighbours of
vertex vi.

As we have seen, both representations have certain advantages and disadvantages. The most
suitable representation depends on the application.

Definition 1.2.3 ((Worst case) running time). If A is a discrete optimization problem and L
an encoding of the instances, we say that an algorithm ALG solves A in worst case running
time f if ALG computes for every instance I of size |L(I)| an optimal solution F ∈ F using at
most f(|L(I)|) operations.

To measure the running time of a function, it is useful to use asymptotic notation.

Definition 1.2.4. Let g : N→ R≥0. We write:

O(g(n)) = {f : N→ R≥0 : ∃C > 0, N ∈ N such that f(n) ≤ C · g(n) ∀n ≥ N}
Θ(g(n)) = {f : N→ R≥0 : ∃ c, C > 0, N ∈ N such that c · g(n) ≤ f(n) ≤ C · g(n) ∀n ≥ N}.

During this thesis we will consequently use the notation f = O(g(n)) (resp. f = Θ(g(n))) when
we formally mean f ∈ O(g(n)) (resp. f ∈ Θ(g(n))).

Example 1.2.2. It holds that 80 · 365 · n365 = Θ(n365), n log (n7874578934) = O(n2), etcetera.

We will often use this notation when talking about the running time of algorithms.

1.3 Complexity theory and approximation algorithms

This section is about complexity theory. We will define the complexity classes P and NP .
We also define NP -complete problems. After that we will define the complexity class #P and
specify when a problem is #P -complete.

Definition 1.3.1 (Decision problem). A decision problem A is defined by a set of instances I,
where each instance I ∈ I specifies:

10



(i) a set F of feasible solutions for I,

(ii) a yes/no-function c : F → {1, 0}.

For an arbitrary instance I = (F , c) ∈ I, we would like to decide whether there exists a feasible
solution S ∈ F with c(S) = 1. If there is such a solution, I is a yes-instance, otherwise I is
a no-instance.

Now we define the class NP of decision problems which admit a certificate that can be verified
in polynomial that.6

Definition 1.3.2 (Complexity class NP). A decision problem A is contained in the ‘complexity
class’ NP if every yes-instance has a certificate whose validity can be checked in polynomial
time, i.e. in time f (cf. definition 1.2.3), where f is a polynomial.7

Example 1.3.1. Given a natural number M1, determine whether there exists a natural num-
ber M2 such that M1/M2 = 2. This is an example of a (very easy) problem in NP . The set F
of all feasible solutions consists of all natural numbers. For F ∈ F = N, we have c(F ) = 1 if
and only if M1/F = 2: it can be checked in polynomial time whether F is a certificate for M1,
i.e. whether F/M2 = 2. This can be done in polynomial time, using a long division algorithm.

Next we define the complexity class P : the class of complexity problems that can be solved in
polynomial-time.

Definition 1.3.3 (Complexity class P ). A decision problem A is contained in the complexity
class P if there exists an algorithm that determines for every instance I ∈ I whether I is a
no-instance or a yes-instance.

Example 1.3.2. Given a natural number M1, determine whether there exists a natural num-
ber M2 such that M1/M2 = 2. This problem is in the complexity class P . It can be verified
whether M1 is a yes-instance by looking at the last digit of M1. If the last digit is 0, 2, 4, 6
or 8, then M1 is a yes-instance. Therefore we can check in constant time whether M1 is a
yes-instance.

It holds that P ⊆ NP . This is because a polynomial-time algorithm to solve a problem in P can
be seen as a as a polynomial-time algorithm with as input a certificate of zero length. Currently
it is not known whether P = NP . Most people think that P 6= NP . It is one of the open
millennium problems to solve whether P = NP (see [Coo00]). If you solve it, you can earn one
million dollar.

We will now define the complexity class of NP -complete problems, a subclass of NP .
The NP -complete problems are the ‘hardest’ problems in NP : if one finds a polynomial time
algorithm to solve one NP -complete problem, then there exists a polynomial time algorithm to
solve every problem in NP .

Definition 1.3.4 (NP -complete problem). A decision problem A is an NP -complete problem
if:

(i) A belongs to the complexity class NP ,

(ii) Every problem in NP is polynomial-time reducible to A. By this we mean that for every
problem B in NP there exists a function φ : I1 → I2 that maps every instance I1 ∈ I1

of B to an instance I2 ∈ I2 of A, such that

• I1 is a yes-instance of A if and only if I2 is a yes-instance of B,

• the mapping can be done in time polynomially bounded in the size of I1.

6NP does not stand for “non-polynomial time”, but for “non-deterministic polynomial time”.
7This means that f = O(nM ) for some M ∈ N.
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This means that if we find a polynomial time algorithm for A, we can solve every problem B
in NP by the following procedure: map an instance of problem B to an instance of problem A
in polynomial time using φ and then use the polynomial time algorithm for A to determine
whether the instance of A is a yes-instance. This is the case if and only if the original instance
for B is a yes-instance too.

There are many of examples of NP -complete problems (see [GJ79]). One example is the follow-
ing.

Example 1.3.3 (Exact Cover Problem). Given a universe U = {1, . . . , N} and a collection
of subsets of this universe S = S1, . . . , St, find a subcollection of sets S′ ⊆ S such that each
element x ∈ U is contained in exactly one subset in S′.

There are also problems that are at least as hard as any problem in NP , but are themselves not
contained in NP . These problems form the complexity class of NP -hard problems.

Definition 1.3.5 (NP -hard problem). A decision problem A is an NP -hard problem if every
problem in NP is polynomial-time reducible8 to A.

The following problem (the Maximum Coverage Problem) is known to be NP -hard (see [Fei98]).
We will use it in this thesis in some of our reductions.

Example 1.3.4 (Maximum Coverage Problem). Given a universe U = {1, . . . , N}, a collection
of subsets of this universe S = S1, . . . , St and a number k, find a subcollection of sets S′ ⊆ S
such that |S′| < k and the total number of covered elements | ∪Si∈S′ Si| is maximal.

Sometimes, when A is a decision problem and I is an instance of A, we do not only want to find
one certificate showing whether an instance is a yes-instance or a no-instance, but we want to
know how many certificates for the yes-instance there exist. For example, in a graph we might
want to know not only whether there exists a simple s-t-path, but we might want to know
how many simple s-t-paths there are. This is a ‘counting’-problem. First we properly define a
counting problem. Subsequently we define the associated complexity class #P .

Definition 1.3.6 (Counting problem). A counting problem A is defined by a set of instances I,
where each instance I ∈ I specifies:

(i) a set F of feasible solutions for I,

(ii) a yes/no-function c : F → {0, 1},

For an arbitrary instance I = (F , c) ∈ I, we want the number of feasible solutions S ∈ F
with c(S) = 1.

Definition 1.3.7 (Complexity class #P ). Let A be a counting problem. We say that A is
contained in the ‘complexity class’ #P if the decision-version of A is contained in NP .

Next we define #P -completeness.

Definition 1.3.8 (#P -complete problem). A counting problem A is called #P -complete (Sharp
P -complete) if:

(i) A ∈ #P

(ii) and every problem B ∈ #P can be reduced to A by a polynomial time counting reduction.
A counting reduction from a problem B to A consists of:

• A function φ that maps each instance I ∈ B to an instance φ(I) ∈ A.

• A function f that retrieves from the count n of φ(I) in A the count f(n) of I in B.

8As defined in the definition of NP-completeness.
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Note that the counting version of a problem in NP is at least as hard as the decision version:
if we can count in polynomial time the number of certificates for a yes-instance, then we also
know in polynomial time whether there exists a certificate for a yes-instance.

Example 1.3.5 (Counting simple s, t-paths). Let G = (V,E) be a graph, with s a source and t
a sink vertex. The counting version of the simple s, t-path problem is #P -complete. That is,
the problem of finding the number of simple s, t-paths in an arbitrary graph is #P -complete
(see [Val79]). In Chapter 4 we will use this example to show that counting all paths within a
certain range from the shortest path is #P -complete.

Many optimization problems are NP -hard and it is unlikely that we find efficient algorithms
for these problems. One way to cope with the hardness of a problem is developing an ap-
proximation algorithm. An approximation algorithm is an efficient algorithm that computes a
suboptimal feasible solution with a provable approximation guarantee. We will now give the
formal definition.

Definition 1.3.9 (Approximation algorithm). An algorithm ALG for a discrete minimization
problem A (resp. for a maximization problem) is an α-approximation algorithm with α ≥ 1 if it
computes for every instance I ∈ I a feasible solution F ∈ F with cost c(F ) is at most α times
(resp. at least 1/α times) the cost OPT(I) of an optimal solution, i.e.

c(F ) ≤ α ·OPT(I)

(
resp. c(F ) ≥ 1

α
·OPT(I)

)
.

Of course one would like to have α as small as possible.

When analyzing the approximation performance of an approximation algorithm, two questions
arise.

(i) Is the approximation ratio α of this particular algorithm tight? I.e. does there not exist
a better approximation ratio for this particular algorithm? This can be proven by giving
an example for which the solution is α (resp. 1/α) times the optimal one.

(ii) Do there exist no other polynomial time algorithms that give a better approximation
bound? I.e. is the found approximation algorithm the best possible approximation algo-
rithm for our problem?

In Chapter 6 we will discover an NP -hard problem and find an approximation algorithm for it.
Furthermore we will see that the bound α for this particular algorithm is tight and that there
do not exist polynomial time approximation algorithms with a better approximation ratio, un-
less NP ⊆ DTIME(nO(log logn)). The class DTIME consists of all decision problems that can
be solved in a particular time. It is considered very unlikely that NP ⊆ DTIME(nO(log logn)).

1.4 Depth-first search and topological sort

In this section we consider a well-known graph search algorithm: depth-first search. After that,
we will define a topological sort of a directed graph and we will give an algorithm based on
depth-first search that returns a topological sort of the vertices in a directed acyclic graph.
This section is based on the description of both algorithms in [CLR01].

Depth-first search is a graph search algorithm. It searches through all the nodes. First,
all vertices are colored white. The algorithm starts searching at some vertex and discovers all
neighbours of this vertex. When a vertex is discovered for the first time, this vertex is colored
green. The algorithm recursively searches through all the neighbours of this vertex. When the
algorithm finishes searching at a vertex (and hence already finished recursively searching the
neighbours of this vertex), the vertex is colored red.
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While executing the algorithm, we keep a time counter d[v] that stores at which step ver-
tex v is colored green (at that moment vertex v is first discovered) and a time counter f [v]
that stores at which step in the algorithm vertex v is colored red, then the algorithm is fin-
ished searching at this vertex. Therefore we call d[v] and f [v] discovery and finishing times,
respectively.

When the algorithm considers edge (u, v) and v is colored white, the algorithm discovers v
and colours v green. Furthermore, the algorithm sets π[v] := u, the parent of v is u. The
vertex s at which the algorithm started searching has no parent. The algorithm produces a
depth-first tree T = (V ′, Eπ), where V ′ consists of the vertices reachable from s and

Eπ := {(π[v], v) : v ∈ V ′ and π[v] 6= NIL}.
Why is T a tree? First we observe that every vertex that is discovered (and gets a parent) is
reachable from s by graph edges. Furthermore, a vertex only gets assigned a parent when it is
colored white, hence it is clear that there can be no cycles. If there would be a cycle, then last
edge on the cycle that the algorithm explores must have a white head, which is not possible
since this vertex already is searched (as there is already an edge leaving this vertex in the cycle),
so this vertex is already green or red.

Input: Directed graph G = (V,E), source vertex s.
Output: Depth-first search tree T .

Initialize: v is white for every v ∈ V , array π[ ] of size |V |,
arrays d[ ], f [ ] and π[ ] of size |V | , time counter t := 0.

DFS-visit(s)

Procedure DFS-visit(u)
Color vertex u green
t := t+ 1
d[u] := t
foreach neighbour v of u do

if Color(v) = white then
π[v] := u
DFS-visit(v)

end
end
Color vertex u red
f [u] := t := t+ 1

end

return π

Algorithm 1: Depth-first search.

Every vertex is searched once, and when a vertex is searched, all neighbours of this vertex are
searched. Therefore a depth-first search can be performed in time O(|V |+ |E|). Note that the
depth-first search T contains a path from s to every vertex v ∈ V that is reachable from s, and
hence by depth-first search we obtain a path from s ∈ V to every v ∈ V in time O(|V |+ |E|).

The algorithm can be adapted to produce a forest (a collection of trees): each time that
there are only red and white vertices, the algorithm can continue searching at an arbitrary white
vertex. By doing this, depth-first search produces a collection of trees: a depth-first forest F .
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We now will prove some important properties of depth-first search. These properties will
also help us in finding a topological sort.

Lemma 1.4.1 (Parenthesis lemma). Suppose we perform a depth-first search on a graph G =
(V,E). After the depth-first search is finished, it holds for any two vertices u, v in V that

(i) Either the intervals [d[u], f [u]] and [d[v], f [v]] are entirely disjoint,

(ii) or one of these two two intervals is fully contained in the other interval, i.e. it holds that

[d[u], f [u]] ⊆ [d[v], f [v]] or [d[v], f [v]] ⊆ [d[u], f [u]].

Proof. If u = v then the lemma is obviously true since then both intervals are the same.
Therefore we assume that u 6= v. Without loss of generality we assume that d[u] < d[v],
otherwise we interchange u and v. Suppose that (ii) does not hold: it does not hold that
[d[u], f [u]] ⊆ [d[v], f [v]]. We will prove that f [u] < d[v], implying that condition (i) holds and
thereby proving the theorem (where we note that (i) and (ii) cannot occur at the same time).

Suppose to the contrary that d[v] < f [u].9 At the time that vertex v is discovered,
vertex u was still green (because d[u] < d[v] < f [u]). Therefore v is a descendant of u. Since
descendant v is discovered later than u, all neighbours of v are searched and finished before
the search returns to and finishes u. Therefore it holds that f [v] < f [u], i.e. condition (ii)
holds, [d[v], f [v]] ⊆ [d[u], f [u]], in contradiction with our assumption.

Corollary 1.4.2 (Descendant corollary). Vertex v is a proper descendant10 of vertex u in a
depth-first forest for a graph G = (V,E) if and only if [d[v], f [v]] ( [d[u], f [u]].

Proof. Vertx v is a proper proper descendant of u if and only if d[u] < d[v] < f [u]. By
Lemma 1.4.1 this holds if and only if [d[v], f [v]] ( [d[u], f [u]].

Theorem 1.4.3 (White path theorem). Suppose we perform a depth-first search on a graph G =
(V,E). It holds that vertex v ∈ V is a descendant of vertex u ∈ V if and only if at the time d[u]
that u is discovered, vertex v can be reached from u along a path consisting only of white vertices.

Proof. “=⇒”. Suppose that v is a descendant of u. Let w be an arbitrary vertex on the u, v-
path in the depth-first tree. Then w is a descendant of u. Hence d[u] < d[w] so w is white at
the time that vertex u is discovered.

“⇐=”. Suppose that there is a vertex that reachable from u along a path of white vertices
at time d[u], but that does not become a descendant of u in the depth-first tree. Let v be the
closest vertex to u along the path with this property. If w is the predecessor of v in the path,
then is w a descendant of u (by the choice of v). Hence it holds that f [w] ≤ f [u]. Vertex v is
discovered after vertex u (since v was still white at the time that u was discovered) but before
vertex w is discovered (otherwise v would be a descendant of w, and hence of u). Therefore it
holds that

d[u] < d[v] < f [w] ≤ f [u].

By Lemma 1.4.1 we conclude that [d[v], f [v]] ⊆ [d[u], f [u]]. Hence, vertex v must be a descendant
of u.

As an application of depth-first search, we will consider topological sort. Topological sorting of
graphs will be often used throughout this thesis.

Definition 1.4.1 (Topological sort). Let G = (V,E) be a directed graph. A topological sort is
an ordering of the vertices V such that for each edge (u, v), vertex u appears before vertex v in
the ordering.

9Note that it cannot hold that d[v] = f [u]. This is only possible if u = v.
10A proper descendant of u is a descendant of u different from u.
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If a graph contains a cycle, then clearly a topological sort is not possible. Conversely, we will
see that any directed acyclic graph can be topologically sorted. A topological sort can be found
in any directed acyclic graph (as we will see) with the following procedure.

Algorithm 1.4.1 (Algorithm: Topological sort). Let G = (V,E) be a directed acyclic graph.
The following procedure yields a topological ordering of the vertices.

(i) Perform a depth-first search on the graph G, starting at an arbitrary source vertex s.

(ii) Each time a vertex is colored red, we put it at the end of a linked list11.

(iii) The resulting list is a topological sort of V .

It is clear that the running time of this procedure is bounded by O(|V |+ |E|), the running time
of a depth-first search of graph G. We will discuss the correctness of the algorithm. First we
state the definition of a frond edge. The concept of frond edges will be useful when proving the
correctness of the Algorithm 1.4.1.

Definition 1.4.2 (Frond edge). Let (u, v) be an arbitrary edge in G = (V,E). Suppose we
have performed a depth-first search on G. If (u, v) connects a vertex u to an ancestor v in the
depth-first tree, then (u, v) is caled a frond.12

Remark 1.4.1. Note that a frond can be discovered during the depth-first search: if vertex v
is green when edge (u, v) is considered by the algorithm for the first time, then edge (u, v) is
a frond. To see this, note that the set of green vertices always forms a chain of descendants,
and that is searched from the last green vertex in this chain. So if v is already green when
edge (u, v) is first considered, then (u, v) is a frond.

We prove an auxiliary lemma. This lemma will help us to prove the correctness of Algo-
rithm 1.4.1.

Lemma 1.4.4. A directed graph G = (V,E) is acyclic if and only if in a depth-first search
of G, no fronds are discovered.

Proof. “=⇒”. If there is a frond (u, v) in G then u is a descendant of v and hence there is a
path from v to u in G. Concatenating this path with edge (u, v) yields a cycle.

“⇐=”. Suppose there is a cycle C in G. Let v be the first vertex of this cycle that is
discovered by the depth-first search. Let (u, v) be the edge in C with head v. Since u can be
reached along a path of white vertices at the time that v is discovered (by the choice of v), it
holds that u is a descendant of v, by the white-path theorem (Theorem 1.4.3). Hence, (u, v) is
a frond.

Theorem 1.4.5. Algorithm 1.4.1 finds a correct topological sorting in any directed acyclic
graph G = (V,E).

Proof. Suppose there is an edge (u, v) in a directed graph G = (V,E). We will show that a
depth-first search then gives f [v] < f [u]. When edge (u, v) is first explored by the depth first
search, vertex v cannot be green. Then (u, v) would be a frond and hence, by Lemma 1.4.4, G
would be not acyclic. If v is white, then v becomes a descendant of u and hence (remember
Corollary 1.4.2) f [v] < f [u]. If v is red, f [v] already has been determined, while f [u] still needs
to be determined (as the algorithm is searching at u). Therefore f [v] < f [u]. We conclude that
in all cases it holds that f [v] < f [u]. Hence Algorithm 1.4.1 produces a correct topological sort
of any directed graph G = (V,E).

With the proof of correctness of topological sort, we end the preliminary chapter of this thesis.
If the reader would like to know more about elementary graph algorithms, the book of Cormen
(see [CLR01]) can be recommended.

11A linked list is a list in which each element has a link to a certain successor in the list. The last element is
linked to a terminator (which signifies the end of the list).

12In the literature (see [CLR01]) a frond is also called a back(ward) edge.
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v1 v2 v3 v4 v5 v6

(a) A topologically sorted directed acyclic graph.

v1

v2

v3

v4

v5

v6

(b) The same topologically sorted graph,
drawn in a different way.

Figure 1.2: A topologically sorted directed acyclic graph. Note that all edges are oriented from left to
right.
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Chapter 2

Maximum reliability paths

In this chapter we will see that ‘maximum reliability paths’ can be computed by using well-
known shortest path algorithms from the literature (see for example the book of [CLR01],
or [Schä13] or [Schr13]). We will see that the additive shortest path problem (see Example 1.2.1)
and the multiplicative maximum reliability path problem (which we will define) are essentialy
the same problems. Furthermore, we will see how to efficiently compute the (weighted) be-
tweenness centrality : which countries are used as conduit countries the most? We conclude the
chapter with results, where we rank all countries in our dataset according to their (weighted)
betweenness centrality.

Let G = (V,E) be a directed graph with a reliability function r : E → (0, 1] (if we have
a graph with edge reliabilities of 0, then we simply remove these edges). For a path P =
〈u1, . . . , uk〉 we define the reliability r(P ) of the path as follows:

r(P ) :=

k−1∏
i=1

r(ui, ui+1).

If u, v ∈ V such that there exists a path from u to v, then there always exists a simple u, v-path
of maximum reliability, as the next lemma shows.

Lemma 2.0.6. Let u, v ∈ V be two vertices of G = (V,E), such that v is reachable from u.
Then there exists a path of maximum reliability from u to v. Moreover, we can assume without
loss of generality that this path is a simple path, i.e. it does not contain cycles.

Proof. Suppose P is a path from u to v (by assumption such a path exists). If we remove all
cycles from P , we obtain a simple path P ′. The reliability of any cycle is in the interval (0, 1].
Therefore we see that r(P ′) is obtained from r(P ) by repeatedly dividing by numbers in (0, 1].
Hence, it holds that r(P ′) ≥ r(P ). It now remains to show that there exists a u, v-path of
maximum reliability among all simple u, v-paths. This is trivial, since the set of all simple u, v-
paths is finite.

A u, v-path of maximum reliability is a most profitable path for companies to send their profits
over. We now formally define the Maximum Reliability Path Problem.

Problem 1. The Maximum Reliability Path Problem is a maximization problem. An instance
is a graph G = (V,E) with edge reliabilities r : E → (0, 1], a source vertex s ∈ V , a sink
node t ∈ V , with

F = {P ⊂ V : P is an s, t-path in G} and r(P ) =
∏
e∈P

r(e).

The goal is to find a simple s, t-path in G of maximum reliability. There are two important
more general versions of the maximum reliability path problem:
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(i) The Single Source Maximum Reliability Path Problem. Let s ∈ V be a source vertex. For
every v ∈ V , compute a path (or if possible: all paths) of maximum reliability from s to v,
and count how many maximum reliability s, v-paths there are.

(ii) The All Pairs Maximum Reliability Path Problem. For every pair (u, v) ∈ V ×V of vertices,
compute a path (or if possible: all paths) of maximum reliability from u to v, and count
how many maximum reliability u, v-paths there are.

Those problems the same as their respective shortest path problems (see [Schä13]), except that
‘minumum cost’ is replaced by ‘maximum reliability’.

2.1 From additive edge costs to multiplicative edge reliabilities
and vice versa

In this section we will see that the additive shortest path problem (see Example 1.2.1) and the
multiplicative maximum reliability path problem are essentially the same problems. Therefore,
by using the well-known algorithms to solve the shortest path problem, that can be found
in [CLR01], [Schä13] and [Schr13], one can solve the maximum reliability path problem.

Let G = (V,E) be a directed graph. Suppose c : E → R≥0 is a cost function and edge
costs are additive. We want to solve the additive shortest path problem. Suppose that there
exists a function

φ : R≥0 → (0, 1],

with the following properties:

(i) φ(x+ y) = φ(x) · φ(y) for all x, y ∈ R≥0,

(ii) φ is monotonely decreasing,

(iii) φ is bijective, and therefore φ−1 : (0, 1]→ R≥0 is well-defined.

Note that property (iii) in combination with property (ii) implies that φ(0) = 1 and that
limx→∞ φ(x) = 0. Define a reliability function

r : E → (0, 1]

r = φ ◦ c.

Lemma 2.1.1. If a u, v-path P = 〈u = u1, . . . , uk = v〉 is a maximum reliability path with
respect to the reliability function r then it is a shortest path with respect to the cost function c.

Proof. We have, by definition of the reliability function r,

r(P ) =
∏
e∈P

r(e) =
∏
e∈P

φ ◦ c(e) = φ

(∑
e∈P

c(e)

)
= φ(c(P )),

where the next-to last equality follows from property (i) of φ. Since P is a u, v-path of maximum-
reliability, it holds that r(P ) ≥ r(P ′) for every u, v-path P ′. This means that φ(c(P )) ≥ φ(c(P ′))
for every path P ′ and hence by property (ii) of φ it holds that c(P ) ≤ c(P ′) for every path P ′.
We conclude that P is a shortest path with respect to the cost function c.

Now, suppose that G = (V,E) is a directed graph and that multiplicative edge reliabilities r :
E → (0, 1] are given.

Lemma 2.1.2. If a u, v-path P = 〈u = u1, . . . , uk = v〉 is a shortest path with respect to the cost
function c = φ−1 ◦ r then it is a maximum reliability path with respect to reliability function r.
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Proof. We have, by definition of the cost function c,

c(P ) =
∑
e∈P

c(e) =
∑
e∈P

φ−1 ◦ r(e) = φ−1

(∏
e∈P

r(e)

)
= φ−1(r(P )),

where the next-to last equality follows from property (i) of φ (this property implies that for φ−1

it holds that for all x, y ∈ (0, 1] we have φ−1(x ·y) = φ−1(x)+φ−1(y)). Since P is a shortest u, v-
path, we have c(P ) ≤ c(P ′) for every u, v-path P ′. This means that φ−1(r(P )) ≤ φ−1(r(P ′)) for
every path P ′ and hence by property (ii) of φ (which implies that φ−1 is monotonely decreasing
as well) it holds that r(P ) ≥ r(P ′) for every path P ′. We conclude that P is a maximum
reliability path with respect to the cost function r.

Hence, if we find a suitable function φ, we see that the additive shortest path problem and the
multiplicative maximum reliability path problem are in fact the same problems1: if we can solve
one of the two problems we have a solution for the other problem.

Remark 2.1.1. It is easily observed that φ : R≥0 → (0, 1] : x 7→ e−x, with inverse φ−1 : (0, 1]→
R≥0 : y 7→ − log(y), has the desired properties. We leave this (simple) check to the reader.

We conclude that the maximum reliability problem can be solved by solving the additive shortest
path problem. However, in the next sections we will adapt known algorithms for the shortest
path problem to solve the maximum reliability path problem directly. There are two main
reasons for doing this.

(i) Computing the logarithm of numbers in (0, 1] might involve very large numbers. Therefore
it is more efficient to adapt shortest path algorithms directly to the maximum reliability
path problem, without using the logarithm.

(ii) Readers without knowledge of shortest-path algorihtms can read about the adaptations,
without the necessity of reading the literature first. Therefore the thesis will be self-
contained.

Readers with knowledge of shortest-path algorithms, as Dijkstra’s Algorithm or the Algorithm
of Floyd-Warshall, can quickly scan through the next sections. The adaptations made to solve
the maximum reliability path problem, are straightforward.

2.2 Algorithms for computing maximum reliability paths di-
rectly

Before adapting shortest path algorithms to compute maximum reliability paths, we introduce
some notation and prove some auxiliary lemmas. The next two sections will be devoted to
computing the ‘distances’. Thereafter, we will see how knowing the distances enables us to find
the maximum reliability paths. If G = (V,E) is a graph with multiplicative edge reliabilities r :
E → (0, 1], we define a distance function δ : V × V → [0, 1] as

δ(u, v) =


sup{r(P ) : P is a path from u to v} if v is reachable from u

1 if u = v

0 if v is not reachable from u.

1We could ask for a function φ : R→ (0,∞) as well, and the φ that we will give has all necessary properties
with this domain and range. Then we would have identified the additive shortest path problem with arbitrary
edge costs with the maximum reliability path problem with positive edge costs. Then a negative cycle in the
additive case (which we then not allow) corresponds to a cycle of reliability bigger than 1 in the multiplicative
case. However, we do not need this identification, as we are in this thesis only interested in reliabilities in the
interval (0, 1].
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We see that

δ(u, v) = 0 if v is not reachable from u,

δ(u, v) ∈ (0, 1], else.

The following lemma is an ‘analogon’ of the triangle inequality for reliability-paths.

Lemma 2.2.1. Let u, v ∈ V be vertices. For every edge e = (v, w) ∈ E, it holds that δ(u,w) ≥
δ(u, v) · r(v, w).

Proof. If δ(u, v) = 0 then the relation holds trivially. If δ(u, v) > 0 then there is a path from u
to v of reliability δ(u, v). By appending the edge (v, w) to this path, we obtain a path of
reliability δ(u, v) · r(v, w). A maximum reliability path can only have bigger or equal reliability
so therefore it holds that δ(u,w) ≥ δ(u, v) · r(v, w).

We now show that subpaths of maximum reliability paths are again maximum reliability paths.

Lemma 2.2.2. Let P = 〈u1, . . . , uk〉 be a maximum reliability path from u1 to uk. Then every
subpath P ′ = 〈ui, . . . , uj〉 of P with 1 ≤ i < j ≤ k is again a maximum reliability path from ui
to uj.

Proof. Suppose that there exists a path P ′′ = 〈ui, v1, . . . , vl, uj〉 that has larger reliability
than P ′. Then the path 〈u1, . . . , ui, v1, . . . , vl, uj , . . . , uk〉 is a u1, uk-path that has larger re-
liability than P . In fact the reliability of this new path is r(P ) · r(P ′′)/r(P ′) > r(P ). (Here we
note that the reliabilities of the paths are nonzero positive numbers). This gives a contradiction
with the assumption that P is a maximum reliability path.

Definition 2.2.1 (Tight edge). We call an edge e = (v, w) tight with respect to the distance
function δ(u, ·) if δ(u,w) = δ(u, v) · r(v, w).

We will prove that every edge in a maximum reliability path that starts at u is tight with respect
to δ(u, ·).
Lemma 2.2.3. Let P = 〈u, . . . , v, w〉 be a u,w-path of maximum reliability. Then δ(u,w) =
δ(u, v) · r(v, w).

Proof. By Lemma 2.2.2 the subpath P ′ = 〈u, . . . , v〉 of P is a u, v-path of maximum reliability,
so δ(u, v) = r(P ′). Because P is a u,w-path of maximum reliability, it holds that δ(u,w) =
r(P ) = r(P ′) · r(v, w) = δ(u, v) · r(v, w), as desired.

In the next two sections we concentrate on calculating the function δ. First we Dijkstra’s
algorithm to compute δ(s, ·) in case one source node s ∈ V is given. After that, we study
the Floyd-Warshall -algorithm to compute δ(u, v) for all pairs (u, v) ∈ V × V . Finally we will
see how knowing the δ-values helps with solving Problem 1 (i) and (ii).

2.2.1 Dijkstra’s algorithm for maximum reliabilities

We give the multiplicative version of the Dijkstra algorithm, an algorithm for computing δ(s, ·)
in case one source node s ∈ V is given. This will help solving Problem 1 (i). To compute the
distances δ(s, v), for all v ∈ V , we keep track of tentative distances d. We begin with d(s) = 1
and d(v) = 0 for v ∈ V \ {s}. The function d will be our approximation of δ(s, ·). We will refine
the value of d, until eventually δ(s, v) = d(v) for every v ∈ V . To do this, we will relax edges
(u, v) ∈ E:

Relax(u, v) : if d(v) < d(u) · r(u, v) then d(v) = d(u) · r(u, v).

Edge relaxations (by definition) can only increase (or keep constant) the d-values. Furthermore,
if we relax edges then we always have d(v) ≤ δ(s, v) for all v ∈ V . This we will prove in a lemma.
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Lemma 2.2.4. For every v ∈ V , we always have d(v) ≤ δ(s, v), if only edge relaxations are
applied.

Proof. We use induction on the number of edge relaxations. If no edge relaxations are applied,
the claim holds since d(s) = 1 = δ(s, s) and d(v) = 0 ≤ δ(s, v) for v ∈ V \ {s}. Now, assume
that the claim holds before an edge e = (u, v) is relaxed. Relaxing the edge (u, v) only possibly
affects d(v). If d(v) is modified, then we have after the relaxation

d(v) = d(u) · r(u, v) ≤ δ(s, u) · r(u, v) ≤ δ(s, v),

where the second equality follows from the triangle inequality (Lemma 2.2.1).

Therefore d(v) can increase while relaxing edges but it will never be bigger than the dis-
tance δ(s, v). Also d(v) = δ(s, v) = 0 for all nodes v ∈ V that are not reachable from s.

Lemma 2.2.5. Let P = 〈s, . . . , u, v〉 be a s, v-path of maximum reliability. Suppose d(u) =
δ(s, u) before the relaxation of edge (u, v). Then d(v) = δ(s, v) after the relaxation of the
edge (u, v).

Proof. After the relaxation we have d(v) = d(u) · r(u, v) = δ(s, u) · r(u, v) = δ(s, v), where the
last equality holds because of Lemma 2.2.3.

Now we are ready to give Dijkstra’s algorithm and prove correctness of the algorithm.

Input: Directed graph G = (V,E), reliability function r : e→ (0, 1],
source vertex s.

Output: For each v ∈ V , the value δ(s, v).

Initialize: d(s) = 1 and d(v) = 0 for every v ∈ V \ {s}
W = V
while W 6= ∅ do

Choose a vertex u ∈W with d(u) maximum.
foreach (u, v) ∈ E do Relax (u, v).
Remove u from W .

end
return d

Algorithm 2: Adaptation of Dijkstra’s algorithm to help solving problem i.

We will prove that this algorithm correctly computes the maximum reliabilities.

Theorem 2.2.6 (Adapted Dijkstra). Algorithm 2 correctly computes the maximum reliabilities
in time O(n2) or, when Fibonacci heaps are used in time O(m+ n log n).

Proof. First we prove that when a vertex u is removed from W , it holds that d(u) = δ(s, u).
Suppose this claim does not hold. Consider the first iteration in which a vertex u is removed
from W , but d(u) < δ(s, u). Then u must be reachable from s, since δ(s, u) > d(u) ≥ 0. Let P
be a maximum-reliability s, u-path. Define

N := {v ∈ V : d(v) = δ(s, v)}.

If we traverse P from s to u, there must be an edge (x, y) on P with x ∈ N and y /∈ N
because s ∈ N and u /∈ N . Let (x, y) be the first such edge on P . Then it holds that

d(x) = δ(s, x) ≥ δ(s, u) > d(u),
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where the second relation holds because edge reliabilities are in [0, 1]. Hence, vertex x was
removed before u from W . By our choice of u, it holds that d(x) = δ(s, x) at the moment that x
is removed from W . But then it holds (by Lemma 2.2.5) that d(y) = δ(s, y) after the relaxation
of edge (x, y), in contradiction with the assumption that y /∈ N . Therefore the claim holds.

It follows that the algorithm computes the correct distances. The algorithm also clearly
terminates (it relaxes each edge exactly once and removes all nodes from W ), therefore the
algorithm is correct. The algorithm takes time O(n2), since it consists of n iterations that each
takeO(n) time. However, the running time of this algorithm can be improved by using Fibonacci
heaps. The interested reader can read more about Fibonacci heaps in [Schr13] or [CLR01].
With Fibonacci heaps we can do n insert operations (initialization), n delete-min operations
(remove vertices with minimum d-values) and m decrease priority operations (relaxing edges)
in time O(m+ n log n). Therefore by using Fibonacci heaps the algorithm runs in time O(m+
n log n).

The CPB-graph is a complete graph and therefore O(m + n log n) = O(n2). Implementing
Fibonacci heaps takes time, and for this thesis the choice was made not to implement them.

2.2.2 Floyd-Warshall algorithm for maximum reliabilities

In this section we give a version of the Floyd-Warshall -algorithm to compute δ(u, v) for all
pairs (u, v) ∈ V × V . That will help solving Problem 1 (ii). We identify the vertices in V
with the set {1, . . . , n}. Consider a simple u, v-path P = 〈u = u1, . . . , ul = v〉. We call the
vertices u2, . . . , ul−1 the interior vertices of P . If l ≤ 2, then P does not have interior vertices.
A u, v-path P with interior vertices contained in the set {1, . . . , k} is called a (u, v, k)-path. We
define:

δk(u, v) :=


sup{r(P ) : P is an (u, v, k)-path)} if there exists at least one (u, v, k)-path

1 if u = v

0 otherwise.

This is the maximum reliability of a (u, v, k)-path. With this definition we have δ(u, v) =
δn(u, v). Therefore we need to compute δn(u, v) for every u, v ∈ V . Consider the following
algorithm.

Input: directed graph G = (V,E), reliability function r : e→ (0, 1].
Output: For each pair (u, v) ∈ V × V , the value δ(u, v).

