
Seminar of Computer Networks:

Online Social Networks and
Network Economics
Sapienza University of Rome
Academic Year 2010/2011

Prof. Guido Schäfer

Center for Mathematics and Computer Science (CWI)
Algorithms, Combinatorics and Optimization
Science Park 123, 1098 XG Amsterdam, The Netherlands

VU University Amsterdam
Department of Econometrics and Operations Research
De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands

Website: http://www.cwi.nl/˜schaefer
Email: g.schaefer@cwi.nl

Document last modified:
June 8, 2011

Disclaimer: These lecture notes contain most of the material (and some additional one)
of the lectures of the course “Online Social Networks and Network Economics”, given
at Sapienza University or Rome in Spring 2011. The flow of the lecture notes might dif-
fer from the one that I followed in class; also the notation might be slightly different here
and there. Note that the lecture notes have undergone some rough proof-reading only.
Please feel free to report any typos, mistakes, inconsistencies, etc. that you observe by
sending me an email (g.schaefer@cwi.nl).

http://www.cwi.nl/~schaefer
mailto:g.schaefer@cwi.nl
mailto:g.schaefer@cwi.nl

Contents

1 Potential Games 1
1.1 Motivating Example: Connection Game 1
1.2 Potential Games and the Finite Improvement Property 3
1.3 Existence of Pure Nash Equilibria . 5
1.4 Price of Anarchy and Price of Stability 5

2 Selfish Routing 7
2.1 Motivating Example: Pigou Example 7
2.2 Model . 8
2.3 Nash Flows and their Existence . 8
2.4 Optimal Flows . 11
2.5 Price of Anarchy . 11
2.6 Upper Bounds on the Price of Anarchy 12
2.7 Lower Bounds on the Price of Anarchy 15
2.8 Motivating Example: Braess’s Paradox 15
2.9 Detecting Braess’s Paradox . 16
2.10 Mini-introduction: Computational Complexity 17
2.11 Detecting Braess’s Paradox — Continued 19

3 Congestion Games 21
3.1 Model . 21
3.2 Example: Atomic Network Congestion Game 21
3.3 Congestion Games are Exact Potential Games 22
3.4 Price of Anarchy . 22

4 Smoothness of Games 24
4.1 Correlated Equilibria . 24
4.2 Learning and Regret Matching Strategies 26

4.2.1 Example: Play Against Nature 26
4.2.2 Regret Matching in Strategic Games 27

4.3 Coarse Correlated Equilibria . 29
4.4 Robust Price of Anarchy . 29
4.5 Example: Congestion Games . 31

5 Combinatorial Auctions 32
5.1 Vickrey Auction . 32
5.2 Combinatorial Auctions and the VCG Mechanism 34
5.3 Single-Minded Bidders . 36
5.4 Generalized Second-Price Auction . 37

5.4.1 Examples . 39
5.4.2 Existence of Equilibria . 39
5.4.3 Price of Anarchy . 41

iii

1 Potential Games

In this section, we consider so-called potential games which constitutes a large class of
strategic games having some nice properties. We will address issues like the existence
of pure Nash equilibria, price of stability, price of anarchy and computational aspects.

1.1 Motivating Example: Connection Game

As a motivating example, we first consider the following connection game.

Definition 1.1. A connection game Γ = (G = (V,A),(ca)a∈A,N,(si, ti)i∈N) is given by

• a directed graph G = (V,A);

• non-negative arc costs c : A→ R+;

• a set of players N := [n];

• for every player i ∈ N a terminal pair (si, ti) ∈V ×V .

The goal of each player i∈N is to connect his terminal vertices si, ti by buying a directed
path Pi from si to ti at smallest possible cost. Let S = (P1, . . . ,Pn) be the paths chosen by
all players. The cost of an arc a ∈ A is shared equally among the players that use this
arc. That is, the total cost that player i experiences under strategy profile S is

ci(S) := ∑
a∈Pi

ca

na(S)
,

where
na(S) = |{i ∈ N : a ∈ Pi}|.

Let A(S) be the set of arcs that are used with respect to S, i.e., A(S) := ∪i∈NPi. The
social cost of a strategy profile S is given by the sum of all arc costs used by the players:

C(S) := ∑
a∈A(S)

ca = ∑
i∈N

ci(S).

Example 1.1. Consider the connection game in Figure 1 (a). There are two Nash
equilibria: One in which all players choose the left arc and one in which all players
choose the right arc. Certainly, the optimal solution is to assign all players to the left
arc. The example shows that the price of anarchy can be as large as n.

Example 1.2. Consider the connection game in Figure 1 (b). Here the unique Nash
equilibrium is that every player uses his direct arc to the target vertex. The resulting
cost is

Hn := 1+
1
2

+
1
3

+ · · ·+ 1
n
,

which is called the n-th harmonic number. (Hn is about log(n) for large enough n.) An
optimal solution allocates all players to the 1+ε path. The example shows that the cost
of a Nash equilibrium can be a factor Hn away from the optimal cost.

1

t

s

1 n

(a)

s1 s2 s3 . . . sn 1+ ε

t1 = t2 = t3 = · · · = tn

1 1
2

1
3

1
n

(b)

Figure 1: Examples of connection games showing that (a) Nash equilibria are not unique
and (b) the price of stability is at least Hn.

Consider the following potential function Φ that maps every strategy profile S =
(P1, . . . ,Pn) of a connection game to a real value:

Φ(S) := ∑
a∈A

ca

(
1+

1
2

+ · · ·+ 1
na(S)

)
= ∑

a∈A
caHna(S).

We derive some properties of Φ(S).

Lemma 1.1. Consider an instance Γ = (G,(ca)a∈A,N,(si, ti)i∈N) of the connection
game. We have for every strategy profile S = (P1, . . . ,Pn):

C(S)≤Φ(S)≤ HnC(S).

Proof. Recall that A(S) refers to the set of arcs that are used in S. We first observe that
Hna(S) = 0 for every arc a ∈ A \A(S) since na(S) = 0. Next observe that for every arc
a∈A(S) we have ca≤ caHna(S)≤ caHn. Summing over all arcs concludes the proof.

For a given strategy profile S = (P1, . . . ,Pn) we use (S−i,P′i) to refer to the strategy
profile that we obtain from S if player i deviates to path P′i , i.e.,

(S−i,P′i) = (P1, . . . ,Pi−1,P′i ,Pi+1, . . . ,Pn).

The next lemma shows that the potential function reflects exactly the change in cost
of a player if he deviates to an alternative strategy.

Lemma 1.2. Consider an instance Γ = (G,(ca)a∈A,N,(si, ti)i∈N) of the connection
game and let S = (P1, . . . ,Pn) be a strategy profile. Fix a player i ∈ N and let P′i 6= Pi

be an alternative si, ti-path. Consider the strategy profile S′ = (S−i,P′i) that we obtain if
player i deviates to P′i . Then

Φ(S′)−Φ(S) = ci(S′)− ci(S)

2

Proof. Note that for every a /∈ Pi ∪P′i we have na(S′) = na(S). Moreover, for every
a ∈ Pi∩P′i we have na(S′) = na(S). We thus have

Φ(S′)−Φ(S) = ∑
a∈A

caHna(S′)−∑
a∈A

caHna(S)

= ∑
a∈P′i \Pi

ca(Hna(S′)−Hna(S))− ∑
a∈Pi\P′i

ca(Hna(S)−Hna(S′))

= ∑
a∈P′i \Pi

ca(Hna(S)+1−Hna(S))− ∑
a∈Pi\P′i

ca(Hna(S)−Hna(S)−1)

= ∑
a∈P′i \Pi

ca

na(S)+1
− ∑

a∈Pi\P′i

ca

na(S)
= ci(S′)− ci(S).

We will see in the next section that the above two lemmas imply the following
theorem.

Theorem 1.1. Let Γ = (G,(ca)a∈A,N,(si, ti)i∈N) be an instance of the connection
game. Then Γ has a pure Nash equilibrium and the price of stability is at most Hn,
where n is the number of players.

1.2 Potential Games and the Finite Improvement Property

The above connection game is a special case of the general class of potential games,
which we formalize next.

Definition 1.2. A finite strategic game Γ = (N,(Xi)i∈N ,(ui)i∈N) is given by

• a finite set N = [n] of players;

• for every player i ∈ N, a finite set of strategies Xi;

• for every player i ∈ N, a utility function ui : X → R which maps every strategy
profile x ∈ X := X1×·· ·×Xn to a real-valued utility ui(x).

The goal of every player is to choose a strategy xi ∈ Xi so as to maximize his own utility
ui(x).

A strategy profile x = (x1, . . . ,xn) ∈ X is a pure Nash equilibrium if for every player
i ∈ N and every strategy yi ∈ Xi, we have

ui(x)≥ ui(x−i,yi).

Here x−i denotes the strategy profile (x1, . . . ,xi−1,xi+1, . . . ,xn) excluding player i. More-
over, (x−i,yi) = (x1, . . . ,xi−1,yi,xi+1, . . . ,xn) refers to the strategy profile that we obtain
from x if player i deviates to strategy yi.

In general, Nash equilibria are not guaranteed to exist in strategic games. Suppose
x is not a Nash equilibrium. Then there is at least one player i ∈ N and a strategy yi ∈ Xi

3

Algorithmus 1 IMPROVING MOVES

Input: arbitrary strategy profile x ∈ X
Output: Nash equilibrium x∗

1: x0 := x
2: k := 0
3: while xk is not a Nash equilibrium do
4: determine a player i ∈ N and yi ∈ Xi, such that ui(xk

−i,yi) > ui(xk)
5: xk+1 := (xk

−i,yi)
6: k := k +1
7: end while
8: return x∗ := xk

such that
ui(x) < ui(x−i,yi).

We call the change from strategy xi to yi of player i an improving move.
A natural approach to determine a Nash equilibrium is as follows: Start with an

arbitrary strategy profile x0 = x. As long as there is an improving move, execute this
move. The algorithm terminates if no improving move can be found. Let the resulting
strategy profile be denoted by x∗. A formal description of the algorithm is given in
Algorithm 1. Clearly, the algorithm computes a pure Nash equilibrium if it terminates.

Definition 1.3. We associate a directed transition graph G(Γ) = (V,A) with a finite
strategic game Γ = (N,(Xi)i∈N ,(ui)i∈N) as follows:

• every strategy profile x ∈ X corresponds to a unique node of the transition graph
G(Γ);

• there is a directed edge from strategy x to y = (x−i,yi) in G(Γ) iff the change from
xi to yi corresponds to an improving move of player i ∈ N.

Note that the transition graph is finite since the set of players N and the strategy set Xi

of every player are finite. Every directed path P = (x0,x1, . . .) in the transition graph
corresponds to a sequence of improving moves. We therefore call P an improvement
path. We call x0 the starting configuration of P. If P is finite its last node is called the
terminal configuration.

Definition 1.4. A strategic game Γ = (N,(Xi)i∈N ,(ui)i∈N) has the finite improvement
property (FIP) if every improvement path in the transition graph G(Γ) is finite.

Consider the execution of IMPROVING MOVES. The algorithm computes an improv-
ing path P = (x0,x1, . . .) with starting configuration x0 and is guaranteed to terminate
if Γ has the FIP. That is, Γ admits a pure Nash equilibrium if it has the FIP. In order to
characterize games that have the FIP, we introduce potential games.

Definition 1.5. A finite strategic game Γ = (N,(Xi)i∈N ,(ui)i∈N) is called exact poten-
tial game if there exists a function (also called potential function) Φ : X → R such that

4

for every player i ∈ N and for every x−i ∈ X−i and xi,yi ∈ Xi:

ui(x−i,yi)−ui(x−i,xi) = Φ(x−i,xi)−Φ(x−i,yi).

Γ is an ordinal potential game if for every player i ∈ N and for every x−i ∈ X−i and
xi,yi ∈ Xi:

ui(x−i,yi)−ui(x−i,xi) > 0 ⇔ Φ(x−i,xi)−Φ(x−i,yi) > 0.

Γ is a generalized ordinal potential game if for every player i∈N and for every x−i ∈X−i

and xi,yi ∈ Xi:

ui(x−i,yi)−ui(x−i,xi) > 0 ⇒ Φ(x−i,xi)−Φ(x−i,yi) > 0.

1.3 Existence of Pure Nash Equilibria

Theorem 1.2. Let Γ = (N,(Xi)i∈N ,(ui)i∈N) be an ordinal potential game. The set of
pure Nash equilibria of Γ coincides with the set of local minima of Φ, i.e., x is a Nash
equilibrium of Γ iff

∀i ∈ N, ∀yi ∈ Xi : Φ(x)≤Φ(x−i,yi).

Proof. The proof follows directly from the definition of ordinal potential games.

Theorem 1.3. Every generalized ordinal potential game Γ has the FIP. In particular,
Γ admits a pure Nash equilibrium.

Proof. Consider an improvement path P = (x0,x1, . . .) in the transition graph G(Γ).
Since Γ is a generalized ordinal potential game, we have

Φ(x0) > Φ(x1) > .. .

Because the transition graph has a finite number of nodes, the path P must be finite.
Thus, Γ has the FIP. The existence follows now directly from the FIP and the IMPROV-
ING MOVES algorithm.

One can show the following equivalence (we omit the proof here).

Theorem 1.4. Let Γ be a finite strategic game. Γ has the FIP if and only if Γ admits a
generalized ordinal potential function.

1.4 Price of Anarchy and Price of Stability

Consider an instance Γ = (N,(Xi)i∈N ,(ui)i∈N) of a potential game and suppose we are
given a social cost function c : X → R that maps every strategy profile x ∈ X to some
cost c(x). We assume that the global objective is to minimize c(x) over all x ∈ X . (The

5

definitions are similar if we want to maximize c(x).) Let opt(Γ) refer to the minimum
cost of a strategy profile x ∈ X and let NE(Γ) refer to the set of strategy profiles that are
Nash equilibria of Γ.

The price of stability is defined as the worst case ratio over all instances of the game
of the cost of a best Nash equilibrium over the optimal cost; more formally,

POS := max
Γ

min
x∈NE(Γ)

c(x)
opt(Γ)

.

In contrast, the price of anarchy is defined as the worst case ratio over all instances
of the game of the cost of a worst Nash equilibrium over the optimal cost; more formally,

POA := max
Γ

max
x∈NE(Γ)

c(x)
opt(Γ)

.

Theorem 1.5. Consider a potential game Γ = (N,(Xi)i∈N ,(ui)i∈N) with potential func-
tion Φ. Let c : X → R+ be a social cost function. If Φ satisfies for every x ∈ X:

1
α

c(x)≤Φ(x)≤ βc(x)

for some α,β > 0, then the price of stability is at most αβ .

Proof. Let x be a strategy profile that minimizes Φ. Then x is a Nash equilibrium by
Theorem 1.2. Let x∗ be an optimal solution of cost opt(Γ). Note that

Φ(x)≤Φ(x∗)≤ βc(x∗) = βopt(Γ).

Moreover, we have c(x)≤ αΦ(x), which concludes the proof.

6

2 Selfish Routing

We consider network routing problems in which users choose their routes so as to min-
imize their own travel time. Our main focus will be to study the inefficiency of Nash
equilibria and to identify effective means to decrease the inefficiency caused by selfish
behavior.

2.1 Motivating Example: Pigou Example

We first consider an example:

x

1

s t

Figure 2: Pigou instance

Example 2.1 (Pigou’s example). Consider the parallel-arc network in Figure 2. For
every arc a, we have a latency function `a : R+→ R+, representing the load-dependent
travel time or latency for traversing this arc. In the above example, we have for the
upper arc `a(x) = 1, i.e., the latency is one independently of the amount of flow on that
arc. The lower arc has latency function `a(x) = x, i.e., the latency grows linearly with
the amount of flow on that arc. Suppose we want to send one unit of flow from s to t and
that this one unit of flow corresponds to infinitely many users that want to travel from s
to t.

Every selfish user will reason as follows: The latency of the upper arc is one (inde-
pendently of the flow) while the latency of the lower arc is at most one (and even strictly
less than one if some users are not using this arc). Thus, every user chooses the lower
arc. The resulting flow is a Nash flow. Since every user experiences a latency of one,
the total average latency of this Nash flow is one.

We next compute an optimal flow that minimizes the total average latency of the
users. Assume we send p ∈ [0,1] units of flow along the lower arc and 1− p units of
flow along the upper arc. The total average latency is (1− p) · 1 + p · p = 1− p + p2.
This function is minimized for p = 1

2 . Thus, the optimal flow sends one-half units of
flow along the upper and one-half units of flow along the lower arc. Its total average
latency is 3

4 .

This example shows that selfish user behavior may lead to outcomes that are ineffi-
cient: The resulting Nash flow is suboptimal with a total average latency that is 4

3 times
larger than the total average latency of an optimal flow. This raises the following natural
questions: How large can this inefficiency ratio be in general networks? Does it depend
on the topology of the network?

7

2.2 Model

We formalize the setting introduced above. An instance of a selfish routing game is
given as follows:

• directed graph G = (V,A) with vertex set V and arc set A;

• nondecreasing and continuous latency function `a : R+→R+ for every arc a∈ A.

• set of k commodities [k] := {1, . . . ,k}, specifying for each commodity i ∈ [k] a
source vertex si and a target vertex ti;

• for each commodity i ∈ [k], a demand ri > 0 that represents the amount of flow
that has to be sent from si to ti;

We use (G,r, `) to refer to an instance for short.
Let Pi be the set of all simple paths from si to ti in G and let P := ∪iPi. A flow

is a function f : P → R+. The flow f is feasible (with respect to r) if for all i ∈ [k],
∑P∈Pi fP = ri, i.e., the total flow send from si to ti meets the demand ri. For a given
flow f , we define the aggregated flow on arc a ∈ A as fa := ∑P∈P:a∈P fP.

The total travel time of a path P ∈P with respect to f is defined as the sum of the
latencies of the arcs on that path:

`P(f) := ∑
a∈P

`a(fa).

We assess the overall quality of a given flow f by means of a global cost function
C. Though there are potentially many different cost functions that one may want to
consider (depending on the application), we focus on the total average latency as cost
function here.

Definition 2.1. The total cost of a flow f is defined as:

C(f) := ∑
P∈P

`P(f) fP. (1)

Note that the total cost can equivalently be expressed as the sum of the average
latencies on the arcs:

C(f) = ∑
P∈P

`P(f) fP = ∑
P∈P

(
∑
a∈P

`a(fa)
)

fP = ∑
a∈A

(
∑

P∈P:a∈P
fP

)
`a(fa) = ∑

a∈A
`a(fa) fa.

2.3 Nash Flows and their Existence

The basic viewpoint that we adopt here is that players act selfishly in that they attempt
to minimize their own individual travel time. A standard solution concept to predict out-
comes of selfish behavior is the one of an equilibrium outcome in which no player has
an incentive to unilaterally deviate from its current strategy. In the context of nonatomic
selfish routing games, this viewpoint translates to the following definition:

8

Definition 2.2. A feasible flow f for the instance (G,r, `) is a Nash flow if for every
commodity i ∈ [k] and two paths P, Q ∈Pi with fP > 0 and for every δ ∈ (0, fP], we
have `P(f)≤ `Q(f̃), where

f̃P :=


fP−δ if P = P

fP +δ if P = Q

fP otherwise.

Intuitively, the above definition states that for every commodity i ∈ [k], shifting
δ ∈ (0, fP] units of flow from a flow carrying path P ∈Pi to an arbitrary path Q ∈Pi

does not lead to a smaller latency.
A similar concept was introduced by Wardrop (1952) in his first principle: A flow

for the nonatomic selfish routing game is a Wardrop equilibrium if for every source-
target pair the latencies of the used routes are less than or equal to those of the unused
routes.

Definition 2.3. A feasible flow f for the instance (G,r, `) is a Wardrop equilibrium (or
Wardrop flow) if

∀i ∈ [k], ∀P, Q ∈Pi, fP > 0 : `P(f)≤ `Q(f). (2)

For δ → 0 the definition of a Nash flow corresponds to the one of a Wardrop flow.
Subsequently, we use the Wardrop flow definition; we slightly abuse naming here and
will also refer to such flows as Nash flows.

Corollary 2.1. Let f be a Nash flow for (G,r, `) and define for every i ∈ [k], ci(f) :=
minP∈Pi `P(f). Then `P(f) = ci(f) for every P ∈Pi with fP > 0.

Proof. By the definition of ci(f), we have that for every P ∈Pi: `P(f)≥ ci(f). Using
(2), we conclude that for every P ∈Pi with fP > 0: `P(f)≤ ci(f).

Note that the above corollary states that for each commodity all flow carrying paths
have the same latency and all other paths cannot have a smaller latency. The flow
carrying paths are thus shortest paths with respect to the total latency.

We next argue that Nash flows always exist and that their cost is unique. In order to do
so, we use a powerful result from convex optimization. Consider the following program
(CP):

min ∑
a∈A

ha(fa)

s.t. ∑
P∈Pi

fP = ri ∀i ∈ [k]

fa = ∑
P∈P:a∈P

fP ∀a ∈ A

fP ≥ 0 ∀P ∈P.

9

Note that the set of all feasible solutions for (CP) corresponds exactly to the set of all
flows that are feasible for our selfish routing instance (G,r, `). The above program is
a linear program if the functions (ha)a∈A are linear. (CP) is a convex program if the
functions (ha)a∈A are convex. A convex program can be solved efficiently by using,
e.g., the ellipsoid method. The following is a fundamental theorem in convex (or, more
generally, non-linear) optimization:

Theorem 2.1 (Karush–Kuhn–Tucker (KKT) Optimality Conditions). Consider the
program (CP) with continuously differentiable and convex functions (ha)a∈A. A feasible
flow f is an optimal solution for (CP) if and only if

∀i ∈ [k], ∀P, Q ∈Pi, fP > 0 : h′P(f) := ∑
a∈P

h′a(fa)≤ ∑
a∈Q

h′a(fa) =: h′Q(f), (3)

where h′a(x) refers to the first derivative of ha(x).

Observe that (3) is very similar to the Wardrop equilibrium conditions (2). In fact,
these two conditions coincide if we define for every a ∈ A:

ha(fa) :=
∫ fa

0
`a(x)dx. (4)

Corollary 2.2. Let (G,r, `) be a selfish routing instance with nondecreasing and con-
tinuous latency functions (`a)a∈A. A feasible flow f is a Nash flow if and only if it is an
optimal solution to (CP) with functions (ha)a∈A as defined in (4).

Proof. For every arc a ∈ A, the function ha is convex (since `a is nondecreasing) and
continuously differentiable (since `a is continuous). The proof now follows from Theo-
rem 2.1.