Initialize: foreach (u, v) ∈ V × V do d(u, v) :=


1 if u = v

r(u, v) if (u, v) ∈ E
0 otherwise.

for k = 1 . . . n do
foreach (u, v) ∈ V × V do

if d(u, v) < d(u, k) · d(k, v) then d(u, v) = d(u, k) · d(k, v)
end

end
return d

Algorithm 3: Adaptation of the Floyd-Warshall algorithm to help solving problem ii.

We will prove that this algorithm correctly computes the maximum reliabilities.

Theorem 2.2.7 (Adapted Floyd-Warshall). Algorithm 3 correctly computes the maximum re-
liabilities in time Θ(n3).
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Proof. The running time follows directly from the steps in the algorithm; the algorithm consists
of a for-loop of size n2 within a for-loop of size n. It therefore suffices to prove correctness. Sup-
pose we are able to compute δk−1(u, v) for all u, v ∈ V . Consider a maximum reliability (u, v, k)-
path P = 〈u = u1, . . . , ul = v〉. Note that we can assume without loss of generality that P is
simple, as observed in Lemma 2.0.6. All interior vertices of P belong to the set {1, . . . , k} by
definition. Now there are two possible cases. Either k is not an interior vertex of P , or k is an
interior vertex of P .

(i) If k is not an interior vertex of P then all interior vertices of P are in the set (1, . . . , k−1),
i.e. P is a maximum reliability (u, v, k − 1)-path and therefore δk(u, v) = δk−1(u, v).

(ii) If k is an interior vertex of P , then we can write P = 〈u, . . . , k, . . . , v〉. We now decom-
pose P into two paths P1 = 〈u, . . . , k〉 and P2 = 〈k, . . . , v〉. We observe that P1 and P2

are (u, v, k − 1) paths because P is simple. Furthermore, P1 and P2 are maximum reli-
ability (u, v, k − 1)-paths, because subpaths of maximum reliability paths are maximum
reliability paths by Lemma 2.2.2. Therefore δk(u, v) = δk−1(u, k) · δk−1(k, v).

Now, if we set:

δ0(u, v) :=


1 if u = v

r(u, v) if (u, v) ∈ E
0 otherwise.

and
δk(u, v) = max{δk−1(u, v), δk−1(u, k) · δk−1(k, v)} if k ≥ 1,

we simply compute the δk(u, v) in a bottum-up manner. Algorithm 3 exactly does this, with as
final output function d = δn = δ.

2.2.3 Computing and counting the maximum reliability paths

If we want to calculate the maximum reliability distances from a single fixed source s ∈ V , we
can compute with Dijkstra’s algorithm the values δ(s, v) for all v ∈ V in time O(m+n log n). If
we are interested in all maximum reliability distances, and do not want to fix one source-node,
we can compute with Floyd-Warshall’s algorithm the values δ(u, v) for every u, v ∈ V × V in
time Θ(n3).

Now, fix a vertex s ∈ V . We will see that we can efficiently obtain a maximum reliability
path from s to every other vertex v ∈ V with δ(s, v) ∈ (0, 1]. The following definition will be
useful.

Definition 2.2.2 (Maximum reliability path graph). Let G = (V,E) be a graph with edge
reliabilities r := E → (0, 1], and let s ∈ V be a source node. Let

V ′ := {v ∈ V | δ(s, v) ∈ (0, 1]} ⊆ V,

be the set of vertices reachable from s. Let E′ ⊆ E be the set of edges that are tight (cf.
Definition 2.2.1) with respect to δ(s, ·), i.e.

E′ := {(v, w) ∈ E : (v, w) tight with respect to δ(s, ·)}
= {(v, w) ∈ E : δ(s, w) = δ(s, v) · r(v, w)} ⊆ E.

We define G′ := (V ′, E′) to be the maximum reliability path graph of G with respect to the
source node s.

Note that G′, given the distances δ(s, ·) in G, can be constructed in time O(|V | + |E|). The
following lemma explains the name maximum reliability path graph: the graph G′ consists
exactly of all simple maximum reliability paths starting at some source node s in G.
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Lemma 2.2.8. Let G = (V,E) be a graph with edge reliabilities E → (0, 1], s ∈ V a source
node, and G′ = (V ′, E′) be the maximum reliability path graph of G with respect to the source
node s. It holds that every simple path in G′ from s to any vertex v ∈ V ′ is a maximum
reliability s, v-path in G and vice versa: every simple maximum reliability s, v-path in G is a
simple s, v-path in G′.

Proof. “=⇒”. We use Lemma 2.2.3: every edge of a maximum reliability path from s to an
arbitrary other vertex v is tight with respect to δ(s, ·). Therefore every vertex v ∈ V ′ is reachable
from u ∈ G′. Consider a s, v-path P = 〈s = u1, . . . , uk = v〉 in G′. Then

r(P ) =
k−1∏
i=1

r(ui, ui+1) =
k−1∏
i=1

(
δ(s, ui+1)

δ(s, ui)

)
=
δ(s, v)

δ(s, s)
= δ(s, v).

Therefore, P is a maximum reliability path from s to v in G.
“⇐=”. Conversely, let P be a simple maximum reliability path from s to v in G. This

means that v is reachable from s, so v ∈ V ′. Furthermore, by Lemma 2.2.3, all edges of P are
tight. Hence, P is a path in G′, as desired.

Now we can find one simple s, v-path of maximum reliability in G by finding an arbitrary
simple s, v-path in G′ using (for example) depth-first search, see the Preliminaries (Chapter 1).

To find all (potentially exponentially many) simple maximum reliability s, v-paths we must
find all simple paths from s to v in G′. This can not be done efficiently: it can take exponential
time, as there may be exponenially many paths. By adapting depth-first search (see Chapter 5)
one could obtain all s, v-paths, but not in polynomial time.

Example 2.2.1. Note that, if G is a complete graph with all edge reliabilities equal to 1, all
edges are tight (with respect to δ(s, ·) for any s ∈ V ) and hence G′ is also a complete graph. Now
we want to list all simple s, v-paths in G. We cannot expect a polynomial time algorithm. To see
this, we count the number of s, v-paths in G′. Label the vertices (1), . . . , (n) such that (1) = s
and (n) = v. A simple (1), (n)-path visits some subset of the other (n− 2) nodes. Suppose the
intermediary path visiting this subset of the other (n− 2) nodes is of length i. There are

(
n−2
i

)
possible subsets of size i, and i! possible orders for each of these. Therefore there are

(n− 2)!

(n− 2− i)!
possible subpaths of length i. It follows that there are

n−2∑
i=0

(n− 2)!

(n− 2− i)! ≥ (n− 2)!

simple (1), (n)-paths in G′, which grows (faster than) exponentially. We conclude that in this
case we cannot list all simple paths in polynomial time.

Suppose we do not want to list the paths, but that we just want count the number of simple s, v-
paths in G′. Note that G′ may contain cycles. For example, consider a graph G in which all
edge reliabilities are 1 and which contains a cycle that is reachable from s. Then all edges on
this cycle are tight with respect to δ(s, ·), i.e. G′ contains a cycle. However, if G′ contains a
cycle, this cycle has reliability 1.

Lemma 2.2.9. Suppose G′ contains a cycle, then all edges on this cycle will have reliability 1.

Proof. Let C = 〈v = v1, . . . , vj = v〉 be a cycle in G′. Let P be a s, v-path in G. Then P has
maximum reliability and P concatenated with C is also a maximum reliability s, v-path (since
it is a s, v-path contained in G′). But the reliability of this new path is r(P ) · r(C). It follows
that r(P ) = r(P ) · r(C) and hence r(C) = 1. We conclude that all edges on the cycle must have
edge reliability 1.
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To count all simple maximum reliability paths in an efficient way, we assume that our graph G′

does not contain cycles of edge reliability 1. This is, for example, the case if all edge reliabilities
in G are in (0, 1).

Suppose now that we want to compute the number of maximum reliability simple paths
from s to v, without generating these paths explicitly. It is possible to calculate the number of
simple paths from a fixed s ∈ V ′ to each v ∈ V ′ in linear time. To this end, we topologically
sort G′ = (V ′, E′), starting at s, which is possible since G′ is a DAG. This means that in the
topological sorted G′, for each directed edge (x, y), it holds that x is before y in the ordering.
To calculate the number of simple maximum reliability paths from s to v, we start at s in the
topologically sorted G′. Then we scan vertices v in topological order (where the topological
ordering starts at s), and keep track of how many paths in G′ there are from s to this vertex v.
In this way, we get our desired answer. This is summarized in the following algorithm:

Input: Topologically sorted DAG G′ = (V ′, E′) w.r.t. source vertex s.
Output: The number of simple s, v-paths N(v), for every v ∈ V .

Initialize: N(s) = 1, N(x) = 0 for all x ∈ V ′ \ {s}.
foreach x ∈ V ′ in topological order do

foreach child y ∈ V ′ of x do
N(y) := N(y) +N(x)

end
end
return N

Algorithm 4: Algorithm to count the number of simple s, v-paths, for all v ∈ V in a topologically
sorted directed acyclic graph (DAG).

Note that we only have to pass each edge once, giving us an O(|V | + |E|) algorithm. It is
also possible to calculate the number of u,v-paths, for any u ∈ V and for fixed v ∈ V , in the
maximum reliability graph rooted at s. To this end, we topologically sort G′ = (V ′, E′), starting
at s. To calculate the number of simple maximum reliability paths from u to v, we start at v
in the topologically sorted G′. Then we scan vertices u backwards from v, and keep track of
how many paths in G′ there are from each vertex u to v. If we arrive at s, we get the number
of paths from s to v.

Input: Topologically sorted DAG G′ = (V ′, E′) w.r.t source vertex s, sink v.
Output: The number of simple u, v-paths N(u), for every u ∈ V .

Initialize: N(v) = 1, N(x) = 0 for all x ∈ V ′ \ {x}.
foreach x ∈ V ′ in reverse topological order do

foreach child y ∈ V ′ of x do
N(x) := N(y) +N(x)

end
end
return N

Algorithm 5: Algorithm to count the number of simple u, v-paths, for all u ∈ V and a fixed v ∈ V ,
in a topologically sorted directed acyclic graph (DAG).

Sometimes we also want the number of simple maximum reliability paths from s to v passing
through a given vertex w. We can do this by using Algorithm 5. Then, backtracking from v to w
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in the topologically sorted DAG G′ gives the number of simple paths from w to v. Backtracking
from w to s gives the number of simple paths in G′ from s to w. Multiplying those two numbers
gives the number of simple maximum reliability paths from s to v passing through w (note that
this is correct since G′ is a directed acyclic graph). Hence, we solved Problem 1 (i) and (ii) in
this section.

2.2.4 Definitions used for the additive shortest path problem

In this (short) section we will define the notions for maximum reliability paths from last sections
also for shortest paths and we will prove similar results, to keep the thesis self-contained.
Readers with knowledge of the shortest path problem can skip this section.

Let G = (V,E) with an additive cost function c : E → R≥0. As in the case of maximum
reliability paths, we define a distance function δc : V × V → R≥0 ∪ {∞} as

δc(u, v) =


inf{c(P ) : P is a path from u to v} if v is reachable from u

0 if u = v

∞ if v is not reachable from u.

If we write δc for the distance function with respect to an additive edge cost function c and δr
for the distance function with respect to a multiplicative edge reliability function r, it follows
from Lemmas 2.1.1 and 2.1.2 that

δφ◦c = φ ◦ δc and that δφ−1◦r = φ−1 ◦ δr.

We define tight edges (similar to Definition 2.2.1) in the case of (additive) shortest paths.

Definition 2.2.3 (Tight edge (additive edge costs)). We call an edge e = (v, w) tight with
respect to the distance function δ(s, ·) if δ(s, w) = δ(s, v) + c(v, w).

Definition 2.2.4 (Shortest path graph). Let G = (V,E) be a graph with edge costs c := E →
R≥0, and let s ∈ V be a source node. Let

V ′ := {v ∈ V | δ(s, v) ∈ R≥0} ⊆ V,

be the set of vertices reachable from s, and

E′ := {(v, w) ∈ E : (v, w) tight with respect to δ(s, ·)}
= {(v, w) ∈ E : δ(s, w) = δ(s, v) + c(v, w)} ⊆ E.

We define G′ := (V ′, E′) to be the shortest path graph of G with respect to the source node s.

The shortest path graph G′ consists exactly of all simple shortest paths starting at some source
node s in G.

Lemma 2.2.10. Let G = (V,E) be a graph with edge costs E → R≥0, s ∈ V a source node,
and G′ = (V ′, E′) be the shortest path graph of G with respect to the source node s. It holds that

(i) every simple path in G′ from s to any vertex v ∈ V ′ is a shortest s, v-path in G and vice
versa: every simple shortest s, v-path in G is a simple s, v-path in G′.

(ii) if G′ contains a cycle, then all edges on this cycle will have cost 0.

Proof. Use the reliability function r := φ ◦ c. Tight edges with respect to r are exactly tight
edges with respect to c and vice versa. Furthermore, shortest paths with respect to c are
maximum reliability paths with respect to r and vice versa. For G with the reliability-function r,
Lemma 2.2.8 (for proving i) and Lemma 2.2.9 (for proving ii, where we note that φ(0) = 1))
hold. Now apply φ−1 again to get the desired result.
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We have seen that the shortest path problem and the maximum reliability path problem are
essentially the same problems: an instance of the shortest path problem gives us immediately an
instance of the maximum reliability path problem and vice versa, with corresponding solutions
via the function φ of Section 2.1. In both cases we can define a graph of tight edges, which
consists exactly of all the solution paths starting at some source vertex s. We can also directly
adapt shortest path algorithms to compute maximum reliability paths, and vice versa.

Hereby we end the discussion of basic shortest path (resp. maximum reliability path) algo-
rithms. In the next section we will use these shortest path algorithms to compute a ‘centrality
measure’ for vertices in the network: betweenness centrality.

2.3 Betweenness centrality

This section is about betweenness centrality. The betweenness centrality measures ‘centrality’
of a node in a network. The betweenness centrality will be higher if a vertex lies between the
endpoints (as an intermediary vertex) on a lot of maximum reliability paths (in the case of
reliability paths) or shortest paths (in the case of paths with additive edge costs). We will use
the betweenness centrality to identify the most important conduit countries in the CPB-network.

Remark 2.3.1 (Motivation and comparison to other centrality measures). Betweenness cen-
trality is not the only available tool to measure ‘centrality’ of a vertex in a network. There are
other centrality measures too. See for example [Fre78] and [New01]. We will informally discuss
other two centrality measures: closeness centrality and degree centrality. Then we will argue
why in this thesis, betweenness centrality is chosen as centrality measure.

1. The closeness centrality (see [New01]) of a vertex is higher if the vertex is situated close to
other vertices, i.e. if the average distance to other vertices is smaller (in the case of additive
shortest paths). Applied to our network: if the reliability of maximum reliability paths
from one country to other countries is higher, then this country has a higher closeness
centrality. Closeness centrality does thus not give information about the role of a country
as a ‘conduit’ country, but more as an ‘endpoint’ of a path. Therefore we will not use this
measure.

2. The (weighted) degree centrality is higher if a node has many edges of low cost to other
nodes. Hence, it only measures the ‘local structure’ directly around the node and it does
not take the whole network into account.

Both closeness and degree centrality are not aimed at identifying conduit (intermediary) coun-
tries in the network. However, betweenness centrality is very useful for this purpose, since it
measures how often, on average, a country appears as an intermediary country (between the
endpoints) on a ‘most profitable’ tax route (a maximum reliability path).

Remark 2.3.2. Throughout the whole section, let G = (V,E) be a weighted directed graph,
with multiplicative edge reliabilities r : E → (0, 1] or additive edge costs c : E → R≥0, so that
there are no cycles of reliability 1 (resp. cost 0) in G (then we can count maximum reliability
paths (resp. shortest paths) efficiently using the methods from Algorithms 4 and 5). We will use
the term ‘shortest paths’ throughtout the whole section, but one may replace it by ‘maximum
reliability paths’.

Definition 2.3.1 (Betweenness centrality, unweighted and weighted version). We write σst for
the number of shortest s, t-paths, for s, t ∈ V . Furthermore, we write σst(u) for the number
of shortest s, t-paths, for s, t ∈ V , that pass through vertex u ∈ V , where u 6= s 6= t. The
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(unweighted) betweenness centrality of u ∈ V in G is defined as

B(u) =
∑

s,t,u∈V
s 6=u6=t

σst(u)

σst
.

If we write Bst(u) := σst(u)/σst, then it holds that

B(u) =
∑

s,t,u∈V
s 6=u6=t

Bs,t(u).

Next we define weighted betweenness centrality. Suppose that we are given weights ws,t > 0, for
all s, t ∈ V , s 6= t. We define the weighted betweenness centrality as:

BW (u) =
∑

s,t,u∈V
s 6=u6=t

ws,tBs,t(u).

In the next section we will see how to compute the (weighted) betweenness centrality efficiently,
using a recursive formula found by Brandes (see [Bra01]).

2.3.1 Computing the betweenness centrality efficiently

This section deals with the computation of the betweenness values described in the previous
section. We first provide a naive, intuitive way of computing the betweenness and analyze
its running time. Subsequently we prove an auxiliary lemma to reduce the running time and
the storage space needed for computing the (unweighted) betweenness centrality, due to Bran-
des [Bra01]. Finally we show that this method can also be used to compute the weighted
betweenness centrality.

Remark 2.3.3 (Naive approach to compute the betweenness). It is possible to compute the
betweenness for all nodes in a graph G in O(n3), using O(n2) storage space.

Proof. By using Algorithm 4 in directed acyclic graphs, we are able to compute the number
of maximum reliability paths from one source to all v ∈ V in a graph in O(m + n log n), the
running time of Dijkstra’s algorithm. Note that, if δ(s, t) = δ(s, v) + δ(v, t),2 then every simple
shortest path from s to v can be extended to a simple shortest path from s to t through v,
and σst(v) = σsv · σvt (this holds since G contains no cycles of cost 0). If we do this for
all n = |V | different source nodes, we achieve a running time of O(nm + n2 log n). After that,
we need to compute the sum

∑
s 6=v 6=t σst(v)/σst. This can be done in O(n2) running time for

one vertex v. Therefore, the running time of the naive betweenness computation algorithm
is O(n3), for computing the betweenness centrality of all vertices v ∈ V .

For each source node s ∈ V , we store the number σsv of shortest path from s to v (for
all v ∈ V ). We conclude that the naive algorithm uses O(n2) storage space.

We will improve the algorithm for computing the betweenness. First we define, for s, t ∈ V ,

Bs,•(u) =
∑
t∈V

Bs,t(u) and BW
s,•(u) =

∑
t∈V

ws,tBs,t(u).

Furthermore, we define the predecessors along shortest paths of a vertex v ∈ V .

Definition 2.3.2 (Predecessors along shortest paths). For a vertex v ∈ V we define

Ps(v) := {u ∈ V : (u, v) ∈ E is a tight edge with respect to δ(s, ·)}, (2.1)

as the set of predecessors of v along shortest paths from s ∈ V .

2δ(s, t) = δ(s, v) · δ(v, t) in the case of maximum reliability paths.
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Using a recursive relation (due to U. Brandes in [Bra01]) we will be able to speed up the
calculation of the betweenness.

Theorem 2.3.1 (Brandes’ recursive relation). It holds, for s ∈ V and u ∈ V , that

Bs,•(u) =
∑

v :u∈Ps(v)

σsu
σsv
· (1 +Bs,•(v)). (2.2)

Proof. We observe that Bs,t(u) > 0 only if u lies (as an intermediary vertex) on at least one
shortest path from s to t, and on any such path there is exactly one edge (u, v) with u ∈ Ps(v).
We extend the definition of betweenness to an edge, by denoting, for e = (u, v) ∈ E:

Bs,t(e) = Bs,t[(u, v)] =
σst[(u, v)]

σst
,

where σst[(u, v)] denotes the number of shortest s, t-paths passing through edge e = (u, v). With
the previous observations it holds that

Bs,•(u) =
∑
t∈V

∑
v :u∈Ps(v)

Bs,t[(u, v)] =
∑

v :u∈Ps(v)

∑
t∈V

Bs,t[(u, v)]. (2.3)

Let v 6= t be a vertex with u ∈ Ps(v). Note that σst[(u, v)] = σsu · σvt. Furthermore, it holds
that σst(v) = σsv · σvt. Combining both equalities gives that

σst[(u, v)] =
σsu
σsv
· σst(v),

if v 6= t is a vertex with u ∈ Ps(v). It follows that

Bs,t[(u, v)] =

{
σsu
σsv
·Bs,t(v) if t 6= v

σsu
σsv

if t = v.
(2.4)

We insert this equation in (2.3) to get

Bs,•(u) =
∑

v :u∈Ps(v)

∑
t∈V

Bs,t[(u, v)] =
∑

v :u∈Ps(v)

σsu
σsv

+
∑

t∈V \{v}

σsu
σsv
·Bs,t(v)


=

∑
v :u∈Ps(v)

σsu
σsv
· (1 +Bs,•(v)), (2.5)

which is the desired equality.

It is not hard to prove that we can prove a similar recursive relation to compute the weighted
betweenness.

Lemma 2.3.2 (Recursive relation to compute the weighted betweenness centrality). It holds,
for s ∈ V and v ∈ V , that

BW
s,•(u) =

∑
v :u∈Ps(v)

ws,v · σsu
σsv

·
(

1 +
Bs,•(v)

ws,v

)
. (2.6)

Proof. Analogous to the proof of theorem 2.3.1, but we replace equation (2.3) with

BW
s,•(u) =

∑
t∈V

∑
v :u∈Ps(v)

ws,tBs,t[(u, v)] =
∑

v :u∈Ps(v)

∑
t∈V

ws,tBs,t[(u, v)],
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equation (2.4) with

ws,tBs,t[(u, v)] =

{
ws,t · σsuσsv ·Bs,t(v) if t 6= v

ws,v · σsuσsv if t = v,
(2.7)

and finally we replace equation (2.5) with

BW
s,•(u) =

∑
v :u∈Ps(v)

∑
t∈V

ws,tBs,t[(u, v)] =
∑

v :u∈Ps(v)

ws,v · σsu
σsv

+
∑

t∈V \{v}

ws,t · σsu
σsv

·Bs,t(v)


=

∑
v :u∈Ps(v)

ws,v · σsu
σsv

·
(

1 +
BW
s,•(v)

ws,v

)
, (2.8)

to complete the proof.

The following algorithm now computes the (weighted) betweenness sums BW
s,•(u) (where s 6= u),

using the above recursive relation.

Input: Top. sorted shortest path DAG G = (V,E) w.r.t source vertex s.
Output: For each u ∈ V , the value BW

s,•(u).

Initialize: σs[s] = 1, σs[v] = 0 for all v ∈ V \ {s}, BW
s,•[v] = 0 for all v ∈ V ,

empty list P [v] for all v ∈ V .
foreach x ∈ V in topological order do

foreach child y ∈ V of x do
σs[y] := σs[y] + σs[x]
append x to P [y]

end
end
foreach v ∈ V in reverse topological order do

foreach u ∈ V in P [v] do if s 6= u:

BW
s,•[u] := BW

s,•[u] +
ws,v ·σs[u]
σs[v] ·

(
1 +

BWs,•[v]

ws,v

)
end

end
return BW

s,•

Algorithm 6: Algorithm to efficiently compute BW
s,•(u) for each u ∈ V in a topologically sorted

directed acyclic maximum reliability path graph (DAG). By setting all weights ws,v to 1, we efficiently
compute Bs,•(u) for computing the unweighted betweenness centrality.

By applying the algorithm to all s ∈ V and summing the outcomes, we easily compute BW (u),
or B(u) (by setting all weights to 1) for all u ∈ V . This is summarized in the following algorithm.

If A[ ] and B[ ] are two same-sized arrays (say, of size n), we write A⊕B for the array that
has as i-th entry the sum of the i-th entries of A and B, i.e. (A⊕B)[i] = A[i]+B[i], i = 1, . . . , n.
Computing A⊕B can be done in time O(n).
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Input: Graph G = (V,E) with edge reliabilities r : E → (0, 1) or costs c : E → R>0.
Output: For each v ∈ V , the value BW (v).

Initialize: array BW [ ] consisting of |V | zeroes,
foreach s ∈ V do

Compute topologically sorted shortest path DAG G′ rooted at s.
Apply Algorithm 6 to compute BW

s,•[ ].

BW := BW ⊕BW
s,•.

end
return BW .

Algorithm 7: Algorithm to efficiently compute BW (u) for all u ∈ V .

Theorem 2.3.3 (Computing the betweenness efficiently). It is possible to compute the between-
ness for all nodes in a directed weigthed graph G = (V,E) in O(nm+n2 log n), using O(n+m)
storage space.

Proof. By using the path-count algorithm in directed acyclic graphs, we are able to compute
the number of shortest paths from one source in a graph in O(m+n log n), the running time of
Dijkstra’s algorithm. If we do this for all n = |V | different source nodes, we achieve a running
time of O(nm + n2 log n). After that, we need to compute the sum

∑
s 6=v 6=t σst(v)/σst. This

can be done in O(n(n + m)) running time, by applying the above algorithm for each source
node s. Therefore, the total running time of the betweenness computation algorithm is bounded
by O(nm+ n2 log n).

We store, for a node s and for all nodes u ∈ V the number of shortest paths σsu between
them, therefore we now only need O(n) storage space to store the numbers of the paths. The
algorithm to compute BW

s,•(u) therefore requires at most O(n+m) storage space. Running the
algorithm n − 1 times (for each s ∈ V \ {u}) does not increase the storage space, as we can
delete all information after one run, only storing and adding the BW

s,•(u)-values. We conclude
that the algorithm uses O(n+m) storage space.

2.3.2 Edge flows and edge betweenness centrality

Suppose an amount of flow is shipped from s to t, which we denote by ws,t. We assume that
the flow is equally distributed along all shortest paths, so the flow along each shortest path P
from s to t is

fPst =
ws,t
σst

.

Now, let Pst be the set of all shortest simple paths from s to t. Then we define the s, t-flow of
an edge e = (u, v) as the total flow shipped from s to t that passes through this edge:

fst(e) =
∑

P∈Pst:
e∈P

fP =
∑

P∈Pst:
e∈P

ws,t
σst

=
ws,t · σst[(u, v)]

σst
.

where σst[(u, v)] denotes the number of shortest s, t-paths passing through edge e = (u, v), just
as in the proof of Theorem 2.3.1.

Definition 2.3.3 (Total edge flow). We define the total flow f(e) passing through an edge e =
(u, v) as the sum of all the s, t-flows of e, over all vertices s, t ∈ V with s 6= t. Formally,

f(e) = f [(u, v)] =
∑
s,t∈V
s 6=t

fst[(u, v)] =
∑
s,t∈V
s 6=t

wst · σst[(u, v)]

σst
.
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Note that it is possible to compute the total edge flows efficiently. If we define, for an edge e =
(u, v),

Bs,t[(u, v)] :=
σst[(u, v)]

σst
and BW

s,•[(u, v)] :=
∑
t∈V

ws,tBs,t((u, v)),

then we have, using equations (2.7) and (2.8), that

BW
s,•[(u, v)] =

ws,v · σsu
σsv

·
(

1 +
BW
s,•(v)

ws,v

)
.

This equality allows us to calculate the edge flows very fast, while calculating the betweenness
of the vertices.

Definition 2.3.4 ((Weighted) edge betweenness centrality). Sometimes the total flow through
an edge e = (u, v) is also called the (weighted) edge betweenness centrality. If all s, t-flow weights
are equal to 1, we call the total edge flow through edge (u, v) the unweighted edge betweenness
centrality of edge (u, v).

It is possible to extend the definition of edge flows to vertices.

Definition 2.3.5 (Vertex flow). The s, t-flow of a vertex u ∈ V \ {s, t} is

fst(u) =
∑

e=(u,v)∈E:
v∈V

fst(e) =
∑

e=(w,u)∈E:
w∈V

fst(e),

where the last equality follows since all shortest paths that pass through u have exactly one
edge with head u and one edge with tail u, or more explicitely:∑

e=(u,v)∈E

∑
P∈Pst:
e∈P

fP =
∑

P∈Pst:
u∈P

fP =
∑

e=(w,u)∈E

∑
P∈Pst:
e∈P

fP .

Therefore, the flow conservation law (see [Schä13]) is observed. Furthermore, we observe the
equality

fst(u) =
∑

e=(u,v)∈E

∑
P∈Pst:
e∈P

fPst = σst(u) · fPst = wst
σst(u)

σst
= ws,tBs,t(u),

Therefore the total edge flow that passes through a vertex u (as an inner vertex3 on shortest
paths) equals the weighted betweenness centrality of u.

In this section we defined betweenness centrality and edge flows, and we have seen how to
calculate them efficiently. We will apply these concepts on our CPB-network.

2.4 Maximum reliability paths in the network of countries

In this section we adapt the developed theory to our CPB-network and give some more details
about the network. Let G = (V,E) be the complete directed graph where V consists of the
given 108 countries. We want to compute the minimum tax (as a fraction between 0 and 1) that
a company is required to pay when sending money from a country u ∈ V to country v ∈ V , and
we want to do this for all pairs u, v ∈ V × V . Therefore we will need to compute maximum-
reliability paths.

It seems to be a good idea to use Floyd-Warshall to compute the distances for all pairs
at once. In our case we can not do this, and now we will explain why. Let s ∈ V be a

3An inner vertex of a path is a vertex lying on the path that is not an endpoint of this path.
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source node. If e = (v1, v2) is an edge, the tax distance tv1,v2 depends on whether v1, the
tail of e, is the first vertex of our path.4 Therefore each edge e = (v1, v2) has two possible
reliabilities. We write r(v1, v2) as the reliability of an edge e = (v1, v2) when v1 is not the
starting point of our desired path, i.e. v1 6= s. Furthermore, we denote with r′(v1, v2) the
reliability of edge e = (v1, v2) when v1 is the starting point (source node) of our desired path,
i.e. v1 = s. Therefore the reliability function rs : E → (0, 1] depends on the source node. Given
a source node s ∈ V , it holds that, for e = (v1, v2) ∈ E,

rs(v1, v2) =

{
r(v1, v2) if v1 6= s

r′(v1, v2) if v1 = s.

Hence, we have for each source node s ∈ V a seperate graph Gs, which is a complete directed
graph on all 108 countries with edge reliabilities rs : E → (0, 1]. On each graph Gs we will use
Dijkstra’s algorithm to compute the maximum reliability paths from s.

2.4.1 Justification for introducing a small penalty

When we compute strictly maximum reliability paths, we assume that for every step in the
network after the first step, a small extra penalty of ε% tax is levied (i.e. all edge reliabilities
are multiplied by (1 − ε) except for the outgoing edges of s). We denote Gsε for the graph G
with the new edge reliabilities. Then the graph of tight edges rooted at a source node s ∈ V
does not contain reliability 1 edges (since at least some ε% tax is payed), except for possibly
the outgoing edges of the source node s. Hence, the graph of tight edges rooted at s does not
contain cycles, and we can efficiently count all maximum reliability paths using Algorithm 4
or 5. In the next lemma, we write G for Gs and Gε for Gsε , to simplify notation, since we
assume that a source node s ∈ V is fixed.

Lemma 2.4.1. If ε > 0 is small enough, the maximum reliability s, t-paths in Gε are exactly
the maximum reliability s, t-paths in G that contain the smallest number of edges.

Proof. Let P ′ be simple a path in G that is either not of maximum reliability, or it contains not
a minimal number of edges. Let P be a simple maximum reliability path in G that contains a
minimal number of edges.

(i) If P ′ is not a maximum reliability path in G, then it holds that5

rε(P ) ≥ (1− ε)n−1r(P ) > r(P ′) ≥ rε(P ′), (2.9)

for sufficiently small ε > 0, namely iff

(1− ε)n−1 >
r(P ′)

r(P )
.

Note that we only have a finite number of simple paths in a graph G, so one can estimate

the fraction r(P ′)
r(P ) ≤ α < 1 for path P ′ in G that is not a strictly maximum reliability

path.6 So then P ′ is also not of maximum reliability in Gε.

4This has to do with the so-called credit method for tax-relief that some countries apply. For information
about ‘tax-relief’ methods and about how the tax-distances are constructed, see the CPB-report [RL14]. In this
thesis the tax-rates provided by the CPB are simply used as given.

5We write rε for the reliability of a path in Gε.
6Note that finding a particular second-shortest (in cost) simple path in an arbitrary graph is NP-hard, if we

allow edges of cost 0. (See [LP97])
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(ii) If P ′ is a maximum reliability path in G, but does not contain a minimal number of edges,
then

rε(P ) = (1− ε)ir(P ) > (1− ε)jr(P ′) = rε(P
′),

where i is the number of edges of P , j is the number of edges in P ′ and i < j by assumption.

We see that only maximum reliability paths of minimal length7 in G can possibly be maximum
reliability paths in Gε. Since all those paths (maximum reliability paths of minimal length
in G) have the same reliability and Gε contains at least one maximum reliability path, it follows
that the maximum reliability paths in Gε are exactly the maximum reliability paths in G that
contain the smallest number of edges.

As a consequence of this lemma it seems sensible to add a small penalty, and then compute
shortest paths. Companies are not going to send money along 0-tax edges through conduit
countries if it is possible to send the money through a fewer number of countries to their
destination and pay the same tax.

Remark 2.4.1. The reliabilities that are provided by the CPB are rounded at 8 decimals.
Therefore the smallest difference that can appear between two reliabilities is 10−8. Therefore,
in situation (i) of Lemma 2.4.1, it holds that

r(P ′)

r(P )
<

1− 10−8

1
= 1− 10−8,

so if 1− ε ≥ 1− 10−11 > 107
√

1− 10−8, i.e. ε ≤ 10−11, then ε is ‘small enough’ (see (2.9)) for our
application, in the sense of Lemma 2.4.1.

Throughout this thesis, unless otherwise mentioned, we will assume that always a penalty
of ε < 10−11 tax is added to each step after the first step in the network, as described in this
section. Then the graphs Gs (for each source node s) will not contain cycles of reliability 1, and
we will be able to count maximum reliability paths efficiently.

2.4.2 Weights in the network of countries

Recall that we defined ws,t as the flow shipped from s to t. The CPB does not have empirical
data about the flow between two countries, so we must think of sensible hypothetical weights to
use. We assume that an amount proportional to the size of the economy of t (measured according
to GDP, gross domestic product) leaves country t and is invested in countries s (where s 6= t) in
proportion to the sizes of their economies. The total investments from country t to country s
equal

GDPt ·
GDPs∑

v∈V \{t}GDPv
.

We assume that all investments made in country s (the host country) are finally repatriated to
country t. Therefore we get

w′s,t := GDPt ·
GDPs∑

v∈V \{t}GDPv
.

We divide all these weights by some constant, such that
∑

s,t∈V :s 6=tws,t = 1. This normalization
is not necessary, but we do this normalization so that all results will finally be numbers between 0

7Here length means: the number of edges in a path P .
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and 100 (to get nicer looking numbers for comparison). Let GDPTotal :=
∑

u∈V GDPu. Then
ws,t := w′s,t/GDPTotal gives the desired weights, since

∑
s,t∈V
s 6=t

ws,t =
∑
s,t∈V
s 6=t

GDPt
GDPTotal

· GDPs∑
v∈V \{t}GDPv

=
∑
t∈V

∑
s∈V
s 6=t

GDPt
GDPTotal

· GDPs
GDPTotal −GDPt

=
∑
t∈V

GDPt
GDPTotal

· GDPTotal−GDPt
GDPTotal −GDPt

=
GDPTotal

GDPTotal
= 1.

When we talk about ‘weighted’ betweenness centrality or edge flows, we will use these weights,
but multiplied by 100, i.e.

∑
s 6=tws,t = 100, to get nicer numbers, so that all numbers are

between 0 and 100.8

2.4.3 Betweenness in the network of countries

At the beginning of Section 2.4 we observed that the network of countries consists of |V | = 108
graphs Gs (where each graph contains the edge reliabilities starting from one particular coun-
try s ∈ V ). Therefore, to compute betweenness centrality in the CPB-network, we cannot simply
compute the usual betweenness centrality in one graph. However, the (weighted) betweenness
centrality is defined as

BW (u) =
∑
s,t∈V,
s 6=u6=t

ws,t
σst(u)

σst
,

where σst denotes the number of maximum reliability paths from s to t and σst(u) denotes the
number of maximum reliability s, t-paths that pass through vertex u. This definition still makes
sense in our CPB-network: we just count paths from every source in a different graph Gs (that
depends on the source s ∈ V ). Note that Brandes’ Algorithm can still be used in the CPB-
network, since it computes the sums BW

s,• starting from each source node s ∈ V , i.e. it computes

each sum BW
s,•(u) = ws,tσs,t(u)/σst in Gs, the CPB-graph with source node s. The following

remark summarizes the running time of computing betweenness centrality in the CPB-network.

Remark 2.4.2. Our CPB-network consists of n = 108 graphs, one graph for each source s, on
each of which we use a single source shortest path algorithm. This gives a total running time
of O(n · (m+ n log n)) = O(n3), since the n graphs are complete.

By the same arguments as in the proof of Theorem 2.3.3, we now only need O(n + m)
storage space.

When, in this thesis, we compute the unweighted betweenness centrality, we multiply it by a
constant to be able to compare it with the weighted betweenness centrality. We now choose this
constant. Note that for the weights ws,t it holds that

∑
s 6=tws,t = 100. If all weights are equal

to some constant c, then it holds that∑
s,t∈V,
s 6=t

c = 108 · 107 · c = 100,

so c = 1/(108 · 1.07). This is the constant by which we multiply the unweighted betweenness
centrality, to be able to compare the numbers with the weighted betweenness centrality.

8Note that a (weighted) betweenness centrality of 100 can never be achieved. In the computation of the
(weighted) betweenness of v, only weights ws,t with s 6= v 6= t are used for computing the weighted betweenness
centrality, and 100 =

∑
s 6=t ws,t >

∑
s 6=t6=v ws,t, since all weights ws,t with s 6= t are strictly positive.
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2.5 Results

The results for the weighted betweenness centrality can be seen in the following table. Great
Britain (GBR) has the highest weighted betweenness centrality of all countries in the network,
and other countries have a significantly lower weighted betweenness centrality. The number 2,
Luxembourg (LUX), has a betweenness centrality that is only (a bit more than) half as big as
the weighted betweenness centrality of Great Britain. The Netherlands (NLD) ranks 5th in the
weighted betweenness centrality measure: this seems to give evidence for the statement that
the Netherlands is an attractive conduit country for multinationals. Some explanations for the
fact that Great Britain is ranking very high:

(i) Great Britain has a standard dividend-tax of 0%. This means that entirely no tax needs
to be payed in Britain on dividends leaving the country.

(ii) Great Britain is an EU-country, and companies can send dividends between EU-countries
for free, without paying tax.

(iii) Great Britain has a high number of bilateral tax treaties with other countries: 51.

The Netherlands has an even higher number of bilateral tax treaties (74), and is also an EU-
country, but has a standard dividend-tax of 15% (although with specific countries a lower
percentage is often agreed in one of the bilateral tax treaties), which is higher than the 0%-
percent dividend tax in Great Britain. For more (economical) explanations, see [RL14].

Position Country u BW (u)

1 GBR 12.80779
2 LUX 6.96023
3 SGP 4.23889
4 EST 2.92012
5 NLD 2.63225
6 IRL 2.57268
7 HUN 2.11862
8 ESP 2.03112
9 SVK 2.00355
10 CYP 1.67547
11 MLT 1.48476
12 FRA 1.31831
13 FIN 1.22550
14 BRN 1.18916
15 MYS 1.04301

Position Country u B(u)

1 GBR 10.61932
2 NLD 6.27001
3 SGP 4.80919
4 CYP 4.60625
5 HUN 3.78398
6 ESP 3.51100
7 EST 3.38580
8 MLT 2.97467
9 LUX 2.70852
10 MYS 2.52015
11 SVK 2.50322
12 QAT 2.29019
13 ARE 2.11230
14 BRB 1.79871
15 HKG 1.71729

Table 2.1: The 15 countries with the highest weighted, respectively unweighted betweenness centrality
values.
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Figure 2.1: The countries that are more central in the network have a higher weighted betweenness
centrality value BW .

Now we examine the unweighted betweenness centrality. Here Great Britain also ranks first.
The Netherlands (NLD) is second in this measure.
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Figure 2.2: The countries that are more central in the unweighted network have a higher unweighted
betweenness centrality value B.

We conclude this results-section with a short examination of the edge betweenness centralities
(edge flows). The following table gives the first 10 edges, sorted according to their edge be-
tweenness centrality, respectively edge weighted betweenness centrality (edge flow). One notable
difference between the unweighted and the weighted edge flows is that the flows (of the top-10
edges) are higher than in the unweighted case. If an edge is often used on a path ending or
starting at a big country (measured according to gdp), it gets a high weighted edge flow. Note
also that edges with big economies as endpoints often occur in the top-10 of edges (ranked
according to weighted edge flow). Also Great Britain (which is a quite large economy) very
often occurs as one of the edge-endpoints, since it is the most important conduit country.
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Pos. (weight) Edge (u, v) BW [(u, v)]

1 USA – GBR 5.90293
2 GBR – CHN 4.34116
3 USA – LUX 4.22889
4 CHN – USA 3.87535
5 JPN – GBR 2.91545
6 LUX – CHN 2.57707
7 IDN – GBR 1.65730
8 IND – USA 1.45947
9 JPN – USA 1.44194
10 GBR – IND 1.31551
..
23 USA – NLD 0.92941

Pos. (unweight.) Edge (u, v) B[(u, v)]

1 BRB – GBR 1.58869
2 NLD – EGY 1.03431
3 SAU – ESP 0.93851
4 TWN – SGP 0.92638
5 IDN – GBR 0.92593
6 ESP – CRI 0.92593
7 UKR – LBY 0.92593
8 URY – ESP 0.92593
9 DZA – QAT 0.91727
10 LBN – QAT 0.91727

2 NLD – EGY 1.03431

Table 2.2: The 10 edges with the highest (weighted/unweighted) edge betweenness (flow). The edge
with the highest (weighted/unweighted) edge betweenness that has NLD as one of its two endpoints, is
also contained in the table.

The following two figures show the first 20 edges, sorted according to their edge weighted be-
tweenness centrality (edge flow), respectively edge unweighted betweenness centrality. Thicker
edges have a higher value.

ALB

DZA

AGO

ARG

ABW

AUS

AUT

AZE

BHS
BHR

BRB

BLR

BMU

BWA

BRA

BRN

BGR

CAN

CYM

CHL

CHN

COL

CRI CUR

CYP

CZE

DNK

DOM

ECU

EGY

GNQ

EST

FIN

FRA

GAB

DEU

GRC

GRN

HKG

ISL

IND

IDN

IRL
IMN

ISR

ITA

JAM

JPN

JRY

JOR

KAZ

KOR

KWT

LVA

LBN

LBY

LIE

LTU

LUX

MAC

MYS

MLT

MUS

MEX

MNG

NAM

NLD
BEL

NZL

NGA

NOR

OMN

PAK

PAN

PER

PHL

POL

PRT

PRI

QAT

ROM

RUS

SAU

YUG

SYC

SGP

SVK

SVN
HUN

HRV

ZAF

ESP

SUR

SWE

CHE

TWN

THA

TTO

TUN

TUR

UKR

ARE

GBR

USA

URY

VEN

VIR

VGB

Figure 2.3: The 20 edges with the highest weighted edge betweenness centrality (edge flow).
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Figure 2.4: The 20 edges with the highest unweighted edge betweenness centrality (unweighted edge
flow).

The (weighted) betweenness centrality values of all 108 countries, and larger prints of most
figures, can be found in the Appendix (Chapter A).
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Chapter 3

Shrinking strongly connected
components

Let G = (V,E) be a directed graph, with (multiplicative) edge reliabilities r : E → (0, 1]. (If
a graph had edge reliabilities of 0, we delete those edges). The reliability of the path is the
product of the reliabilities of the edges in the path. As we have seen in Lemma 2.2.9, the
graph G′ of tight edges with respect to δ(s, ·) (for some s ∈ V ) of E can contain cycles, but
only cycles of reliability 1 (i.e. all edges on the cycle must have reliability 1). Therefore the
graph G′ is not necessarily acyclic. That means that we might not be able to count the paths
in G′ in polynomial time, i.e. we might not be able to count maximum reliability paths in G in
polynomial time. Returning to our network of 108 countries, we can deal with this problem in
two ways:

(i) Add a small penalty of ε% tax to each edge (except possibly the first edge along a path)
in the network, as is done in Section 2.4.1. With this approach, it is possible to count
exactly all maximum reliability paths of shortest length. This solution is used throughout
the thesis.

(ii) Try to identify ‘areas’ that consist of cycles of reliability 1 and contract them to supernodes.
In each area, it is possible to go from any country to another (within the same area) along
reliability 1 edges (which means that zero tax is paid along those edges). We will define
an ‘area’ to be a strongly connected component, which will be defined in the next section.
We will contract the areas to supernodes. In the resulting graph we will be able to count
paths efficiently. That enables us to compute centrality measures for the areas.

This chapter will deal with the approach proposed under point (ii). In this chapter we will
therefore assume that there is no penalty of ε% tax (as under point (i)) added to the network.

3.1 Strongly connected components

In this section we introduce the notion of a strongly connected component. Later we discuss
algorithms to identify strongly connected components in a directed graph G = (V,E). This
section is mainly based on [Tar72], although also [MS07] is used.

Definition 3.1.1 (Strongly connected graph). A directed graph G = (V,E) is strongly con-
nected if for each pair u, v of vertices in G there exist paths P1 from u to v and P2 from v to u
in G.

Let G = (V,E) be a directed graph. Suppose we define a relation ∼ on V by: u ∼ v if and
only if there exists paths P1 from u to v and P2 from v to u in G. It is not hard to see that ∼
defines an equivalence relation on V . (reflexivity: immediate, symmetry: swap P1 and P2,
transitivity: concatenate paths). Let the different equivalence classes under this relation be
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called Vi, for i = 1, . . . , N . Let Gi be the subgraph of G induced by Vi, i.e. Ei = {(v, w) ∈
E | v, w ∈ Vi} and Gi = (Vi, Ei). By construction, each Gi is strongly connected. Moreover,
each Gi cannot be a proper subgraph of a strongly connected subgraph of G, because otherwise
the vertices in Vi would be ∼-equivalent to vertices not in Vi.

Definition 3.1.2 (Strongly connected component). The subgraphs Gi, i = 1, . . . , N are the
strongly connected components of G. Often we refer to a strongly connected component Gi by
its corresponding set of vertices Vi.

We want to identify the strongly connected components in a directed graph G = (V,E). The
algoritm we will give was found by Tarjan [Tar72]. Suppose we perform a depth-first search on
a directed graph G starting at some vertex u ∈ V . The set of edges which lead to a new vertex
(a white vertex in the description in Algorithm 1) when traversed are tree edges, and they form
a depth-first tree T of G rooted at u. We can divide the remaining explored edges (u, v) of G
(i.e. the edges explored in the depth-first search of G that are no tree edges) into three sets:

(i) The set of edges from descendants to ancestors in T . These edges we call fronds, cf.
Definition 1.4.2. In Remark 1.4.1 we have seen how to identify a frond edge: edge e = (v, w)
is a frond if vertex w is green when edge (v, w) is considered by the algorithm for the first
time.

(ii) The set of edges from ancestors to descendants in T . These edges are called forward edges.
We ignore these edges, since given T , these edges have no effect on the strongly connected
components of G. Note that, when (v, w) is a forward edge, it holds that v is discovered
before w by the depth-first search (as there is a tree path from v to w), but w is already
colored red when edge (v, w) is considered by the depth-first search (if w would be white,
edge (v, w) would be a tree edge. If w would be green, edge (v, w) would be a frond).

(iii) The set of edges from one subtree to another subtree in T . These edges we call cross-links.
An edge (v, w) can only be a cross link if w is red when edge (v, w) is explored for the
first time1. Note that if (v, w) is a cross-link, then v is discovered later than w during
the depth-first search (otherwise the edge (v, w) would be either part of our tree T or a
forward edge).

A tree edge we will denote by v → w. A frond or a cross-link we denote by v ; w. We can
apply depth-first search on G repeatedly until all the edges are explored. Then we will obtain
a set of trees (that contain all the vertices of G), the spanning forest F of G and sets of fronds
and cross-links. The other edges we throw away. We call the resulting directed graph consisting
of a spanning forest and sets of fronds and cross-links a jungle. Suppose we number the vertices
according to the order in which they are discovered (and colored green) during the search. We
refer to the vertices by their number.2

Lemma 3.1.1. Suppose v and w are in the same strongly connected component of a graph G.
Let F be a spanning forest of G obtained by repeated depth-first search. Then v and w have a
common ancestor in F . Moreover, if we call the highest numbered common ancestor u, it holds
that u lies in the same strongly connected component as v and w.

Proof. We assume v ≤ w (otherwise we interchange v and w). Let P be a path from v to w
in G. Let Tu with root u be the smallest subtree of a tree in F containing all the vertices in P .
Note that such a tree exists, since every edge of a path cannot lead to another tree in F with

1This holds since if w is white edge (v, w) is first examined by the depth-first search, (v, w) would be a tree
edge, and if w is green when edge (v, w) is first examined, edge (v, w) would be a frond.

2Note that these numbers correspond to the discovery times d[ ] from Algorithm 1, the original description of
depth-first search.
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larger numbered vertices (otherwise the edge would be a forward edge (which is not possible)
or a tree edge, joining the two trees).

An edge of a path could lead to another tree with lower numbered vertices, but then the
path cannot end at w since v ≤ w. Therefore the path P must be contained in one tree in F
and hence we can construct Tu, which means that v and w have a common ancestor in F .

Moreover, the path P must pass through vertex u. If v = u or w = u this is clear.
Otherwise, let Tu1 and Tu2 be two distinct subtrees of Tu containing vertices on P such that u→
u1 and u→ u2. If only one such tree exist, then u lies on P (since Tu is a smallest subtree of a
tree in F containing all vertices in P ). If two such subtrees exist, path P can only get from Tu1
to Tu2 by passing through u since no point in Tu1 is an ancestor of a point in Tu2 and vice versa,
which means that the path can only cross from Tu1 to Tu2 if the latter has smaller numbered
vertices, and this is not possible since the path leads from v to w (a higher numbered vertex
than v). Therefore the path needs to pass through u.

Corollary 3.1.2. Let C be a strongly connected component of G. Then the vertices of C define
a subtree of a tree in F , the spanning forest of G. We call the root of this subtree the root of
the strongly connected component C.

We would like to find the roots of the strongly connected components.

Definition 3.1.3 (Lowlink). For v ∈ V , we denote the smallest vertex which is in the same
component as v and is reachable from v by traversing (possibly zero) tree edges followed by at
most one frond or cross-link, by Lowlink(v). We call Lowlink(v) the lowlink of v.

Lemma 3.1.3. A vertex v is the root of some strongly connected component if and only
if Lowlink(v) = v.

Proof. “=⇒” Suppose v is the root of a strongly connected component of G. This implies that
Lowlink(v) = v, since otherwise Lowlink(v) < v which means that a proper ancestor of v would
be in the same connected component as v (and then v cannot be the root of a strongly connected
component).

“⇐=” Suppose Lowlink(v) = v, but that v is not the root of a strongly connected compo-
nent. Let u be the root of the strongly connected component that contains v. Note that v is a
vertex (in this component) different from u. There must be a path P from v to u in G. Let e be
the first edge on this path with head w not in de subtree Tv with root v of the tree containing v.
Then e is a frond or a cross-link and by definition (of the Lowlink) we have Lowlink(v) ≤ w
(since v and w are in the same strongly connected component). But note that w < v since the
path can only lead to subtrees with smaller numbered vertices (otherwise w would be contained
in the subtree Tv). Therefore Lowlink(v) < v, in contradiction with our assumption.

It follows that, to compute the strongly connected components of G, we need to find the Lowlink-
values of the vertices. The vertices with Lowlink(v) = v (where the vertices are numbered
according to the order in which they are reached during the search) are exactly the roots of
subtrees that form strongly connected components of G. We claim that Algorithm 8 does the
trick.

Theorem 3.1.4. Algorithm 8 finds the strongly connected components of a directed graph G =
(V,E) correctly in time O(|V |+ |E|).

Proof. First we prove that the algorithm terminates in time O(|V | + |E|). Note that the
algorithm is a modified depth-first search algorithm, with the addition that we calculate lowlink-
values during the search and that each vertex is placed on a stack S once and is removed from
this stack once. During the search, every vertex and every edge is visited once. Also, testing
to see if a vertex is on the stack S can be done in a fixed time if we keep a boolean array
of size |V | which answers this question for each vertex. The amount of time added by the
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Input: Directed graph G = (V,E).
Output: The strongly connected components of G (as sets of vertices).

Initialize: i := 0, S = ∅, (all vertices v ∈ V are colored white).
foreach v ∈ V do

if v is not yet numbered then
Strongconnect(v)

end
end
return strongly connected components of G (as sets of vertices).

Procedure Strongconnect(v)
Number(v) = i, Lowlink(v) = i, i = i+ 1
put v on the stack of vertices S, (color v green).
foreach edge (v, w) in E do

if w is not yet numbered then // w is white and (v, w) is a tree edge.
Strongconnect(w)
Lowlink(v) = min(Lowlink(v), Lowlink(w))

else if Number(w) < Number(v) then // (v, w) is a cross edge or a frond.
if w is in S then // w, v contained in the same SCC (proof of Theorem 3.1.4).

Lowlink(v) = min(Lowlink(v), Number(w))
end

end
end
if Lowlink(v) = Number(v) then

Start a new strongly connected component
while w on top of S satisfies Number(w) ≥ Number(v) do

Delete w from S and put w in the current strongly connected component.
end

end
(color v red)

Algorithm 8: Tarjan’s algorithm to find the strongly connected components of G. The coloring steps
(between brackets) are meant for understanding of the depth-first search, and are not necessary for
the functioning of the algorithm.

operations with the stack and the lowlinks is therefore linear in |V | and |E|. We conclude that
the algorithm terminates in time O(|V |+ |E|) (where we observe that the storage space required
by the algorithm is bounded in O(|V |+ |E|)).

It remains to prove that the algorithm is correct. We prove that each time Strongconnect(u)
is finished for a vertex v (i.e. when u is colored red), it holds that

(i) Lowlink(u) is correctly computed,

(ii) and all the strongly connected components in Tu, the subtree rooted at u in the DFS-forest,
are already returned by the algorithm.

To do this, we assume (inductively) that during the execution of the algorithm for all vertices
that are already finished (and colored red) just before some vertex v is finished, both (ii) and (i)
hold. We prove that both conditions also hold for vertex v.

Suppose an edge (v, w) with w < v is explored by the algorithm. It holds that w ∈ S if
and only if w and v are in the same strongly connected component.
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“=⇒” Suppose first that v and w are not in the same strongly connected component. If v
and w have no common ancestor, then w was finished before v by the algorithm (note
that w < v), removed from S and placed in a component (there must be an ancestor of w
that is a component root), so w /∈ S.

If v and w have a common ancestor u but are not in the same strongly connected com-
ponent, there must be a strongly connected component root r on the tree path u → w.
Since w < v, this root r was discovered and finished by the algorithm before the algorithm
considers (v, w), and hence w /∈ S at the moment that the algorithm considers (v, w).

“⇐=” Conversely, if w /∈ S then, since w < v, the recursive call to w already must have been
completed and w is already colored red. Hence, using the induction hypothesis (prop-
erty (ii) holds for w), the strongly connected component containing w has already been
returned by the algorithm, so v and w are not in the same strongly connected component.

We conclude that it holds indeed that w ∈ S if and only if w and v are in the same strongly
connected component, and hence Lowlink(v) is correctly computed, as follows from the definition
of the lowlink.

We now prove property (ii) for v, using that property (i) holds for v. We only need to
prove (ii) for a vertex v for which the algorithm reaches the output-phase, i.e. Lowlink(v) = v.
If a strongly connected component is returned by the algorithm, by property (i), Lowlink(v)
is computed correctly. All vertices at the top of the stack S (including v = Lowlink(v)) are
placed into a strongly connected component. These vertices are exactly the vertices that are
descendants of v but that are not contained in another strongly connected component (us-
ing property (ii) for the vertices finished before v). By Corollary 3.1.2 in combination with
Lemma 3.1.3, these vertices form exactly the strongly connected component with v as root.

Suppose we have identified the strongly connected components (which will be the ‘areas’ as
described at the beginning of this chapter) in a directed graph G = (V,E). Then we can
‘contract’ them to supervertices .

Definition 3.1.4 (Condensation graph). Let G = (V,E) be a directed graph with Gi =
(Vi, Ei), i = 1, . . . , N as strongly connected components. The condensation graph Gc = (Vc, Ec)
of G has as vertex set

Vc := {Vi : i = 1, . . . , N},
i.e. Gc contains exactly one vertex for each strongly connected component of G. The edge set
of Gc we define as follows:

Ec := {(Vi, Vj) : i 6= j and ∃ e ∈ E from some vertex in Vi to some vertex in Vj}.
If edges in G are assigned additive edge costs c : E → R≥0, then we let the cost of edge (Vi, Vj)
be the smallest edge cost of the edges in G that go from some vertex in Vi to some vertex in Vj
in G. Similarly, if the edges in G are assigned multiplicative edge reliabilities r : E → (0, 1],
then we let the reliability of edge (Vi, Vj) be the biggest edge reliability of the edges in G that
go from some vertex in Vi to some vertex in Vj in G.

Proposition 3.1.5. The condensation graph Gc of G is an acyclic graph.

Proof. Suppose the condensation graph is not acyclic. Let C be a cycle rooted at some vertex Vi.
Note that the edge (Vi, Vi) is by construction not contained in Gc. Therefore there should be
a Vj in C unequal to Vi and we can split the cycle into two paths, one from Vi to Vj and one
from Vj to Vi. But then in our original graph G there is a path from some, and therefore from
each vertex in Vi to some, and therefore to each vertex in Vj and conversely there is a path
from each vertex in Vj to each vertex in Vi. That is, the vertices from Vi and Vj belong to the
same strongly connected component of G. This is in contradiction with the fact that Vi and Vj
are different strongly connected components of G.
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Note that we can count simple paths between two vertices (if necessary passing through some
given third vertex) in linear time in acyclic directed graphs, with Algorithm 5. We will use
this property in the next section. We conclude this section with a useful property of Tarjan’s
algortithm: Tarjan’s algorithm outputs the strongly connected components in reverse topological
order. The proof of this statement is not in the paper [Tar72], but we provide it here.

Lemma 3.1.6 (Reverse topological order as a consequence of Tarjan’s algorithm). Algorithm 8
outputs the strongly connected components of G in reverse topological order. This means, that
if Vi and Vj are two strongly connected components such that there exists an edge (v, w) from a
vertex v ∈ Vi to a vertex w ∈ Vj, then Vj is returned before Vi by the algorithm.

Proof. Suppose for the sake of contradiction that there exists an edge (v, w) from a vertex v ∈ Vi
to a vertex w ∈ Vj but that Vi is returned before Vj by the algorithm. Let rj (resp. ri) be the
root of the strongly connected component Vj (resp. Vi). Then, ri is finished before rj is finished
by the algorithm. Note that v is a descendant of ri so it is finished before ri by the algorithm
(as the structure of the algorithm is an ordinary depth-first search). Hence, w would also be
a descendant of ri (which is not possible since then w would be returned in the same strongly
connected component as v) unless w is already discovered before v by the algorithm. But then w
would be contained in S when (v, w) is explored (as every vertex is placed on S and removed
from S once, and w will only be removed from S when Vj is returned) and w < v. This would
mean that w and v are in the same strongly connected component (by the same argument as
in the proof of Theorem 3.1.4), which is not the case.

3.2 Counting super-vertices

Let G = (V,E) be a directed graph with (additive) edge costs c := E → R≥0. We want
to shrink strongly connected components with edges of cost 0 into super-vertices. All results
in this section also hold for multiplicative edge reliabilities, by replacing ‘edges of cost 0’ by
‘edges of reliability 1’ and ‘shortest path’ by ‘maximum reliability path’. We will compare two
procedures.

Algorithm 3.2.1 (Counting procedure – I). The first procedure is as follows.

(i) Let H = (V,E0), where
E0 = {e ∈ E : c(e) = 0}.

The graph H is a graph consisting of the vertices of G and all edges of G that have cost 0.

(ii) Use Tarjan’s algorithm (Algorithm 8) to identify all strongly connected components of H
as sets of vertices Vi. Note that the Vi are subsets of V , the vertex set of G.

(iii) Now, construct the condensation graph of G (as in Definition 3.1.4), but using the strongly
connected components Vi of H instead of the strongly connected components of G itself.
The resulting graph we call Gc.

(iv) Construct the graph of tight edges (with respect to some source node Vs ∈ Gc such
that s ∈ Vs) (Gc)

′ out of Gc.

(v) We will be able to count paths in (Gc)
′ since (Gc)

′ will not contain cycles. This is be-
cause (Gc)

′ could only contain cycles of cost zero, but these are deleted by the previous
procedure.

Algorithm 3.2.2 (Counting procedure – II). The second procedure is as follows.

(i) Let G′ be the graph of tight edges with respect to δ(s, ·) for some node s ∈ V .

(ii) Use Tarjan’s algorithm (Algorithm 8) to identify all strongly connected components of G′

as sets of vertices Vi.

(iii) Construct the condensation graph (G′)c of G′ (as in Definition 3.1.4).
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(iv) Count the paths in the resulting graph. Here we can use the (reverse) topological order of
the strongly connected components given by Tarjan’s algorithm (see Lemma 3.1.6).

Both procedures can give different results.

Lemma 3.2.1. We compare Algorithm 3.2.1 with Algorithm 3.2.2. The graphs (Gc)
′ and (G′)c,

do both not contain cycles, but it does not necessarily hold that (Gc)
′ = (G′)c.

Proof. Note that (Gc)
′ does not contain cycles, since Gc does not contain cycles of cost 0 and

the shortest path graph can only possibly contain cycles if they have cost 0. Also (G′)c does not
contain cycles, since it does not contain strongly connected components that consist of more
than one vertex.

Let G = (V,E) be a graph on the vertices s, u, v, w with edges and edge costs as in
Figure 3.1.

s

u

v

w

1

2

0

0

0

Figure 3.1: Example graph. The edge (v, u) is not tight with respect to δ(s, ·). All other edges are tight
with respect to δ(s, ·).

Note that edge (v, u) is not tight with respect to δ(s, ·), while it has cost 0. Furthermore, (Gc)
′

will consist of two vertices, given by {s} and {u, v, w}. On the other hand, (G′)c will consist of
four vertices, {s}, {u}, {v} and {w}. Hence, in this example we have (Gc)

′ 6= (G′)c.

Both the graphs (Gc)
′ and (G′)c will be acyclic, and hence we can count simple paths in those

graphs efficiently. Which of the two procedures is the most reasonable to use? If we use
Algorithm 3.2.2, for each s ∈ V , the obtained strongly connected components can differ and we
have to contract the vertices depending on the source vertex s ∈ V . This will not allow us to
compute betweenness for the strongly connected components: they can differ depending on the
source node.

If we use Algorithm 3.2.1, we only have to contract the vertices into supernodes once, after
which we can count shortest paths between any pair of nodes Vi, Vj efficiently in the resulting
graph Gc (where Gc is as in Algorithm 3.2.1). This will enable us to compare the strongly
connected components in H (the vertices of G′) and calculate betweenness centrality measures
for these strongly connected components. Therefore we will use this approach.

Note that we can not use the trick of shrinking supernodes to count paths between two
vertices s, t efficiently in the original graph G = (V,E). This already follows from the fact that
counting simple paths is #P -hard. But if we (magically) could count paths between pairs of
vertices efficiently inside strongly connected components, we would be able to count shortest
paths from s to t efficiently.

Theorem 3.2.2. Suppose that G′ = (V ′, E′) is the shortest path graph of G = (V,E), with
edge costs c : E → R≥0, source node s and sink node t. Let (G′)c be the topologically sorted
condensation graph of G′, the graph in which all strongly connected components V ′1 , . . . , V

′
N of G′

are contracted into supernodes. Suppose we can count in polynomial time inside any strongly
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connected component Vi the number of simple paths from any u ∈ Vi to any v ∈ Vi. Then we
can count the number of simple paths from s to t in G′ in polynomial time.

Proof. We claim that Algorithm 9 (which runs in linear time) counts the paths correctly. By
initializing, the number of simple paths from each v ∈ Vk to t is set correctly. We proceed by
induction. Suppose that for each v ∈ Vj with 1 < j ≤ k the number of simple paths from v
to t is set correctly. We will prove that the number of simple paths for each v ∈ Vj−1 to t is set
correctly by the algorithm.

An edge out of Vj−1 can only have a vertex in Vl, with l > j−1, as an endpoint. Therefore
the first foreach–loop within the outer foreach–loop sets correctly the number N ′(u) of simple
paths from each u ∈ Vj−1 to t without taking the paths inside Vj−1 into account. In the second
foreach–loop (within the outer foreach–loop) the paths inside Vj−1 come into the counting as
well. Then the number N(u) of simple paths from each u ∈ Vj−1 to t is set correctly.

Input: Shortest path graph G′ = (V ′, E′) of G. Source s ∈ V ′, sink t ∈ V ′.
Topologically sorted DAG (G′)c = ((V ′)c, (E

′)c) with vertex s ∈ V ′1 ,
sink t ∈ V ′k. Topological order V ′1 , . . . , V

′
k, . . .

σuv is the number of simple paths from any vertex u ∈ V ′i
to any vertex v ∈ V ′i inside SCC V ′i . If u = v then σuv = 1.

Output: The number of simple s, t-paths N(s).

Initialize: N(vk) is the number of simple paths from any vertex vk ∈ V ′k to t inside V ′k.
If vk = t then N(vk) := 1. For all v ∈ V ′ \ V ′k we set N(v) := N ′(v) := 0.

foreach Y ∈ (V ′)c in reverse topological order (i.e. in order . . . V ′k . . . V
′

1) do
foreach child C ∈ V ′ of Y do

List L = ∅
foreach edge (v, w) such that v ∈ Y and w ∈ C do

N ′(v) = N ′(v) +N(w)
add v to L

end
foreach pair of vertices u ∈ Y , v ∈ L do

N(u) = N(u) +N ′(v) · σuv
end

end
end
return N(s)

Algorithm 9: Algorithm to count the number of simple paths between s and t in the shortest path
graph of G with respect to δ(s, ·), given the number of simple paths between any two nodes in any
SCC of G′ (the shortest path graph of G).

Theorem 3.2.3 (Counting simple s, t-paths in a strongly connected graph is #P -complete).
Let H be a strongly connected graph, with a source node s and a sink node t. The problem of
counting all simple s, t-paths is #P -hard.

Proof. First, checking whether a given path is a simple s, t-path in a strongly connected graph
can be done in polynomial time: O(|V |+ |E|).

Suppose it would be possible to count all simple u, v-paths for each pair of vertices u, v
in a strongly connected graph in polynomial time. With the help of Algorithm 9 one could
then count exactly all simple paths from some source s to some sink t in the shortest path
graph G′ of an arbitrary directed graph G in polynomial time. However, the shortest path
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graph can have an arbitrary form (in particular, if a graph consists only of edges cost 0, then
the shortest path graph with respect to δ(s, ·) is the graph itself3). Therefore we would be
able to count simple s, t-paths in an arbitrary graph in polynomial time, which is #P -hard (see
Example 1.3.5).

3.3 Results

First, we will examine the strongly connected components in our network of countries. As we
have seen in Section 2.4, our network of countries consists of |V | = 108 graphs, one for each
source country s ∈ V . We compute the strongly connected components over the zero-tax edges
(reliability 1 edges) in each graph Gs. It turns out that there is just one strongly connected
component that consists of more than one country in each graph Gs. We denote this strongly
connected component by SCC0(Gs). We find that the intersection (over all s ∈ V ) of all these
components consists of 64 countries.

∩s∈V SCC0(Gs) = {ALB, AUT, BHS, BRB, BLR, BEL, BMU, BRN, BGR, CYM,

COL, HRV, CUR, CYP, CZE, DNK, EGY, EST, FIN, FRA,

DEU, GRC, GRN, HKG, HUN, ISL, IDN, IRL, IMN, ISR,

ITA, JAM, JRY, LVA, LBN, LIE, LTU, LUX, MYS, MLT,

MUS, MNG, NLD, NZL, NOR, OMN, POL, PRT, QAT, ROM,

SAU, SGP, SVK, SVN, ZAF, ESP, SWE, CHE, TWN, TTO,

UKR, ARE, GBR, VGB}.

Note that for every pair of countries in ∩s∈V SCC0(Gs), companies can send money from one
country to the other country without paying taxes. Because we take the intersection of the
sets SCC0(Gs), there is a reliability 1 path from every country in ∩s∈V SCC0(Gs) to every other
country in ∩s∈V SCC0(Gs).

4 Furthermore, we find that

⋃
s∈V

SCC0(Gs) =

(⋂
s∈V

SCC0(Gs)

) ⋃
CHL

⋃
IND

⋃
AUS

⋃
VEN,

i.e. the union of all components SCC0(Gs) consists of 68 countries. If we define

S := {s ∈ V : δs(s,NLD) = 1 and δNLD(NLD, s) = 1},

where δs denotes the distance function in Gs for any s ∈ V , then we find with our data that

S =
⋂
s∈V

SCC0(Gs),

i.e. the countries to which companies can send money for free from the Netherlands and back
(possibly via a tax-route), form exactly the set SCC0(Gs). We would like to shrink strongly
connected components of reliability 1 edges (zero-tax edges), as proposed in the previous section.
However, the set of strongly connected components in Gs depends on s ∈ V , and hence we have
not one set of strongly connected components over reliability 1 edges that we can shrink and for
which we can compute centrality measures in the network. But since, for each s ∈ V , there is

3Here we are assuming that all vertices in G are reachable from s.
4In fact, for any two countries in ∩s∈V SCC0(Gs) there is a reliability 1 path from one country to the other

country such that the edge reliability on the first edge of the path is the edge reliability for a first edge from the
source on a path (where the edge reliabilities are as in Section 2.4), and there also is a reliability 1 path such
that the first edge on the path has the edge reliability for an edge with tail not equal to the source.
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Figure 3.2: All countries in ∩s∈V SCC0(Gs) are colored green. Companies can send dividends without
paying tax from any green country to any other green country, possibly via a route passing through
conduit countries.

only one strongly connected component SCC0(Gs) over the zero-tax edges in Gs that contains
more than one country, we decide to shrink ∪s∈V SCC0(Gs) into one big supernode5, which we
denote by U . If a path starts at U , it is not clear how to define the edge reliabilities in the
condensation graph in the CPB-problem. Let s ∈ U be a country in the supernode if the path
starts at U . Should we choose the reliability for the first edge on a path (cf. Section 2.4) or the
reliability for another edge on the path, when the path leaves U? This depends on the starting
vertex s ∈ U , and hence there is no canonical choice for paths starting from U .

Nevertheless, we shortly did an experiment with paths not starting (or ending) at U .
If v /∈ U is a country we write {v} for the vertex in the component graph (depending on the
starting point s ∈ V \ U) in which the strongly connected component containing only v is
shrunk. We write Vc for all the vertices in the resulting network: Vc = U ∪

(
∪v∈V \U{v}

)
.

In the resulting network, with U is shrunk into a supernode, there are in total 3741 shortest
paths not starting or ending at U . The supernode U is a conduit country on 2860 of those paths.
Furthermore, we can compute the (unweighted) betweenness of U , and we find

B(U) =
∑

{s},{t}∈Vc
{s}6={t}6=U

σ{s}{t}(U)

σ{s}{t}
= 1207.245,

Normalizing by the number of pairs of vertices in the condensation graph (41 · 40) and6 multi-
plying by 100 gives 73.6. This is a very high betweenness. We conclude that countries not in
the supernode very often use the supernode as a conduit country for sending money to another
country not in the supernode. Since the CPB preferred to have betweenness measures for the
individual countries and not for the supernodes, we end the discussion of the supernodes here.

In the next section we move from strictly shortest (or maximum reliability) paths to almost
shortest paths: we will try to count paths that are almost as short as the shortest path, but
not necessarily the strictly shortest.

5If we shrink the intersection the result might contain reliability 1 cycles.
6A better normalization for unweighted betweenness is dividing by the number of {s}, {t} pairs with {s} 6=

{t} 6= U (here 40 · 39). However, throughout this thesis we normalize by the number of pairs s, t ∈ V with s 6= t
to be better able to compare weighted and unweighted betweenness. To be consequent, we do that here also.
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Chapter 4

Finding paths of relevant reliability

In this chapter we try to find paths that are almost of maximum reliability, instead of only
paths of strict maximum reliability. We begin by proving that counting all paths within a
certain range from the shortest path is #P -hard. After that, we try to find a ‘restricted’ within
range notion to be able to count ‘restricted within range’ paths in polynomial time.