We will also need the following theorem:

Theorem 2.2 (Extreme Value Theorem). Let X be a compact set and f : X → R a
continuous function. Then f attains both a maximum and a minimum on X.

Corollary 2.3. Let (G,r, `) be a selfish routing instance with nondecreasing and con-
tinuous latency functions (`a)a∈A. Then a Nash flow f always exists. Moreover, its cost
C(f) is unique.

Proof. The set of all feasible flows for (CP) is compact (closed and bounded). More-
over, the objective function of (CP) with (4) is continuous (since `a is continuous for
every a ∈ A). Thus, the minimum of (CP) must exist (by the Extreme Value Theorem).
Since the objective function of (CP) is convex, the optimal value of (CP) is unique. It is
not hard to conclude that the cost C(f) of a Nash flow is unique.

Note that, in particular, the above observations imply that we can compute a Nash
flow for a given nonatomic selfish routing instance (G,r, `) efficiently by solving the
convex program (CP) with (4).

10

2.4 Optimal Flows

We define an optimal flow as follows:

Definition 2.4. A feasible flow f ∗ for the instance (G,r, `) is an optimal flow if
C(f ∗)≤C(x) for every feasible flow x.

The set of optimal flows corresponds to the set of all optimal solutions to (CP) if we
define for every arc a ∈ A:

ha(fa) := `a(fa) fa. (5)

Since the cost function C is continuous (because `a is continuous for every a ∈ A), we
conclude that an optimal flow always exists (again using the Extreme Value Theorem).
Moreover, we will assume that ha is convex and continuously differentiable for each arc
a ∈ A; latency functions (`a)a∈A that satisfy these conditions are called standard. Using
Theorem 2.1, we obtain the following characterization of optimal flows:

Corollary 2.4. Let the latency functions (`a)a∈A be standard. A feasible flow f ∗ for
the instance (G,r, `) is an optimal flow if and only if:

∀i ∈ [k], ∀P, Q ∈Pi, f ∗P > 0 : ∑
a∈P

`a(f ∗a)+ `′a(f ∗a) f ∗a ≤ ∑
a∈Q

`a(f ∗a)+ `′a(f ∗a) f ∗a .

That is, an optimal flow is a Nash flow with respect to so-called marginal latency
functions (`∗a)a∈A, which are defined as

`∗a(x) := `a(x)+ `′a(x)x.

2.5 Price of Anarchy

We study the inefficiency of Nash flows in comparison to an optimal flow. A common
measure of the inefficiency of equilibrium outcomes is the price of anarchy.

Definition 2.5. Let (G,r, `) be an instance of the selfish routing game and let f and f ∗

be a Nash flow and an optimal flow, respectively. The price of anarchy ρ(G,r, `) of the
instance (G,r, `) is defined as:

ρ(G,r, `) =
C(f)
C(f ∗)

. (6)

(Note that (6) is well-defined since the cost of Nash flows is unique.) The price of
anarchy of a set of instances I is defined as

ρ(I) = sup
(G,r,`)∈I

ρ(G,r, `).

11

2.6 Upper Bounds on the Price of Anarchy

Subsequently, we derive upper bounds on the price of anarchy for selfish routing games.
The following variational inequality will turn out to be very useful.

Lemma 2.1 (Variational inequality). A feasible flow f for the instance (G,r, `) is a
Nash flow if and only if it satisfies that for every feasible flow x:

∑
a∈A

`a
(

fa
)
(fa− xa)≤ 0. (7)

Proof. Given a flow f satisfying (7), we first show that condition (2) of Definition 2.3
holds. Let P, Q ∈Pi be two paths for some commodity i ∈ [k] such that δ := fP > 0.
Define a flow x as follows:

xa :=


fa if a ∈ P∩Q or a /∈ P∪Q

fa−δ if a ∈ P

fa +δ if a ∈ Q.

By construction x is feasible. Hence, from (7) we obtain:

∑
a∈A

`a
(

fa
)
(fa− xa) = ∑

a∈P
`a(fa)(fa− (fa−δ))+ ∑

a∈Q
`a(fa)(fa− (fa +δ))≤ 0.

We divide the inequality by δ > 0, which yields the Wardrop conditions (2).
Now assume that f is a Nash flow. By Corollary 2.1, we have for every i ∈ [k] and

P ∈Pi with fP > 0: `P(f) = ci(f). Furthermore, for Q ∈Pi with fQ = 0, we have
`Q(f)≥ ci(f). It follows that for every feasible flow x:

∑
a∈A

`a(fa) fa = ∑
i∈[k]

∑
P∈Pi

ci(f) fP = ∑
i∈[k]

ci(f)

(
∑

P∈Pi

fP

)
= ∑

i∈[k]
ci(f)

(
∑

P∈Pi

xP

)
= ∑

i∈[k]
∑

P∈Pi

ci(f)xP ≤ ∑
i∈[k]

∑
P∈Pi

`P(f)xP = ∑
a∈A

`a(fa)xa.

We derive an upper bound on the price of anarchy for affine linear latency functions
with nonnegative coefficients:

L1 := {g : R+→ R+ : g(x) = q1x+q0 with q0,q1 ∈ R+}.

Theorem 2.3. Let (G,r, `) be an instance of a nonatomic routing game with affine
linear latency functions (`a)a∈A ∈L A

1 . The price of anarchy ρ(G,r, `) is at most 4
3 .

Proof. Let f be a Nash flow and let x be an arbitrary feasible flow for (G,r, `). Using

12

`a(x) = q1x+q0

q0

Wa(fa,xa)

xa fa

`a(xa)

`a(fa)

Figure 3: Illustration of the worst case ratio of Wa(fa,xa) and `a(fa) fa.

the variational inequality (7), we obtain

C(f) = ∑
a∈A

`a(fa) fa ≤ ∑
a∈A

`a(fa)xa = ∑
a∈A

`a(fa)xa + `a(xa)xa− `a(xa)xa

= ∑
a∈A

`a(xa)xa +[`a(fa)− `a(xa)]xa︸ ︷︷ ︸
=:Wa(fa,xa)

= ∑
a∈A

`a(xa)xa + ∑
a∈A

Wa(fa,xa).

We next bound the function Wa(fa,xa) in terms of ω · `a(fa) fa for some 0 ≤ ω < 1,
where

ω := max
fa,xa≥0

(`a(fa)− `a(xa))xa

`a(fa) fa
= max

fa,xa≥0

Wa(fa,xa)
`a(fa) fa

.

Note that for xa ≥ fa we have ω ≤ 0 (because latency functions are non-decreasing).
Hence, we can assume xa ≤ fa. See Figure 3 for a geometric interpretation. Since
latency functions are affine linear, ω is upper bounded by 1

4 . We obtain

C(f)≤C(x)+ ∑
a∈A

1
4
`a(fa) fa = C(x)+

1
4

C(f).

Rearranging terms and letting x be an optimal flow concludes the proof.

We can extend the above proof to more general classes of latency functions. For the
latency function `a of an arc a ∈ A, define

ω(`a) := sup
fa,xa≥0

(`a(fa)− `a(xa))xa

`a(fa) fa
. (8)

We assume by convention 0/0 = 0. See Figure 4 for a graphical illustration of this
value. For a given class L of non-decreasing latency functions, we define

ω(L) := sup
`a∈L

ω(`a).

13

0

`a(·)

0

`a(xa)

`a(fa)

xa fa

Figure 4: Illustration of ω(`a).

Theorem 2.4. Let (G,r, `) be an instance of the nonatomic selfish routing game with
latency functions (`a)a∈A ∈L A. Let 0 ≤ ω(L) < 1 be defined as above. The price of
anarchy ρ(G,r, `) is at most (1−ω(L))−1.

Proof. Let f be a Nash flow and let x be an arbitrary feasible flow. We have

C(f) = ∑
a∈A

`a(fa) fa ≤ ∑
a∈A

`a(fa)xa = ∑
a∈A

`a(fa)xa + `a(xa)xa− `a(xa)xa

= ∑
a∈A

`a(xa)xa +[`a(fa)− `a(xa)]xa ≤C(x)+ω(L)C(f).

Here, the first inequality follows from the variational inequality (7). The last inequality
follows from the definition of ω(L). Since ω(L) < 1, the claim follows.

In general, we define Ld as the set of latency functions g : R+→ R+ that satisfy

g(µx)≥ µ
dg(x) ∀µ ∈ [0,1].

Note that Ld contains polynomial latency functions with nonnegative coefficients and
degree at most d.

Lemma 2.2. Consider latency functions in Ld . Then

ω(Ld)≤
d

(d +1)(d+1)/d
.

Proof. Recall the definition of ω(`a):

ω(`a) = sup
fa,xa≥0

(
`a(fa)− `a(xa)

)
xa

`a(fa) fa
. (9)

We can assume that xa ≤ fa since otherwise ω(`a)≤ 0. Let µ := xa
fa
∈ [0,1]. Then

ω(`a) = max
µ∈[0,1], fa≥0

((
`a(fa)− `a(µ fa)

)
µ fa

`a(fa) fa

)
≤ max

µ∈[0,1], fa≥0

((
`a(fa)−µd`a(fa)

)
µ fa

`a(fa) fa

)

14

d 1 2 3 . . .

ρ(G,r, `) ≈ 1.333 ≈ 1.626 ≈ 1.896

Table 1: The price of anarchy for polynomial latency functions of degree d.

= max
µ∈[0,1]

(1−µ
d)µ. (10)

Here, the first inequality holds since `a ∈Ld . Since this is a strictly convex program,
the unique global optimum is given by

µ
∗ =

(
1

d +1

) 1
d

.

Replacing µ∗ in (10) yields the claim.

Theorem 2.5. Let (G,r, `) be an instance of a nonatomic routing game with latency
functions (`a)a∈A ∈L A

d . The price of anarchy ρ(G,r, `) is at most

ρ(G,r, `)≤
(

1− d
(d +1)(d+1)/d

)−1

.

Proof. The theorem follows immediately from Theorem 2.4 and Lemma 2.2.

The price of anarchy for polynomial latency functions with nonnegative coefficients
and degree d is given in Table 1 for small values of d.

2.7 Lower Bounds on the Price of Anarchy

We can show that the bound that we have derived in the previous section is actually
tight.

Theorem 2.6. Consider nonatomic selfish routing games with latency functions in Ld .
There exist instances such that the price of anarchy is at least(

1− d
(d +1)(d+1)/d

)−1

.

Proof. See assignments.

2.8 Motivating Example: Braess’s Paradox

Example 2.2 (Braess’s paradox). Consider the network in Figure 5 (left). Assume
that we want to send one unit of flow from s to t. It is not hard to verify that the
Nash flow splits evenly and sends one-half units of flow along the upper and lower arc,
respectively. This flow is also optimal having a total average latency of 3

2 .

15

1

x

x

1

s t

1

x

x

1

s t0

Figure 5: Braess Paradox

Now, suppose there is a global authority that wants to improve the overall traffic
situation by building new roads. The network in Figure 5 (right) depicts an augmented
network where an additional arc with constant latency zero has been introduced. How
do selfish users react to this change? What happens is that every user chooses the zig-
zag path, first traversing the upper left arc, then the newly introduced zero latency arc
and then the lower right arc. The resulting Nash flow has a total average latency of 2.