4.1 APSP, nonrestricted relative range version

Let G = (V,E) be a directed graph, and c : E → R≥0 be a cost function, such that G does
not contain zero-cost cycles. In this section we want to find the complexity of determining all
relevant paths, using one of the following two notions of a ‘relevant path’.

Definition 4.1.1 (Relevant path). Given α ∈ R≥0, We call a s, v-path P relevant

(i) within additive range if c(P ) ≤ δ(s, v) + α,

(ii) within multiplicative range if c(P ) ≤ (1 + α) · δ(s, v).

We would like to find all relevant s, v-paths within additive (or multiplicative) range.

Problem 2 (Counting relevant paths). For any pair (s, t) ∈ V × V of vertices and for one of
the two notions of relevance as in Definition 4.1.1, find the number of (or: all) relevant paths
(with either of the two notions of relevance) from s to t. What is the complexity of solving this
problem?

We bring Example 1.3.5 into remembrance: the counting version of the simple s, t-path problem
is #P -complete. That is, the problem of finding the number of simple s, t-paths in an arbitrary
graph is #P -complete. From this it follows that Problem 2 (with either of the two notions of
relevance) is #P -complete.

Theorem 4.1.1 (Counting relevant paths is #P -complete). Given a graph G = (V,E), a source
node s, a sink node t (with t 6= s), an additive cost function c : E → R≥0, such that G does
not contain zero-cost cycles, and an α ∈ R≥0, we want to count the number of simple paths
with cost smaller than δ(s, t) +α (respectively smaller than δ(s, t) · (1 +α)), where δ(s, t) is the
shortest path distance from s to t. We claim that this problem, if α > 0, is #P -complete.

Proof. We need to show that the decision version of this problem is in NP and that every
problem in #P can be reduced to this problem.

(i) Given a set of edges P ⊂ E, we can determine in polynomial time, O(|V |+ |E|), whether
this is a simple s, t-path of cost smaller than δ(s, t) +α, (respectively smaller than δ(s, t) ·
(1 + α)). Therefore the decision version of this problem is in NP .
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(ii) Suppose that we have an instance of the s, t-simple path counting problem (a #P -complete
problem). We transform this instance into an instance of Problem 2 (with relevance within
additive resp. multiplicative range) as follows.

(+) For within additive range paths, let all edge costs be ε, with ε > 0 some small
number (to be determined). We want to find all s, t-paths with cost within the
interval [δ(s, t) , δ(s, t) + α], for α > 0 a given small number. If n · ε ≤ α then all
simple s, t-paths in G are within additive range paths and vice versa.

( · ) For within multiplicative range paths, let all outgoing edge costs of s be 1 and all
other edge costs be ε, with ε > 0 some small number (to be determined). We want
to find all s, t-paths with cost within range [δ(s, t) , δ(s, t) · (1 +α)], for α > 0 a given
small number. If we choose ε ≤ α/n then it holds for each s, t-path P that

c(P ) ≤ 1 + n · ε ≤ 1 + α ≤ δ(s, t) · (1 + α),

since δ(s, t) ≥ 1 by construction. Therefore, if ε ≤ α/n then all simple s, t-paths in G
are within multiplicative range paths and vice versa.

Hence we reduced the count simple s, t-paths-problem to the count relevant paths problem
(Problem 2). Note that this reduction can be done in polynomial time.

We conclude that the problem of counting relevant paths within additive (resp. multiplicative)
range in G is #P -complete.

The above complexity result may be not surprising: it even holds that the problem of comput-
ing one strictly-second shortest path is NP -hard, as is proven by Lalgudi and Papaefthymiou
in [LP97].

Theorem 4.1.2. The problem of finding one simple strictly-second shortest s, t-path (i.e. finding
a shortest path among all paths with cost strictly larger than δ(s, t)) in a graph is NP-hard,
provided that 0 cost edges are allowed.

4.2 Restricted relative range notion for additive edge costs

To construct a ‘relevant’ path graph (containing all ‘relevant’ paths starting at some source
vertex s ∈ V ) we would like a subpath optimality condition to hold. For example, for shortest
paths it holds that concatenating paths in the shortest path graph Gs (containing all shortst
paths from s) gives a new path in the shortest path graph and therefore a new shortest path
starting at s. Moreover, subpaths of shortest paths are again shortest paths. Implicitely, we
make use of this condition in using the concept of a ‘shortest path graph’. We will formally
state the subpath optimality condition. In this section we deal with additive edge costs, in the
next section we make the translation to multiplicative edge reliabilities.

Definition 4.2.1 (Subpath optimality condition). Let G = (V,E) be a directed graph, and c :
E → R≥0 be a cost function. Suppose we are given a notion of ‘relevant’ paths in G starting at
any vertex s ∈ V . The subpath optimality condition holds if for all vertices w ∈ V , and for any
relevant s, w-path P and any vertex v on P it holds that

(i) the s, v-subpath of P is relevant,

(ii) and for any relevant s, v-path P1 it holds that P1 concatenated with the v, w-subpath of P
is again relevant.

Note that both conditions hold for shortest paths, since it holds that δ(s, v) + δ(v, w) = δ(s, w)
if v lies on a shortest s, w-path.
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With conditions (i) and (ii), a graph Gs constructed from relevant paths1 (a ‘relevant path
graph’) starting at s has the property that all paths from s are relevant paths.

Remark 4.2.1. Note that we can not replace conditions (i) and (ii) of Definition 4.2.1 by
the condition that every x, y-subpath P ′ of an s, w-path P must be relevant. Suppose we call
an s, w-path P ‘relevant’ if for every x, y-subpath P ′ of P it holds that c(P ) ≤ δ(x, y) · (1 + α).
Then subpaths of relevant paths are again relevant. But condition (ii) of Definition 4.2.1 is not
necessarily satisfied.

Consider the following example. Let Gs = (V,E) be a graph with vertices s, x, v and w.
Let there be a directed edges with costs as in Figure 4.1. Let α = 0.1.

s

x v

w

5
2.5

10

3

6

Figure 4.1: Example graph, with α = 0.1. All edges are contained in a ‘relevant path’, but the
path 〈s, x, v, w〉 is not relevant.

Note that the paths P1 := 〈s, x, v〉, P2 := 〈s, v, w〉 and P3 := 〈s, w〉 are all ‘relevant paths’, the
graph consists of relevant paths. However, condition (ii) is not satisfied. The path P2 = 〈s, v, w〉
is relevant, with v, w-subpath P ′2 = 〈v, w〉. Also P1 := 〈s, x, v〉 is a relevant x, v path. But the
concatenation of P1 and P ′2 is 〈s, x, v, w〉 and this is not a relevant path.

For relevant paths within additive range (as in Definition 4.1.1 (i)), we prove that property (ii)
of Definition 4.2.1 does not necessarily hold.

Example 4.2.1 (Counterexample, additive range). Let G be a graph consisting of the ver-
tices s, v, w, x, y, edge costs as in Figure 4.2 It holds that P = 〈s, x, v, w〉 is a relevant s, w-
path, with v lying on P . Also, P1 = 〈s, v〉 is a relevant s, v path of cost 1 + α and the
v, w-subpath P ′ = 〈v, w〉 of P also has cost 1 + α, where α > 0. However, the concatenation
of P1 and P ′ is not relevant, since it has cost c(P1) + c(P ′) = 2 + 2α > 2 + α = c(P ) + α.

s

x

v

y

w

1/2 1/2 1/2 1/2

1 + α 1 + α

Not a relevant path.

Figure 4.2: Example graph. Path P1 = 〈s, v〉 is relevant and P ′ = 〈v, w〉 is a subpath of a relevant s, w-
path, but their concatenation 〈s, v, w〉 is not a relevant path.

For the relative range notion of ‘relevance’ as in Definition 4.1.1, we will prove that property (i)
of the subpath optimality condtion does not necessarily hold: subpaths (starting at s) of relevant
paths (starting at s) need not to be relevant.

Example 4.2.2 (Counterexample, multiplicative range). Consider a graph consisting of 4 ver-
tices s, v, w, x. Let there be directed edges (s, v) of cost c(s, v) = 12, (s, x) of cost c(s, x) =
5, (x, v) of cost c(x, v) = 4 and (v, w) of cost c(v, w) = 6. Let α = 0.2.

1A graph is constructed from relevant paths if its edge set is the union of edge sets of relevant paths.
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5 4
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Relevant path.

Figure 4.3: Example graph, with α = 0.2.

The path P = 〈s, v, w〉 is relevant, since 18 = δ(s, w) · (1 + α) = 15 · (1 + α). But the
subpath P ′ = 〈s, v〉 does not satisfy c(P ′) = 12 ≤ 9 · (1 + α) = δ(s, v) · (1 + α). Therefore we
see that subpaths (starting at s) of relevant paths are not necessarily relevant: property (ii) of
Definition 4.2.1 is not satisfied.

However, we will see that there exists a notion of ‘restricted relative range’ relevance, such that
both conditions of the subpath optimality condition are satisfied. To this end, we seek a notion
of almost tight edges, such that the graph of almost tight edges with respect to δ(s, ·) for some
vertex s ∈ V consists exactly of all relevant paths (with this ‘restricted relative range’ version
of relevance). A natural definition of an ‘almost tight edge’ is the following:

Definition 4.2.2 (Almost tight edge – proposed). We define an edge (v, w) to be almost tight
with respect to δ(s, ·) if

c(v, w) + δ(s, v) · (1 + α) ≤ δ(s, w) · (1 + α).

It holds that the graph of almost tight edges with respect to δ(s, ·) for some vertex s ∈ V
contains exactly all relevant paths (as we will later prove in Theorem 4.2.1), with the following
‘restricted relative range’ definition of a relevant path.

Definition 4.2.3 (Relevant path – restricted relative range). We define a path P = 〈s, . . . , w〉
to be relevant if for each subpath P ′ = 〈x, . . . , y〉 of P it holds that

c(P ′) + δ(s, x) · (1 + α) ≤ δ(s, y) · (1 + α).

This definition of relevance makes sense: when concatenating paths, we always remain ‘within
range’. If an x, y-path in the relevant path graph (that contains all relevant paths starting at s)
is concatenated with a relevant s, x-path, the result must remain a relevant path.

An interpretation for companies: companies want to send tax over a path that is ‘within
range’ in total, but in each step they do not want to lose too much money, and when concate-
nating tax routes the total tax must remain ‘within range’.

Note that for this definition of ‘relevance’, condition (i) of Definition 4.2.1 is satisfied (this
is an easy check for the reader). Condition (ii) of Definition 4.2.1 is also satisfied, although this
requires some more consideration. We will prove that, if G does not contain cycles of cost 0,
there exists a directed acyclic graph G′ that contains exactly all relevant paths starting from
some vertex s ∈ V (i.e. each path in G′ is a relevant path and each relevant path in G is a path
in G′), just as we did for shortest paths. It then follows that both conditions of Definition 4.2.1
hold. We first formulate the problem of this section.

Problem 3 (Restricted relative range path problem). For any pair (s, v) ∈ V × V of vertices,
count all relevant paths (as defined in Definition 4.2.3) from s to v.

We try an approach similar to the approach we used in the strictly-shortest path case. Fix a
vertex s ∈ V . We construct the graph G′ = (V ′, E′) that consists of all almost tight edges with
respect to δ(s, ·), i.e. let

V ′ := {v ∈ V | v is reachable from s},
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and
E′ := {(v, w) ∈ E : (v, w) is almost tight with respect to δ(s, ·)}.

In the following theorem we prove that this graph consists exactly of all relevant paths that
start at s.

Theorem 4.2.1. A path P starting at s is contained in G′ = (V ′, E′) if and only if P is a
relevant path starting at s in G according to Definition 4.2.3.

Proof. “⇐=”: Suppose P is a relevant path starting at s in G (according to Definition 4.2.3).
Let (x, y) be an edge of P . This is also a subpath of P so it holds that

c(x, y) + δ(s, x) · (1 + α) ≤ δ(s, y) · (1 + α),

i.e. (x, y) is an almost tight edge with respect to δ(s, ·). So all edges of P are almost tight, i.e. P
is contained in G′ = (V ′, E′).

“=⇒”: Suppose a path P = 〈s, . . . , w〉 starting at s is contained in G′ = (V ′, E′). Let P ′ =
〈ui, . . . , uj〉 be an arbitrary subpath of P . Then

c(P ′) =

j−1∑
t=i

c(ut, ut+1) ≤
j−1∑
t=i

(δ(s, ut+1)− δ(s, ut)) (1 + α)

≤ (δ(s, uj)− δ(s, ui)) · (1 + α),

i.e. c(P ′) + δ(s, ui) · (1 +α) ≤ δ(s, uj) · (1 +α). Therefore we conclude that P is a relevant path
in G.

Note that we can construct G′ = (V ′, E′) efficiently (just calculate the δ(s, ·)-values with Di-
jkstra’s algorithm and construct G′). The graph G′ will consist exactly of all relevant paths
(according to Definition 4.2.3 starting at s, so now we need to count all paths from G′. Note
that G′ may contain cycles. For example, consider a graph containing cycles G in which all
edge costs are 0 which contains a cycle that is reachable from s. Then all edges on this cycle
are (almost) tight with respect to δ(s, ·), i.e. G′ contains a cycle.

Lemma 4.2.2. Suppose G′ contains a cycle, then all edges on this cycle will have cost 0.

Proof. Let C = 〈v = v1, . . . , vj = v〉 be a cycle in G′. Let P be a s, v-path in G′. Then P is
relevant and P concatenated with C is also a relevant s, v-path (since it is a s, v-path contained
in G′). Therefore it holds that for the subpath C,

c(C) + δ(s, v) · (1 + α) ≤ δ(s, v) · (1 + α),

i.e. c(C) ≤ 0. Since we do not have edge costs of value smaller than 0, we see that c(C) = 0
and hence that all edges on the cycle have cost 0.

Therefore, if we allow no edges of cost 0, the graph G′ of almost tight edges is acyclic. Now
we can count all relevant paths efficiently with Algorithm 5 of Chapter 2. Hence we solved
Problem 3.

Example 4.2.3 (Example, restricted relative range). Consider a graph G = (V,E) consisting
of 6 vertices s, x, v, y, w. Let there be directed edges with edge costs as in Figure 4.4.
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s

x

v

y

w

1/2 1/2 1/2 1/2

1 + α 1 + α

Figure 4.4: Example graph G = (V,E). Note that all paths starting from s are ‘relevant’ paths in the
sense of Definition 4.2.3, while not all paths are shortest paths. Note that all edges in G are ‘almost
tight’ with respect to δ(s, ·).

Not all paths in G are shortest paths. For example, the path P = 〈s, v, w〉 of cost c(P ) =
(1 + α) · 2 = (1 + α) · δ(s, w) is not a shortest path, for α > 0. However, it is a ‘relevant’ path
starting from s. This is a simple check left to the reader.

Remark 4.2.2. Note that it is not sensible to use the same trick with ‘restricted range’ relevance
for the additive notion of relevance: if we defined ‘almost tight edges’ with respect to the
additive restricted range notion analogously (to the relative restricted range notion of ‘almost
tight edges’), we would get that an edge (v, w) is almost tight with respect to δ(s, ·) if

c(v, w) + δ(s, v) + α ≤ δ(s, w) + α,

and by subtracting both sides of the equation by α we see that we would have defined tight
edges, so that we do not find any paths within range that are not shortest paths.

Remark 4.2.3. Note that ‘relevant’ paths within restricted relative range (according to Defini-
tion 4.2.3) have the property that each x, y-subpath of an s, w-subpath is ‘within multiplicative
range’ (according to Definition 4.1.1). To see this, suppose P = 〈s, . . . , w〉 is a path that is
relevant (according to Definition 4.2.3). Suppose that P ′ = 〈x, . . . , y〉 is a subpath of P . Then

c(P ′) + δ(s, x) · (1 + α) ≤ δ(s, y) · (1 + α),

which means that

c(P ′) ≤ (δ(s, y)− δ(s, x)) · (1 + α) ≤ δ(x, y) · (1 + α),

by the triangle inequality. We conclude that P ′ is a ‘within range’ path.
Conversely, if every x, y-subpath of an s, w-subpath P is ‘within range’ (according to

Definition 4.1.1 (ii)), then the path P needs not to be ‘relevant’ within restricted relative range.
Consider the example graph from Remark 4.2.1, and consider the path 〈s, v, w〉. All subpaths
are within range, but for the subpath 〈v, w〉 it does not hold that

11.5 = c(〈v, w〉) + δ(s, v) · (1 + α) ≤ δ(s, w) · (1 + α) = 11,

so the condition of Definition 4.2.3 is stronger than the condition that ‘all subpaths must be
within range’.

4.3 Restricted relative range notion for multiplicative edge re-
liabilities

Now we would like to use the approach of the last section in graphs with multiplicative edge
reliabilities. Let G = (V,E) be a directed graph with a reliability function r : E → (0, 1]. (If
we have a graph with edge reliabilities of 0, then we simply remove these edges). In this section
we are not only interested in the maximum reliability paths, but also in paths that are almost
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of maximum reliability. We give a notion of a ‘relevant path’, an ‘almost tight edge’ and an
idea to count all relevant paths efficiently.

Note that, if c = − log ◦ r, we can find all relevant paths for the additive edge cost
function c. We write δc for the shortest distance function with respect to the costs c and we
write δ for the maximum reliability distance function with respect to the reliabilities r. We
called an s, v-path P relevant if for each subpath P ′ = 〈x, . . . , y〉 of P it holds that

c(P ′) + δc(s, x) · (1 + α) ≤ δc(s, y) · (1 + α).

Now we apply on both sides e(− ·) (which is a strictly decreasing function R≥0 → (0, 1] with
inverse − log(·), to get

c(P ′) + δc(s, x) · (1 + α) ≤ δc(s, y) · (1 + α).

⇐⇒ e−(− log(r(P ′))+δc(s,x)(1+α)) ≥ e−δc(s,y)·(1+α)

⇐⇒ r(P ′) · e−δc(s,x)(1+α) ≥ e−δc(s,y)(1+α)

⇐⇒ r(P ′) · δ(s, x)1+α ≥ δ(s, y)1+α.

This will be our definition of relevance.

Definition 4.3.1 (Relevant path, multiplicative reliabilities – proposed). We define a path P =
〈s, . . . , w〉 to be relevant if for each subpath P ′ = 〈x, . . . , y〉 of P it holds that

r(P ′) · δ(s, x)1+α ≥ δ(s, y)1+α.

Similar, we give a definition for almost tight edges, derived in the same way. We start with the
definition of an almost tight edge in the additive sense with respect to c = − log ◦ r, and we
derive a suitable definition of an almost tight edge with respect to the reliability function r:

c(v, w) + δc(s, v) · (1 + α) ≤ δc(s, w) · (1 + α).

⇐⇒ e−(− log(r(v,w))+δc(s,v)(1+α)) ≥ e−δc(s,w)·(1+α)

⇐⇒ r(v, w) · e−δc(s,v)(1+α) ≥ e−δc(s,w)(1+α)

⇐⇒ r(v, w) · δ(s, v)1+α ≥ δ(s, w)1+α.

This results in the following definition.

Definition 4.3.2 (Almost tight edge – proposed). We define an edge (v, w) to be almost tight
with respect to δ(s, ·) if

r(v, w) · δ(s, v)1+α ≥ δ(s, w)1+α.

With these two definitions, an approach similar to the strictly-shortest-path-approach can work.
Fix a vertex s ∈ V . We construct the graph G′ = (V ′, E′) that consists of all almost tight

edges with respect to δ(s, ·), i.e. let

V ′ := {v ∈ V | v is reachable from s},

and
E′ := {(v, w) ∈ E : (v, w) is almost tight with respect to δ(s, ·)}.

In the following theorem we prove that this graph is exactly consisting of all relevant paths that
start at s.

Theorem 4.3.1. It holds that:

(i) A path P starting at s is contained in G′ = (V ′, E′) if and only if P is a relevant path
starting at s in G (according to Definition 4.3.1).
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(ii) Suppose G′ contains a cycle, then all edges on this cycle will have reliability 1.

Proof. Use the cost function c = − log ◦ r. For this cost-function, Theorem 4.2.1 (for prov-
ing (i)) and Theorem 4.2.2 (for proving (ii)) hold. Now apply e−(·) again to get the desired
results (as written out above, this is how we obtained the definitions of relevant paths and
almost tightness in the multiplicative case). For proving (ii), we use that − log(1) = 0.

Observe that if we allow no edges of reliability 1, the graph G′ of almost tight edges is acyclic.
Then we can count all relevant paths efficiently with Algorithm 5.

Remark 4.3.1. Note that the analogous ‘additive’ respectively ‘multiplicative’ within restricted
range definition (analogous to Definition 4.3.1) for a relevant path makes no sense if we use
multiplicative edge costs. These definitions would state that a s, w-path is relevant if for each
x, y-subpath P ′ of P it holds that

r(P ′) · δ(s, x)− α ≥ δ(s, y)− α resp. r(P ′) · δ(s, x) · (1− α) ≥ δ(s, y) · (1− α),

and in both cases we would find only strictly maximum reliability paths.

4.4 Results

The notion of ‘restricted within range’ paths obtained in this thesis is easy to implement: one
only needs to replace the definition of a ‘tight edge with respect to δ(s, ·)’ by the definition of
an ‘almost tight edge with respect to δ(s, ·)’ in the maximum reliability path (resp. shortest
path) algorithm and one easily computes the restricted within range path graph containing all
relevant paths starting at some vertex s. Nevertheless, for our purpose the notion is not very
useful, by the following reasons.

(i) We allow edge reliabilities of 1 (on the first edge of a path, see Section 2.4) therefore in
the CPB-network there are pairs s, v with δ(s, v) = 1. For those pairs, ‘relevant’ paths in
the sense of Definition 4.3.1 are only strictly maximum reliability paths.

(ii) If, for some s, v ∈ V , it holds that δ(s, v) ≈ 1 (for example δ(s, v) = 1−ε, with ε as in 2.4.1),
a very large α is needed to compute relevant paths in the sense of Definition 4.3.1 within
a given range [a, b] (for 0 < a < b ≤ 1).

(iii) The interpretation of multiplicative restricted relative range paths (in the sense of Defini-
tion 4.3.1) is not clear. The CPB asked for paths within an additive or a multiplicative
range, and not for paths that are within range with ‘taking powers’ in the sense of Defi-
nition 4.3.1.

(iv) Brute-force computation of ‘almost shortest paths’ using depth-first search can be done
fast enough, when adjusting the penalty ε% that is levied on each edge after the first edge
in a shortest paths (see Chapter 5).

However, it is still interesting to test the notion of ‘restricted within range’ paths. We do this
by considering tax routes from NLD to USA. We assume in all computations in this section
that the penalty ε in the sense of Section 2.4.1, equals ε = 10−12. The distance of a maximum
reliability path NLD–USA is 0.83627906−10−12, and a maximum reliability NLD–USA-path is
for example NLD – DEU – USA. There are 38 maximum reliability paths (which are maximum
reliability paths of shortest length) from NLD to USA. We first draw the graph containing all
strictly maximum reliability NLD–USA-paths.2

2In the CPB-data, all maximum reliability NLD–USA-paths of shortest length are indirect routes. However,
the direct route NLD–USA is actually equally as profitable as the indirect routes produced with the CPB-data.
This has to do with the construction of the tax-distances by the CPB: in conduit situations some assumptions
are made, and that is why the tax-distances in conduit situations are not exact [RL14].
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Figure 4.5: The graph containing all maximum reliability paths from NLD to USA. Since we added a
small penalty ε in the sense of Section 2.4.1, these paths are exactly all maximum reliability paths from
NLD to USA of shortest length.

We will calculate all ‘relevant’ paths (in the sense of Definition 4.3.1) that are at most 5% more
expensive for companies than the maximum reliability path, i.e. we calculate all relevant paths
in the interval [X · (1− 0.5), X], where

X = δ(NLD, USA) ≈ 0.83627906,

i.e. we calculate all relevant paths within the interval [0.79446511, 0.83627906]. By solving

0.836279061+α = 0.79446511,

we find α = log(0.79446511)/ log(0.83627906) − 1 ≈ 0.28688661. We find 871 relevant paths.
We draw the relevant path graph containing all relevant NLD,USA-paths in the sense of Defi-
nition 4.3.1.
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Figure 4.6: The graph containing all restricted relative range paths from NLD to USA (i.e. all relevant
paths in the sense of Definition 4.3.1) that are at most 5% more expensive than the strictly maximum
reliability path.
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Here we end the discussion of ‘restricted’ within range paths. Constructing the relevant path
graph and counting relevant paths can be done very fast, within seconds. However, finding or
counting all (not necessarily relevant according to Definition 4.3.1) paths that are within range
of 5% the maximum reliability paths takes very long. The computer can think for days, since
there are a lot of reliability 1− ε-edges (with ε as in Section 2.4.1) and paths along those edges
remain ‘within range’. Even if we increase the penalty ε (as in Section 2.4.1) the algorithm does
not run fast. For example, the experiment from Section 5.4.1 takes around 10 minutes.

In the next chapter, we will try to compute all ‘within range’ paths. First we try a brute-
force depth-first search approach. After that we shortly consider Yen’s algorithm, an algorithm
to compute the first K shortest paths from one vertex to another vertex in a graph.
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Chapter 5

Computing within range paths

In this chapter we try to compute all ‘within range’ paths, paths that have reliability (or cost)
almost as large as the maximum reliability path (or cost almost as small as the shortest path).
We will try two approaches: a brute-force depth-first search and Yen’s algorithm: an algorithm
to find the K shortest simple s, t-paths in a graph.

5.1 Brute-force computation of within range paths

To compute all s, t-paths in a graph G = (V,E), one can use depth-first search. Each path is
found in time O(|V |+ |E|), but there may be exponentially many paths, so we cannot list them
in polynomial time. Even counting s, t-paths we cannot do in polynomial time (unless G is a
directed acyclic graph), as this is #P -hard (see Example 1.3.5).

When we calculate brute force within range paths for the CPB, we use depth-first search
(see Chapter 1). Algorithm 10 is an example of a depth-first search to find all simple s, t-paths
in a graph.

In the CPB-network we use Algorithm 10 on the graph Gs with source country s (where the
edge reliabilities are as in Section 2.4) with some adaptations. Suppose we want to find s, t-paths
with reliability at least X, and that we already know the distances δs(·, ·) in the graph Gs.

1. We remove all edges (u, v) with r(u, v) < X

2. During the search, we store (and keep track of) the reliability of P = 〈s, . . . , v〉. As soon
as r(P ) ·δs(v, t) < X we do not search deeper and continue at the next-to-last vertex of P .

3. The graph Gs contains many reliability 1 edges (around 2500 edges of reliability 1, de-
pending on the starting vertex). Furthermore, there are in total 6214 pairs s, t with s 6= t
such that δs(s, t) = 1, which means that for 100 ·6214/(107 ·108) = 53.77% of the s, t-pairs
companies can send money without paying taxes from s to t.

Since the graph contains many edges with reliability 1, there are many within range paths
even if we search for paths within a small range of the shortest path. Therefore when
computing within range paths we will increase the penalty ε from Section 2.4.1. For each
experiment we do brute-force (in the Results section), we will indicate the size of the
‘penalty’ ε (in the sense of Section 2.4.1).

4. We could also put a maximum on the depth of the search (a maximum on the number
of conduit countries), this speeds up the procedure. However, in the experiments of this
chapter we did not use this approach (although using the approach of Section 5.4.1 already
implicitely puts a maximum on the number of conduit countries).

When considering within range paths we can also compute (weighted) betweenness centrality.
The variables σst and σst(u) now denote the number of within range paths from s ∈ V to t ∈ V
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respectively the number of within range paths from s to t passing through u ∈ V , where s 6=
u 6= t. The definition of the betweenness is then the same as in Definition 2.3.1 (but using the
new ‘within range’ σ-values).

Input: Directed graph G = (V,E), source vertex s, sink t.
Output: All s, t-paths.

Initialize: v is white for every v ∈ V , temporary path P := 〈s〉, List L = ∅.

DFS-visit(s)

Procedure DFS-visit(u)
Color vertex u green
foreach neighbour v of u do

if v = t then
append v to P
add (a copy of) P to List L
remove v from (the original) P

end
end

foreach neighbour v 6= t of u do
if Color(v) = white then

Append v to P
DFS-visit(v)
Color v white
Remove v from P

end
end

end

return List L

Algorithm 10: Depth-first search to find all s, t-paths in a graph. Note that, by adapting the first
loop, one could also find all paths from s to each v ∈ V , by keeping lists Lv for each v ∈ V and
adding P to Lv in this loop.

In the section ‘Results’ of this Chapter, Section 5.4, we will give results and interpretations of
some brute-force experiments in the CPB-network.

5.2 The additive K-th shortest path problem

Another idea for computing within range paths is using Yen’s algorithm [Yen71]. This is an
algorithm for computing the K shortest simple s, t-paths in a graph. We can use this for
computing within range paths: increase K by one iteratively, until the cost of the K-th shortest
path exceeds the range.

In this section we will look at the K-th shortest path problem, with [Yen71] as reference.
We will formulate the K-th shortest path problem in the additive way. Later we make adap-
tations to use the algorithm for finding maximum reliability paths. The setting is as follows.
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Let G = (V,E) be a directed graph, and c : E → R be a cost function1. If P = 〈u1, . . . , uk〉
is a path, then we define the cost of P as c(P ) :=

∑k−1
i=1 c(ui, ui+1). We assume that G has no

cycles of negative cost. In this section we aim to solve the following problem.

Problem 4 (K-th shortest path problem). Fix two vertices s, t ∈ V . Find the K shortest
simple paths from vertex s to vertex t in G.

One — not very efficient, but easy to understand — way of solving this problem is found by
Pollack [Pol61].

Algorithm 5.2.1 (Pollack’s Algorithm). Suppose that we have found the K−1 shortest paths.
Then we set in each of the 1st, 2nd, . . . , (K − 1)-st shortest paths the distance of one edge to
infinity and we solve a shortest-path problem for each such case (i.e. if the first (K−1) shortest
paths coincidentally all have size a (by size we mean the number of vertices in the path), then we
need to solve aK−1 shortest path problems). The shortest of all the resulting paths is our K-th
shortest path.

This method has the clear disadvantage that we need to solve a large amount of shortest-path
problems: the number of shortest path problems increases exponentially with K. (As we have
seen: if the first (K − 1) shortest paths all have size a, then we are required to solve aK−1

shortest path problems). Therefore this method is only of use for small values of K. In general,
Pollack’s Algorithm is ‘computationally overburdening’ (as Yen notes in [Yen71]). Therefore
we will consider another, much more efficient algorithm found by Yen [Yen71]: Yen’s algorithm.
First we introduce some notation.

(i) We denote the vertices of G by (1), . . . , (n) and we let vertex (1) be the source vertex
and (n) be the sink vertex.

(ii) We define size(P ) to be the number of vertices on the path P .

(iii) For k = 1, . . . ,K, let P k = 〈(1), (2k), (3k), . . . , ((size(P k)− 1)k), (n)〉 be the k-th shortest
path from (1) to (n), where (2k), (3k), . . . , ((size(P k) − 1)k) denote respectively the 2nd,
3rd, . . ., next-to-last vertex of the k-th shortest path.

(iv) Suppose k ∈ 2, . . . ,K. Suppose i ∈ {1, 2, . . . size(P k−1) − 1}. We define a deviation
from P k−1 at the i-th vertex (vertex (ik−1)) to be a shortest path that coincides with P k−1

from vertex (1) to (ik−1), then ‘deviates’ to a vertex that differs from all the (i + 1)-th
vertices of the P j that have the same subpath from the 1st to the i-th vertex as P k−1,
with j = 1, . . . , k − 1, and reaches (n) by a shortest path without passing any vertex that
is already passed in the first part of the path (the 〈(1), . . . , (ik−1)〉-part). By construction
this is a simple path.

Now we are ready to give a description of the algorithm. After that, we prove that the algorithm
is correct and we prove a bound on the running time.

Algorithm 5.2.2 (Yen’s Algorithm). We will describe first the initialization step of the algo-
rithm. After that we describe what the algorithm does at the k-th iteration.

(1.) First we determine P 1 by using an efficient shortest path algorithm. If all edge costs
are nonnegative, we use Dijkstra’s algorithm. Otherwise we can use the Bellman-Ford
algorithm (note that G does not contain cycles of negative length by assumption). For

1We did not cover the Bellman-Ford Algorithm here, which is needed when negative edge costs are allowed.
The Bellman-Ford Algorithm (with running time O(|V ||E|) just relaxes all edges n−1 times, such that it is certain
that all edges are relaxed along shortest paths. Possibly one post-processing step can be added to determine
negative cost cycles: if the tentative distances change after all edges are relaxed for the n-th time, the graph
contains a negative cycle.
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these algorithms, we refer to [Schä13]. If we have K or more paths of this shortest
length, we are done. Otherwise we choose an arbitrary shortest path and we store it in
List A. The rest of the shortest paths we store in List B (if there was only one path then
List B still remains empty). During the execution of this algorithm, List A is the list
of k-shortest-paths, and List B is the list of candidates for (k + 1)-shortest paths.

(k.) We will compute P k, assuming that we already know P 1, . . . , P k−1. Now, for i =
1, 2, . . . , size(P k−1)− 1, we carry out the following three steps:

(a.) Look if the subpath of the first i vertices of P k−1 is the same as the subpath of the
first i vertices of P 1, . . . , P k−2. We set c((ik−1), ((i+1)j)) :=∞ for all j = 1, . . . , k−1
for which this is the case, where we bear in mind that (ik−1) is the i-th vertex of the
path P k−1, and ((i + 1)j) is the (i + 1)-th vertex of the path P j . We need to store
the original values of the costs because we will reset them after the whole iteration.
Proceed to the next step.

(b.) Find a shortest path from (ik−1) to (n) with a shortest path algorithm, where we
only consider vertices not contained in the subpath 〈(1), . . . , (ik−1)〉 of P k−1, which
we denote by Rki . The resulting shortest path we denote by Ski . If there is more than
one candidate for Ski , we choose one arbitrarily. Proceed to the next step.

(c.) Find a ‘deviation’ from P k−1 at the i-th vertex by concatenating the paths Rki and Ski .
Add Aki to List B, if it is not already contained in List B. We only need to store
the K − k + 1 shortest paths in List B.

We choose one of the paths in List B of minimum length, we call this path P k and we
move it to List A. The rest of the paths in List B remain there. We set the edge costs to
their original values proceed to iteration k + 1.

We now prove that the algorithm is correct and we give a bound on the running time.

Theorem 5.2.1. Algorithm 5.2.2 solves the K-th shortest path problem in time O(Kn(m +
n log n)) for graphs with nonnegative edge costs and in time O(Kn2m) if we also allow negative
edge costs.

Proof. First we prove that the algorithm terminates in time O(Kn(m+n log n)) for graphs with
nonnegative edge costs and in time O(Kn2m). We examine the total time that the algorithm
is in each of the three steps (a.),(b.) and (c.).

(a.) The comparisons of the subpaths Rki of all the paths P 1, . . . , P k−1 can be done in total
time O(K · n), which is negligible compared to the time needed in (b.).

(b.) In each iteration we solve a shortest path problem on a subgraph of G. If the edge-costs
are nonnegative, we solve this with Dijkstra’s algorithm in time at most O(m+n log n). If
we also allow negative edge costs, we solve this in time at most O(mn). This gives a total
time of O(Kn · (m+ n log n)) respectively O(Kn2m).

(c.) In this step we concatenate two paths and store the resulting path in List B, provided that
it will belong to the K−k+1 shortest paths in List B. This can be done in time negliglible
compared to the time used in step (b.).

We conclude that the running time (in the case of non-negative edge costs) of the algorithm
is bounded by O(Kn(m + n log n)), and in case we allow negative edge costs O(Kn(mn)) =
O(Kn2m). Therefore the algorithm ends in the claimed running time.

It remains to prove that the algorithm is correct. For some k = 2, . . . ,K, suppose that
we know P 1, . . . , P k−1. We want to compute a k-th shortest path P k. Note that this path
must be a deviation of P k−1 (since P k−1 starts at (1) and the k-th shortest path can not have
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Input: directed graph G = (V,E), cost function c : e→ R, natural number K,
source vertex (1), sink vertex (n).

Output: K shortest simple paths P 1, . . . , PK of non-decr. length from (1) to (n).