The Braess Paradox shows that extending the network infrastructure does not nec-
essarily lead to an improvement with respect to the total average latency if users choose
their routes selfishly. In the above case, the total average latency degrades by a factor of
4
3 . In general, one may ask the following questions: How large can this degradation be?
Can we develop efficient methods to detect such phenomena?

2.9 Detecting Braess’s Paradox

Suppose we are given a single-commodity instance (G,r, `) of the nonatomic selfish
routing game. Let f be a Nash flow for (G,r, `) and define d(G,r, `) := c1(f) as the
common latency of all flow-carrying paths (see Corollary 2.1). We study the following
optimization problem: Given (G,r, `), find a subgraph H ⊆ G that minimizes d(H,r, `).
We call this problem the NETWORK DESIGN problem.

Corollary 2.5. Let (G,r, `) be a single-commodity instance of the nonatomic selfish
routing game with linear latency functions. Then for every subgragph H ⊆ G:

d(G,r, `)≤ 4
3

d(H,r, `).

Proof. Let h and f be the Nash flows for the instances (H,r, `) and (G,r, `), respectively.
By Corollary 2.1, the latency of every flow-carrying path in a Nash flow is equal. Thus,
the costs of the Nash flows f and h, respectively, are rd(G,r, `) and rd(H,r, `). Using
that h is a feasible flow for (G,r, `) and the upper bound of 4/3 on the price of anarchy
for linear latencies, we obtain

C(f) = rd(G,r, `)≤ 4
3

C(h) =
4
3

rd(H,r, `).

16

We can generalize the above proof to obtain:

Corollary 2.6. Let (G,r, `) be a single-commodity instance of the nonatomic selfish
routing game with polynomial latency functions in Ld . Then for every subgraph H ⊆G:

d(G,r, `)≤
(

1− d
(d +1)(d+1)/d

)−1

d(H,r, `).

We next turn to designing approximation algorithms that compute a “good” subgraph
H of G with a provable approximation guarantee. We review some basics from com-
putational theory first. Readers that are familiar with this topic can continue with Sec-
tion 2.11.

2.10 Mini-introduction: Computational Complexity

We briefly review some basics from complexity theory. The exposition here is kept at
a rather high-level; the interested reader is referred to, e.g., the book Computers and
Intractability: A Guide to the Theory of NP-Completeness by Garey and Johnson for
more details.

Definition 2.6 (Optimization problem). A cost minimization problem P = (I ,S ,c)
is given by:

• a set of instances I of P;

• for every instance I ∈I a set of feasible solutions SI;

• for every feasible solution S ∈SI a real-valued cost c(S).

The goal is to compute for a given instance I ∈ I a solution S ∈ SI that minimizes
c(S). We use optI to refer to the cost of an optimal solution for I.

Definition 2.7 (Decision problem). A decision problem P = (I ,S ,c,k) is given by:

• a set of instances I of P;

• for every instance I ∈I a set of feasible solutions SI;

• for every feasible solution S ∈SI a real-valued cost c(S).

The goal is to decide whether for a given instance I ∈I a solution S ∈SI exists such
that the cost c(S) of S is at most k. If there exists such a solution, we say that I is a
yes-instance; otherwise, I is a no-instance.

Example 2.3 (Traveling salesman problem). We are given an undirected graph G =
(V,E) with edge costs c : E → R+. The traveling salesman problem (TSP) asks for the
computation of a tour that visits every vertex exactly once and has minimum total cost.
The decision problem asks for the computation of a tour of cost at most k.

17

Several optimization problems (and their respective decision problems) are hard in
the sense that there are no polynomial-time algorithms known that solve the problem
exactly. Here polynomial-time algorithm refers to an algorithm whose running time can
be bound by a polynomial function in the size of the input instance. For example, an
algorithm has polynomial running time if for every input of size n its running time is
bound by nk for some constant k. There are different ways to encode an input instance.
Subsequently, we assume that the input is encoded in binary and the size of the input
instance refers to the number of bits that one needs to represent the instance.

Definition 2.8 (Complexity class P). A decision problem P = (I ,S ,c,k) belongs
to the complexity class P (which stands for polynomial time) if for every instance I ∈I

one can find in polynomial time a feasible solution S ∈SI whose cost is at most k, or
determine that no such solution exists.

Definition 2.9 (Complexity class NP). A decision problem P = (I ,S ,c,k) belongs
to the complexity class NP (which stands for non-deterministic polynomial time) if for
every yes-instance I ∈ I there exists a solution S whose validity can be verified in
polynomial time, i.e., whether S ∈∈SI and c(S)≤ k.

Clearly, P ⊆ NP. The question whether P 6= NP is still unresolved and one of the
biggest open questions to date.1

Definition 2.10 (Polynomial time reduction). A decision problem P1 =
(I1,S1,c1,k1) is polynomial time reducible to a decision problem P2 =
(I2,S2,c2,k2) if every instance I1 ∈ I1 of P1 can in polynomial time be mapped to
an instance I2 ∈ I2 of P2 such that: I1 is a yes-instance of P1 if and only if I2 is a
yes-instance of P2.

Definition 2.11 (NP-completeness). A problem P = (I ,S ,c,k) is NP-complete if

• P belongs to NP;

• every problem in NP is polynomial time reducible to P .

Essentially, problems that are NP-complete are polynomial time equivalent: If we
are able to solve one of these problems in polynomial time then we are able to solve all
of them in polynomial time. Note that in order to show that a problem is NP-complete,
it is sufficient to show that it is in NP and that an NP-complete problem is polynomial
time reducible to this problem.

Example 2.4 (TSP). The problem of deciding whether a traveling salesman tour of
cost at most k exists is NP-complete.

Many fundamental problems are NP-complete and it is therefore unlikely (though
not impossible) that efficient algorithms for solving these problems in polynomial time
exist. One therefore often considers approximation algorithms:

1See also The Millennium Prize Problems at http://www.claymath.org/millennium.

18

Definition 2.12 (Approximation algorithm). An algorithm ALG for a cost minimiza-
tion problem P = (I ,S ,c) is called an α-approximation algorithm for some α ≥ 1
if for every given input instance I ∈I of P:

1. ALG computes in polynomial time a feasible solution S ∈SI , and

2. the cost of S is at most α times larger than the optimal cost, i.e., c(S)≤ αoptI .

α is also called the approximation factor or approximation guarantee of ALG.

2.11 Detecting Braess’s Paradox — Continued

A trivial approximation algorithm (called TRIVIAL subsequently) for the NETWORK

DESIGN problem is to simply return the original graph as a solution. Using the above
corollaries, it follows that TRIVIAL has an approximation guarantee of(

1− d
(d +1)(d+1)/d

)−1

for latency functions in Ld .
We will show that the performance guarantee of TRIVIAL is best possible, unless

P = NP.

Theorem 2.7. Assuming P 6= NP, for every ε > 0 there is no (4
3 − ε)-approximation

algorithm for the NETWORK DESIGN problem.

G

s

t

t1 t2

s1 s2

1 x

x 1

P1 P2

G

s

t

t1 t2

s1 s2

1 x

x 1

P1 P2

Figure 6: (a) Yes-instance of 2DDP. (b) No-instance of 2DDP.

Proof. We reduce from the 2-directed vertex-disjoint paths problem (2DDP), which is
NP-complete. An instance of this problem is given by a directed graph G = (V,A) and
two vertex pairs (s1, t1), (s2, t2). The question is whether there exist a path P1 from s1 to
t1 and a path P2 from s2 to t2 in G such that P1 and P2 are vertex disjoint. We will show
that a (4

3 − ε)-approximation algorithm could be used to differentiate between yes- and
no-instances of 2DDP in polynomial time.

19

Suppose we are given an instance I of 2DDP. We construct a graph G′ by adding
a super source s and a super sink t to the network. We connect s to s1 and s2 and t1 and
t2 to t, respectively. The latency functions of the added arcs are given as indicated in
Figure 2.11, where we assume that all latency functions in the original graph G are set
to zero. This can be done in polynomial time.

We will prove the following two statements:

(i) If I is a yes-instance of 2DDP then d(H,1, `) = 3/2 for some subgraph H ⊆ G′.

(ii) If I is a no-instance of 2DDP then d(H,1, `)≥ 2 for every subgraph H ⊆ G′.

Suppose for the sake of a contradiction that a (4
3−ε)-approximation algorithm ALG

for the NETWORK DESIGN problem exists. ALG then computes in polynomial time
a subnetwork H ⊆ G′ such that the cost of a Nash flow in H is at most (4

3 − ε)opt,
where opt = minH⊆G′ d(H,r, `). That is, the cost of a Nash flow for the subnetwork
H computed by ALG is less than 2 for instances in (i) and it is at least 2 for instances
in (ii). Thus, using ALG we can determine in polynomial time whether I is a yes- or
no-instance, which is a contradiction to the assumption that P 6= NP. It remains to show
the above two statements.

For (i), we simply delete all arcs in G that are not contained in P1 and P2. Then, split-
ting the flow evenly along these paths yields a Nash equilibrium with cost d(H,1, `) =
3/2.

For (ii), we can assume without loss of generality that any subgraph H contains an
s, t-path. If H has an (s,s2, t1, t) path then routing the flow along this path yields a Nash
flow with cost d(H,1, `) = 2. Suppose H does not contain an (s,s2, t1, t) path. Because
I is a no-instance, we have three possibilities:

1. H contains an (s,s1, t1, t) path but no (s,s2, t2, t) paths (otherwise two such paths
must share a vertex and H would contain an (s,s2, t1, t) path);

2. H contains an (s,s2, t2, t) path but no (s,s1, t1, t) path (otherwise two such paths
must share a vertex and H would contain an (s,s2, t1, t) path);

3. every s, t-path in H is an (s,s1, t2, t) path.

It is not hard to verify that in either case, the cost of a Nash flow is d(H,1, `) = 2.

20

3 Congestion Games

In this section, we consider a general class of resource allocation games, called conges-
tion games.

3.1 Model

Definition 3.1 (Congestion model). A congestion model M = (N,E,(Xi)i∈N ,(ce)e∈E)
is given by

• a set of players N = [n];

• a set of facilities E;

• for every player i ∈ N, a set Xi ⊆ 2E of subsets of facilities in E;2

• for every facility e ∈ E, a cost function ce : N→ R.

For every player i ∈ N, Xi is the strategy set from which i can choose. A strategy
xi ∈ Xi is a subset of facilities; we think of xi as the facilities that player i uses. Fix some
strategy profile x = (x1, . . . ,xn) ∈ X := X1×·· ·×Xn. The cost incurred for the usage of
facility e ∈ E with respect to x is defined as ce(ne(x)), where

ne(x) := |{i ∈ N : e ∈ xi}|

refers to the total number of players that use e.

Definition 3.2 (Congestion game). The congestion game corresponding to the conges-
tion model M = (N,E,(Xi)i∈N ,(ce)e∈E) is the strategic game Γ = (N,(Xi)i∈N ,(ci)i∈N),
where every player i ∈ N wants to minimize his cost

ci(x) = ∑
e∈xi

ce(ne(x)).

The game is called symmetric if all players have the same strategy set, i.e., Xi = Q for
all i ∈ N and some Q⊆ 2E .

3.2 Example: Atomic Network Congestion Game

Example 3.1 (Atomic network congestion game). The atomic network congestion
game can be modeled as a congestion game: We are given a directed graph G = (V,A),
a single commodity (s, t) ∈V ×V , and a cost function ca : N→R+ for every arc a ∈ A.
Every player i ∈ N wants to send one unit of flow from s to t along a single path. The
set of facilities is E := A and the strategy set Xi of every player i ∈ N is simply the set of
all directed s, t-paths in G. (Note that the game is symmetric.) The goal of every player

2For a given set S, we use 2S to refer to the power set of S, i.e., the set of all subsets of S.

21

i ∈ N is to choose a path xi ∈ Xi so as to minimize his cost

ci(x) := ∑
a∈xi

ca(na(x)),

where na(x) refers to the total number of players using arc a. This example corresponds
to a selfish routing game, where every player controls one unit of flow (i.e., we have
atomic players) and has to route his flow unsplittably from s to t.

3.3 Congestion Games are Exact Potential Games

Theorem 3.1. Every congestion game Γ = (N,(Xi)i∈N ,(ci)i∈N) is an exact potential
game.

Proof. Rosenthal’s potential function Φ : X → R is defined as

Φ(x) := ∑
e∈E

ne(x)

∑
k=1

ce(k). (11)

We prove that Φ is an exact potential function for Γ. To see this, fix some x ∈ X , a
player i ∈ N and some yi ∈ Xi. We have

Φ(x−i,yi) = ∑
e∈E

ne(x)

∑
k=1

ce(k)+ ∑
e∈yi\xi

ce(ne(x)+1)− ∑
e∈xi\yi

ce(ne(x))

= Φ(x)+ ci(x−i,yi)− ci(x).

Thus, Φ is an exact potential function.

By Theorem 1.3 it follows that every congestion game has the FIP and admits a pure
Nash equilibrium.

3.4 Price of Anarchy

Define the social cost of a strategy profile x ∈ X as the total cost of all players, i.e.,

C(x) := ∑
i∈N

ci(x) = ∑
e∈E

ne(x)ce(ne(x)).

We derive an upper bound on the price of anarchy for congestion games with respect
to the social cost function c defined above. Here we only consider the case that the cost
of every facility e∈ E is given as ce(k) = k. The proof extends to arbitrary linear latency
functions.

Theorem 3.2. Let M = (N,(Xi)i∈N ,(ci)i∈N) be a congestion model with linear latency
functions ce(k) = k for every e∈E and let Γ = (N,(Xi)i∈N ,(ui)i∈N) be the corresponding
congestion game. The price of anarchy is at most 5/2.

22

We will use the following fact to prove this theorem (whose proof we leave as an
exercise):

Fact 3.1. Let α and β be two non-negative integers. Then

α(β +1)≤ 5
3

α
2 +

1
3

β
2.

Proof of Theorem 3.2. Let x be a Nash equilibrium and x∗ be an optimal strategy profile
minimizing C. Since x is a Nash equilibrium, the cost of every player i ∈ N does not
decrease if he deviates to his optimal strategy x∗i , i.e.,

ci(x)≤ ci(x−i,x∗i) = ∑
e∈x∗i

ce(ne(x−i,x∗i)) = ∑
e∈x∗i

ne(x−i,x∗i)≤ ∑
e∈x∗i

ne(x)+1,

where the last inequality follows since player i increases the number of players on each
e ∈ x∗i by at most 1 with respect to ne(x). Summing over all players, we obtain

C(x) = ∑
i∈N

ci(x)≤ ∑
i∈N

∑
e∈x∗i

ne(x)+1 = ∑
e∈E

ne(x∗)(ne(x)+1).

Using Fact 3.1, we therefore obtain

C(x)≤ ∑
e∈E

ne(x∗)(ne(x)+1)≤ 5
3 ∑

e∈E
(ne(x∗))2 +

1
3 ∑

e∈E
(ne(x))2 =

5
3

C(x∗)+
1
3

C(x),

where the last equality follows from ce(k) = k for every e ∈ E and the definition of C.
We conclude that C(x)≤ 5

2C(x∗).

The following example shows that the bound is tight.

Example 3.2. Consider a congestion game with three players and six facilities E =
E1 ∪E2, where E1 = {h1,h2,h3} and E2 = {g1,g2,g3}. The delay functions are given
by de(x) = x for every e ∈ E.

Each player i has two pure strategies: {hi,gi} and {hi−1,hi+1,gi+1} (all indices are
modulo 3). The strategy profile in which every player selects his first strategy is a
social optimum of cost 6. Consider the strategy profile s in which every player chooses
his second strategy. Each player’s cost with respect to s is 5. If a player unilaterally
deviates to his first strategy, then his new cost is 5. Thus s is a Nash equilibrium of total
cost 15. We conclude that the price of anarchy is at least 15/6 = 5/2.

23

4 Smoothness of Games

Consider a strategic game Γ = (N,(Si)i∈N ,(ci)i∈N) with social cost function

C(s) = ∑
i∈N

ci(s),

where s ∈ S = S1×·· ·×Sn.
The following definition will be useful in proving bounds on the price of anarchy of

Γ.

Definition 4.1 ((λ ,µ)-smoothness). Let Γ be a strategic game with social cost func-
tion C. Γ is (λ ,µ)-smooth iff for any two strategy profiles s,s∗ ∈ Σ,

∑
i∈N

ci(s∗i ,s−i)≤ λC(s∗)+ µC(s). (12)

Theorem 4.1. Let Γ be a strategic game. If Γ is (λ ,µ)-smooth with µ < 1, then the
price of anarchy of Γ is at most λ

1−µ
.

Proof. Let s be a Nash equilibrium and s∗ be a social optimum of Γ. Because s is a
Nash equilibrium, we have for every i ∈ N: ci(si,s−i) ≤ ci(s∗i ,s−i). Summing over all
players, we obtain

C(s) = ∑
i∈N

ci(si,s−i)≤ ∑
i∈N

ci(s∗i ,s−i)≤ λC(s∗)+ µC(s),

where the last inequality holds because Γ is (λ ,µ)-smooth. The proof now follows
because µ < 1.

We define the robust price of anarchy as the best possible bound on the price of
anarchy obtainable by a (λ ,µ)-smoothness argument.

Definition 4.2. The robust price of anarchy of a strategic game Γ is defined as

RPOA(Γ) = inf
{

λ

1−µ
: Γ is (λ ,µ)-smooth with µ < 1

}
.

For a class G of games, we define

RPOA(G) = sup{RPOA(Γ) : Γ ∈ G } .

We omit the explicit reference to the game (or class of games) if it is clear from the
context.

4.1 Correlated Equilibria

Consider the following two player game, also called chicken: Two players are speeding
towards an intersection. Each player has two options: stop or go. If both go, the outcome

24

is a fatal crash and both players experience a utility of 0. If one goes and the other stops,
the one that goes experiences a utility of 5 while the other experiences a utility of 1. If
both stop, both experience a utility of 4.

stop go
stop (4,4) (1,5)

go (5,1) (0,0)

There are two pure Nash equilibria: (stop, go) and (go, stop). There is one mixed
Nash equilibrium in which every player stops with probability 1

2 .
Let p(s) be the probability of strategy profile s ∈ S. The above equilibria then

correspond to the probability distributions(
0 1
0 0

) (
0 0
1 0

) (1
4

1
4

1
4

1
4

)
Now consider the following probability distribution(

0 1
2

1
2 0

)
Note that this probability distribution cannot be generated by two independent proba-
bility distributions of player 1 and 2.

Suppose some trusted third party (mediator) draws an outcome s from this distribu-
tion and recommends to each player individually and privately to play si according to
the outcome. In the chicken game, this would mean that half of the time player 1 stops
and player 2 goes and vice versa. That is, this probability distribution can be interpreted
as a traffic signal.

Note that this probability distribution of recommendations is self-enforcing in the
sense that no player has an incentive to deviate from the recommendation, assuming
that all other players follow the recommendation.

In the above example, player 1 has an expected utility of

• 1
2(5+1) = 3 if he always follows the recommendation of the mediator

• 1
2(5+0) = 2.5 if he follows the recommendation go but deviates for stop

• 1
2(4+1) = 2.5 if he follows the recommendation stop but deviates for go

• 1
2(4+0) = 2 if he always deviates from the recommendation.

We conclude that it is best for player 1 to always follow the recommendation. A similar
argument holds for player 2.

Definition 4.3. A correlated equilibrium (CE) of a strategic game Γ =
(N,(Si)i∈N ,(ui)i∈N) is a probability distribution p : S→ [0,1] over S = S1× ·· · × Sn

such that for every player i ∈ N and every two strategies si,s′i ∈ Si of i, conditioned on

25

the event that a strategy profile with si as his strategy is drawn from p, the expected
utility of player i playing si is no smaller than that of playing s′i:

∑
s−i∈S−i

(ui(s−i,si)−ui(s−i,s′i))p(s−i,si)≥ 0

Note that every mixed Nash equilibrium is also a correlated equilibrium but not the
other way around. In the chicken game, the above conditions read as follows:

(4−5)p11 +(1−0)p12 ≥ 0 (player 1 plays stop)

(5−4)p21 +(0−1)p22 ≥ 0 (player 1 plays go)

(4−5)p11 +(1−0)p21 ≥ 0 (player 2 plays stop)

(5−4)p12 +(0−1)p22 ≥ 0 (player 2 plays go)

It is not hard to verify that there is yet another correlated equilibrium, which is(1
3

1
3

1
3 0

)
Note that the correlated equilibrium conditions reduce to a set of linear inequalities.

Moreover, we know that at least one solution must exist (because of Nash’s existence
theorem of mixed Nash equilibria). We can therefore find a correlated equilibrium effi-
ciently by solving a linear program. This is in stark contrast to the problem of finding a
mixed Nash equilibrium, which is computationally very hard.

4.2 Learning and Regret Matching Strategies

4.2.1 Example: Play Against Nature

Consider the following game in which one player (player 1) plays against nature (player
N). Each day, the player can choose to either take an umbrella or to not take an umbrella
and nature determines whether it will rain or not. The utility u1 of player 1 is given as
follows:

rain (r) no rain (nr)
umbrella (u) 1 0

no umbrella (nu) 0 1

Let s1(t) ∈ S1 = {u,nu} denote the strategy chosen by player 1 on day t and let
sN(t) ∈ SN = {r,nr} be the event that occurs on day t. The utility of player 1 at day
t is u1(s1(t),sN(t)).

Define the average utility at day t of player 1 as

Ū1(t) =
1
t

t

∑
τ=1

u1(s1(τ),sN(τ))

26

Let the average utility at day t for fixed strategy q ∈ S1 of player 1 be defined as

Ūq
1 (t) =

1
t

t

∑
τ=1

u1(q,sN(τ))

The average regret at day t with respect to fixed strategy q ∈ S1 of player 1 is given by

R̄q
1(t) = Ūq

1 (t)−Ū1(t).

Consider the following example:

day (t) 1 2 3 4 5 6
nature r nr r r nr r

player 1 nu u nu u nu nu

u1 0 0 0 1 1 0
Ū1(t) 0 0 0 1

4
2
5

2
6

Ūu
1 (t) 1 1

2
2
3

3
4

3
5

4
6

R̄u
1(t) 1 1

2
2
3

1
2

1
5

1
3

Ūnu
1 (t) 0 1

2
1
3

1
4

2
5

2
6

R̄nu
1 (t) 0 1

2
1
3 0 0 0

Observe that whenever player 1 experiences some positive regret, he could have
chosen a better fixed strategy in hindsight.