Initialize: List A = {P 1} (found with a shortest path algorithm), List B = ∅.
for k = 2, . . . ,K do

for i = 1, . . . , size(P k−1)− 1 do
- Let (ik−1) be the i-th vertex of P k−1.
- Let Rki the subpath of the first i vertices of P k−1.
- if Rki is the same as the subpath of P j consisting of the first i vertices

then set c((ij), ((i+ 1)j)) :=∞, for j = 1, . . . k − 1.
- Compute a shortest path from (ik−1) to (n) not crossing other vertices

from Rki using a shortest path algorithm.
- Concatenate this path with Rki .
- Store the resulting path in List B (provided that it is not already

stored in List B before and that it will belong to the K − k + 1 shortest
paths in List B).

end
- Restore the original graph G (by restoring the values of c).
- Move the path with the smallest cost from List B to List A. This path is P k.
- if this path does not exist then break

end
return List A = {P 1, . . . , PK}.

Algorithm 11: The K-th shortest path algorithm found by Yen in [Yen71] to solve Problem 4.

all vertices in common with a path in List A). Hence, for computing P k it is only necessary
to look at the vertices of P k−1 for a shortest deviation of P k−1 at this vertex, and then find
from all these shortest deviations the one of shortest length, which will be P k. Yen’s algorithm
(Algorithm 5.2.2) exactly does this. Therefore the algorithm is correct.

Remark 5.2.1. Algorithm 5.2.2 uses O(n2 +Kn) storage space.

Proof. We need O(n2) storage space to store all the c-values during the execution of the algo-
rithm. Also we need at most Kn adresses to store the entries of List A and List B (where we
note that, at the k-th iteration of the algorithm, we only store the K − k + 1 shortest paths
in List B and then we move the shortest of them to List A. Therefore List A and List B will
together contain no more than K paths.

Example 5.2.1. We consider an example. Suppose that we would like to find K = 3 shortest
paths in the following graph.

1

2 3

44

1 3 1

1

2

1

Figure 5.1: An example graph. We would like to find the K = 3 shortest paths from vertex (1) to
vertex (4).
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We begin with the iteration k = 1. In this iteration we compute a shortest path from vertex (1)
to vertex (4) with Dijkstra’s Algorithm. Note that all edge costs are nonnegative.
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44

1 3 1
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1

Figure 5.2: The first iteration. We compute a shortest path (red) with Dijkstra’s algorithm. This
path P 1 has cost 2.

Now we store List A = {P 1} = {〈(1), (2), (4)〉}, the red path in the above picture, and we
continue to iteration k = 2. We consider all vertices on the path P 1 except the end vertex in
order.

(1) First we consider vertex (1) and we remove the edge leaving (1) in P 1 from our graph.
Then we compute a shortest path from (1) to (4) (blue in the image below) using Dijkstra’s
algorithm. We store this path in List B.

(2) Next we consider vertex (2) and we remove the edge leaving (2) in P 1 from our graph.
Then we compute a shortest path from (2) to (4) not crossing (1) with Dijkstra’s Algorithm
and we concatenate it with the subpath 〈(1), (2)〉 of P 1. The resulting path (green in the
figure below) we store in List B.
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Figure 5.3: Left: Begin of the iteration k = 2. First, i = 1. We compute a shortest path (blue) with
Dijkstra’s algorithm. This path has cost 4. Right: Now, i = 2. We compute the shortest path from (2)
to (4) not crossing (1) with Dijkstra’s algorithm. Then we concatenate it with the path 〈(1), (2)〉. The
resulting path (green) has cost 3.

Our List B consists of the green and the blue path, i.e.:

List B = {〈(1), (2), (3), (4)〉, 〈(1), (4)〉}.
We choose the one of lowest cost (the green path 〈(1), (2), (3), (4)〉, of cost 3) to be P 2 and we
move it to List A. Note that

List A = {P 1, P 2} = {〈(1), (2), (4)〉, 〈(1), (2), (3), (4)〉}.
And List B now only consists of the path 〈(1), (4)〉. We continue to iteration k = 3. We consider
all vertices on the path P 2 except the end point in order.

(1) We first note that paths P 1 and P 2 have vertex (1) as 1st vertex. Therefore we remove
the edges leaving (1) in P 1 in P 2 from our graph. Then we compute a shortest path
from (1) to (4) (blue in the image below) using Dijkstra’s algorithm. This path is already
contained in List B, therefore we do not need to store it. (see the image below, left part).
We restore the edges in the graph.
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(2) We note that paths P 1 and P 2 have vertex (2) as 2nd vertex. Therefore we remove the
edges leaving (2) in P 1 and P 2 from our graph. Then we compute a shortest path from (2)
to (4) not crossing (1). This path does not exist. We continue to the next iteration (see
the image below, right part).

(3) Path P 1 does not have a 3rd vertex, and path P 2 has (3) as 3rd vertex. We remove
edge 〈(3), (4)〉 from the graph and we compute a path from (3) to (4) without crossing
the first 3 vertices of P 2. This path does not exist. (This step is not depicted in one of
the figures)
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Figure 5.4: Left: Begin of the iteration k=3. First, i = 1. We compute a shortest path (blue) with
Dijkstra’s algorithm. This path has cost 4. We store it in List B. Right: Now, i = 2. We delete the
edges leaving (2) from P 1 and P 2. Then we compute the shortest path from (2) to (4) not crossing (1)
with Dijkstra’s algorithm. This path does not exist.

Now, List B only consists of the path 〈(1), (4)〉. Therefore this will be our P 3 and we move it
to List A. We now have computed K = 3 shortest paths:

P 1 = 〈(1), (2), (4)〉 of cost 2,

P 2 = 〈(1), (2), (3), (4)〉 of cost 3,

P 3 = 〈(1), (4)〉 of cost 4,

as desired.

5.3 The K-th maximum reliability path problem.

In this section we adapt Yen’s algorithm to the maximum reliability setting with multiplicative
edge reliabilities. Let G = (V,E) be a directed graph, and r : E → (0, 1] be a reliability function.
If P = 〈u1, . . . , uk〉 is a path, then we define the reliability of P as r(P ) :=

∏k−1
i=1 r(ui, ui+1). In

this section we aim to solve the following problem.

Problem 5 (K-th maximum reliability path problem). Fix two vertices s, t ∈ V . Find the K
maximum reliability simple paths from vertex s to vertex t in G.

We adapt Yen’s algorithm [Yen71]. This adaptation is straightforward. We only need to use
the multiplicative version of Dijkstra’s algorithm for finding a maximum reliability path in a
graph, and we need to scan List B each time for a maximum reliability path. For the rest the
algorithm is the same (and the proofs are too). Therefore Problem 5 is easily solved.

5.4 Results

The K-th shortest path algorithm was shortly tested on the CPB-network, but computing
only 2000 NLD – USA-paths was done not very fast (it took around 2 minutes, for only this one
pair of countries). The K-shortest path algorithm computes a new path in O(n · (m+n log n)),
since it uses n shortest path algorithms to find one new path.
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However, the CPB-network contains many reliability 1-edges and hence many paths are
within range paths, so depth-first search finds a new within range path very fast. The problem
is that there are many within range paths. Since depth-first search finds new paths fast, the
original idea of using the K-th shortest path algorithm for computing within range paths will
not be investigated further in this section. This section contains some selected within range
experiments.

5.4.1 Sensible idea for computing within range paths

In the case of within range-paths, we could multiply each edge reliability (except for the first
edge) by (1− α)(1/j) > 0, for j a natural number and α > 0 a real number. Then we compute
all paths of reliability at least δ(s, t) · (1−α), for all pairs s, t, with the original distances δ(·, ·).
By following this procedure, it holds that:

1. All shortest paths of length at most j + 1 remain ‘within range paths’.

2. All paths of length 1 with reliability at least δ · (1− α) are computed.

3. All paths of length k with reliability at least

δ · (1− α)

(1− α)
k−1
j

,

for k = 1, . . . , j + 1, are computed.

We will try this approach in the CPB-network.

Example 5.4.1. If we set α = 0.05 and j = 3, then

(1− α)

(1− α)0
= 1− α = 0.95

(1− α)

(1− α)
1
3

= (1− α)
2
3≈ 0.96638253

(1− α)

(1− α)
2
3

= (1− α)
1
3≈ 0.98304757

(1− α)

(1− α)
3
3

=
(1− α)

(1− α)
= 1.

This means that all paths of length 1 with reliability at most 5% less than the reliability of
the maximum reliability path are computed. All paths of length 2 with reliability at most
100 · (1 − 0.099638) = 3.3617% less than the reliability of the maximum reliability path are
computed, etc. The paths of length 4 that are computed are only strictly maximum reliability
paths.

If we do this experiment on the CPB-network, we get the following results. We find 155,724,338
within range paths (in total). The top 10 of countries is as in the following table.
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Figure 5.5: The within range experiment of Section 5.4.1, with α = 0.05 and j = 3. Total number of
paths: 155,724,338.

Note that the betweenness values are generally larger than the betweenness values where we
only consider strictly shortest paths. This makes sense: if we allow a small range, a lot of
paths are generated. Many of them pass through conduit countries. Furthermore, we note that
countries in the intersection of the strongly connected components (see Chapter 3) have a high
betweenness if we allow a small range.

Position Country u BW (u)

1 GBR 15.29057
2 EST 10.94572
3 LUX 10.53155
4 HUN 9.75630
5 NLD 9.43637
6 SGP 8.67798
7 SVK 8.51093
8 IRL 8.46756
9 CYP 8.40420
10 MLT 8.06937

Position Country u B(u)

1 GBR 17.45276
2 CYP 12.91591
3 NLD 12.88430
4 MLT 11.40787
5 EST 11.21784
6 HUN 11.13852
7 SGP 10.51320
8 MYS 8.62411
9 SVK 8.36982
10 LUX 8.32703

Table 5.1: The 10 countries with the highest weighted, respectively unweighted betweenness centrality
values with the experiment as described in Section 5.4.1.

We evaluate also the edge betweenness (weighted and unweighted). Those values tend to be
somewhat smaller than in the strictly maximum reliability path case. When considering within
range paths, more paths are computed and the flow is divided over more edges: the edge flows
tend to get smaller. A remarkable fact is that the edge USA–NLD is the edge with the second-
largest (weighted) edge flow in this experiment. Note that the edge CHN-USA is not in the top
5 of edges anymore, while the direct route CHN–USA is a maximum reliability path2. When
allowing a large range, many (non-direct) within range CHN–USA-paths are found and the flow
from CHN to USA is equally spread over all those paths. Hence, the edge flow on the edge
CHN–USA decreases.

2USA and CHN are the two countries with the largest GDP.
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Pos. (weight) Edge (u, v) BW [(u, v)]

1 USA – GBR 2.35891
2 USA – NLD 1.80192
3 IDN – GBR 1.73166
4 EST – CHN 1.71722
5 LUX – CHN 1.71170

Pos. (unweight.) Edge (u, v) B[(u, v)]

1 NLD – EGY 1.41745
2 BRB – GBR 1.32511
3 IDN – GBR 1.02019
4 ZAF – CYP 0.99798
5 TWN – SGP 0.98332

Table 5.2: The 5 edges with the highest (weighted/unweighted) edge betweenness (flow) with the
experiment as described in Section 5.4.1.

In the next section we will use a slightly different approach for computing the within range
paths.

5.4.2 Additive and multiplicative within range paths

Another approach is also possible. We first increase the penalty ε in the sense of Section 2.4.1,
to reduce the number of within range paths (otherwise all paths via edges of reliability 1 are
within range), so that the depth-first search finishes faster. In the resulting network3, we
compute all s, t-paths P that are within additive range r(P ) ≥ δ(s, t) − α, or multiplicative
range r(P ) ≥ (1 − α) · δ(s, t). It might be justified to add a larger penalty ε (in the sense
of Section 2.4.1) before calculating the distances: companies make costs when sending money
through an additional conduit country. These costs can be reflected in the distances.
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Figure 5.6: Within additive range paths, with α = 0.005 and ε = 0.005. This is the version of within
range that the CPB used in their report [RL14]. Total number of paths: 2,324,679.

Note that maximum reliability paths do not have to be paths-within range with this approach,
since ε (the penalty from Section 2.4.1) is not very small. The CPB used the approach of this
section in [RL14], but only for one version of within range (within additive range, with ε = 0.005
and α = 0.005). In this section we perform some experiments within additive and multiplicative
range, using different values for α and ε. For paths within additive range, we get the following
results.

3The distances are now computed in the resulting network.
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Position Country u BW (u)

1 GBR 14.28458
2 EST 9.79146
3 LUX 9.61353
4 HUN 8.78620
5 NLD 8.68236

(a) α = 0.005, ε = 0.0025. Number of paths:
135,217,133

Position Country u BW (u)

1 GBR 11.75287
2 LUX 7.29783
3 EST 6.50612
4 NLD 6.23390
5 SGP 5.96253

(b) α = 0.005, ε = 0.005. Number of paths:
2,324,679.

Position Country u BW (u)

1 GBR 14.26947
2 EST 9.78262
3 LUX 9.60152
4 HUN 8.77161
5 NLD 8.66874

(c) α = 0.01, ε = 0.005. Number of paths:
136,301,035.

Position Country u BW (u)

1 GBR 11.67190
2 LUX 7.22259
3 EST 6.36515
4 NLD 6.19838
5 HUN 5.85822

(d) α = 0.01, ε = 0.01. Number of paths:
2,312,028.

Position Country u BW (u)

1 GBR 14.29684
2 EST 9.95862
3 LUX 9.73517
4 HUN 8.79714
5 NLD 8.59876

(e) α = 0.05, ε = 0.025. Number of paths:
169,365,696.

Position Country u BW (u)

1 GBR 10.44494
2 LUX 6.56641
3 EST 5.80208
4 NLD 5.55616
5 SGP 5.47544

(f) α = 0.05, ε = 0.05. Number of paths:
2,175,747.

Table 5.3: Experiment CPB within range. Range α is additive.

We performed the same experiments also within multiplicative range instead of additive range.
The rankings do not differ much. The ratio of α to ε is more important than the size of ε and α,
and this ratio is also more important than the choice between ‘additive or multiplicative’ within
range paths. There are many reliability 1 paths in the CPB-network (when not taking into
account a penalty ε), and when the ratio of α to ε is large, a lot of these paths are considered
‘within range’.

The number of paths ‘within range’ that is found by the algorithm is larger in the additive
case than in the multiplicative case. This is because the range is larger: in the within multi-
plicative range case, the range is at least (1−α) · δ(s, t) ≥ δ(s, t)−α, and the latter is the lower
bound of the reliability of paths within range when we consider paths witin additive range. We
observe that the rankings (top-5) of the countries are quite similar.
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Position Country u BW (u)

1 GBR 14.25050
2 EST 9.76523
3 LUX 9.58995
4 HUN 8.75584
5 NLD 8.65784

(a) α = 0.005, ε = 0.0025. Number of paths:
78,221,169.

Position Country u BW (u)

1 GBR 11.72503
2 LUX 7.25856
3 EST 6.43782
4 NLD 6.20201
5 HUN 5.91037

(b) α = 0.005, ε = 0.005. Number of paths:
2,321,755.

Position Country u BW (u)

1 GBR 14.19071
2 EST 9.71982
3 LUX 9.55687
4 HUN 8.70211
5 NLD 8.61654

(c) α = 0.01, ε = 0.005. Number of paths:
78,011,715.

Position Country u BW (u)

1 GBR 11.61612
2 LUX 7.21788
3 EST 6.34867
4 NLD 6.19902
5 SGP 5.85855

(d) α = 0.01, ε = 0.01. Number of paths:
2,310,052.

Position Country u BW (u)

1 GBR 14.19289
2 EST 9.88632
3 LUX 9.70464
4 HUN 8.67981
5 NLD 8.55359

(e) α = 0.05, ε = 0.025. Number of paths:
75,644,968.

Position Country u BW (u)

1 GBR 10.36691
2 LUX 6.57623
3 EST 5.75759
4 NLD 5.51548
5 SGP 5.44295

(f) α = 0.05, ε = 0.05. Number of paths:
2,109,729.

Table 5.4: Experiment CPB within range. Range α is multiplicative.

In the last experiment of this section, we consider within multiplicative range paths with α =
0.01 and ε = 0.0033333. The depth-first search takes around 97 minutes to calculate the paths
(the other brute-force experiments of this section take at most 20 minutes). The number of
within range paths is now 2,540,053,489, and the ranking, according to (weighted) betweenness,
is as follows.

Position Country u BW (u)

1 GBR 16.86922
2 EST 12.75982
3 LUX 11.70391
4 HUN 11.55565
5 NLD 10.93764
6 CYP 10.55827
7 MLT 10.33779
8 SVK 10.10477
9 SGP 9.78214
10 IRL 9.63753

Position Country u B(u)

1 GBR 19.82831
2 CYP 15.62582
3 NLD 14.88468
4 MLT 14.17225
5 EST 13.95693
6 HUN 13.61274
7 SGP 12.17747
8 SVK 10.60266
9 MYS 10.36432
10 LUX 10.34881

Table 5.5: α = 0.01, ε = 0.0033333. Number of paths: 2,540,053,489.
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Figure 5.7: Within multiplicative range paths, with α = 0.01 and ε = 0.0033333. Total number of
paths: 2,540,053,489.

The betweenness values are larger than in any other experiment we did before: the ratio of α
to ε is large, so many within range paths are computed, passing through conduit countries (a
larger share of the paths is non-direct and passes through many conduit countries).

In general the rankings of the within range experiments are similar to the ranking where
only strictly shortest paths are taken into account (see Chapter 2), although countries in the
top-10 are sometimes in different positions. Great Britain ranks first in every experiment we
did.

Here we end the discussion of within range paths. In the next section we will consider
the following problem: suppose a country can change the tax rate on k of its outgoing edges.
Which k edges (and which tax-rates) must this country choose, in order to maximize the total
amount of money that companies will send through this country (as a conduit country)?
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Chapter 6

Betweenness: maximizing the
betweenness of one node

Let G = (V,E) be a directed graph, with additive edge costs c : E → R≥0, such that G contains
no cycles of cost 0, also after setting the edge cost of the outgoing edges of one node u ∈ V to 0.
Some (trivial) examples of graphs G that fulfill this condition are:

• A directed graph G with positive edge costs c : E → R>0.

• A directed graph G with positive edge costs c : E → R>0 except for the outgoing edges of
the node u ∈ V , those edge costs may also be zero.

• An acyclic directed graph G with nonnegative edge costs c : E → R≥0.

The vertices in V in our graph represent ‘countries’. Suppose we choose one country u in our
network and we write N+(u) for the set of outneighbours1 of u in G. The country u can change
a tax treaty with one other country v ∈ N+(u): a country can change the edge cost of one
outgoing edge. Which country v would be the ‘best’ to choose by u? We will investigate this
question, where we look at two different objectives:

(i) Maximize the flow through country u.

(ii) Maximize the tax country u receives as a conduit country.

For objective (i) we will prove that it is enough to choose a country v such that the betweenness
of u is maximized. Objective (ii) requires more consideration, as we will see. We will also look
at the case that not one, but k treaty partners can be chosen – with k an integer and 1 ≤ k ≤
|N+(u)| ≤ n− 1. This chapter will be about objective (i). In the next chapter we try to solve
the question with objective (ii) in mind.

6.1 Betweenness: decreasing edge costs

As we have seen in Section 2.3.2, the total flow that passes through a country (as a conduit
country) equals the weighted betweenness centrality value of this country. In this section we
prove an important property of (weighted) betweenness centrality: if we decrease an edge cost
of an outgoing edge of a node, the (weighted) betweenness centrality of this node can only
increase or stay the same.

Lemma 6.1.1. Suppose the edge cost of one edge (u, v) ∈ E is decreased. Then the betweenness
centrality B(u) of u increases or stays the same. In other words:

Bbefore(u) ≤ Bafter(u),

1The set of outneighbours N+(u) of u consists of all v ∈ V such that there is an edge (u, v) ∈ E.
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where Bbefore(u) (resp. Bafter(u)) refers to the betweenness centrality of u before (resp. after)
lowering the edge cost of (u, v).

Proof. It holds that B(u) =
∑

s 6=u6=v Bs,t(u). Fix s, t ∈ V . If an edge cost (u, v) is lowered,
what will be the effect on Bs,t(u)? Note that

Bs,t(u) =
σst(u)

σst
=

σst(u)

σst(u−) + σst(u)
, (6.1)

where σst(u
−) denotes the number of shortest paths from s to t not passing through vertex u.

There are two possibilities.

(1.) Decreasing the edge cost of edge (u, v) lowers the distance δ(s, t). That means that all
shortest paths from s to t pass through edge (u, v) and therefore through vertex u. This
implies that Bs,tafter(u) = 1 ≥ Bs,tbefore(u).

(2.) Decreasing the edge cost of edge (u, v) leaves the distance δ(s, t) the same. We make a
distinction between two possible cases.

(i) After the lowering of the edge cost (u, v), no shortest paths pass through this edge.
Then also no shortest paths could pass through edge (u, v) before the decreasing of the
edge cost, since for every path P containing (u, v) it holds that c(Pbefore) ≥ c(Pafter).
Therefore we see that Bs,tafter(u) = Bs,tbefore(u).

(ii) After the lowering of the edge cost (u, v), at least one shortest path passes through
this edge. All shortest paths not passing through (u, v) remain shortest paths (since
the distance remains unchanged). Therefore, σst(u

−) stays the same, while σst(u)
increases. With the above equality (6.1) we see that Bs,tafter(u) > Bs,tbefore(u).

We conclude that for each s, t ∈ V it holds that Bs,tafter(u) ≥ Bs,tbefore(u). Therefore

Bbefore(u) =
∑

s,t,u∈V
s 6=u6=t

Bs,tbefore(u) ≤
∑

s,t,u∈V
s 6=u6=t

Bs,tafter(u) = Bafter(u),

which concludes the proof.

Corollary 6.1.2. Suppose the edge cost on one edge (u, v) ∈ E is decreased. Then the weighted
betweenness centrality BW (u) of u increases or stays the same. In other words:

BW
before(u) ≤ BW

after(u).

Proof. This follows from the proof of Lemma 6.1.1, since Bs,tafter(u) ≥ Bs,tbefore(u) for all s, t ∈ V
(where s 6= t) and all weights ws,t are nonnegative. Therefore we conclude that

BW
before(u) =

∑
s,t,u∈V
s 6=u6=t

ws,tBs,tbefore(u) ≤
∑

s,t,u∈V
s6=u6=t

ws,tBs,tafter(u) = BW
after(u),

as desired.

Corollary 6.1.3. Suppose the edge cost on one edge (u, v) ∈ E is increased. Then for each s, t ∈
V it holds that Bs,tbefore(u) ≥ Bs,tafter(u) and hence we have for the (weighted) betweenness
centrality that

BW
before(u) ≥ BW

after(u).
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Proof. This follows directly from Lemma 6.1.1 and Corollary 6.1.2. We write c1 := c(u, v)before

for the initial edge cost of (u, v), and c2 := c(u, v)after for the edge cost of (u, v) after increasing.
If the initial edge cost of (u, v) was c2 and we decreased the edge cost from c2 to c1

then Bs,t(u) could only increase (Lemma 6.1.2). This gives

Bc1
s,t(u) ≥ Bc2

s,t(u),

where Bc1
s,t(u) respectively Bc2

s,t(u) denote the value Bs,t(u) where edge (u, v) has cost c1 respec-
tively c2. This gives the desired result for Bs,t(u). The result for the (weighted) betweenness
centrality follows (similarly as in Corollary 6.1.2), since Bs,tbefore(u) ≥ Bs,tafter(u) for all s, t ∈ V
(where s 6= t) and all weights ws,t are nonnegative.

We conclude that the betweenness centrality of a node can only increase when decreasing edge
costs of outgoing edges of this node. Furthermore, increasing edge costs of outgoing edges
does not increase the betweenness centrality. We will use these properties of the betweenness
centrality throughout this chapter.

6.2 Maximizing betweenness: interpretation

We remember from Section 2.3.2 that the s, t-flow that passes through u, when equally divided
along the shortest s, t-paths, equals

fst(u) = ws,tBs,t(u) = ws,t
σst(u)

σst
,

where the total s, t-flow value ws,t is a given positive value. To maximize fs,t for one pair s, t,
it is required to maximize Bs,t(u) = ws,tσst(u)/σ(st). To maximize the total flow

f(u) =
∑
s,t∈V
s 6=u6=t

fst(u) =
∑
s,t∈V,
s 6=u6=t

ws,tBs,t(u) = BW (u),

one needs to maximize the weighted betweenness centrality of u. Hence, we are considering the
betweenness values as flow-values.

There is also another, possibly more intuitive interpretation of betweenness (see [FS11]):
we interpret each pair s, t ∈ V as ‘communicating nodes’. We assume that a communicating
path between s and t is selected uniformly at random among all shortest s, t-paths. The prob-
ability that node u ‘detects’ communication s, t is therefore σst(u)/σst. The selection s, t as
communicating pair is also uniformly at random. Therefore the probability that u detects an
arbitrary communication is

1

(n− 1) · (n− 2)

∑
s,t∈V,
s 6=u6=t

σst(u)

σst
=

B(u)

(n− 1) · (n− 2)
,

which is proportional to B(u). We see that betweenness can also be phrased in terms of
probability. Our problem can thus be rephrased as follows: By lowering at most k edge costs of
outgoing edges of u ∈ V , how can we maximize the probability that u detects an arbitrary s, t-
communication?

6.3 Maximizing the s, t-flow through a country: one fixed pair

Suppose we want to maximize Bs,t(u) for one fixed pair s, t (with s, t ∈ V , s 6= u 6= t) and u ∈
V \ {s, t}, by lowering the edge cost of k edges (u, v1), . . . , (u, vk) (with k an integer and 1 ≤
k ≤ |N+(u)| ≤ n− 1). Maximizing Bs,t(u) has two different interpretations, as we have seen in
the previous section. By maximizing Bs,t(u), we maximize:
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(i) the s, t-flow that passes through vertex u,

(ii) the probability that vertex u ‘detects’ communication s, t.

We begin by noting that if we decrease the cost of an edge, then we can as well set its cost
to 0. This follows from the proof of Lemma 6.1.1: Bs,t(u) can only increase (or remain the
same) while lowering an edge cost. Increasing an edge cost does not help to increase Bs,t(u)
(Corollary 6.1.3). Hence the goal is to maximize Bs,t(u) by setting k costs of outgoing edges
of u to 0.

Algorithm 6.3.1 (Maximizing Bs,t(u)). Suppose that we want to maximize Bs,t(u) while
setting at most k outgoing edges of u to zero. Consider the following algorithm.

1. If there is an edge (u, v), such that

c(u, v) > 0 and δ(s, u) + δ(v, t) < δ(s, t), (6.2)

then we set the cost of this edge to zero. We can choose (and set to zero) the other k− 1
edges (u, vi) (vi ∈ N+(u)) arbitrarily.

2. Else, for each v ∈ N+(u) such that

c(u, v) > 0 and δ(s, u) + δ(v, t) = δ(s, t), (6.3)

we compute σvt. Among the vertices v ∈ N+(u) satisfying (6.3) we choose the k vertices
for which σvt is the largest and we set these c(u, v) := 0 for these k vertices v. If there
are only l vertices with l < k satisfying (6.3) then we choose the remaining k − l vertices
arbitrarily.

This procedure maximizes Bs,t(u) by setting at most k outgoing edges of u to zero and runs in
time bounded by O(n3).

Proof. We investigate both steps of the procedure, by making a case distinction.

1. If there is an edge (u, v), such that by setting it to zero we strictly decrease δ(s, t) (note
that this is precisely the case if (6.2) holds) then we set the cost of this edge to zero and
we get fst(u) = wstBs,t(u) = wst, since all shortest paths then pass through this edge,
and hence all shortest s, t-paths pass through u. Now Bs,t(u) = 1 (which is maximal)
so fst is maximal. Therefore we can choose (and set to zero) the other k − 1 edges (u, vi)
(vi ∈ N+(u)) arbitrarily.

2. Else, the distance δ(s, t) stays the same when setting the cost of an edge e = (u, v) to
zero, for all v ∈ N+(u). We distinguish two cases.

(a) if c(u, v) = 0 then we cannot lower the edge cost. Also, if δ(s, u)+δ(v, t) > δ(s, t) then
decreasing the edge cost of (u, v) has no impact on Bs,t(u) since all shortest paths
remain shortest paths and there are no new shortest paths created while lowering
the edge cost.

(b) For each v ∈ N+(u) such that (6.3) holds, setting this edge to zero adds σsu · σvt
shortest paths passing through u. Therefore we compute for each edge (u, v) with v ∈
N+(u) satisfying (6.3) the quantity

g(v) := σsu · σvt.

Then we choose the k vertices v satisfying (6.3) with the biggest g(v), or equivalently
(and more easily) with the biggest g(v)/σsu = σvt. Taking these k vertices will
increase Bs,t(u) the most, since it will increase the number of shortest s, t-paths
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passing through u the most, while the number of shortest s, t-paths not passing
through u remains the same. If there are only l with l < k vertices satisfying (6.3)
then we can choose the remaining k − l vertices arbitrarily, since all other outgoing
edges of u satisfy (a) and therefore lowering their costs leaves Bs,t(u) the same.

Hence, the above procedure is correct. Moreover, the running time of the algorithm is dominated
by calculating the distances δ(·, ·) using Floyd-Warshall. Therefore the running time of the
algorithm is O(n3).

We now know how to maximize the s, t-flow that passes through one vertex u ∈ V . In the next
section we will consider the more interesting problem of how to maximize the total flow that
passes through a vertex.

6.4 Maximizing the total flow through a country: all pairs

The total flow that passes through a vertex u is

f(u) =
∑

s,t,u∈V
s 6=u6=t

fst(u) =
∑

s,t,u∈V
s 6=u6=t

ws,tBs,t(u) = BW (u),

which is the (weighted) betweenness centrality of u. We want to maximize f(u), by lowering the
edge cost of one edge (u, v) ∈ E, and later by lowering the edge costs of k edges (u, v1), . . . , (u, vk)
in E.

Hence, we are required to maximize BW (u). To do this, we must set one edge (u, v) to zero,
as follows from Corollary 6.1.2. We have at most |N+(u)| possible choices for v. Therefore, is
sufficient to calculate for each outgoing edge (u, v) of u the weighted betweenness for our graph G
with c(u, v) = 0. Then we choose the edge (u, v) for which the weighted betweenness is maximal.
Note that this is a polynomial time algorithm (in n), since it involves at most |N+(u)| ≤ n− 1
betweenness-calculations (and a betweenness-calculation can be done in time O(mn+n2 log n),
see Theorem 2.3.3).

Now, suppose that we are given an integer k with 1 ≤ k ≤ |N+(u)|. It is allowed to
choose k vertices v1, . . . vk, and to lower the edge costs of (u, v1), . . . (u, vk). Which k vertices
do we need to choose? We could try all subsets of size k of N+(u), and compute betweenness

when the costs of all edges in the subset are set to zero. This will cost time
(|N+(u)|

k

)
multiplied

by O(mn+ n2 log n), the time for one betweenness-calculation.
If k is constant (not depending on n) this approach will work and give a polynomial time

algorithm. In particular, for graphs in which vertex u has a constant outdegree |N+(u)|, the
approach works in polynomial time. However, if k ≤ |N+(u)| ≤ n−1 is not constant then trying
all subsets of size k of N+(u) will not give us a polynomial algorithm. Perhaps a polynomial
time greedy algorithm would work? It turns out that this is not the case: in fact, we will prove
that Problem 6 is NP -hard. We begin by stating the problem formally.

Problem 6 (Maximizing the betweenness of one node (Maximizing Betweenness)). Given a
directed graph G = (V,E), a vertex u ∈ V and additive edge costs c : E → R≥0. What is the
maximum betweenness BW (u) that can be obtained by setting the cost of at most k outgoing
edges of u to zero?

First we assume that all weights are equal, so that we need to maximize B(u) instead of BW (u).
We consider a greedy approach.

Algorithm 6.4.1 (Greedy approach to Maximizing Betweenness (Problem 6)). Let B0(u) be
the betweennes B(u) of u in G. We perform the following steps:
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(i) First, we choose the edge (u, v1) with v1 ∈ N+(u) such that the betweenness Bafter(u) of u
after setting this edge cost to zero is maximized. We set the cost of this edge to zero and
we set B1(u) := Bafter(u).

(ii) Suppose (u, v1), . . . , (u, vj−1) are chosen. Then we choose the edge (u, vj) with vj ∈ N+(u)
such that the betweennes Bafter(u) of u after setting this edge cost to zero is maximized.
We set the cost of this edge to zero and we set Bj(u) := Bafter(u).

Unfortunately, the proposed greedy algorithm does not always produce an optimal result, as
the next example shows.

Example 6.4.1. Consider the following graph:

s u

v1

v2

v3

v4

t

t′

1

2 s.s.p of. cost 2

41 s.s.p. of cost 2

2

2

2

2

0

8 s.s.p.

10 s.s.p.

8 s.s.p.

10 s.s.p.

11 s.s.p.

Figure 6.1: Example graph G = (V,E), with k = 2. The abbrevation ‘s.s.p.’ stands for ‘simple shortest
paths’. If no cost of a path is mentioned, then the cost of this path is 1. Dashed lines stand for (an
amount of) simple shortest paths, non-dashed lines are edges. The betweenness of u is maximized by
setting the costs of (u, v2) and (u, v3) to zero, while the greedy algorithm would give (u, v1) and (u, v4).

Let G = (V,E) be a graph where V consists of at least T = {s, v1, v2, v3, v4, t, t
′} ⊂ V and more

vertices edges as are required to satisfy the following properties of G = (V,E):

(i) There are 2 simple shortest paths of cost 2 from s to t not passing any vertex in T .

(ii) There are 41 simple shortest paths of cost 2 from s to t′ not passing through any vertex
in T .

(iii) There is one edge (v1, t) of cost 2.
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(iv) There are 8 simple shortest paths of cost 1 from v2 to t not passing through any vertex
in T .

(v) There are 10 simple shortest paths of cost 1 from v2 to t′ not passing through any vertex
in T .

(vi) There are 8 simple shortest paths of cost 1 from v3 to t not passing through any vertex
in T .

(vii) There are 10 simple shortest paths of cost 1 from v3 to t′ not passing through any vertex
in T .

(viii) There are 11 simple shortest paths of cost 1 from v4 to t′ not passing through any vertex
in T .

(ix) There is an edge (s, u) of cost 1, and there are edges (u, vi) of cost 2 for i = 1, . . . , 4.

Furthermore, let k = 2. Initially, setting edge (u, v1) to 0 increases B(u) by 1, setting edge (u, v2)
to zero increases B(u) by 8/10+11/51 < 1, setting edge (u, v3) to zero increases B(u) by 8/10+
11/51 < 1 and setting edge (u, v4) to zero increases B(u) by 11/52. In a greedy approach, we
would pick (u, v1) first and set this edge to zero. After that we would pick (u, v4) to get a
total increase of the betweenness of 1 + 11/52. But it can be easily verified that picking (u, v2)
and (u, v3) gives a higher increase in betweenness: 16/18 + 20/61 > 1 + 11/52.

Example 6.4.1 shows that our proposed greedy approach does not work. But we can even prove
a stronger result: Maximizing Betweenness (Problem 6) is NP -hard. We will do a reduction
from the Maximum Coverage Problem.

Problem 7 (Maximum Coverage Problem). Given a universe U = {e1, . . . , eN}, a collection of
subsets of this universe S = S1, . . . , St and a number k, find a subcollection of sets S′ ⊆ S such
that |S′| < k and the total number of covered elements | ∪Si∈S′ Si| is maximal.

The Maximum Coverage Problem is NP -hard [Fei98]. This we will use to prove that Maximizing
Betweenness is also NP -hard.

Theorem 6.4.1. Maximizing Betweenness (Problem 6) is NP-hard.

Proof. We use a reduction from the Maximum Coverage Problem. Given a universe U =
{e1, . . . , eN}, a collection of subsets of this universe S = S1, . . . , St and a number k, we construct
an instance of Problem 6 as follows:

Let there be vertices s, u, v1, . . . , vt (so for every set Si ∈ S there is a vertex vi) and let
there also be a vertex for each element in U :

V = {s, u, v1, . . . , vt} ∪ (∪ei∈Uei) .

Let there be directed edges as follows:

• There is an edge (s, u) of cost 1.

• For every vi, where i = 1, . . . ,m, there is an edge (u, vi) of cost 2.

• For every x ∈ U , and for every i ∈ {1, . . . ,m} there is an edge (vi, x) if and only if x ∈ Si.
This edge has cost 1.

• For every x ∈ U , there is an edge (s, x) of cost 3.
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Figure 6.2: Illustration of the instance created in the reduction of Maximum Coverage to Maximizing
Betweenness (Problem 6).