The question that arises is: Can player 1 choose his strategy every day so as to
guarantee that positive regret vanishes asymptotically, irrespective of nature?

Consider the following regret matching strategy: At day t + 1, player 1 plays strat-
egy u and nu with probabilities pu

1(t +1) and pnu
1 (t +1), respectively, with

pu
1(t +1) =

[R̄u
1(t)]+

[R̄u
1(t)]+ +[R̄nu

1 (t)]+
and pnu

1 (t +1) =
[R̄nu

1 (t)]+
[R̄u

1(t)]+ +[R̄nu
1 (t)]+

,

where [x]+ refers to max{x,0}. Note that the above is well-defined only if the denom-
inator is positive. If not, we let p1(t + 1) be an arbitrary probability distribution over
S1.

Using the above regret matching strategy, one can show that the player’s positive
regret vanishes, i.e.,

[R̄u
1(t)]+→ 0 and [R̄nu

1 (t)]+→ 0 as t→ ∞.

4.2.2 Regret Matching in Strategic Games

The above strategy can be generalized to arbitrary strategic games. Let Γ =
(N,(Si)i∈N ,(ui)i∈N) be a strategic game. Suppose Γ is played repeatedly over a dis-
crete time horizon t = 1,2, We assume that at each time t ∈ {1,2, . . .}, each player

27

i ∈ N simultaneously selects his strategy according to a probability distribution pi(t)
over Si, i.e., pq

i (t) is the probability of choosing q ∈ Si at time t. Let s(1),s(2), . . . be
the sequence of outcomes of this repeated play.
The average utility of player i at time t is

Ūi(t) =
1
t

t

∑
τ=1

ui(s(τ)).

The average utility of player i for fixed strategy q ∈ Si at time t is

Ūq
i (t) =

1
t

t

∑
τ=1

ui(q,s−i(τ)).

The average regret of player i for fixed strategy q ∈ Si at time t is defined as

R̄q
i (t) = Ūq

i (t)−Ūi(t).

Note that R̄q
i (t) is the average regret of player i at time t of not having played q at each

step.
We impose that each player updates his strategy pi(t) using a learning rule f (·) that

is based on the history of the game, i.e.,

pi(t +1) = f (s(1), . . . ,s(t),ui).

Suppose each player updates his strategy according to the regret matching strategy:
Define

pq
i (t +1) =

[R̄q
i (t)]+

∑si∈Si [R̄
si
i (t)]+

(13)

if the denominator is positive and let pi(t +1) be an arbitrary distribution of Si otherwise.
We state the following theorem without proof:

Theorem 4.2. Suppose that player i follows the regret matching strategy (13). Then,
irrespective of what the other players do, for every strategy q ∈ Si,

[R̄q
i (t)]+→ 0 as t→ ∞.

An alternative interpretation of the regret matching strategy is as follows: Let p(t) be the
empirical distribution of joint play of all players, i.e., p(t,s) is the frequency of strategy
profile s ∈ S up to time t. It is not hard to see that with this notation the expected utility
of player i at time t is

Ūi(t) = ∑
s∈S

ui(s)p(t,s).

The expected utility of player i for fixed strategy q ∈ Si at time t is

Ūq
i (t) = ∑

s−i∈S−i

ui(q,s−i)p−i(t,s−i),

28

where p−i(t,s−i) refers to the frequency of strategy profile s−i played by players other
than i up to time t. The expected regret of player i for fixed strategy q ∈ Si at time t is
defined as

R̄q
i (t) = Ūq

i (t)−Ūi(t).

Note that the characteristic of a no-regret point (i.e., for sufficiently large t) is that for
every player i ∈ N and strategy q ∈ Si, R̄q

i (t)≤ 0, which is equivalent to

∑
s−i∈S−i

ui(q,s−i)p−i(t,s−i)≤∑
s∈S

ui(s)p(t,s).

This coincides with the definition of a coarse correlated equilibrium, given in the
next section.

Theorem 4.3. Suppose every player plays the regret matching strategy according to
(13). The empirical distribution p(t) then converges to a coarse correlated equilibrium.

4.3 Coarse Correlated Equilibria

Another solution concept is the one of a coarse correlated equilibrium. Given a proba-
bility distribution p, let the marginal probability p−i(s−i) that s−i ∈ S−i will be realized
be defined as

p−i(s−i) = ∑
si∈Si

p(si,s−i).

Definition 4.4. A coarse correlated equilibrium (CCE) of a strategic game Γ =
(N,(Si)i∈N ,(ui)i∈N) is a probability distribution p : S→ [0,1] over S = S1× ·· · × Sn

such that for every player i ∈ N and every s′i ∈ Si of i

∑
s∈S

ui(s−i,si)p(s−i,si)≥ ∑
s−i∈S−i

ui(s−i,s′i)p−i(s−i).

Coarse correlated equilibria generalize correlated equilibria. The hierarchy of equi-
librium concepts that have been introduced is depicted in Figure 7.

4.4 Robust Price of Anarchy

Suppose Γ is a strategic game with robust price of anarchy RPOA. It is not hard to
verify that the proof of Theorem 4.1 continues to hold for the more general solution
concepts mentioned above.

Theorem 4.4. Let Γ be a strategic game. If Γ is (λ ,µ)-smooth with µ < 1, then the
coarse correlated price of anarchy of Γ is at most λ

1−µ
.

Proof. Let p be a coarse equilibrium for a (λ ,µ)-smooth game, let s be a random vari-
able with distribution p, and let s∗ ∈ S be an arbitrary strategy profile. The coarse

29

CCECEMNEPNE

Figure 7: Hierarchy of equilibrium concepts.

equilibrium condition implies that for every player i ∈ N:

Es←p[Ci(s)]≤ Es−i←p−i [Ci(s∗i ,s−i)] = Es←p[Ci(s∗i ,s−i)].

By linearity of expectation it then also holds that

Es←p

[
∑
i∈N

Ci(s)

]
≤ ∑

i∈N
Es←p[Ci(s∗i ,s−i)] = Es←p

[
∑
i∈N

Ci(s∗i ,s−i)

]
.

Now we use the smoothness property (12) and obtain

Es←p[C(s)]≤ Es←p[λC(s∗)+ µC(s)] = λC(s∗)+ µEs←p[C(s)].

Since µ < 1, the coarse price of anarchy is at most λ

1−µ
.

The smoothness condition also proves useful in the context of no-regret sequences.
Consider a sequence s1, . . . ,sT of outcomes of a (λ ,µ)-smooth game Γ. Let s∗ be an
optimal outcome that minimizes the social cost function C. Define δi(st) = Ci(st)−
Ci(st

−i,s
∗
i) for every i ∈ N and t ∈ {1, . . . ,T}. Let ∆(st) = ∑

n
i=1 δi(st). Exploiting the

(λ ,µ)-property, we obtain

∆(st) =
n

∑
i=1

Ci(st)−Ci(st
−i,s

∗
i)≥C(st)−λC(s∗)−µC(st) = (1−µ)C(st)−λC(s∗).

Thus,

C(st)≤ λ

1−µ
C(s∗)+

∆(st)
1−µ

. (14)

Suppose that s1, . . . ,sT is a sequence of outcomes in which every player experiences

30

vanishing average external regret, i.e., for every player i ∈ N

∑
t

Ci(st)≤
[

min
s′i∈Si

∑
t

Ci(s′i,s
t
−i)
]
+o(T).

We obtain that for every player i ∈ N:

1
T

T

∑
t=1

δi(t)≤
1
T

(
∑

t
Ci(st)−min

s′i∈Si
∑

t
Ci(s′i,s

t
−i)
)

= o(1).

By summing over all players, we obtain that the average cost of the sequence of T
outcomes is

1
T

T

∑
t=1

C(st)≤ λ

1−µ
C(s∗)+

1
1−µ

n

∑
i=1

(
1
T

T

∑
t=1

δi(t)

)
T→∞−→ λ

1−µ
C(s∗).

4.5 Example: Congestion Games

Theorem 4.5. Let Γ = (N,(Xi)i∈N ,(ci)i∈N) be a congestion game with linear cost
functions ce(x) = x. Γ is (5

3 , 1
3)-smooth.

Proof. Let x and x∗ be two arbitrary strategy profiles of Γ. We have

∑
i∈N

ci(x−i,x∗i) = ∑
i∈N

∑
e∈x∗i

ce(ne(x−i,x∗i)) = ∑
i∈N

∑
e∈x∗i

ne(x−i,x∗i)

≤ ∑
i∈N

∑
e∈x∗i

ne(x)+1 = ∑
e∈E

ne(x∗)(ne(x)+1).

Using Fact 3.1, we therefore obtain

∑
e∈E

ne(x∗)(ne(x)+1)≤ 5
3 ∑

e∈E
(ne(x∗))2 +

1
3 ∑

e∈E
(ne(x))2 =

5
3

C(x∗)+
1
3

C(x),

where the last equality follows from ce(k) = k for every e ∈ E and the definition of
C.

31

5 Combinatorial Auctions

In this section, we present a few examples from the area of mechanism design. The fun-
damental questions that one attempts to address in mechanism design is the following:
Assuming that players act strategically, how should we design the rules of the game such
that the players’ strategic behavior leads to a certain desirable outcome of the game? As
a motivating example, we first consider one of the simplest auctions, known as Vickrey
Auction. We then turn to more general combinatorial auctions.

5.1 Vickrey Auction

Suppose there is an auctioneer who wishes to auction off a single item. An instance of
the single-item auction consists of

• a set of players N = [n] that are interested in obtaining the item;

• every player i ∈ N has a private valuation vi which specifies how much the item
is worth to player i; vi is only known to player i.

• every player i has a bid bi which represents the maximum amount player i declares
to be willing to pay for the item.

The auctioneer receives the bids and needs to determine who receives the item and
at what price. A mechanism can be thought of as a protocol (or algorithm) that the
auctioneer runs in order to make this decision. That is, based on the submitted bids
(bi)i∈N , the mechanism determines

1. a player i∗ in N, called the winner, who receives the item, and

2. a price p that this player has to pay for the item.

We define xi = 1 if player i ∈ N wins the auction and xi = 0 otherwise. We model a
player’s preferences over different outcomes of the game by means of a utility function.
Lets assume that the utility function of player i represents the net gain, defined as ui =
xi(vi− p). Note that the utility is zero if the player does not receive the item. Otherwise,
it is his private valuation minus the price he has to pay. Such utility functions are also
called quasi-linear.

So what is a good mechanism? There are several natural properties that we may
want to achieve:

(P1) Strategyproofness: Every player maximizes his utility by bidding truthfully, i.e.,
bi = vi.

(P2) Efficiency: Assuming that every player bids truthfully, the mechanism computes
an outcome that maximizes the social welfare, i.e., among all possible outcomes x
it chooses one that maximizes the total valuation ∑i∈N xivi; here, this is equivalent
to require that the mechanism chooses the player with maximum valuation as the
winner.

(P3) Polynomial-time computability: The outcome should be computable in polynomial

32

Algorithmus 2 Vickrey Auction
1: Collect the bids (bi)i∈N of all players.
2: Choose a player i∗ ∈ N with highest bid (break ties arbitrarily).
3: Charge i∗ the second highest bid p := maxi 6=i∗ bi.

time.

As it turns out, there is a remarkable mechanism due to Vickrey that satisfies all
these properties; this mechanism is also known as Vickrey auction or second-price auc-
tion (see Algorithm 2).

Lemma 5.1. In a Vickrey Auction, every player i maximizes his utility by bidding
truthfully bi = vi. More precisely, for every player i ∈ N and every bidding profile b−i

of the other players, we have

ui(b−i,vi)≥ ui(b−i,bi) ∀bi.

Moreover, this holds true even if player i knows the bids of all the other players.

Proof. Consider player i and fix a bidding profile b−i of the other players. Let B =
max j 6=i b j be the highest bid if player i does not participate in the game.

Assume vi ≤ B. Then player i has zero utility if he bids truthfully: Note that player
i loses if vi < B and may win if vi = B (depending on the tie breaking rule); however, in
both cases his utility is zero. His utility remains zero for every bid bi < B or if bi = B
and i loses (due to the tie breaking rule). Otherwise, bi = B and i wins or bi > B. In both
cases i wins and pays B. However, his utility is then ui = vi−B≤ 0, which is less than
or equal to the utility he obtains if he bids truthfully.

Next assume that vi > B. If player i bids truthfully, he wins and receives a positive
utility ui = vi−B > 0. He is worse off by obtaining a utility of zero if he bids bi < B or
if he bids bi = B and loses (due to the tie breaking rule). Otherwise bi = B and i wins or
bi > B. In both cases, i wins and receives a utility of ui = vi−B > 0, which is the same
as if he had bid bi = vi.

Moreover, we can prove that if a player does not bid truthfully, he may actually run
the risk to be strictly worse off.

Lemma 5.2. For every bid bi 6= vi of player i there is a bidding profile b−i of the other
players such that ui(b−i,bi) < ui(b−i,vi).

Proof. See Assignment 2.

It is easy to see that the Vickrey Auction satisfies (P2) and (P3) as well. More
specifically, it satisfies (P2) since it selects the winner i∗ to be a player whose valuation
is maximum, assuming that every bidder bids truthfully. Moreover, its computation time
is linear in the number of players n. We can thus summarize:

33

Theorem 5.1. The Vickrey Auction is strategyproof, efficient and runs in polynomial
time.

5.2 Combinatorial Auctions and the VCG Mechanism

We now turn to a more general model of auctions. Suppose there is a set M of m ≥ 1
items to be auctioned off to n players. A player may now be interested in a bundle S⊆M
of items. Every player i ∈ N has a private valuation function vi : 2M→ R+, where vi(S)
specifies player i’s value for receiving the items in S⊆M. We say vi(S) is the valuation
of player i for bundle S. We assume that vi(/0) = 0. (Although this and the assumption
that vi(·) is non-negative is not essential here).

If every player has a separate value for each item and the value of a subset S ⊆M
is equal to the sum of all values of the items in S, then we can simply run a separate
Vickrey Auction for every item. However, this assumption ignores the possibility that
differnt bundles may have different values. More precisely, for a player i, items in S⊆M
might be

• substitutes: the player’s valuation to obtain the entire bundle S might be less than
or equal to the individual valuations of the items in S, i.e., vi(S) ≤ ∑k∈S vi({k});
for example, if the items in S are (partially) redundant.

• complements: the player’s valuation to obtain the entire bundle S might be greater
or equal to the individual valuations of the items in S, i.e., vi(S) ≥ ∑k∈S vi({k});
for example, if the items in S are (partially) dependent.

Here, we consider the most general setting, where we do not make any assumption on
the valuation functions vi of the players.

Let O denote the set of all possible allocations of the items in M to the players.
An allocation a ∈ O is a function a : M→ N ∪{⊥} that maps every item to one of the
players in N or to ⊥, which means that the item remains unassigned. Let a−1(i) be the
subset of items that player i ∈ N receives. Every player declares a bid bi(S) for every
bundle S ⊆M. (Lets not care about polynomial-time computability for a moment.) For
the sake of conciseness, we slightly abuse notation: Given an allocation a∈O, we write
vi(a) and bi(a) to refer to vi(a−1(i)) and bi(a−1(i)), respectively. The auctioneer needs
to decide how to distribute the items among the players in N and at what price. That
is, he determines an allocation a ∈ O and a pricing vector p = (pi)i∈N , where player i
obtains the bundle a−1(i) at a price of pi. As before, we consider quasi-linear utility
functions: The utility of player i, given the outcome (a, p), is ui = vi(a)− pi.

A mechanism is strategyproof in this setting if a dominant strategy for every player
is to bid bi(S) = vi(S) for every S⊆M. Moreover, a mechanism is efficient, if it outputs
an allocation a∗ that maximizes the total social welfare, i.e., a∗ = argmaxa∈O ∑i∈N vi(a),
assuming that every player truthfully reports his valuation.

A powerful mechanism for this quite general class of combinatorial auctions is
known as VCG mechanism due to Vickrey, Clarke and Groves (see Algorithm 3). In
particular, as we will see, the VCG mechanism is strategyproof and efficient.

34

Algorithmus 3 VCG mechanism
1: Collect the bids (bi(S)) for every player i ∈ N and every set S⊆M.
2: Choose an allocation a∗ ∈ O such that

a∗ = argmax
a∈O

∑
i∈N

bi(a).

3: Compute the price pi of player i as

pi := bi(a∗)−
(

max
a∈O

∑
j∈N

b j(a)−max
a∈O

∑
j∈N, j 6=i

b j(a)︸ ︷︷ ︸
i’s contribution to the total social welfare

)
.

4: return a∗

Theorem 5.2. The VCG mechanism is strategyproof and efficient.

Proof. Clearly, if every player bids truthfully the allocation a∗ output by the VCG mech-
anism maximizes total social welfare. Thus, the VCG mechanism is efficient.

We next prove that the VCG mechanism is strategyproof. Consider an arbitrary
player i ∈ N. Let b = (b−i,bi) be the bid vector of some arbitrary bids and let
b̄ = (b−i,vi) be the same bid vector, except that player i reports his private valuations
truthfully. Moreover, let (a∗, p) and (ā∗, p̄i) be the outcome computed by the VCG
mechanism for input b and b̄, respectively. Observe that we have

b̄i(a) = vi(a) ∀a ∈ O and b̄ j(a) = b j(a) ∀ j 6= i, ∀a ∈ O. (15)

Moreover, ā∗ has been chosen such that

∑
j∈N

b̄ j(ā∗)≥ ∑
j∈N

b̄ j(a) ∀a ∈ O. (16)

Using these two observations, we can infer:

vi(ā∗)− p̄i = vi(ā∗)−
[

b̄i(ā∗)−
(

max
a∈O

∑
j∈N

b̄ j(a)−max
a∈O

∑
j∈N, j 6=i

b̄ j(a)
)]

(15)= max
a∈O

∑
j∈N

b̄ j(a)−max
a∈O

∑
j∈N, j 6=i

b j(a)

= ∑
j∈N

b̄ j(ā∗)−max
a∈O

∑
j∈N, j 6=i

b j(a)

(16)
≥ ∑

j∈N
b̄ j(a∗)−max

a∈O
∑

j∈N, j 6=i
b j(a)

(15)= ∑
j∈N, j 6=i

b j(a∗)+ vi(a∗)−max
a∈O

∑
j∈N, j 6=i

b j(a)

35

= vi(a∗)−
[

bi(a∗)−
(

max
a∈O

∑
j∈N

b j(a)−max
a∈O

∑
j∈N, j 6=i

b j(a)
)]

= vi(a∗)− pi.

Thus, bi = vi is a dominant strategy for player i.

Although the VCG mechanism satisfies strategyproofness and efficiency, it is highly
computationally intractable. In particular, there are two sources of inefficiency:

1. Collecting the bids of a single player already takes exponential time (in the num-
ber m of objects).

2. Computing the optimal allocation a∗ ∈O may be a computationally hard problem.
This problem is typically also called the allocation problem.

5.3 Single-Minded Bidders

In this section, we consider the special case of a combinatorial auction, where all bidders
are said to be single-minded. More precisely, we say that player i is single-minded if
there is some (private) set Σi⊆M and a (private) value θi≥ 0 such that for every T ⊆M,

vi(T) =

{
θi if T ⊇ Σi

0 otherwise.

Intuitively, player i is only interested in getting the items in Σi (or some more) and its
valuation for these items is θi.

Note that in the single-minded case, the first source of inefficiency mentioned above
vanishes since now every player simply reports a pair (Si,bi) (not necessarily equal to
(Σi,θi)) to the auctioneer. Nevertheless, the second source of inefficiency remains, as
will be proven below.

The allocation problem for the single-minded case is as follows: Given the bids
{(Si,bi)i∈N}, determine a subset W ⊆ N of winners such that Si ∩ S j = /0 for every
i, j ∈W , i 6= j, with maximum social welfare ∑i∈W bi.

Theorem 5.3. The allocation problem for single-minded bidders is NP-hard.

Proof. We give a polynomial-time reduction from the NP-complete problem inde-
pendent set. The independent set problem is as follows: Given an undirected graph
G = (V,E) and a non-negative integer k, determine whether there exists an independent
set of size k.3

Given an instance (G,k) of the independent set problem, we can construct a single-
minded combinatorial auction as follows: The set of items M corresponds to the edge
set E of G. We associate a player i ∈ N with every vertex ui ∈V of G. The bundle that

3Recall that an independent set I ⊆V of G is a subset of the vertices such that no two vertices in I are
connected by an edge.

36

player i desires corresponds to the set of all adjacent edges, i.e., Si := {e = {ui,u j} ∈E},
and the value that i assigns to its bundle Si is bi = 1.

Now observe that a set W ⊆ N of winners satisfies Si∩ S j = /0 for every i 6= j ∈W
iff the set of vertices corresponding to W constitute an independent set in G. Moreover,
the social welfare obtained for W is exactly the size of the independet set.

Given the above hardness result and insisting on polynomial-time computability, we
are thus forced to consider approximation algorithms. The idea is to relax the efficiency
condition and to ask for an outcome that is (only) approximately efficient. We call a
mechanism α-efficient for some α ≥ 1 if it computes an allocation a ∈ O (assuming
truthful bidding (Si,bi) = (Σi,θi) for all i ∈ N) such that

∑
i∈N

vi(a)≥ 1
α

max
a∈O

∑
i∈N

vi(a).

The proof of Theorem 5.3 even shows that the reduction is approximation preserv-
ing. That is, it specifies a bijection that preserves the objective function values of the
corresponding solutions (of the allocation problem and the independent set problem). It
is known that the independent set problem is hard even from an approximation point of
view:

Fact 5.1. For every fixed ε > 0, there is no O(n1−ε)-approximation algorithm for the
independent set problem, where n denotes the number of vertices in the graph (unless
NP ⊆ ZPP).

Since the number of edges in a (simple) directed graph is at most O(n2), we obtain
the following corollary:

Corollary 5.1. For every fixed ε > 0, there is no O(m1/2−ε)-efficient mechanism for
single-minded bidders, where m denotes the number of items (unless NP ⊆ ZPP).

5.4 Generalized Second-Price Auction

The main revenue of search engines like Google or Yahoo! comes from sponsored
search auctions, also called ad-auctions. When a user enters a query into a search en-
gine, these auctions allocate a limited number of advertisement slots to advertisers that
have bid for keywords contained in the query. Advertisers are then charged per click if
the user follows the link displayed in the advertisement. There are different advertise-
ment slots and, typically, advertisers prefer slots that are at the top of the page (because
users more likely click on it) rather than the ones at the bottom of the page.