Firstly, we note that the reduction can be done in polynomial time: O(t ·N). Also we observe
that, before lowering any edge cost, the (unweighted) betweenness of u is B(u) = t. This is
because all paths from s to each vi pass only through u and all shortest paths from s to x, for
x ∈ U , do not pass through u. For every other pair (source, sink) (where the source is not s
or u and the sink is not u), there are no paths passing u.

By setting the edge cost of edges (u, vi1), . . . , (u, vik) to zero all shortest paths from s to x,
for each x ∈ Si1 ∪ . . . ∪ Sik suddenly pass through u. For other sink-source-pairs the shortest
paths do not change. Therefore the betweenness of u is B(u) = t + |Si1 ∪ . . . ∪ Sik | implying
that the betweenness of u increases exactly with |Si1 ∪ . . . ∪ Sik |.

Now, for i1, . . . , ik ∈ {1, . . . , t}, it holds that Si1 , . . . , Sik is a maximum cover if and only
if vi1 , . . . , vik solve Problem 6.

“=⇒”. Suppose Si1 , . . . , Sik is a maximum cover. Then |Si1 ∪ . . . ∪ Sik | is maximal,
hence B(u) increases maximally by setting the costs of (u, vi1), . . . , (u, vik) to zero. There-
fore vi1 , . . . , vik solve Problem 6.

“⇐=”. Suppose vi1 , . . . , vil solve Problem 6. That means that B(u) increases maximally
by setting the costs of (u, vi1), . . . , (u, vik) to zero. Since the betweenness of u increases exactly
with |Si1∪. . .∪Sik |, this implies that |Si1∪. . .∪Sik | is maximal, hence Si1 , . . . , Sik is a maximum
cover.

Now that we know that Maximizing Betweenness (Problem 6) is NP -hard, we will look for an
approximation algorithm. The bound on the maximum error the greedy algorithm produces (the
increase in betweenness given by the greedy algorithm compared to the optimal increase in be-
tweenness) can be estimated, in a similar way as it can be done for Maximum Coverage [Hoc97].
We prove two auxiliary lemmas.

Lemma 6.4.2. Let G = (V,E), u ∈ V with betweenness B(u). Suppose we first set the cost of r
edges (u, v1), . . . , (u, vr) to zero. We denote the betweenness of u after setting these edges to zero
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by B(u)r. Suppose we subsequently set the edge cost of an edge (u, v′) to zero. Let the resulting
betweenness be B(u)′r. Then, the gain in betweenness that would be obtained by setting (u, v′)
to zero in the first step (in the initial graph G) is at least B(u)′r −B(u)r, i.e.

B(u)′ −B(u) ≥ B(u)′r −B(u)r, (6.4)

where B(u)′ denotes the betweenness of u in the original graph, only with the edge cost of (u, v′)
set to zero.

Proof. Take one s, t-pair. We will first prove inequality (6.4) for Bs,t instead of B. We will
use four distance functions: the original distances δ(·, ·) in G, the distances δ′(·, ·) in G with
when only the cost of (u, v′) is set to zero, the distances δr(·, ·) in G after the edge costs of the
given r edges are set to zero, and the distances δ′r(·, ·) in G after the edge costs of the r edges
and of (u, v′) are set to zero. We begin by noting that

δ(s, u) = δ′(s, u) = δr(s, u) = δ′r(s, u)

and
δ(v′, t) = δ′(v′, t) and δr(v

′, t) = δ′r(v
′, t).

If δr(v
′, t) < δ(v′, t) then all shortest paths, after setting the r edge costs to zero, from v′ to t

pass through u. Therefore

δr(s, t) ≤ δr(s, u) + δr(u, t) < δr(s, u) + δr(v
′, t), (6.5)

where the last inequality holds because after setting c(u, v′) to zero, no zero cycles can arise
(by assumption); therefore the shortest v′, u-path cannot be of cost zero and hence δr(v

′, t) =
δr(v

′, u)+δr(u, t) > δr(u, t). In the situation of (6.5) it holds that B(u)′r = B(u)r (setting c(u, v′)
to zero creates no extra shortest paths), so that 6.4 is immediately satisfied. Therefore we assume
from now on that

δ(v′, t) = δ′(v′, t) = δr(v
′, t) = δ′r(v

′, t).

We distinguish a few cases.

1. If δ(s, t) > δ(s, u)+δ(v′, t) then all paths will pass through u after setting edge cost (u, v′)
to zero. This means that Bs,t(u)′r = Bs,t(u)′ = 1. The inequality (6.4) follows be-
cause Bs,t(u)r ≥ Bs,t(u) by the proof of Theorem 6.1.1.

2. If δ(s, t) = δ(s, u) + δ(v′, t) then only part of the paths will pass through u after setting
edge cost (u, v′) to zero.

• If δr(s, t) < δ(s, t) then

δr(s, t) < δ(s, t) = δ(s, u) + δ(v′, t) = δr(s, u) + δr(v
′, t),

so setting the edge cost of (u, v′) to zero after the given r edges are set to zero will
have no effect on the betweenness, i.e. Bs,t(u)′r−Bs,t(u)r = 0 and the inequality (6.4)
is satisfied.

• If δr(s, t) = δ(s, t) then the number of shortest paths through u increases by some
number t (which is the number of shortest paths from s to t via (u, v′)) by set-
ting (u, v′) to zero, both in the original case and after setting r edges to zero. There-
fore we have

Bs,t(u)′ =
Bs,t(u) · σst + t

t+ σst
,
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which gives

Bs,t(u)′ −Bs,t(u) =
σstBs,t(u) + t

t+ σst
−Bs,t(u)

=
σstBs,t(u) + t− tBs,t(u)− σstBs,t(u)

t+ σst

=
t− tBs,t(u)

t+ σst
=
t(1−Bs,t(u))

t+ σst
(6.6)

and similarly

Bs,t(u)′r =
σrstBs,t(u)r + t

t+ σrst
,

so

Bs,t(u)′r −Bs,t(u)r =
t− tBs,t(u)r
t+ σrst

=
t(1−Bs,t(u)r)

t+ σrst
. (6.7)

Now, by noting that (1 − Bs,t(u)r) ≤ (1 − Bs,t(u)) and that σrs,t ≥ σs,t (since
δr(s, t) = δ(s, t)), by comparing (6.6) and (6.7), the desired inequality (6.4) follows.

• δr(s, t) > δ(s, t) is not possible, the distance from s to t cannot get bigger while
setting edge costs to zero.

3. If δ(s, t) < δ(s, u) + δ(v′, t), then setting edge cost (u, v′) to zero will have no effect on the
betweenness in any step of the algorithm, so Bs,t(u)′ − Bs,t(u) = Bs,t(u)′r − Bs,t(u)r = 0
and the inequality (6.4) is satisfied.

We conclude that for each s, t-pair it holds that

Bs,t(u)′ −Bs,t(u) ≥ Bs,t(u)′r −Bs,t(u)r,

therefore this inequality (inequality (6.4)) also holds for the betweenness B(u), since the be-
tweenness is the sum of Bs,t-values: B(u) =

∑
s 6=u6=tBs,t(u).

Corollary 6.4.3. Lemma 6.4.2 also holds for the weighted betweenness centrality BW (u) in-
stead of the unweighted betweenness centrality B(u).

Proof. Note that we proved Lemma 6.4.2 per s, t-pair. Therefore the inequality also holds
for BW (u) instead of B(u) (all weights are nonnegative).

Lemma 6.4.4. It holds that

Bj(u)−Bj−1(u) ≥ OPT−Bj−1(u)

k
, for j = 1, . . . , k,

where OPT is the maximum betweenness centrality of u that can possibly be obtained by setting
the edge cost of k outgoing edges of u to zero and Bj(u) is as in Algorithm 6.4.1.

Proof. Suppose we have completed j − 1 steps of the greedy algorithm. After completing 0
steps, the maximum betweenness that can possibly be obtained by setting the edge cost of k
outgoing edges of u to zero is OPT. After j − 1 edges are set to 0, we can still obtain a
betweenness ≥ OPT by setting the optimal k edges in the original setting to zero. Hence, by
setting at most k extra edges to zero, we can get an increase in betweenness of OPT−Bj−1(u).
This means that there must be at least one step in the process of setting the k edges to zero
where the betweenness rises with at least

OPT−Bj−1(u)

k
.
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Setting the edge of this step to zero immediately (before setting other edges to zero) can only
give a larger rise in betweenness by Lemma 6.4.2. Since the j-th greedy step gives the highest
rise in betweenness in the situation of Bj−1(u), it holds that

Bj(u)−Bj−1(u) ≥ OPT−Bj−1(u)

k
,

which is the claim of the lemma.

Lemma 6.4.5. It holds that

Bj(u)−B0(u) ≥
(

1−
(

1− 1

k

)j)
(OPT−B0(u)) , for j = 1, . . . , k.

Proof. We prove the result by induction. Vertex u is fixed, so we write Bj instead of Bj(u) to
simplify notation.

(1.) For j = 1 the result holds by the previous lemma: B1(u)−B0 ≥ (OPT−B0)/k.

(j.) Suppose the result holds for j − 1. We prove that the result also holds for j.

Bj −B0 = (Bj−1 −B0) + (Bj −Bj−1)

≥ (Bj−1 −B0) +
OPT−Bj−1

k

=

(
1− 1

k

)
(Bj−1 −B0) +

OPT−B0

k

≥
(

1− 1

k

)(
1−

(
1− 1

k

)j−1
)

(OPT−B0) +
OPT−B0

k

=

(
1−

(
1− 1

k

)j)
(OPT−B0) ,

which gives the desired result. The first inequality was proven in Lemma 6.4.4 and the
second inequality holds by the induction hypothesis.

We conclude that the result holds by induction.

Now the approximation result follows easily.

Theorem 6.4.6. It holds that

Bk −B0 ≥
(

1−
(

1− 1

k

)k)
(OPT−B0) >

(
1− 1

e

)
(OPT−B0) > 0.632 · (OPT−B0) ,

where Bk is the betweenness centrality of u after the kth step of the greedy algorithm (Algo-
rithm 6.4.1).

Proof. We apply Lemma 6.4.5, with j = k. This gives the first inequality. The second inequality
follows because 1− (1− 1/k)k is decreasing with

lim
k→∞

1−
(

1− 1

k

)k
= 1− 1

e
.

Hence it holds that

1−
(

1− 1

k

)k
> 1− 1

e
> 0.632,

which proves the theorem.
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The approximation ratio of Theorem 6.4.6 is at least 1−1/e, but for small k the approximation
ratio is better. If we write αk := 1− (1− 1/k)k, then we have as α1 = 1, α2 = 0.75, α3 ≈ 0.703.
For k = 1 the greedy algorithm (trivially) achieves an optimal increase in betweenness.

Theorem 6.4.7. The approximation ratio of Theorem 6.4.6 is tight.

Proof. We give an outline of the example from [HP98]2. Let B be a (k + 1) × k-matrix, such
that the i, j-th entry contains bi,j elements, where:

(0.) Row 0:

b0,j =

{
(k − 1)k−1, if j = 1,

(k − 2)(k − 1)k−2, if 2 ≤ j ≤ k.

(1.) Row 1:

b1,j =

{
0, if j = 1,

(k − 1)k−2, if 2 ≤ j ≤ k.

(i.) Row i:

bi,j = ki−2(k − 1)k−i, 2 ≤ i ≤ k, 1 ≤ j ≤ k.

Let Ci be the set consisting of all elements of the i-th column of B, where 0 ≤ i ≤ k. Further-
more, let Rj be the set consisting of all elements of the j-th column of B, where 1 ≤ j ≤ k.
Let

S := {C0, C1, . . . , Ck} ∪ {R1, . . . , Rk}.
Let U be the set consisting of all elements of B. Now, construct an instance of Problem 6 as in
Theorem 6.4.1 (the reduction to Maximum Coverage).

(i) An optimal solution to Problem 6 is {C1, . . . , Ck}. Then all elements of B are covered, so
we will get a maximal betweenness value in the reduction of Theorem 6.4.1.

(ii) However, one can prove that the greedy algorithm can select {Rk, Rk−1, . . . , R1} as solu-
tion.

(iii) Furthermore, one can prove that total number of elements in rows 1 through k is exactly
1− (1− 1/k)k times the total number of elements in B.

Note that 1 − (1 − 1/k)k is exactly the approximation ratio of Theorem 6.4.6. Therefore the
approximation ratio of this example is tight.

Even a stronger result holds.

Theorem 6.4.8. Let B0(u) be the initial betweenness value of u. There is no polynomial time
algorithm to compute a feasible solution (i.e. there is no polynomial time algorithm to find k
outgoing edges of u) for Problem 6 ( Maximizing Betweenness) that always outputs a solution
with betweenness BSOL(u) such that

BSOL(u)−B0(u) ≥ α · (OPT−B0(u)),

with 1 ≥ α > 1− 1/e, unless NP ⊆ DTIME(nO(log logn)).

2The authors of [HP98] took this example from [DJS93].
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Proof. Suppose for the sake of contradiction that there exists a polynomial time algorithm
that outputs a solution with betweenness BSOL(u) such that BSOL(u) − B0(u) ≥ α · (OPT −
B0(u)) with 1 ≥ α > 1 − 1/e. We apply this algorithm to the instance of Problem 6 used
in the reduction from Maximum Coverage in Theorem 6.4.1. This means that the resulting
betweenness value BSOL(u) of the algorithm will satisfy

BSOL(u)−B0(u) ≥ α(OPT−B0) = α · ((OPTmaxcover + t)− t) = α ·OPTmaxcover. (6.8)

Let vs1 , . . . , vsk be the vertices that are set to zero in the obtained solution with between-
ness BSOL(u). Then it holds that

BSOL(u) = t+ |Ss1 ∪ . . . ∪ Ssk | = B0(u) + |Ss1 ∪ . . . ∪ Ssk |.

Combining this with (6.8) gives

|Ss1 ∪ . . . ∪ Ssk | = BSOL(u)−B0(u) ≥ α ·OPTmaxcover,

where α > 1−1/e. That means that Maximum Coverage can be approximated within a factor α,
where α > 1− 1/e. This is impossible, as is proven in [Fei98]. We arrive at a contradiction.

6.5 Submodular set functions

In this section we will prove the approximation ratio from Theorem 6.4.8 using the theory from
the literature about submodular set functions. First we will define these functions (see the
definitions in [Schr04] and [NWF78]). Subsequently, we will use the approximation algorithm
for submodular monotone functions from [NWF78] to re-prove Theorem 6.4.8.

Definition 6.5.1 (Submodular set function). A submodular set function is a set function S → R
(that is, a function P(S)→ R, where P(S) is the set of al subsets of S) that satisfies the condition

f(T ) + f(U) ≥ f(T ∩ U) + f(T ∪ U), (6.9)

for all subsets T , U of S.

Theorem 6.5.1. Let G = (V,E) be a directed graph, u ∈ V a vertex and c : E → R≥0 additive
edge costs. Let S be the set of all outgoing edges of u. The function f : P(S)→ R, given by

f(U) = BW
U (u)−BW

0 (u),

(where BW
U (u) denotes the (weighted) betweenness centrality of u in G, but with the edge cost

of all edges in U set to zero, and BW
0 (u) denotes the initial weighted betweenness centrality of u

in G) is a submodular set function S → R.

Proof. This follows from Lemma 6.4.2. Let U, T ⊂ S be sets of outgoing edges of u. We will
prove that

f(T )− f(T ∩ U) ≥ f(T ∪ U)− f(U), (6.10)

establishing (6.9). First, define f ′ : P(S)→ R by

f ′(U) := BW
U (u) = f(u) +BW

0 (u).

We will prove (6.10) for the function f ′ instead of f . It immediately follows that the equa-
tion (6.10) then also holds for f .

We first (before applying Lemma 6.4.2) set the edge costs of the outgoing edges in T ∩ U
to zero. Let R be the set of edges in U \ (T ∩ U) and let r be |R|. Let Z be the set of edges
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in T \ (T ∩ U), where we write Z = {z1, . . . , z|Z|}. Lemma 6.4.2 gives us (by applying it with
the r edges from R) that

f ′({z1} ∪ (T ∩ U))− f ′(T ∩ U) ≥ f ′({z1} ∪ U)− f ′(U).

Suppose we have proven for Z ′ = {z1, . . . , zj−1} (where 2 ≤ j ≤ |Z|}) that

f ′(Z ′ ∪ (T ∩ U))− f ′(T ∩ U) ≥ f ′(Z ′ ∪ U)− f ′(U). (6.11)

Then, applying Lemma 6.4.2 gives

f ′({zj} ∪ Z ′ ∪ (T ∩ U))− f ′(Z ′ ∪ (T ∩ U)) ≥ f ′({zj} ∪ Z ′ ∪ U)− f ′(U ∪ Z ′). (6.12)

Adding inequalities (6.11) and (6.12) yields

f ′({zj} ∪ Z ′ ∪ (T ∩ U))− f ′(T ∩ U) ≥ f ′({zj} ∪ Z ′ ∪ U)− f ′(U). (6.13)

Therefore it holds by induction that

f ′(Z ∪ (T ∩ U))− f ′(T ∩ U) ≥ f ′(Z ∪ U)− f ′(U),

i.e.
f ′(T )− f ′(T ∩ U) ≥ f ′(T ∪ U)− f ′(U),

which yields equation (6.10) (since f ′ = f +C, with C a constant), as was needed to prove.

Definition 6.5.2 (Monotone nondecreasing set function). A set function f on S is called
monotone nondecreasing if f(U) ≤ f(T ) for all subsets U, T with U ⊆ T ⊆ S.

Lemma 6.5.2. The function f from Theorem 6.5.1 is a monotone nondecreasing set function.

Proof. Follows directly from a repeated application of Corollary 6.1.2.

Problem 8 (Maximizing a submodular nondecreasing set function). Let f be a submodular
nondecreasing set function S → R. Let k ≤ |S| be a natural number. We would like to find
a T ⊆ S with |T | = k such that f(T ) is as large as possible.

Algorithm 6.5.1 (Greedy approach for maximizing a submodular nondecreasing set function).
To approximate a solution to Problem 8, one could perform the following steps.

(i) First, we choose e1 ∈ S such that f(e1) is maximal.

(ii) Suppose e1, . . . , ej−1 ∈ S are chosen. Then we choose an element ej ⊆ S such that f(ej ∪
{e1, . . . , ej−1}) is maximized.

Theorem 6.5.3. Algorithm 6.5.1 outputs a set U for which f(U) is ≥ 1− 1/e times as big as
the optimal value.

Proof. See [NWF78].

Corollary 6.5.4. The greedy algorithm (Algorithm 6.4.1) to maximize the betweenness gives a
solution in which the rise in betweenness is at least 1−1/e times the optimal rise in betweenness.

Proof. This follows from Theorem 6.5.3.

We see that by using the general theory for submodular set functions, one can prove that the
greedy algorithm (Algorithm 6.4.1) to solve Problem 6 yields a set of edges that give a rise in
betweenness of at least (1− 1/e) times the optimal rise in betweenness.
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6.6 Results

In this section we will test the greedy algorithm in the case that we want to improve the
betweenness of the Netherlands. First we make an adaptation to the network to make the
experiment more relevant.

Countries can only partly control the tax rate that must be paid when money is sent
along their outgoing edges3. Therefore, we split the outgoing edge costs of the Netherlands in
two parts, with an auxiliary node in between. The first part will be the reliability based on
the tax rate that the Netherlands controls, and the second part will be the ‘remaining’ part:
the part that the Netherlands does not control. Remember from Section 2.4 that the edge
reliabilities depend on whether a country is the source country, the starting vertex of a path.
Since we compute the betweenness of the Netherlands (and hence consider paths that have the
Netherlands neither as source, nor as sink vertex), we do only need to adapt the |V | − 1 = 107
graphs from Section 2.4 in which the Netherlands is not a source country. Note that for all
these graphs (cf. Section 2.4), the outgoing edge reliabilities of NLD are the same.

For every country i, i 6= NLD, we add an auxiliary node iA to the network, and we replace
the edge (NLD, i) by two edges (NLD, iA) and (iA, i). Let tci be the tax of the part of (the
original) edge (NLD, i) that The Netherlands controls. The reliability of edge (NLD, iA), we
define as 1− tci.

Let qi be the reliability of the original edge (NLD, i). Since we multiplied each edge
(except for edges with tail the source of Gi), but NLD does not appear as source vertex in our
computations in this section) by (1 − ε) (see Section 2.4.1), it holds that qi ≤ (1 − ε)(1 − tci).
We define reliability q′i as follows

qi = (1− tci) · q′i,
so q′i ≤ (1− ε). We set r(iA, i) := q′i, which implies that r(NLD, iA) · r(iA, i) = qi.

NLD i

NLD iA i

qi

1− tci q′i

Figure 6.3: We add an auxiliary node. Above: the network before the auxiliary node is added. Below:
the adaptation to the network.

Note that the resulting networks (with the outgoing edges of the Netherlands split into two
parts) contain no cycles of reliability 1, since the original networks contained no cycles of
reliability 1. Furthermore, in the resulting graphs, there are no cycles of reliability 1, even if
we change the edge reliability of edges (NLD, iA) from 1 − tci to 1. To see this, note that the
only edges of reliability 1 in Gj , the graph of source country j (where j 6= NLD), might be (j, u)
(for u ∈ V ), and edges (NLD, iA) get reliability 1, but edge (iA, i) does not have reliability 1,
since r(iA, i) = q′i ≤ (1− ε).

The betweenness of The Netherlands is initially 6.27001. The weighted betweenness is
initially 2.63225. When The Netherlands is a conduit country in our network, there are 59
countries i to which The Netherlands has an edge (with the adaptation as above) (NLD, iA) of

3The country controls the withholding tax on dividends, but not the tax that must be paid in another country
when money enters this country.
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reliability unequal to one (i.e. nonzero outgoing tax rate tci). These countries are:

S := {DZA, AGO, ARG, ABW, AUS, AZE, BHS, BHR, BMU, BWA, BRA, BRN,

CAN, CYM, CHL, CHN, COL, CRI, CUR, DOM, ECU, GNQ, GAB, GRN,

IND, IDN, IMN, ISR, JAM, JRY, JOR, KOR, LBN, LBY, LIE, MAC,

MUS, MEX, NAM, NZL, NGA, PAK, PAN, PER, PHL, PRI, SAU, YUG,

SYC, ZAF, SUR, TWN, THA, TTO, TUR, ARE, URY, VIR, VGB}.

ALB

DZA

AGO

ARG

ABW

AUS

AUT

AZE

BHS
BHR

BRB

BLR
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BWA

BRA

BRN
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CRI CUR
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LBY
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MUS
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MNG
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NLD
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NZL

NGA

NOR

OMN

PAK

PAN

PER
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PRT

PRI

QAT

ROM

RUS

SAU

YUG

SYC

SGP

SVK

SVN
HUN

HRV

ZAF

ESP

SUR

SWE

CHE

TWN

THA

TTO

TUN

TUR

UKR

ARE

GBR

USA

URY

VEN

VIR

VGB

Figure 6.4: Green: the countries i to which the Netherlands has a non-zero outgoing tax tci. Red: the
countries to which the Netherlands has zero as its outgoing tax rate.

We will test the greedy algorithm (Algorithm 6.4.1) in our network.

Algorithm 6.6.1 (Greedy algorithm 6.4.1 applied to the example of this section). We itera-
tively set the reliability of edges (NLD, iA) (where i ∈ S) to 1 that increases the betweenness
the most.

(i) First, we choose the edge (NLD, i1A) with i1 ∈ S such that the betweenness Bafter(NLD)
of NLD after setting this edge reliability to 1 is maximized. We set the reliability of this
edge to 1 and we set B1(NLD) := Bafter(NLD).

(ii) Suppose (NLD, i1A), . . . , (NLD, ij−1A) are chosen. Then we choose the edge (NLD, ijA)
with ij ∈ S such that the betweennes Bafter(NLD) of NLD after setting this edge reliability
to 1 is maximized. We set the reliability of this edge to 1 and we set Bj(NLD) :=
Bafter(NLD).

Here the ‘betweenness centrality’ is defined as in Section 2.4.3, since we have one different graph
for every source vertex. This same procedure we can also apply to the weighted betweenness
centrality.

Setting the outgoing tax to VIR4, to zero (hence setting r(NLD,VIRA) := 1) raises the un-
weighted betweenness the most, to 7.13537. To increase the weighted betweenness the most,
one must set r(NLD, INDA) := 1, giving the Netherlands a weighted betweenness of 8.26804.
The following table shows the first ten steps in the greedy algorithm. The first line contains the

4The names of the countries corresponding to the three-letter codes used throughout the thesis, can be found
in the Appendix A.1. VIR stands for: Virgin Islands (U.S.).
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starting weighted betweenness (resp. unweighted betweenness) of NLD, before setting reliabili-
ties of edges (NLD, iA) to 1. After that, one-by-one edge reliabilities of edges (NLD, iA) are set
to 1 according to Algorithm 6.6.1.

Table 6.1: The first ten steps of Algorithm 6.6.1, for increasing the weighted betweenness central-
ity BW (NLD) as well as the unweighted betweenness centrality B(NLD) of NLD.

Step Quality αk Country BW (NLD) Country B(NLD)

2.63225 6.27001
1 1.000 IND 8.26804 VIR 7.13537
2 .750 CHN 11.24343 BRA 7.99066
3 .703 BRA 13.98996 SUR 8.83870
4 .683 ARG 14.91397 ARG 9.66944
5 .672 AUS 15.64832 BHR 10.49580
6 .665 PAK 16.28557 IND 11.31937
7 .660 NGA 16.79352 NAM/(PAK) 12.14145
8 .656 PHL 17.25844 PAK/(NAM) 12.96354
9 .654 PER 17.61796 PER 13.78229
10 .651 SAU 17.96748 PRI 14.57842

... ... ... ...
59 1.000 ALL 20.30425 ALL 21.87247

To increase the weighted betweenness, we first set r(NLD, INDA) := 1. After that, we addition-
ally set r(NLD,CHNA) := 1 and we continue as in Table 6.1. To increase the unweighted be-
tweenness, we first set r(NLD,VIRA) := 1. After that, we additionally set r(NLD,BRAA) := 1
and we continue as in Table 6.1. We observe that by setting the outgoing tax rates to India
and China to zero, the Netherlands achieves a weighted betweenness centrality that is more
than 50% of the maximum weighted betweenness ever achievable for the Netherlands by de-
creasing outgoing tax rates.

The second column of Table 6.1 contains a ‘quality guarantee’ αk of the greedy solution,
where it holds that

Bk(NLD)−B0(NLD) ≥ αk(OPT−B0(NLD)),

i.e. the total rise in betweenness that the k-th step of the greedy algorithm achieves, is at
least αk times the optimal increase in betweenness by setting k edge reliabilities of edges of the
form (NLD, iA) to 1. This follows from Theorem 6.4.6.

How precise is our approximation algorithm? We tested this for k = 1, 2, 3. We compute
the maximal betweenness by setting edge reliabilities of k edges of the form (NLD, iA) (with iA
such that i ∈ S) to 1, by testing all subsets of S of size k. There are

(
59
k

)
of such subsets. For k =

1, 2, 3 the optimal solution exactly corresponds with the solution given by the greedy algorithm,
for both the weighted and the unweighted betweenness centrality. The greedy algorithm seems
to be very useful in practice.
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Figure 6.5: By setting the outgoing dividend tax rates to India and China to zero, the Netherlands
achieves a weighted betweenness centrality that is more than 50% of the maximum weighted betweenness
ever achievable for the Netherlands by decreasing outgoing tax rates. Green: the other countries (except
India and China) to which the Netherlands has a non-zero outgoing tax rate.
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Chapter 7

Maximizing tax revenues

The objective of this (short) chapter is maximizing the total tax a country receives as a conduit
country. We will look at this problem from a theoretical perspective. This (short) chapter
contains no results section: we will not apply the insights on the CPB-network (that consists
of 108 graphs Gs).

In reality, the taxes that conduit countries receive when companies send money through
them, are often not high (although this differs from country to country). The Netherlands,
for example (see [RL13]), collects little tax from being a conduit country and might be more
interested in creating and attracting jobs in the financial sector by increasing the amount of
money that companies send through it (Chapter 6), than in raising (or maximizing) conduit
taxes.

We formulate a ‘tax problem’ in one graph G = (V,E). We will be concerned with additive
edge costs and we will not make the translation to edge reliabilities.

Problem 9 (Tax Problem). Let G = (V,E) be a directed graph with additive edge costs c :
E → Z≥0, such that G does not contain cycles, even if we set the outgoing edges of a given
vertex u ∈ V to zero. The total tax that a vertex u receives is defined as

Ttotal(u) :=
∑
s,t∈V
s 6=u6=t

∑
v∈N+(u)

fst[(u, v)] · c(u, v) =
∑
s,t∈V
s 6=u6=t

ws,t
σst

∑
v∈N+(u)

σst[(u, v)]c(u, v), (7.1)

where σs,t[(u, v)] is the number of shortest paths from s to t passing through edge (u, v). Suppose
we are allowed to change the edge cost of, respectively

(i) only one outgoing edge of u,

(ii) k outgoing edges of u, with 1 ≤ k ≤ N+(u) ≤ |V |,
(iii) all outgoing edges of u.

How must we set these edge costs (to nonnegative integers) to maximize the total tax Ttotal(u)
that country u receives?

Note that this ‘total tax’ is defined as the sum over all pairs s, t ∈ V with s 6= u 6= t of the tax
received by u over the pair s, t. The tax received by u over the pair s, t we define as the sum
over all outgoing edges (u, v) of u of the edge flow fs,t[(u, v)] multiplied by the ‘tax rate’ c(u, v)
on edge (u, v).

Observe that if there is an s, t-pair in G for which u is an intermediate country on all s, t
paths, then there is an outneighbour v′ of u for which u is an intermediate country on all s, v′-
paths. We can give (u, v′) an arbitrary high edge cost M , so that the obtained tax is at
least wu,v′ ·M . This means that the tax that vertex u receives can become arbitrarily high.
Therefore we assume from now on:
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Assumption 7.0.1. For every s, t-pair in G for which u is an intermediate country on an s, t-
path, there also exists an s, t-path not passing through u.

Remark 7.0.1. Note that we assumed that all edge costs are nonnegative integers. Suppose
we would allow all numbers in R≥0 (such that G does not contain zero-cost cycles even after
setting outgoing edges of u to zero). Then the Tax Problem has no solution. Consider the
following graph.

s u v
1

2

?

Figure 7.1: Example graph G = (V,E). Suppose we allow nonnegative real numbers as edge costs. How
do we need to set c(u, v) to maximize tax?

In the above picture, setting c(u, v) := 1 yields a tax Ttotal(u) of 1/2. There are two shortest
s, v-paths (of cost 1) and half of them pass through (u, v) with cost 1. Therefore the tax
received ‘through edge (u, v)’ is 1 · 1/2 and (u, v) is the only outgoing edge of u. However, if we
set c(u, v) := 1− ε, then there is only one shortest s, v-path. The total tax received by vertex u
will be 1− ε. As ε can be arbitrarily small, there is no maximum obtainable total tax, only an
upperbound (of 1) that can be approximated arbitrarily close. Note that edge costs in Q≥0 do
not help to solve this problem, as we can set ε := 1/n and we still have the problem that there
is no maximum obtainable tax.

To circumvent this problem, we assume in this chapter that all edge costs are nonnegative
integers. The results from this chapter can be generalized to solve the Tax Problem in case the
edge costs are not (nonnegative) integers, but are contained in c ·Z≥0, with c > 0 a real number.
Note that we always assume that G has no cycles of cost 0, even after setting the outgoing edge
costs of u to 0. We do this to be able to count paths efficiently (cf. Chapter 2).

In the following sections we will try to solve Problem 9 (i), (ii) and (iii).1

7.1 Tax problem: changing one edge cost

Suppose that we are allowed to change the edge cost of one outgoing edge of a vertex u. Consider
first the case that we are given one particular outgoing edge of u. What edge cost do we need
to give it?

Theorem 7.1.1. Let G = (V,E) be a directed graph with edge costs c : E → Z≥0, such that G
does not contain cycles of cost 0, even after setting the outgoing edges of a given vertex u ∈ V
to 0. Let v ∈ N+(u) be one given vertex. Suppose that it is allowed to change the edge cost of
this particular edge (u, v). The aim is to change this edge cost in such a way that the resulting
tax Ttotal(u), as defined in (7.1), is maximized. To this end, we compute for each s, t-pair for
which (u, v) lies on a path from s to t, with s 6= u 6= t, the value

Rs,t := δE\{(u,v)}(s, t)− δ(s, u)− δ(v, t),

where δE\{(u,v)}(s, t) stands for the distance from s to t in G = (V,E \ {(u, v)}). Note that
in Assumption 7.0.1 we assumed that those Ris,t values are finite if (but not only if) δ(s, u)
and δ(v, t) are finite. If δ(s, u), δ(v, t) or δE\{(u,v)}(s, t) is infinitely large, we define Rs,t to
be 0. To maximize the tax, one only needs to check, for all s, t ∈ V with s 6= u 6= t, the
nonnegative values among

1We will assume that the weights ws,t are all equal (and hence without loss of generality equal to 1), but the
results that we will prove hold for arbitrary positive weights ws,t.
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c(u, v) = Rs,t + 1, or c(u, v) = Rs,t, or c(u, v) = Rs,t − 1.

If δ(s, u), δ(v, t) or δE\{(u,v)}(s, t) is infinitely large, we define Rs,t to be 0. That is, only 3·|{s, t ∈
V : s 6= u 6= t}| = 3 · (n− 1) · (n− 2) ≤ 3n2 edge costs need to be checked for (u, v).

Proof. Let M ∈ Z≥0 be an edge cost such that c(u, v) = M maximizes Ttotal(u). If M =
Rs,t + 1, M = Rs,t, or M = Rs,t − 1 for some pair s, t, then we are done. Therefore, suppose
that this is not the case.

(1.) Suppose that there is a pair s, t ∈ V for which M < Rs,t − 1. Then s1, t1 can be chosen
such that Rs1,t1 is the smallest R-value for which R− 1 is larger than M , i.e.

M < Rs1,t1 − 1,

and for all s, t such that Rs,t − 1 > M we have Rs,t ≥ Rs1,t1 . Note that u will receive
no tax via vertex v2 on all routes s, t for which Rs,t < M . However, u will receive a tax
of M < Rs1,t1 − 1 on all routes Rs,t for which Rs,t − 1 > M and (u, v) lies on the shortest
path from s to t. But resetting c(u, v) := Rs1,t1 − 1 can only possibly increase the tax
that u receives via vertex v, while keeping the tax that u receives via all other outgoing
vertices equal. To see this, note that exactly all shortest paths through u remain shortest
paths when changing c(u, v) from M to Rs1,t1 − 1. The shortest paths through (u, v)
remain shortest paths by construction (since by changing the edge cost from M to Rs1,t1 −
1, the edge cost of (u, v) remains below the smallest R-value above M). The shortest
paths through u not crossing (u, v) also remain shortest paths if we increase the edge cost
of (u, v) (increasing c(u, v) could only possibly increase the distances in G, but paths not
crossing (u, v) already have a given cost). In the computation of Ttotal(u) all variables
remain the same, except the cost c(u, v). This cost rises from M to Rs1,t1 − 1, yielding a
possibly higher tax.

−1 Rs,t +1 −1 Rs′,t′ +1 −1 Rs1,t1
+1M

No tax from those paths. Change will not affect shortest paths.

−1 Rs,t +1 −1 Rs′,t′ +1 −1 Rs1,t1
+1 M

No tax from those paths. Change will not affect shortest paths.

Figure 7.2: Case (1.) (above) and (2.) (below) of the proof of Theorem 7.1.1.

2Naturally, we define the tax that u receives ‘via’ vertex v (with v ∈ N+(u)) as∑
s,t∈V

ws,t
σs,t

σst((u, v)) · c(u, v).

This is exactly the contribution that edge (u, v) makes to Ttotal(u), see (7.1).
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(2.) Suppose that there does not exist a pair Rs,t for which M < Rs,t− 1. Then it holds for all
pairs s, t that Rs,t + 1 < M . Let Rs1,t1 be the largest such pair, i.e.

M > Rs1,t1 + 1,

and for all s, t such that Rs,t + 1 < M we have Rs,t ≤ Rs1,t1 . Note that u does not obtain
any tax via v, as M > Rs,t for each pair s, t. By resetting M := Rs1,t1 + 1 we will still
have that M > Rs,t for all s, t-pairs (so u will receive no tax via v), while all shortest paths
remain unchanged. So the tax that u receives via all other vertices remains the same.
Therefore we can set M := Rs1,t1 + 1.