An instance of the ad-auction problem is given as follows:

• A set N = [n] of players (advertisers) is interested in advertising using one of m
many available slots.

• Every player i ∈ N has a valuation vi ≥ 0 which represents his (private) value per
click.

37

Algorithmus 4 GSP mechanism
1: Collect the bids bi of all players i ∈ N.
2: Order players according to non-decreasing bids (ties are broken arbitrarily). Let

π(k) be the player with the k-th highest bid, i.e.,

bπ(1) ≥ bπ(2) ≥ . . .bπ(n)

3: Player π(k) is allocated to slot k and receives αk clicks. For each such click, player
π(k) pays the next highest bid, i.e., bπ(k+1).

• Every player i ∈ N submits a bid bi ≥ 0 which expresses the maximum amount
he is willing to pay per click.

• Every slot k ∈ [m] has a click-through rate αk which represents the number of
clicks that the player being assigned to slot k can expect.

We make a few assumptions without loss of generality.

1. We assume that n = m. If there are less than n slots, we add artificial slots with
click-through rate zero. Similarly, if there are less than m players, we add artificial
players that have valuation 0.

2. We assume without loss of generality that the players are numbered such that
v1 ≥ v2 ≥ ·· · ≥ vn.

3. We assume without loss of generality that α1 ≥ α2 ≥ ·· · ≥ αn.

One of the most successful auction mechanisms for ad-auctions is the so-called
generalized second-price auction (GSP). GSP proceeds as described in Algorithm 4.

Define the utility of a player i when being allocated to slot k as

ui(b) = αk(vi−bπ(k+1)).

Let the social welfare of assignment π be defined as

n

∑
k=1

αkvπ(k).

Note that by the ordering of the players and the click-through rates, the social optimum
of the game is ∑

n
i=1 αivi.

The strategy profile b = (b1, . . . ,bn) is a pure Nash equilibrium if for every player
i ∈ N:

ui(bi,b−i)≥ ui(b′i,b−i) ∀b′i ≥ 0.

38

5.4.1 Examples

As we will see in the examples below, GSP has a number of pathologies that VCG was
designed to avoid:

1. Truth-telling is not necessarily an equilibrium.

2. Equilibria are not unique.

3. Equilibria do not necessarily correspond to socially optimal outcomes.

Example 5.1 (Truth-telling might not be an equilibrium). Consider the case of three
players with valuations per click v1 = 7, v2 = 6 and v3 = 1. Let the click-through rates
of the three slots be α1 = 10, α2 = 4 and α3 = 0. Suppose every player bids his true
valuations. The slots 1, 2, 3 are then assigned players 1, 2 and 3, respectively. The utility
of player 1 is α1(v1−bπ(2)) = 10(7−6) = 10. Suppose player 1 shades his bid and bids
5 instead of 7. Then the slots 1, 2, 3 are assigned to players 2, 1 and 3, respectively. As
a consequence, player 1 experiences a utility of α2(v1−bπ(3)) = 4(7−1) = 24 > 10.

Example 5.2 (Socially optimal equilibrium). Consider the same example as above
but assume that players bid b1 = 5, b2 = 4 and b3 = 2. The slots 1, 2, 3 are assigned to
players 1, 2 and 3, respectively. Player 3’s utility is zero and it remains zero unless he
bids more than b2 = 4. But then his utility becomes negative because v3 = 1 < 4 = b2.
Consider player 1. His utility is α1(v1− b2) = 10(7− 4) = 30. If he lowers his bid
below b2, his utility changes to α2(v1−b3) = 4(7−2) = 20. If he lowers it below b1,
his utility changes to 0. Similarly, player 2’s utility is α2(v2−b3) = 4(6−2) = 16. If he
raises his bid above b1, his utility changes to α1(v2−b1) = 10(6−5) = 10. If he lowers
his bid below b3 his utility becomes 0. Note that this equilibrium also corresponds to a
social optimum of social welfare 70+24 = 94.

Example 5.3 (Inefficient equilibrium). Consider the same example as above but as-
sume that players bid b1 = 3, b2 = 5 and b3 = 1. The slots 1, 2, 3 are assigned to players
2, 1 and 3, respectively. Player 3’s utility is zero and it remains zero unless he bids more
than b1 = 4. But then his utility becomes negative because v3 = 1 < 4 = b1. Consider
player 2. His utility is α1(v2− b1) = 10(6− 3) = 30. If he lowers his bid below b1,
his utility changes to α2(v2− b3) = 4(6− 1) = 20. If he lowers it below b3, his utility
changes to 0. Similarly, player 1’s utility is α2(v1− b3) = 4(7− 1) = 24. If he raises
his bid above b2, his utility changes to α1(v1− b2) = 10(7− 5) = 20. If he lowers his
bid below b3 his utility becomes 0. Note that this equilibrium does not correspond to a
social optimum: The social welfare of this equilibrium is 60+28 = 88 < 94.

5.4.2 Existence of Equilibria

The general existence proof of equilibria for GSP is based on the concept of matching
markets: A matching market (B,S,(vik)) is given as follows:

• A set B of n buyers and a set S of n sellers, each selling a house (say).

39

αk

0

4

10

slots

3

2

1

players

3

2

1

vi

1

6

7

(a)

pk

0

4

40

sellers

3

2

1

buyers

3

2

1

vik

10,4,0

60,24,0

70,28,0

(b)

Figure 8: Ad-auction instance (a) and its corresponding matching market with market-
clearing prices (b).

• Every buyer i ∈ B has an integer valuation vik ≥ 0 for the house sold by k ∈ S.

Let pk be the price that seller k ∈ S announces for his house. If buyer i buys the house
from seller k his payoff is max{vik− pk,0}. (We assume that a buyer is not interested in
receiving the house if his payoff is negative.) The set of sellers that maximize buyer i’s
payoff are called the preferred sellers of i and are denoted by P(i).

Definition 5.1. Suppose we are given a matching market (B,S,(vik)) together with
some prices (pk)k∈S. We define the preferred seller graph G as follows: G = (B∪S,E)
is a bipartite graph with the set of buyers on one side and the set of sellers on the other
side of the bipartition. The set of edges E contains an edge {i,k} for every buyer i ∈ B
and every preferred seller k ∈ P(i) of i.

Informally, a set of prices are market-clearing if every buyer is assigned to a seller
that is also one of his preferred sellers. That is, no buyer has an incentive to disagree
with the assignment.

Definition 5.2. Given a matching market (B,S,(vik)), we say that the prices (pk)k∈S

are market-clearing if the preferred-seller graph has a perfect matching.

We will use the following theorem without proof.

Theorem 5.1. Given a matching market (B,S,(vik)) there always exists a set of prices
(pk)k∈S that are market-clearing. Moreover, a matching in the preferred-seller graph
has maximum total valuation among all possible assignments of buyers to sellers.

We will exploit this result in order to define extract bids that constitute an equilib-
rium with respect to GSP. Moreover, this equilibrium will be a social optimum.

40

Theorem 5.2. Pure Nash equilibria exist for GSP. Moreover, there always exists a
pure Nash equilibrium that is a social optimum.

Proof. Given an instance of the ad-auction, we can formulate a matching market as fol-
lows: The buyers correspond to the players and the sellers correspond to the slots. Each
buyer has a valuation vik = viαk for the slot (house) of seller k ∈ S. Let (pk)k∈S be some
market-clearing prices for the resulting matching market. Note that by Theorem 5.1
such prices exist. Note also that the resulting assignment maximizes the social welfare.
Our understanding is that the price pk represents the cumulative price for all clicks of
slot k. We can easily extract the price per click p∗k from this by defining p∗k = pk/αk for
every k ∈ [n].

We first argue that p∗1 ≥ p∗2 ≥ ·· · ≥ p∗n. Consider two slots j and k with j < k.
Because prices are market clearing, player k prefers slot k over j. The payoff of player
k is equal to αk(vk − p∗k). In slot j his payoff would be α j(vk − p∗j). Now α j ≥ αk

and the fact that player k prefers slot k over j thus implies that vk− p∗j < vk− p∗k , or,
equivalently, p∗j ≥ p∗k .

Now construct the bids as follows: Player i with i > 1 bids bi = p∗i−1 and player 1
bids any value larger than p∗1. Note that with these bids GSP assigns slots 1,2, . . . ,n to
players 1,2, . . . ,n and charges prices p∗1, p∗2, . . . , p∗n as desired.

We argue that these bids constitute a pure Nash equilibium. Consider a player i. If
player i lowers his bid just below the current bid of player k > i, he gets slot k instead.
But because the prices are market-clearing i prefers its current slot at its current price
over k’s slot at k’s current price. Suppose player i raises his bid, say just above the
current bid of player k < i. He would then have to pay the bid of player k for slot k,
which is larger than what he would currently pay for slot k. Because prices are market-
clearing, player i does not prefer to be assigned to slot k under the current pricing.
Therefore, he is clearly not interested in being assigned to slot k for an even higher
price. We conclude that this set of bids (bi)i∈N constitutes a pure Nash equilibrium with
respect to GSP.

5.4.3 Price of Anarchy

It is not hard to see that the price of anarchy of GSP can be unbounded in general.

Example 5.4. Consider n = 2 players with valuations v1 = 1 and v2 = 0 and two slots
with click-through rates α1 = 1 and α2 = 0, respectively. It is easy to verify that b1 = 0
and b2 = 1 is a pure Nash equilibrium where players 1 and 2 are assigned to slots 2 and
1, respectively. The social welfare of this equilibrium is 0 while the social optimum is
1. Thus the price of anarchy is unbounded.

Note, however, that the bidding above is not very natural because player 2 is exposed
to obtain a negative utility. To see this imagine that another player would enter the game
and bid anything in the interval (0,1). Then this would result in a negative utility for
player 2 under GSP. More generally, for every player i ∈ N bidding bi > vi is dominated

41

by bidding vi if GSP is used. This leads to the natural assumption that players are
conservative, i.e., they do not overbid their actual valuations.

The following recent result shows that the price of anarchy for pure Nash equilibria
of GSP is bounded by 1+

√
5

2 if one assumes that players are conservative.

Theorem 5.3. For conservative bidders, the price of anarchy for pure Nash equilibria
of GSP is at most the golden ratio 1+

√
5

2 ≈ 1.618.

42

	Potential Games
	Motivating Example: Connection Game
	Potential Games and the Finite Improvement Property
	Existence of Pure Nash Equilibria
	Price of Anarchy and Price of Stability

	Selfish Routing
	Motivating Example: Pigou Example
	Model
	Nash Flows and their Existence
	Optimal Flows
	Price of Anarchy
	Upper Bounds on the Price of Anarchy
	Lower Bounds on the Price of Anarchy
	Motivating Example: Braess's Paradox
	Detecting Braess's Paradox
	Mini-introduction: Computational Complexity
	Detecting Braess's Paradox — Continued

	Congestion Games
	Model
	Example: Atomic Network Congestion Game
	Congestion Games are Exact Potential Games
	Price of Anarchy

	Smoothness of Games
	Correlated Equilibria
	Learning and Regret Matching Strategies
	Example: Play Against Nature
	Regret Matching in Strategic Games

	Coarse Correlated Equilibria
	Robust Price of Anarchy
	Example: Congestion Games

	Combinatorial Auctions
	Vickrey Auction
	Combinatorial Auctions and the VCG Mechanism
	Single-Minded Bidders
	Generalized Second-Price Auction
	Examples
	Existence of Equilibria
	Price of Anarchy