We conclude that there always exists some pair s, t for which we can set c(u, v) = Rs,t −
1, c(u, v) = Rs,t or c(u, v) = Rs,t + 1 to maximize the tax. Therefore the theorem is true.

The above theorem suggests a polynomial time algorithm for calculating the edge cost of one
given edge to maximize Ttotal(u).

Remark 7.1.1. To maximize Ttotal(u) in polynomial time by changing the edge cost of one
given edge we perform the following steps.

(i) First we want to compute the values Rs,t for each pair s, t for which u is an intermediate
node on a path from s to t, but we can as well compute Rs,t for all pairs s, t. Using Floyd
Warshall this can be done in O(n3) (or in our CPB-network that consists of n graphs
in O(n4)).

(ii) Try, for all s, t-pairs, all values c(u, v) := Rs,t − 1, c(u, v) := Rs,t and c(u, v) := Rs,t + 1
and compute the resulting tax. Note that, given all edge costs, the tax Ttotal can be
computed in the same time as a normal betweenness computation, by using Brandes’
equation. Equation (2.6) becomes

Ts,•(u) =
∑

v :u∈Ps(v)

c(u, v) · ws,v · σsu
σsv

·
(

1 +
BW
s,•(v)

ws,v

)
,

and by summing the values Ts,• over all s ∈ V \ {u}, we obtain the tax Ttotal(u). This
step (at most 3n2 betweenness computations) can be done in time bounded by O(3n2 ·
n(m+ n log n)) = O(n5).

(iii) The value of c(u, v) that gives maximum Ttotal(u) now maximizes Ttotal(u), as seen in
Theorem 7.1.1.

We conclude that we can maximize Ttotal(u) in polynomial time by changing the edge cost of
one given edge in time bounded by O(n5).

Corollary 7.1.2. If we are allowed to change the cost of one arbitrary edge (u, v) with v ∈
N+(u), we just run the above procedure N+(u) ≤ |V | = n times (for each outgoing edge of u
one time) and take the edge (with corresponding edge cost) that maximizes Ttotal(u) the most.
Therefore, we can maximize the total tax in polynomial time by changing the edge cost of one
arbitrary outgoing edge of u in time O(n · n5) = O(n6).

We conclude that Problem 9 (i), the Tax Problem with one outgoing edge, can be solved in
polynomial time, as desired.

7.2 Tax problem: changing k edge costs

In this section we consider Problem 9 (ii), the Tax Problem of changing k edge costs. This
problem is a bit similar to Problem 6 (Maximizing Betweenness) of the Chapter 6: it is NP -
hard, via a reduction to Maximum Coverage.
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Theorem 7.2.1. The Tax Problem of changing at most k edge costs, Problem 9 (ii), is NP-
hard.

Proof. We use a reduction from the Maximum Coverage Problem (Problem 7). Given a uni-
verse U = {e1, . . . , eN}, a collection of subsets of this universe S = S1, . . . , St and a number k,
we construct an instance of Problem 9 (ii) as follows:

Let there be vertices s, u, v1, . . . , vt (so for every set Si ∈ S there is a vertex vi) and let
there also be a vertex for each element in U :

V = {s, u, v1, . . . , vt} ∪ (∪ei∈Uei) .

Let there be directed edges as follows:

• There is an edge (s, u) of cost 0.

• For every vi, where i = 1, . . . ,m, there is an edge (u, vi) of cost 0.

• For every vi, where i = 1, . . . ,m, there is an edge (s, vi) of cost 2Nk + 1.

• For every x ∈ U , and for every i ∈ {1, . . . ,m} there is an edge (vi, x) if and only if x ∈ Si.
This edge has cost 0.

• For every x ∈ U there is an edge (s, x). This edge has cost 2Nk + 1.

s u

v1

v2

vt

e1

e2

eN

0

2Nk + 1

2Nk + 1

0

0

0

0

0

0

Figure 7.3: Illustration of the instance created in the reduction of Maximum Coverage to the Tax
Problem of changing k outgoing edge costs (Problem 9 (ii)).

Before changing outgoing edge costs of vertex u, the total tax that u receives is 0. To maximize
tax, we want to set k edge costs c(u, vi1), . . . , c(u, vik) to 2Nk so that |Si1 ∪ . . .∪Sik | is maximal.
To see this, note that setting k edge costs c(u, vi1), . . . , c(u, vik) to 2Nk gives a tax of exactly

T1 := 2Nk2 + 2Nk · |Si1 ∪ . . . ∪ Sik |. (7.2)
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For all pairs s, vi1 , . . . , s, vik , the tax that u receives via this pair is 2Nk, which gives a combined
tax via these pairs of 2Nk2. For each x ∈ Si1 ∪ . . . ∪ Sik , the tax that u receives via x is 2Nk,
giving a total tax of 2Nk · |Si1 ∪ . . . ∪ Sik | for these s, x-pairs. We conclude that the combined
tax received by u is as in (7.2). In contrast, setting a edges (with a ≥ 1) to 2Nk+1 and b edges
to 2Nk, with a+ b = k, gives (at most) a tax of T2, where

T2 ≤
2Nk + 1

2
· a+ 2Nkb+ (2Nk + 1) · |Si1 ∪ . . . ∪ Sik |

< (Nk + 1) · a+ 2Nkb+N + 2Nk · |Si1 ∪ . . . ∪ Sik |
≤ Nka+ a+N + 2Nkb+ 2Nk · |Si1 ∪ . . . ∪ Sik |
< 2Nka+ 2Nkb+ 2Nk · |Si1 ∪ . . . ∪ Sik | ≤ 2Nk2 + 2Nk · |Si1 ∪ . . . ∪ Sik | ≤ T1,

where we assume without loss of generality that k ≥ 2 and N ≥ 3 (so that a < k ≤ Nk/2
and N ≤ Nk/2). This is a strictly smaller tax than T1. Also, an optimal solution will contain
no edge costs with a value smaller than 2Nk (since then we could as well give all edge costs
that are assigned a value smaller than 2Nk the value 2Nk to strictly increase tax).

It follows that the tax is maximized if and only if we have set k outgoing edge costs of u
to 2Nk, where we have chosen these k outgoing edges such that |Si1 ∪ . . .∪Sik | is maximal. We
conclude that Si1 , . . . , Sik is an optimal solution for Maximum Coverage if and only if setting
the edge costs on (u, vi1), . . . , (u, vik) to 2Nk maximizes the tax in the created instance of
Problem 9 (ii).

This gives a reduction from Problem 9(ii) to the Maximum Coverage Problem (Problem 7).
Note that this reduction can be done in time O(t · N), which is polynomial in the size of the
instance. Therefore Problem 9 (ii) is NP -hard.

Will a greedy approach similar to Algorithm 6.4.1, the greedy algorithm for Maximizing Be-
tweenness (Problem 6), give good results in the case of maximizing taxes? First, we choose the
outgoing edge (u, vi) that maximizes tax and we set it to a value maximizing the tax. Then we
continue iteratively as in Algorithm 6.4.1. Unfortunately, the greedy approach is a very bad
approach, as we see in the following example.

s u

v1

v2

v3

t

t1

t2

tN

1

10

10

10

0

0

0

1

1

1

1

1

1

1

Figure 7.4: Example graph G = (V,E), with k = 2. The greedy approach is not at all optimal here.
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Example 7.2.1. Consider the graph of Figure 7.4. The tax that u receives in the initial position
is zero. The greedy approach will first set edge (u, v1) to 8, increasing the tax u receives both on
routes s, v1 and s, t by by 8. This leads to a total increase of tax of 8 + 8 = 16. After that, the
greedy approach will either set (u, v2) or (u, v3) to 8, giving an additional tax increase of 8, so
the total received tax is 16 + 8 = 24. But it is easy to verify that setting both (u, v2) and (u, v3)
to 8 will give a total tax of 2 · 8 +N · 8. Therefore the optimal solution can be arbitrarily many
times larger than the greedy solution, since

2 · 8 +N · 8
24

N→∞−−−−→∞.

The greedy approach, which gave good results in the betweenness-maximizing problem, does
not help here at all.

Here we conclude this section: the Tax Problem of changing k edge costs (Problem 9 (ii)) is
NP -hard, and the greedy approach analogous to Algorithm 6.4.1 can give arbitrarily bad results.

7.3 Maximizing the tax over one pair s, t

In this section we make a (minor) start with considering Problem 9 (iii). We will maximize the
tax obtained by u over one s, t-pair: we are allowed to change the edge costs of all outgoing
edges of one node u, in order to maximize∑

v∈N+(u)

fst[(u, v)] · c(u, v) =
ws,t
σst

∑
v∈N+(u)

σst[(u, v)]c(u, v).

Since ws,t is a positive constant, we can assume that it is 1 in solving this problem.

Algorithm 7.3.1 (Maximizing the tax over one s, t-pair). We compute the minimum distance
of a path from s to t not crossing u, which we denote by δ{V \{u}}. We compute, for each
vertex v ∈ N+(u), the value

h(v) := δ{V \{u}(s, t)− δ(s, u)− δ(vi, t).

We make a case distinction.

(1.) If
max{h(v) : v ∈ N+(u)} ≤ 0,

then no positive tax can be obtained and we stop the procedure.

(2.) Else:

(i.) We calculate the value

C1 := max{h(v) : v ∈ N+(u)} − 1,

and we store the edges (u, v) for which h(v) − 1 equals this maximum. We denote
the set of v ∈ N+(u) with c(u, v) = h(v) by U .

(ii.) For all vertices v ∈ U , compute the number of v, t-paths and calculate the quantity

C2 =

∑
v∈U σst[(u, v)] · c(u, v)

σst(u−) +
∑

v∈U σst[(u, v)]
. (7.3)

Now, the maximum tax that can be obtained is max{C1, C2}. If C1 > C2, we set c(u, v) :=
C1 for an arbitrary vertex with h(v) − 1 = C1. The other edge costs c(u, v) we assign a
value larger than h(v). If C2 > C1, we set c(u, v) := h(u) for all v ∈ U . The other edge
costs c(u, v) we assign a value larger than h(v).

98



The procedure returns the edge costs and the resulting tax value.

Theorem 7.3.1. Algorithm 7.3.1 correctly returns the edge costs that maximize the tax that u
receives over the pair s, t in O(n3).

Proof. We examine all steps of the algorithm.

(1.) If
max{δ{V \{u}}(s, t)− δ(s, u)− δ(v′, t) : v′ ∈ N+(u)} ≤ 0,

then no positive tax can be obtained: no paths will pass through any outgoing edge of (u, v),
regardless of how we set the edge cost. We can quit the procedure.

(i.) What is the maximum tax that can be obtained by making the distance δ(s, t) strictly
shorter than δ{V \{u}}(s, t)? To compute this, we calculate the value

C1 := max{δ{V \{u}}(s, t)− δ(s, u)− δ(v′, t) : v′ ∈ N+(u)} − 1.

Choose the vertex v′ for which this maximum is obtained. Setting the edge cost
of (u, v′) to C1 will yield a tax of C1, since all shortest paths from s to t will pass
through this edge. The other edge costs must be set to a higher value than C1. In
this case we obtain a total tax over pair s, t of C1.

(ii.) Could we obtain a higher tax than C1 by equalizing the distance3? For all vertices v ∈
U , the set of vertices with h(v) = C1 +1 (which is the largest possible edge cost of an
outgoing edge of u so that u receives some tax via this edge), we compute the number
of v, t-paths and calculate the quantity (using that σst[(u, v)] = σsu · σvt for v ∈ U if
we set c(u, v) := C1 + 1)

C2 =

∑
v∈U σst[(u, v)] · c(u, v)

σst(u−) +
∑

v∈U σst[(u, v)]
=

∑
v∈U σst[(u, v)] · (C1 + 1)

σst(u−) +
∑

v∈U σst[(u, v)]
. (7.4)

We could only get a tax value larger than C1 if there are many shortest path passing
through u via edges (u, v) with v ∈ U : there must be so many of these paths that (7.4)
yields a value in the interval (C1, C1 + 1). Note that setting an outgoing edge to C1

or a smaller value can never help by achieving a tax inside the interval (C1, C1 + 1).
Also note that we can, for computing (7.4) set as well all costs of outgoing edges of u
to C1 + 1. Edges (u, v) with v /∈ U will in this case not contribute to the sum: no
shortest paths through u will pass to them.

Now, the maximum tax that can be obtained is the maximum tax that results from one
of the above two situations. Therefore Algorithm 7.3.1 computes the correct edge costs to
maximize the tax obtainable by u over the pair s, t.

The running time of Algorithm 7.3.1 is dominated by the calculation of the distances, which
can be done with Floyd-Warshall in time O(n3). We conclude that the algorithm terminates
in O(n3).

The last problem we would like to consider is maximizing the total tax vertex u receives over
all s, t-pairs (Problem 9 (iii)) where it is allowed to change all outgoing edge costs of u. Un-
fortunately, we did not find a solution for this problem, and there is doubt that this is an
easy problem. However, a proof that this probem is NP -hard was still not found. This is an
interesting question for further research.

With these notes we end our short theoretical expedition to an invented problem, the
tax -problem. In the next section we will return to the CPB-network: we will compute the
Shapley-value based betweenness centrality, an alternative measure for betweenness centrality.

3By equalizing we mean: setting the outgoing edge costs of u such that δ(s, t) = δ{V \{u}}(s, t).
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Chapter 8

Shapley-value based betweenness
centrality

In this chapter we give an alternative approach of betweenness centrality, based on the Shapley
value. This chapter is based on a recent article by P. L. Szczepánski, T. Michalak and T.
Rahwan (see [SMR12]), with some minor additions to compute the Shapley-value based weighted
betweenness centrality. First we study the theory and then we test the Shapley-value based
betweenness centrality on the CPB-network of 108 countries.

8.1 Shapley-value based betweenness centrality: an algorithm

The Shapley-value based betweenness centrality is a special way of measuring the importance of
a vertex in a network. The original betweenness centrality measures importance of an individual
vertex. How severe are the consequences for the possibility to communicate between vertices in
the network if this particular node fails? It is argued (see [SMR12]) that the original betweenness
centrality is not an adequate measure for many applications, since in practice many nodes can
fail simultanuously.

Example 8.1.1. Consider the following graph (example taken from [SMR12]).

v1 v2 v3 v4 v5 v6 v7 v8

v12 v13 v14 v15 v16 v17 v18 v19

v9

v10

v11

Figure 8.1: Example graph G = (V,E) illustrating the difference between betweenness centrality and
the Shapley-value based betweenness centrality. We assume that for all e ∈ E, the reliability r(e) := 1/2.
The betweenness centralities of nodes v9 and v10 are equal, while the Shapley-value based betweenness
centralities are different.
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When calculating betweenness centrality, we find that BG(v9) = 98 = BG(v10). This is not
accurate for measuring the connectivity between nodes in the network, since the failure of
vertex v9 has more disastrous consequences for this connectivity than the failure of vertex v10.
For example, if v9 fails, the vertices v12, v13, v14 and v15 cannot communicate with each other,
while if v10 fails, the vertices v16, v17, v18 and v19 are still able to communicate with each
other. The Shapley-value based betweenness centrality SHB : V → R (which will be defined
below) is able to reflect this difference between v9 and v10. It holds that SHB(v9) = 18.2,
while SHB(v10) = 16.0833.

The Shapley-value based betweenness centrality is a measure based on the importance of a
vertex as a member of all possible subsets of vertices in G. In order to define and compute the
Shapley-value based betweenness, we first define group betweenness centrality. Group between-
ness centrality measures the importance of subset of vertices (a ‘group’ of vertices) in a graph,
and was first defined by M.G. Everett and S.P. Borgatti (see [EB99]).

Definition 8.1.1 (Group betweenness centrality). For a subset S ⊆ V , we define the group
betweenness centrality of S as

BG(S) =
∑
s/∈S,
t/∈S

σst(S)

σst
.

Similarly we define

BW
G (S) =

∑
s/∈S,
t/∈S

ws,t · σst(S)

σst
,

to be the weighted group betweenness centrality.

We write π ∈ Π(V ) for a permutation of the vertices V . Furthermore, we denote by Cπ(v) ⊆ V
the subset of V that consists of all predecessesors of vertex v in π, i.e. if π(v′) is the location of
vertex v′ in π, then

Cπ(v) = {v′ ∈ π : π(v′) < π(v)}.
Now we can define the Shapley-value based betweenness centrality.

Definition 8.1.2 (Shapley-value based betweenness centrality). The Shapley-value based be-
tweenness centrality is

SHB(v) :=
1

|V |!
∑
π∈Π

[BG(Cπ(v) ∪ {v})−BG(Cπ(v))] .

This is the average marginal contribution of vertex v to Cπ(i) over all permutations π ∈ Π. It
can be rewritten as

SHB(v) =
∑

S⊆V \{v}

|S|!(|V | − |S| − 1)!

|V |! [BG(S ∪ {v})−BG(S)] . (8.1)

Similarly, the Shapley-value based weighted betweenness centrality can be defined by replacing
the betweenness with the weighted betweenness in the above formulas. Therefore the Shapley-
value based weighted betweenness cenrality can be written as

SHBW (v) =
∑

S⊆V \{v}

|S|!(|A| − |S| − 1)!

|A|!
[
BW
G (S ∪ {v})−BW

G (S)
]
. (8.2)

We would like to calculate the Shapley-value based betweenness centrality efficiently. We could
of course analyse all 2|V | sets S, but this will not result in a polynomial time algorithm. Therefore
we will use a trick. For each group Cπ(v) we consider the average marginal contribution a path P
through v has to the group betweenness centrality BG(Cπ(v) ∪ {v})−BG(Cπ(v)).
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(+) A path P in Ps,t(v) (the collection of paths from s to t through v, with s 6= v 6= t) has
a positive contribution to Cπ(v) exactly if this path does not contain a vertex of Cπ(v).
This contribution will equal 1/σst, and in the weighted betweenness case ws,t/σst. More
formally, the path P has a positive contribution to Cπ(v) if and only if Cπ(v)∩V (P ) = ∅,
where V (P ) is the set of vertices contained in the path P .

We introduce a Bernoulli random variable B+
v,P which indicates whether vertex v con-

tributes positively through path P to set Cπ(v). Then we have

E
[
B+
v,P

]
= P [Cπ(v) ∩ V (P ) = ∅] .

This is the probability that all vertices in |V (P )| \ {v} are not contained in Cπ(v),1 i.e.
this is the probability that v precedes all other vertices from the path P in a random
permutation π of V . This probability is exactly 1/|V (P )|, as we will prove in an auxiliary
lemma.

Lemma 8.1.1. Let v ∈ V . It holds that P[ ∀ v′ ∈ V (P )\{v} : π(v′) > π(v)] = 1/|V (P )|.

Proof. We simply count the permutations π ∈ Π(V ) that satisfy ∀ v′ ∈ V (P ) \ {v} :
π(v′) > π(v). We first choose |V (P )| positions in the sequence of all elements from |V |.
There are ( |V |

|V (P )|

)
posibilities. In the last |V (P )| − 1 positions of the chosen positions, we place all elements
from V (P ) \ {v}, and in the first position of the chosen positions, we place vertex v. The
number of possibilities is (V (P )| − 1)!. Finally, we can arrange the remaining elements
(i.e. the elements in V \ V (P )) of V in (|V | − |V (P )|)! possible ways. Summarizing, the
number of permutations π ∈ Π(V ) that satisfy π(v′) > π(v) for all v′ ∈ V (P ) \ {v}, is( |V |

|V (P )|

)
· (|V (P )| − 1)! · (|V | − |V (P )|)! =

|V |! · (|V (P )| − 1)!

|V (P )|! =
|V |!
|V (P )| .

Since there are |V |! possible permutations of |V |, it follows that

P[∀ v′ ∈ V (P ) \ {v} : π(v′) > π(v)] =
1

|V (P )| ,

as desired.

It follows that

E
[
B+
v,P

]
= P [Cπ(v) ∩ V (P ) = ∅] =

1

|V (P )| ,

for a path P ∈ Ps,t(v) (with s 6= v 6= t).

(–) It is also possible that a path P has negative contribution to the term corresponding
to Cπ(v) in the Shapley value. This happens if path P starts or ends with v and contains
already a vertex from Cπ(v), i.e. the path already contributes with a factor 1/σsv or 1/σvt
(in the weighted betweenness case ws,v/σsv or wv,t/σvt) to the group betweenness central-
ity. By adding v, the set Cπ(v) ∪ {v} will contain an endpoint of the path, which means
that the contribution to the group betweenness centrality of this path after adding v will
be zero. Therefore, adding v has a negative effect. The negative contribution of v to Cπ(v)
through path P is −1/σsv resp. −1/σvt (in the weighted betweenness case −ws,v/σsv resp.
−wv,t/σvt).

1Note that by definition v /∈ Cπ(v).
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We will consider the probability that a path P starting or ending at v has a negative
contribution to the term corresponding to Cπ(v) in the Shapley-value based betweenness
centrality, by first considering the probability of the complementary event: the event that
a path starting or ending at v has a neutral contribution to Cπ(v).

• Suppose a path P starts or ends at v. Then there is a probability vertex v has a
neutral contribution to Cπ(v) through path P , i.e. no contribution at all. This is the
case:

(i) if the other endpoint, the endpoint of P that is not v, is in Cπ(v). This happens
with probability 1/2.

(ii) or if the path P does not contain any vertex of Cπ(v). This happens with
probability 1/|V (P )|.

Since both events are disjoint2, the probability that P makes a neutral contribution
to Cπ(v) equals

P [endpoint other than v ∈ Cπ(v) or Cπ(v) ∩ V (P ) = ∅] =
1

2
+

1

V |P | .

(–) The probability that v has a negative contribution to Cπ(v) through path P is therefore

E
[
B−v,P

]
= 1− P [path P has a negative contribution to Cπ(v)]

= 1−
(

1

2
− 1

|V (P )|

)
=

1

2
− 1

|V (P )| .

Now we can compute the Shapley-value based betweenness centrality more easily. We have

SHB(v) =
∑
s,t∈V
s6=v 6=t

∑
P∈Ps,t(v)

1

σst
E
[
B+
v,P

]
+
∑
s∈V
s6=v

∑
P∈Ps,v

(
− 1

σsv

)
E
[
B−v,P

]

+
∑
t∈V
t6=v

∑
P∈Pv,t

(
− 1

σvt

)
E
[
B−v,P

]

=
∑
s,t∈V
s6=v 6=t

∑
P∈Ps,t(v)

1

σst

1

|V (P )| +
∑
s∈V
s 6=v

∑
P∈Ps,v

(
− 1

σsv

)(
1

2
− 1

|V (P )|

)
.

+
∑
t∈V
t6=v

∑
P∈Pv,t

(
− 1

σvt

)(
1

2
− 1

|V (P )|

)
.

2Both events cannot occur simultanuously.
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Simplifying this equality gives

SHB(v) =
∑
s,t∈V
s 6=v 6=t

∑
P∈Ps,t(v)

1

σst · |V (P )| +
∑
s∈V
s 6=v

 ∑
P∈Ps,v

1

σsv · |V (P )| −
∑

P∈Ps,v

1

σsv
· 1

2



+
∑
t∈V
t6=v

 ∑
P∈Pv,t

1

σvt · |V (P )| −
∑

P∈Pv,t

1

σvt
· 1

2



=
∑
s,t∈V
s 6=v 6=t

∑
P∈Ps,t(v)

1

σst · |V (P )| +
∑
s∈V
s 6=v

 ∑
P∈Ps,v

1

σsv · |V (P )| −
1

2

 (8.3)

+
∑
t∈V
t6=v

 ∑
P∈Pv,t

1

σvt · |V (P )| −
1

2


We define

�st =
∑

P∈Ps,t

1

|V (P )| and �st(v) =
∑

P∈Ps,t(v)
v 6=s 6=t

1

|V (P )| .

Using these definitions, we can again simplify the expression for the Shapley-value based be-
tweenness centrality (8.3):

SHB(v) =
∑
s,t∈V
s 6=v 6=t

�st(v)

σst
+
∑
s∈V
s 6=v

(
�sv
σsv
− 1

2

)
+
∑
t∈V
t6=v

(
�vt
σvt
− 1

2

)

=
∑
s∈V
s 6=v

∑
t∈V
t6=v

�st(v)

σst
+
�sv
σsv
− 1

2

+
∑
t∈V
t6=v

(
�vt
σvt
− 1

2

)
(8.4)

=
∑
s∈V
s 6=v

∑
t∈V
t6=v

�st(v)

σst
+
�sv
σsv
− 1

+
∑
t∈V
t6=v

�vt
σvt

We will try to calculate this value3. To do this, we define

ds,•(v) :=
∑
t∈V

�st(v)

σst
.

We will try to compute ds,•(v) using a recurrence equation similar to Brandes’ equation (2.3.1).
To this end, we first define an array Tst. For i = 1, . . . , |V |, we define Tst[i] as the number
of shortest paths from s to t that contain exactly i vertices. On these arrays we define a
number of operations, where we use that the array Tst uniquely determines a polynomial Wst :=∑|V |

i=1 Tst[i]X
i ∈ Z[X].

(i.) T→st and T←st , shifting right and shifting left, increases resp. decreases the indices of all
values in the array by one. This can be done in time O(|V |).

3Note that this equation is slightly different from equation (10) of the paper [SMR12]. The paper is about
undirected graphs, but an adaptation is given for directed graphs (see the paper, at the end of Section 4.3).
However, probably this adaptation does not take into account the possibility that a path starts at v. Then a
path can also have a negative contribution. Therefore we derived a slightly different formula.
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(ii.) ||Tst|| computes
∑|V |

i=1 Tst[i]/i. The running time is O(|V |).

(iii.) Tsv ⊕ Tsu adds the polynomials Wsv and Wsu. This can be done in time O(|V |). We will
write

⊕
for a sum of a series of polynomials.

(iv.) Tsv ⊗ Tvt multiplies the polynomials Wsu and Wvt. With a fast multiplication algorithm
(see [CLR01]) this can be done in O(|V | log |V |).

(v.) Tsv � Tvt divides the polynomials Wsv and Wvt. This can be done in O(|V | log |V |).

(vi.) Tsv÷k divides every value in the array Tsv by the real value k. The running time is O(|V |).

We observe that4

Tsv =
⊕

u∈Ps(v)

T→su . (8.5)

By construction it holds that ||Tst|| = �st. Also, for v ∈ V with v 6= s 6= t, we define Tst(v)[i]
to be the number of shortest paths from s to t that pass through v and that contain exactly i
vertices (i = 1, . . . , |V |). We note that

Tst(v) = (Tsv ⊗ Tvt)← = Tsv ⊗ T←vt .

This holds because every path from s to v can be extended by a path from v to t and this
operation is in fact the multiplication of the polynomials Wsv and Wvt. Because the vertex v is
counted twice, one needs to decrease all indices of the resulting array by one. By writing

Ds,•(v) =
⊕
t∈V

Tst(v)

σst
,

we are now able to derive an equation similar to Brandes’ equation (2.3.1). The proof of this
equation is not given in the paper (see [SMR12]), but we prove it here.

Lemma 8.1.2 (Analogon to Brandes’ equation). It holds that

Ds,•(v) =
⊕

w : v∈Ps(w)

(
T→sv
σsw
⊕ Tsv ⊗ (Ds,•(w)� T←sw)

)
, (8.6)

similar to Brandes’ equation (2.3.1).

Proof. In the proof we denote by Tst(e) = Tst[(v, w)] the array with as i-th entry the number of
shortest paths from s to t that pass through edge e = (v, w) ∈ E that contain exactly i vertices,
with i = 1, . . . , |V |. Then it holds that

Ds,•(v) =
⊕
t∈V

Tst(v)

σst
=
⊕
t∈V

⊕
w : v∈Ps(w)

Tst[(v, w)]

σst
=

⊕
w : v∈Ps(w)

⊕
t∈V

Tst[(v, w)]

σst
. (8.7)

Let w 6= t be a vertex with v ∈ Ps(w). It holds that Tst[(v, w)] = Tsv ⊗ Twt and that

Tst(w) = (Tsw ⊗ Twt)← = Twt ⊗ T←sw.

Hence, the following equality holds:

Tst[(v, w)] = Tsv ⊗ Twt = Tsv ⊗ (Tst(w)� T←sw),

4Recall that Ps(v) = {u ∈ V : (u, v) ∈ E is a tight edge with respect to δ(s, ·)} is the set of predecessors
of v along shortest paths starting at s, see (2.1).
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for w 6= t a vertex with v ∈ Ps(w). We conclude that

Tst[(v, w)]

σst
=

{
Tsv ⊗

(
Tst(w)
σst
� T←sw

)
if t 6= w

T→sv
σsw

if t = w.

Inserting these values in equation (8.7), the equation for Ds,•(v), gives

Ds,•(v) =
⊕

w : v∈Ps(w)

⊕
t∈V

Tst[(v, w)]

σst
=

⊕
w : v∈Ps(w)

T→sv
σsw
⊕

⊕
t∈V \{w}

(
Tsv ⊗

(
Tst(w)

σst
� T←sw

))
=

⊕
w : v∈Ps(w)

T→sv
σsw
⊕ Tsv ⊗

 ⊕
t∈V \{w}

Tst(w)

σst

� T←sw


=
⊕

w : v∈Ps(w)

(
T→sv
σsw
⊕ Tsv ⊗ (Ds,•(w)� T←sw)

)
,

which is the desired equation.

We use Brandes’ equation by noting that

SVB(v) =
∑
s∈V
s 6=v

∑
t∈V
t6=v

�st(v)

σst
+
�sv
σsv
− 1

+
∑
t∈V
t6=v

�vt
σvt

=
∑
s∈V
s 6=v

(
||Ds,•(v)||+ ||Tsv||

σsv
− 1

)
+
∑
t∈V
t6=v

||Tvt||
σvt

.

We are now able to give an algorithm for computing the Shapley betweenness centrality SHB

For each source s ∈ V , an array SHs is computed. Summing
⊕

s∈V SHs gives an array with
the Shapley-value betweenness centrality SHB for each vertex v ∈ V .

Input: Graph G = (V,E) with edge reliabilities r : E → (0, 1) or costs c : E → R>0.
Output: For each v ∈ V , the value SHB(v).

Initialize: array SHB[ ] consisting of |V | zeroes,
foreach s ∈ V do

Compute topologically sorted shortest path DAG G′ rooted at s.
Apply Algorithm 13 to compute SHs[ ].
SHB := SHB ⊕ SHs.

end
return SHB.

Algorithm 12: Algorithm to efficiently compute SHB .

Theorem 8.1.3. Algorithm 12 computes the Shapley-value based betweenness centrality in time
bounded by O(|V |2|E| log |V |), while O(|V |2) storage space is required.

Proof. Observe that an execution of Algorithm 13 takes time O(|E| · |V | log |V |). Note that
an execution of Dijkstra’s algorithm can be done in time O(|V ||E| + |V | log |V |) ⊆ O(|E| ·
|V | log |V |). It follows that the total running time of Algorithm 12 is bounded by O(|V | ·
|E||V | log |V |).The storage space is bounded by O(|V |2). The largest objects that are stored
are arrays of size |V |2.
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Input: Top. sorted shortest/max. rel. path DAG G = (V,E) w.r.t. source vertex s.
Output: For each u ∈ V , the value SHs.

Initialize: σs[s] = 1, σs[v] = 0 for all v ∈ V \ {s}, array SHs[ ] consisting of |V | zeroes,
empty list P [v] for all v ∈ V , array Ds[ ][ ] consisting |V | × |V | zeroes,
array Ts[ ][ ] consisting of |V | × |V | zeroes, except for Ts[s][1] := 1.

foreach x ∈ V in topological order do
foreach child y ∈ V of x do

σs[y] := σs[y] + σs[x]
append x to P [y]
Ts[y] := Ts[y]⊕ T→s [x]

end
end
foreach v ∈ V in reverse topological order do

foreach u ∈ V in P [v] do

Ds[u] := Ds[u]⊕ T→s [u]
σs[v] ⊕ Ts[u]⊗ (Ds[v]� T←s [v])

end
if v 6= s do

SHs[v] := ||Ds[v]||+ ||Ts[v]||
σs[v] − 1

SHs[s] := SHs[s] + ||Ts[v]||
σs[v] //Small adaptation to the algorithm in [SMR12].

end
end
return SHs

Algorithm 13: Algorithm to efficiently compute SHs. Executing this algorithm for all s ∈ V and
summing

⊕
s∈V SHs gives an array with the Shapley-value based betweenness centrality SHB .

Example 8.1.2. We return to Example 8.1.1, the example from the beginning of this section.
With the above algorithm, we are now able to compute the Shapley-value based betweenness
centrality for each vertex in the example graph G.

Vertex Betweenness Shapley

v9 98 18.2
v10 98 16.08333
v5 81 10.33333
v4 80 10.33333
v11 62 9.25
v1, v2, v3 0 -4.47857
v12, v13, v14, v15 0 -4.47857
v6, v7, v8 0 -4.55
v16, v17, v18, v19 0 -4.8

Remark 8.1.1. With some minor modifications, one is able to adapt the algorithm for comput-
ing the Shapley-value based weighted betweenness centrality. First we note that equation (8.4)
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becomes

SHBW (v) =
∑
s,t∈V
s 6=v 6=t

ws,t ·�st(v)

σst
+
∑
s∈V
s 6=v

(
ws,v ·�sv

σsv
− ws,v

2

)
+
∑
t∈V
t6=v

(
wv,t ·�vt

σvt
− wv,t

2

)

=
∑
s∈V
s 6=v

∑
t∈V
t6=v

ws,t ·�st(v)

σst
+
ws,v ·�sv

σsv
− ws,v

2

+
∑
t∈V
t6=v

(
wv,t ·�vt

σvt
− wv,t

2

)
. (8.8)

For the weighted Brandes’ recurrence relation, we get (by just putting weights in the proof of
Lemma 8.6):

DW
s,•(v) =

⊕
t∈V

ws,t · Tst(v)

σst
=

⊕
w : v∈Ps(w)

(
ws,w · T→sv

σsw
⊕ Tsv ⊗ (DW

s,•(w)� T←sw)

)
.

Hence, for computing the Shapley-value based weighted betweenness centrality, the last loop in
Algorithm 13 needs to be adjusted as follows.

...
foreach v ∈ V in reverse topological order do

foreach u ∈ V in P [v] do

DW
s [u] := DW

s [u]⊕ ws,v ·T→s [u]
σs[v] ⊕ Ts[u]⊗ (DW

s [v]� T←s [v])

end
if v 6= s do

SHW
s [v] := ||DW

s [v]||+ ws,v ||Ts[v]||
σs[v] − ws,v

2

SHW
s [s] := SHW

s [s] +
ws,v ·||Ts[v]||

σs[v] − ws,v
2 //Adaptation to [SMR12].

end
end

return SHW
s

Algorithm 14: Adaptations to Algorithm 13 in order to compute the Shapley-value based weighted
betweenness centrality. The rest of Algorithms 12 and 13 remains the same, except that we have SHBW

instead of SHB , SHW
s instead of SHs and DW

s instead of Ds.

With the above adaptations we compute the Shapley-value based weighted betweenness cen-
trality in the same time as the Shapley-value based betweenness centrality (see Theorem 8.1.3).

In the next section we will apply these algorithms to the CPB-network of 108 vertices to compute
the Shapley-value based (weighted) betweenness centrality in this network.

8.2 Results

We compute the Shapley-value based (weigthed and unweighted) betweenness centrality for all
countries in the CPB-network. First we note that the CPB-network consists not just of one
graph but of 108 different graphs, one for each ‘source’ country (see Section 2.4). We already
observed that the definition of (weighted) betweenness still makes sense in the CPB-network (see
Section 2.4.3). Analogously, this observation also holds for the group betweenness centrality and
hence for the Shapley-value based betweenness centrality. Since the algorithm of the previous
section seperately computes the contributions made by each source vertex to the Shapley-value
based (weighted) betweenness centrality, we can use that algorithm for computing the Shapley-
value based (weighted) betweenness in our network of countries without modifications.
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Before computing the Shapley-value based betweenness centrality, it might be interesting
to compute

T :=
⊕
s,t∈V :
s 6=t

Tst,

which is the total number of shortest paths in the CPB-network stored with their number of
vertices (i.e. T [i] is the is the number of shortest paths that contain exactly i vertices) in an
array, and which we can efficiently compute using the algorithm from the previous section. We
find that

T [1] = 0,

T [2] = 3844,

T [3] = 52333,

T [4] = 8280,

T [5] = 263,

T [i] = 0 for 5 < i ≤ 108.

The total number of shortest paths in the CPB-network is 64720. Of this number, T [2] = 3844
paths contain 2 vertices: those are the direct paths. There are T [3] = 52333 paths that consist
of 3 vertices and hence have exactly one intermediary conduit country. Note that there are
no shortest paths that contain more than 5 vertices, i.e. that travel via more than 3 conduit
countries, where we assume in all computations that a small penalty is added (see Section 2.4.1),
so that we only look at maximum reliability paths of minimum length.

We continue with computing the Shapley-value based weighted betweenness centrality.

ALB
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Figure 8.2: The countries sorted according to their weighted Shapley-value based betweenness central-
ity SHBW .
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Position Country BW (u)

1 GBR 12.80779
2 LUX 6.96023
3 SGP 4.23889
4 EST 2.92012
5 NLD 2.63225
6 IRL 2.57268
7 HUN 2.11862
8 ESP 2.03112
9 SVK 2.00355
10 CYP 1.67547
11 MLT 1.48476
12 FRA 1.31831
13 FIN 1.22550
14 BRN 1.18916
15 MYS 1.04301

Position Country u SHBW (u)

1 GBR 3.72715
2 LUX 2.29288
3 SGP 1.29130
4 EST 0.95515
5 IRL 0.79181
6 NLD 0.69373
7 HUN 0.63404
8 SVK 0.61776
9 CYP 0.52248
10 MLT 0.48568
11 BRN 0.38671
12 FIN 0.36042
13 ESP 0.31411
14 ARE 0.24205
15 LTU 0.23502

The ranking of the countries according to their Shapley-value based weighted betweenness cen-
tralities is similar to the ranking according to weighted betweenness centrality, as can be seen
in the above table. Next we compare the unweighted betweenness centrality with the Shapley-
value based unweighted betweenness centrality. Just as we did in Section 2.4.3, we multiply the
Shapley-value based unweighted betweenness centrality by the constant c := 1/(108 · 1.07) to
be able to compare it with the weighted Shapley-value based betweenness centrality.
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Figure 8.3: The countries sorted according to their unweighted Shapley-value based betweenness cen-
trality SHB .
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Position Country u B(u)

1 GBR 10.61932
2 NLD 6.27001
3 SGP 4.80919
4 CYP 4.60625
5 HUN 3.78398
6 ESP 3.51100
7 EST 3.38580
8 MLT 2.97467
9 LUX 2.70852
10 MYS 2.52015
11 SVK 2.50322
12 QAT 2.29019
13 ARE 2.11230
14 BRB 1.79871
15 HKG 1.71729

Position Country u SHB(u)

1 GBR 3.28099
2 NLD 1.81936
3 SGP 1.39736
4 CYP 1.34307
5 HUN 1.08319
6 EST 0.96612
7 ESP 0.87226
8 MLT 0.85857
9 LUX 0.70726
10 MYS 0.69411
11 SVK 0.64792
12 ARE 0.50794
13 HKG 0.35632
14 QAT 0.35157
15 IRL 0.32686

Here the similarities are even more clear: the top-5 of countries sorted according to both
unweighted centrality measures is exactly the same. What is the most notable difference between
the results for the Shapley-value based betweenness centrality and the ‘usual’ betweenness
centrality? For this we look to the last 10 countries sorted according to their Shapley-value
weighted (resp. unweighted) betweenness centrality.

Pos. Country (u) SHBW (u) BW (u)

98 ITA -0.38507 (0.35983)
99 TUR -0.40353 (0.09493)
100 CAN -0.41714 (0.04265)
101 IDN -0.49466 (0.01599)
102 DEU -0.52411 (0.49025)
103 BRA -0.58740 (0.00537)
104 RUS -0.88385 (0.07895)
105 IND -0.90967 (0.11221)
106 JPN -1.12314 (0.13997)
107 USA -3.07953 (0.00000)
108 CHN -3.58992 (0.02164)

Pos. Country u SHB(u) B(u)

98 ISR -0.29193 (0.00686)
99 ZAF -0.29705 (0.01575)
100 MNG -0.30084 (0.00882)
101 URY -0.30114 (0.00000)
102 PAK -0.30594 (0.00074)
103 DZA -0.30749 (0.00000)
104 NZL -0.31621 (0.00456)
105 SUR -0.32306 (0.00000)
106 SAU -0.34983 (0.07512)
107 JAM -0.38724 (0.00865)
108 LBN -0.38984 (0.00000)

The list of the 10 countries with the lowest Shapley-value based weighted betweenness centrality
contains (almost exclusively) very large economies, such as the United States, China, Japan
and Germany. This is not a surprise, since in computing the Shapley-value based weighted
betweenness centrality of a country, a path starting or ending at that country can have a
negative contribution. If this country has a large economy, then the weight (see Section 2.4.2)
of this path will be large and therefore the negative contribution of this path will be large. Large
economies are more likely to be a source or a destination country and not a conduit country.
The Shapley-value based weighted betweenness centrality reflects this.
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Conclusions

In this section we shortly restate the most important experimental conclusions.

(1.) The Netherlands ranks quite high, they are 5th in the ranking according to weighted
betweenness centrality. This seems to give some evidence for the news headers that the
Netherlands is an attractive tax country for companies.

(2.) Great Britain (GBR) is the most central country in the network. Great Britain has a
substantially higher (weighted) betweenness centrality, as well as a substantially higher
Shapley-value based betweenness centrality, than any other country in the network.

(3.) There is one big group of 64 countries, with the following property: for any country in this
group, companies can send dividends to any other country without paying taxes.

(4.) If we contract this group (adding four countries that also have zero-tax routes to many
countries) into one big ‘super node’, this node gets a very high betweenness centrality: this
indicates that countries not in the group very often use countries in the group as conduit
countries to send money through.

(5.) There always is a ‘most profitable’ route for companies passing through at most 3 conduit
countries.

(6.) If the Netherlands wants to improve its role as a conduit country (measured with weighted
betweenness centrality), it is a good idea to set the outgoing tax rate to India to zero, and
after that to set the the tax rates to China and Brazil to zero.

(7.) If the Netherlands sets it outgoing dividend tax rates to India and China to 0%, the amount
of money that companies send through The Netherlands is more than 50% of the amount
that can be achieved in total (by setting the outgoing dividend tax rates to every country
to 0%).

(8.) The Shapley-value based betweenness centrality applied on our network of countries gives
similar results as the original betweenness centrality. However, this measure can differen-
tiate more between vertices that have a low betweenness centrality.

The thesis also provided interesting mathematical insights. For a short summary of the math-
ematical contributions of this thesis, the reader is referred to the introduction. One question
posed in this thesis remains open: is the Tax Problem when all outgoing edge costs of a node
may be assigned a value, Problem 9 (iii), NP -hard? This is an interesting question for further
research.

112



Appendix A

Data

This appendix contains the data in tables and pictures. In the first section some general data
about the CPB-network is provided. The second section contains the experimental results for
strictly maximum reliability paths. In the last section of this appendix, larger versions of some
illustrations (world maps) used throughout the thesis are given.

A.1 The countries in the CPB-dataset

The first column contains the three-letter codes of the countries used throughout the thesis.
The full names of the countries are given in the second column. The third column contains the
standard Corporate Income Tax rate that is applicable in a country, the fourth column contains
the standard tax on dividends leaving the country. When money is sent from one country
to another country, the tax rates may be lower when this agreed in a bilateral tax treaty, or
when a unilateral tax-relief method (to prevent double taxation) is used. For more information
about the tax-rates and the construction of the tax-distances, see [RL14]. In this project the
tax-distances provided by the CPB are considered as given facts. The fifth column contains the
number of (bilateral or multilateral) tax-treaties that a country has signed with other countries.
The last column contains the GDP (Gross Domestic Product) of a country, but normalized such
that the sum of the GDPs of the countries in our dataset is 100.

Table A.1: The countries in the CPB-dataset.

Country Full name CIT Div-tax #treaties GDP weight

ALB Albania 10 10 26 0.0330
DZA Algeria 25 15 23 0.3444
AGO Angola 35 10 0 0.1619
ARG Argentina 35 35 14 0.9378
ABW Aruba 28 10 1 0.0031
AUS Australia 30 30 40 1.2251
AUT Austria 25 25 66 0.4531
AZE Azerbaijan 20 10 29 0.1221
BHS Bahamas 0 0 0 0.0140
BHR Bahrain 46 0 10 0.0418
BRB Barbados 25 15 23 0.0089
BLR Belarus 18 12 44 0.1853
BEL Belgium 33 25 70 0.5304
BMU Bermuda 0 0 0 0.0070
BWA Botswana 22 7.5 8 0.0398
BRA Brazil 15 15 35 2.9725

Continued on the next page
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Table A.1 The CPB-dataset – continued from the previous page

Country Full name CIT Div-tax #treaties GDP weight

BRN Brunei Darussalam 20 0 1 0.0274
BGR Bulgaria 10 5 50 0.1310
CAN Canada 15 25 75 1.8786
CYM Cayman Islands 0 0 0 0.0028
CHL Chile 20 35 24 0.4045
CHN China 25 10 61 15.6574
COL Colombia 25 0 4 0.6346
CRI Costa Rica 30 15 1 0.0742
HRV Croatia 20 12 44 0.0989
CUR Curacao 27.5 0 0 0.0035
CYP Cyprus 10 0 35 0.0298
CZE Czech Republic 19 35 66 0.3622
DNK Denmark 25 27 61 0.2652
DOM Dominican Republic 29 10 1 0.1247
ECU Ecuador 22 0 10 0.1935
EGY Egypt 25 0 23 0.6814
GNQ Equatorial Guinea 35 25 1 0.0243
EST Estonia 21 0 36 0.0367
FIN Finland 24.5 24.5 59 0.2492
FRA France 33.3 30 80 2.8447
GAB Gabon 35 15 4 0.0322
DEU Germany 30.9 25 71 4.0354
GRC Greece 26 10 42 0.3494
GRN Guernsey 0 0 0 0.0034
HKG HongKong 16.5 0 14 0.4662
HUN Hungary 19 0 47 0.2468
ISL Iceland 20 18 38 0.0162
IND India 30 0 40 5.9116
IDN Indonesia 25 20 52 1.5359
IRL Ireland 12.5 20 53 0.2426
IMN Isle of Man 0 0 0 0.0051
ISR Israel 25 20 43 0.3139
ITA Italy 27.5 20 69 2.3132
JAM Jamaica 33.33 33.33 15 0.0318
JPN Japan 25.5 20 47 5.8408
JRY Jersey 0 0 0 0.0063
JOR Jordan 30 0 13 0.0488
KAZ Kazakhstan 20 15 35 0.2925
KOR Korea Republic 22 20 67 2.0363
KWT Kuwait 15 15 40 0.1905
LVA Latvia 15 10 45 0.0470
LBN Lebanon 15 10 13 0.0797
LBY Libya 20 0 1 0.0976
LIE Liechtenstein 12.5 0 3 0.0040
LTU Lithuania 15 15 44 0.08200
LUX Luxembourg 21 15 57 0.0533
MAC Macao 12 0 0 0.0586
MYS Malaysia 25 0 34 0.6292

Continued on the next page
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Table A.1 The CPB-dataset – continued from the previous page

Country Full name CIT Div-tax #treaties GDP weight

MLT Malta 35 0 38 0.0142
MUS Mauritius 15 0 15 0.0255
MEX Mexico 30 0 36 2.2201
MNG Mongolia 25 20 27 0.0192
NAM Namibia 34 10 9 0.0211
NLD Netherlands 25 15 74 0.8923
NZL New Zealand 28 30 36 0.1666
NGA Nigeria 30 10 11 0.5656
NOR Norway 28 25 64 0.3498
OMN Oman 12 0 8 0.1137
PAK Pakistan 35 10 31 0.6505
PAN Panama 25 17 14 0.0720
PER Peru 30 4.1 3 0.4122
PHL Philippines 30 15 29 0.5355
POL Poland 19 19 64 1.0108
PRT Portugal 25 25 53 0.3112
PRI Puerto Rico 30 10 0 0.0805
QAT Qatar 10 7 36 0.2372
ROM Romania 16 16 66 0.3451
RUS Russian Federation 20 15 59 3.1725
SAU Saudi Arabia 50 5 18 1.1444
YUG Serbia and Montenegro 15 20 42 0.0994
SYC Seychelles 33 15 12 0.0029
SGP Singapore 17 0 40 0.4121
SVK Slovak Republic 23 0 42 0.1665
SVN Slovenia 17 15 46 0.0731
ZAF South Africa 28 15 55 0.7351
ESP Spain 30 21 71 1.7805
SUR Suriname 36 25 1 0.0085
SWE Sweden 22 30 67 0.4959
CHE Switzerland 24 35 71 0.4587
TWN Taiwan Province 17 20 19 1.1402
THA Thailand 20 10 34 0.8227
TTO Trinidad and Tobago 25 10 16 0.0337
TUN Tunisia 30 0 26 0.1330
TUR Turkey 20 15 59 1.4180
UKR Ukraine 19 15 56 0.4230
ARE Untd Arab Emirates 0 0 21 0.3425
GBR United Kingdom 24 0 51 2.9490
USA United States 35 30 54 19.7921
URY Uruguay 25 7 6 0.0679
VEN Venezuela 34 34 28 0.5072
VIR Virgin Islands U.S. 38.5 11 0 0.0020
VGB Virgin Islands U.K. 0 0 0 0.0006

A.2 Data, strict paths
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Table A.2: Strictly shortest paths, with a penalty of 10−20. Total number of paths: 64720.
Sorted according to betweenness. The number #P is the number of paths passing through a
country (as a conduit country). The weighted (respectively unweighted) betweenness central-
ity is denoted by BW (u) (respectively B(u)). The Shapley-value based weighted betweenness
centrality is denoted by SHW

B (u) and the Shapley-value unweighted betweenness centrality
by SHB(u).

Country u #P BW (u) SHBW (u) B(u) SHB(u)

GBR 5621 12.80779 3.72715 10.61932 3.28099
LUX 2289 6.96023 2.29288 2.70852 0.70726
SGP 3316 4.23889 1.29130 4.80919 1.39736
EST 2720 2.92012 0.95515 3.38580 0.96612
NLD 3958 2.63225 0.69373 6.27001 1.81936
IRL 1744 2.57268 0.79181 1.57323 0.32686
HUN 3465 2.11862 0.63404 3.78398 1.08319
ESP 2679 2.03112 0.31411 3.51100 0.87226
SVK 2283 2.00355 0.61776 2.50322 0.64792
CYP 3786 1.67547 0.52248 4.60625 1.34307
MLT 3406 1.48476 0.48568 2.97467 0.85857
FRA 967 1.31831 -0.05901 1.14540 0.16051
FIN 588 1.22550 0.36042 0.45762 -0.03914
BRN 1292 1.18916 0.38671 0.75912 0.07469
MYS 2594 1.04301 0.20262 2.52015 0.69411
ARE 2006 1.01731 0.24205 2.11230 0.50794
CHE 1095 0.88451 0.19009 0.70979 0.07399
HKG 1853 0.87090 0.15707 1.71729 0.35632
SWE 550 0.84262 0.18058 0.49584 -0.03043
QAT 1758 0.78951 0.15847 2.29019 0.35157
LTU 456 0.76250 0.23502 0.20685 -0.11793
BEL 1213 0.71595 0.15541 1.22915 0.24021
DNK 539 0.68814 0.17303 0.46278 -0.04000
LVA 518 0.65222 0.20588 0.23798 -0.10631
SAU 58 0.62263 -0.19372 0.07512 -0.34983
SVN 333 0.61497 0.18751 0.13134 -0.14974
NOR 463 0.57897 0.11319 0.49520 -0.04951
OMN 1105 0.54205 0.14475 0.93497 0.09532
AUT 1205 0.51871 0.06629 0.75577 0.09021
ISL 286 0.49601 0.16051 0.11220 -0.15759
BGR 984 0.49183 0.12873 0.57719 0.00370
DEU 362 0.49025 -0.52411 0.21323 -0.12235
GRC 275 0.48274 0.07982 0.11444 -0.16558
ROM 837 0.41432 0.04734 0.53385 -0.01975
ITA 506 0.35983 -0.38507 0.48066 -0.07300
UKR 745 0.31899 -0.02421 0.94415 -0.01157
COL 424 0.30222 -0.06299 0.32581 -0.09085
CUR 1238 0.29067 0.09423 0.67772 0.06645
MUS 974 0.22089 0.06399 1.54819 0.29208
POL 470 0.21355 -0.18197 0.22187 -0.11161
CZE 304 0.20870 -0.02057 0.14359 -0.16197
HRV 186 0.19209 0.03638 0.26776 -0.17166

Continued on the next page
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Table A.2 Strictly shortest paths – continued from the previous page

Country u #P BW (u) SHBW (u) B(u) SHB(u)

LIE 880 0.17617 0.05747 0.40682 -0.06662
YUG 37 0.15960 0.02628 0.01398 -0.23764
JPN 92 0.13997 -1.12314 0.09419 -0.23153
ALB 124 0.12166 0.03019 0.04468 -0.24510
BRB 456 0.11823 0.03201 1.79871 0.17923
IND 154 0.11221 -0.90967 0.17494 -0.08820
TTO 127 0.10507 0.02271 0.19404 -0.28885
PRT 99 0.10215 -0.03534 0.03447 -0.20138
TUR 38 0.09493 -0.40353 0.01100 -0.26748
AUS 19 0.09282 -0.23910 0.03682 -0.27480
KOR 29 0.09215 -0.34361 0.00865 -0.23365
RUS 53 0.07895 -0.88385 0.03411 -0.22954
ZAF 23 0.06798 -0.18426 0.01575 -0.29705
VGB 776 0.06412 0.02116 0.31777 -0.10551
CYM 776 0.06408 0.02048 0.31777 -0.10551
GRN 776 0.06407 0.02029 0.31777 -0.10551
IMN 776 0.06405 0.01977 0.31777 -0.10551
JRY 776 0.06403 0.01939 0.31777 -0.10551
BMU 776 0.06401 0.01918 0.31777 -0.10551
BHS 776 0.06390 0.01700 0.31777 -0.10551
KAZ 40 0.05557 -0.06807 0.00849 -0.25245
EGY 152 0.04814 -0.17714 0.10838 -0.19044
BLR 65 0.04591 -0.04304 0.02064 -0.26650
CAN 102 0.04265 -0.41714 0.14262 -0.18375
AZE 48 0.04174 -0.02429 0.01094 -0.26245
MNG 19 0.02614 0.00225 0.00882 -0.30084
ISR 24 0.02538 -0.09317 0.00686 -0.29193
CHN 24 0.02164 -3.58992 0.00731 -0.24924
NZL 3 0.02076 -0.04159 0.00456 -0.31621
IDN 18 0.01599 -0.49466 0.00334 -0.29094
ABW 84 0.01192 0.00295 0.02648 -0.26808
CHL 6 0.01062 -0.11955 0.00605 -0.29148
JAM 1 0.00832 -0.00968 0.00865 -0.38724
VEN 11 0.00696 -0.11324 0.00322 -0.27228
BRA 23 0.00537 -0.58740 0.02913 -0.23908
PER 4 0.00406 -0.06522 0.00657 -0.16799
THA 5 0.00084 -0.19017 0.00219 -0.21416
DOM 4 0.00072 -0.02038 0.00074 -0.16489
NAM 4 0.00072 -0.00482 0.00074 -0.26657
NGA 4 0.00072 -0.12177 0.00074 -0.26873
PAK 4 0.00072 -0.17867 0.00074 -0.30594
PHL 4 0.00072 -0.10608 0.00074 -0.25359
PRI 4 0.00072 -0.01307 0.00074 -0.16489
TWN 14 0.00068 -0.37092 0.00287 -0.29182
BHR 1 0.00000 -0.00975 0.00026 -0.16505
DZA 0 0.00000 -0.11676 0.00000 -0.30749
AGO 0 0.00000 -0.02461 0.00000 -0.12475
ARG 0 0.00000 -0.28383 0.00000 -0.27186

Continued on the next page
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Table A.2 Strictly shortest paths – continued from the previous page

Country u #P BW (u) SHBW (u) B(u) SHB(u)

BWA 0 0.00000 -0.01250 0.00000 -0.25456
CRI 0 0.00000 -0.02409 0.00000 -0.23292
ECU 0 0.00000 -0.05188 0.00000 -0.16658
GNQ 0 0.00000 -0.00369 0.00000 -0.12331
GAB 0 0.00000 -0.00609 0.00000 -0.19139
JOR 0 0.00000 -0.01583 0.00000 -0.25384
KWT 0 0.00000 -0.05114 0.00000 -0.22139
LBN 0 0.00000 -0.03489 0.00000 -0.38984
LBY 0 0.00000 -0.03489 0.00000 -0.28138
MAC 0 0.00000 -0.01786 0.00000 -0.20624
MEX 0 0.00000 -0.14382 0.00000 -0.10096
PAN 0 0.00000 -0.02280 0.00000 -0.25312
SYC 0 0.00000 -0.00086 0.00000 -0.24879
SUR 0 0.00000 -0.00316 0.00000 -0.32306
TUN 0 0.00000 -0.02027 0.00000 -0.11538
USA 0 0.00000 -3.07953 0.00000 -0.24446
URY 0 0.00000 -0.02440 0.00000 -0.30114
VIR 0 0.00000 -0.00053 0.00000 -0.18100

A.3 Figures

The next few sections contain pictures from the text, but printed in landscape mode. Some
countries are very small, and the reader will be better able to see them on the larger figures.
The following pictures are included:

(A.3.1) An overview of the countries in the CPB-dataset.

(A.3.2) The countries depicted according to their weighted betweenness centrality.

(A.3.3) The countries depicted according to their weighted betweenness centrality and the 20
edges with the highest edge flow.

(A.3.4) The countries depicted according to their unweighted betweenness centrality.

(A.3.5) The countries depicted according to their unweighted betweenness centrality and the 20
edges with the highest edge betweenness centrality.

(A.3.6) The intersection ∩s∈V SCC0(s) of the strongly connected components of the subgraphs of
zero–tax edges of the graphs Gs. Companies can send dividends from any green country
to any other green country without paying taxes, possibly via a route through conduit
countries.

(A.3.7) Within range paths: the experiment of Section 5.4.1, with α = 0.05 and j = 3. Total
number of paths: 155,724,338.

(A.3.8) Within additive range paths, with α = 0.005 and ε = 0.005. This is the version of within
range that the CPB used in their report [RL14]. Total number of paths: 2,324,679.

(A.3.9) Within multiplicative range paths, with α = 0.01 and ε = 0.0033333. Total number of
paths: 2,540,053,489.
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(A.3.10) By setting the outgoing dividend tax rates to India and China to zero, the Nether-
lands achieves a weighted betweenness centrality that is more than 50% of the maxi-
mum weighted betweenness ever achievable for the Netherlands by decreasing outgoing
tax rates. Green in the illustration: the other countries (except India and China) to which
the Netherlands has a non-zero outgoing tax rate.

(A.3.11) The countries depicted according to their Shapley-value based weighted betweenness cen-
trality.

(A.3.12) The countries depicted according to their Shapley-value based unweighted betweenness
centrality.
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A.3.1 The CPB-dataset
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A.3.2 Strict paths, weighted betweenness centrality
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A.3.3 Strict paths, weighted betweenness centrality including edges

A
L
B

D
Z
A

A
G
O

A
R
G

A
B
W

A
U
S

A
U
T

A
Z
E

B
H
S

B
H
R

B
R
B

B
L
R

B
M

U

B
W

A

B
R
A

B
R
N

B
G
R

C
A
N

C
Y
M

C
H
L

C
H
N

C
O
L

C
R
I

C
U
R

C
Y
P

C
Z
E

D
N
K

D
O
M

E
C
U

E
G
Y

G
N
Q

E
S
T

F
IN

F
R
A

G
A
B

D
E
U

G
R
C

G
R
N

H
K
G

IS
L

IN
D

ID
N

IR
L IM

N

IS
R

IT
A

J
A
M

J
P
N

J
R
Y

J
O
R

K
A
Z

K
O
R

K
W

T

L
V
A

L
B
N

L
B
Y

L
IE

L
T
U

L
U
X

M
A
C

M
Y
S

M
L
T

M
U
S

M
E
X

M
N
G

N
A
M

N
L
D

B
E
L

N
Z
L

N
G
A

N
O
R

O
M

N

P
A
K

P
A
N

P
E
R

P
H
L

P
O
L

P
R
T

P
R
I

Q
A
T

R
O
M

R
U
S

S
A
U

Y
U
G

S
Y
C

S
G
P

S
V
K

S
V
N H

U
N

H
R
V

Z
A
F

E
S
P

S
U
R

S
W

E

C
H
E

T
W

N

T
H
A

T
T
O

T
U
N

T
U
R

U
K
R

A
R
E

G
B
R

U
S
A

U
R
Y

V
E
N V
IR V

G
B

B
W

=
0

B
W

=
0.5

B
W

=
1

B
W

=
2

B
W

=
5

B
W

=
15

122



A.3.4 Strict paths, unweighted betweenness centrality
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A.3.5 Strict paths, unweighted betweenness centrality including edges
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A.3.6 Intersection of the strongly connected components
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A.3.7 Within range paths: the experiment of Section 5.4.1
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A.3.8 Within additive range paths, with α = 0.005 and ε = 0.005

A
L
B

D
Z
A

A
G
O

A
R
G

A
B
W

A
U
S

A
U
T

A
Z
E

B
H
S

B
H
R

B
R
B

B
L
R

B
M

U

B
W

A

B
R
A

B
R
N

B
G
R

C
A
N

C
Y
M

C
H
L

C
H
N

C
O
L

C
R
I

C
U
R

C
Y
P

C
Z
E

D
N
K

D
O
M

E
C
U

E
G
Y

G
N
Q

E
S
T

F
IN

F
R
A

G
A
B

D
E
U

G
R
C

G
R
N

H
K
G

IS
L

IN
D

ID
N

IR
L IM

N

IS
R

IT
A

J
A
M

J
P
N

J
R
Y

J
O
R

K
A
Z

K
O
R

K
W

T

L
V
A

L
B
N

L
B
Y

L
IE

L
T
U

L
U
X

M
A
C

M
Y
S

M
L
T

M
U
S

M
E
X

M
N
G

N
A
M

N
L
D

B
E
L

N
Z
L

N
G
A

N
O
R

O
M

N

P
A
K

P
A
N

P
E
R

P
H
L

P
O
L

P
R
T

P
R
I

Q
A
T

R
O
M

R
U
S

S
A
U

Y
U
G

S
Y
C

S
G
P

S
V
K

S
V
N H

U
N

H
R
V

Z
A
F

E
S
P

S
U
R

S
W

E

C
H
E

T
W

N

T
H
A

T
T
O

T
U
N

T
U
R

U
K
R

A
R
E

G
B
R

U
S
A

U
R
Y

V
E
N V
IR V

G
B

B
W

=
0

B
W

=
0.5

B
W

=
1

B
W

=
2

B
W

=
5

B
W

=
15

127



A.3.9 Within multiplicative range paths, with α = 0.01 and ε = 0.0033333
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A.3.10 Maximizing betweenness: the experiment of Chapter 6

A
L
B

D
Z
A

A
G
O

A
R
G

A
B
W

A
U
S

A
U
T

A
Z
E

B
H
S

B
H
R

B
R
B

B
L
R

B
M

U

B
W

A

B
R
A

B
R
N

B
G
R

C
A
N

C
Y
M

C
H
L

C
H
N

C
O
L

C
R
I

C
U
R

C
Y
P

C
Z
E

D
N
K

D
O
M

E
C
U

E
G
Y

G
N
Q

E
S
T

F
IN

F
R
A

G
A
B

D
E
U

G
R
C

G
R
N

H
K
G

IS
L

IN
D

ID
N

IR
L IM

N

IS
R

IT
A

J
A
M

J
P
N

J
R
Y

J
O
R

K
A
Z

K
O
R

K
W

T

L
V
A

L
B
N

L
B
Y

L
IE

L
T
U

L
U
X

M
A
C

M
Y
S

M
L
T

M
U
S

M
E
X

M
N
G

N
A
M

N
L
D

B
E
L

N
Z
L

N
G
A

N
O
R

O
M

N

P
A
K

P
A
N

P
E
R

P
H
L

P
O
L

P
R
T

P
R
I

Q
A
T

R
O
M

R
U
S

S
A
U

Y
U
G

S
Y
C

S
G
P

S
V
K

S
V
N H

U
N

H
R
V

Z
A
F

E
S
P

S
U
R

S
W

E

C
H
E

T
W

N

T
H
A

T
T
O

T
U
N

T
U
R

U
K
R

A
R
E

G
B
R

U
S
A

U
R
Y

V
E
N V
IR V

G
B

129



A.3.11 Strict paths, Shapley-value based weighted betweenness centrality
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A.3.12 Strict paths, Shapley-value based unweighted betweenness centrality
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Populaire samenvatting

Is Nederland een belastingparadijs? Nieuwsberichten van de laatste jaren geven inderdaad
die indruk. ‘Nederland belastingparadijs voor veel multinationals’ [Waa11], ‘Nederland is een
aantrekkelijk belastingland ’ [NOS14], ‘Nederlandse meesters in belastingontwijking ’ [GM11], zijn
titels van nieuwsberichten die deze richting op wijzen.

Om te onderzoeken of Nederland inderdaad een belastingparadijs is, heeft het CPB (Cen-
traal Planbureau) een onderzoek gedaan (zie [RL14] en meer in het bijzonder [RL13]). Multinati-
onale ondernemingen gebruiken Nederland voornamelijk als tussenstation om winsten doorheen
te sluizen op een route van een land naar een ander land. Zo beschouwd is Nederland geen
belastingparadijs (een bestemmingsland waar het geld bewaard wordt, een tax haven), maar een
doorsluisland.

In deze scriptie bekijken we algoritmes voor de netwerkanalyse van bilaterale belastingver-
dragen vanuit een wiskundig perspectief. Ook zullen we de algoritmes experimenteel toepassen
om de rol van Nederland en andere landen als doorsluislanden te bekijken, gebruik makend van
(belasting)gegevens van 108 landen (of jurisdictiegebieden) die ons door het CPB ter beschikking
zijn gesteld.
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Figuur B.1: De landen die meer centraal in het netwerk zijn hebben een hogere gewogen betweenness-
centraliteit BW .

Om te onderzoeken welke landen de meest belangrijke doorsluislanden zijn, gebruiken we een
instrument om de centraliteit van een punt (een land) in een netwerk te meten: betweenness-
centraliteit. Wanneer we de betweenness-centraliteit van een land berekenen, bekijken we alle
‘meest voordelige’ belastingroutes voor bedrijven. Op welk deel van deze ‘meest voordelige’
routes komt ons land voor als doorsluisland? Dit geeft een maat voor de centraliteit van een
land in het netwerk. We zullen in het bijzonder gewogen betweenness-centraliteit bekijken:
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hier krijgen routes die als begin- of startpunt een ‘belangrijk’ land hebben (waarbij landen met
een grote economie ‘belangrijk’ zijn), een groot gewicht. Deze routes tellen meer mee in de
betweenness-centraliteit dan routes die als begin- en eindpunt minder relevante landen hebben.

De belangrijkste experimentele resultaten uit deze scriptie zijn de volgende:

(1.) Nederland staat vrij hoog in de ranglijst: vijfde, als we gewogen betweenness-centraliteit
bekijken. Dit lijkt de beweringen uit het nieuws (dat Nederland een aantrekkelijk belas-
tingland voor multinationals is) te ondersteunen.

(2.) Groot-Brittannië is met afstand het meest centrale land in het netwerk. Groot-Brittannië
heeft een substantieel hogere betweenness-centraliteit (zowel gewogen als ongewogen) dan
ieder ander land in het netwerk.

(3.) Er bestaat altijd een ‘meest voordelige’ route van een land naar een ander land via ten
hoogste drie doorsluislanden.

(4.) Er is een grote groep landen (64 landen) met de volgende eigenschap: bedrijven kunnen
hun winsten zonder belasting te betalen versturen van ieder land in deze groep naar ieder
ander land in deze groep, soms over een route via doorsluislanden.

(5.) De ranglijsten blijven vrij stabiel als we ook paden bekijken die bijna het ‘meest voordeligst’
zijn.

(6.) Als Nederland haar rol als ‘doorsluisland’ wil vergroten en wil zorgen dat bedrijven meer
geld door Nederland sluizen dan is het een goed idee om ten eerste de uitgaande dividend-
belasting naar India op 0% te zetten en om vervolgens de uitgaande dividendbelasting naar
China en Brazilië op 0% te zetten.

(7.) De op de Shapleywaarde gebaseerde betweenness-centraliteit geeft in ons netwerk resultaten
(in de ranglijst) die lijken op de gewone betweenness-centraliteit.

(8.) De algoritmes zijn geprogrammeerd in Java en werken sneller dan de implementaties van
het CPB. Als het CPB een vervolgonderzoek op [RL14] gaat doen, kunnen de algoritmes
die geprogrammeerd zijn voor deze scriptie gebruikt worden.

De resultaten worden gëıllustreerd aan de hand van gekleurde wereldkaarten, zoals die in Fi-
guur B.1 en B.2
Deze scriptie heeft ook veel theoretische resultaten opgeleverd. Een korte samenvatting.

(1.) Stel dat een land u de geldstroom die bedrijven door hem heensturen wil maximaliseren.
Hierbij mag u de uitgaande dividend-belasting naar k andere landen op 0% zetten. Welke k
landen moet u dan kiezen? In deze scriptie hebben we bewezen dat dit een heel moeilijk
probleem is: het is een zogenaamd ‘NP -moeilijk probleem’. Dat betekent1 dat zelfs snelle
computers dit probleem niet efficient kunnen oplossen en heel veel rekentijd nodig hebben.

Wel vinden we een ‘approximatie-algoritme’ voor het zojuist beschreven probleem (het
dividend-belastingverlagingprobleem). Een approximatie-algoritme is een procedure waar-
mee snel een ‘goede’ oplossing gevonden kan worden: deze oplossing is misschien niet
optimaal, maar wel ‘bijna’. We kunnen bewijzen dat de approximatieratio, de waarde die
de berekende ‘goede’ oplossing geeft gedeeld door de waarde van de optimale oplossing,
nooit kleiner is dan een bepaald getal, in ons geval 1− 1/e.

(2.) We bewijzen dat het moeilijk is om het aantal paden binnen een bepaald bereik van het
‘meest voordelige pad’ te tellen. We vinden een manier om het aantal ‘gerestricteerde
binnen-bereik-paden’ te berekenen: dit kan een computer wel snel.

1Althans, aangenomen dat ‘P 6= NP ’. Dit vermoeden wordt vaak aangenomen door wiskundigen, maar het is
nog nooit bewezen, zie [Coo00].
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Figuur B.2: Bedrijven kunnen hun winsten zonder belasting te betalen versturen van ieder groen land
naar ieder ander groen land, soms over een route via doorsluislanden.

(3.) Het belastingnetwerk bevat veel verbindingen tussen landen waarover 0% tax geheven
wordt. Dat betekent dat héél veel paden gekwalificeerd worden als ‘meest voordelige’
paden. Dat zorgt ervoor dat de computer er lang over doet om alle paden te berekenen en
te tellen. In deze scriptie bekijken we verschillende manieren om deze 0-verbindingen te
verwerken.

(4.) We formuleren een ‘belastingprobleem’. Hoe hoog moet een land belasting heffen op uit-
gaande dividenden om de totale ontvangen belasting te maximaliseren? We bekijken dit
probleem vanuit een theoretisch perspectief.

(5.) Tot slot vinden we nog een kleine onnauwkeurigheid in een recent artikel (2012) van P. L.
Szczepánski, T. Michalak and T. Rahwan (zie [SMR12]): in dit artikel wordt een algoritme
gegeven om de ‘op de Shapley-waarde gebaseerde betweenness-centraliteit’ te berekenen.
Dit algoritme wordt gegeven voor ongerichte grafen (netwerken waarin de richting van
beweging niet uitmaakt), maar er wordt ook een aanpassing gegeven voor gerichte grafen
(hier maakt de richting van beweging wél uit). Deze aanpassing is echter niet helemaal
correct (maar het is slechts een klein detail).

Dit was een korte samenvatting van de resultaten uit deze scriptie. Hopelijk vond u het inte-
ressant. Het was leuk om deze scriptie te maken: zowel theoretisch als praktisch hebben we
interessante resultaten gevonden. Veel plezier met het lezen van de hele scriptie!
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