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1. INTRODUCTION
Many large-scale decentralized systems, such as infrastructure investments or traf-
fic on roads or computer networks, bring together large numbers of individuals with
different and oftentimes competing objectives. When these individuals choose actions
to benefit themselves, the result is frequently suboptimal for society as a whole. This
basic insight has led to a study of such systems from the viewpoint of game theory,
focusing on the inefficiency of stable outcomes. Traditionally, “stable outcomes” have
been associated with pure Nash equilibria of the corresponding game. The notions of
price of anarchy [Koutsoupias and Papadimitriou 1999] and price of stability [Anshele-
vich et al. 2004] provide natural measures of the system degradation, by capturing
the degradation of the worst and best Nash equilibria, respectively, compared to the
socially optimal outcome. However, the predictive power of such bounds has been ques-
tioned on (at least) two grounds:

(1) The assumption that players seek only to maximize their own utility is at odds with
altruistic behavior routinely observed in the real world, and predicted by widely ac-
cepted evolutionary models. While modeling human incentives and behavior accu-
rately is a formidable task, several papers have proposed natural simplified models
of altruism [Ledyard 1997; Levine 1998].

(2) The adoption of Nash equilibria as a prescriptive solution concept implicitly as-
sumes that players are able to reach such equilibria. In particular in light of sev-
eral known hardness results for finding Nash equilibria, this assumption is very
suspect for computationally bounded players. In response, recent work has begun
analyzing the outcomes of natural response dynamics [Blum et al. 2006; Blum et al.
2008; Roughgarden 2009], as well as other permissive solution concepts such as
correlated or coarse correlated equilibria [Aumann 1974; Hannan 1957; Roughgar-
den and Schoppmann 2011]. This general direction of inquiry has become known
as “robust price of anarchy.”

The goal of this paper is to begin a thorough investigation of the effects of relax-
ing both of these assumptions. That is, we consider the (relaxed) equilibria reached
by individuals whose utility functions contain a component of social welfare. We aim
to quantify the worst-case (and in some cases, best-case) inefficiency of such equilib-
ria. More concretely, we study the following classes of games (all of which are defined
formally in Section 2):

Congestion games:. In congestion games [Roughgarden 2005; Roughgarden and
Tardos 2000], there is a set of facilities, each equipped with a non-decreasing cost
(or delay) function. These facilities could be roads in a road network, links in a
computer network, or computational resources in a system. All of these resources
become slower as the load on them increases. Individuals have strategy spaces
consisting of subsets of resources, such as paths in a network, or sets of machines
which can together finish a computational task. Among the different feasible sets,
they will choose one to optimize their individual objective function. As a result,
selfish choices can lead to overcongestion of resources that would be much faster if
used in moderation.
Congestion games naturally fall into two classes: atomic and non-atomic. In atomic
congestion games, individuals have non-negligible size: even one individual will
affect the cost of a facility perceptibly by using vs. not using it. In non-atomic
congestion games, individuals are infinitesimally small, and there is a continuum
of them. Thus, any one individual will not affect the perceived cost of a facility, and
it is only the accumulation of a set of positive measure that will affect the facility’s
cost.
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Fair cost-sharing games:. Fair cost-sharing games [Anshelevich et al. 2004] also
have a set of facilities, but instead of increasing the cost, the selection of a facility
by many individuals will actually decrease it for each of the individuals using it.
The reason is that here, selecting a facility means contributing towards its pur-
chase: the (fixed) cost of each facility is split among all individuals contributing
to it. Thus, cost-sharing games naturally model private investment in infrastruc-
ture where overall lower cost could possibly be obtained by maximizing overlap of
purchased facilities. While fair cost-sharing games are thus also congestion games,
their objective function behaves very differently, so that we treat them separately
here.
Valid utility games:. Valid utility games [Vetta 2002] also have individuals select-
ing sets of facilities, but instead of minimizing costs, individuals seek to maximize
the utility they individually derive from the set of facilities selected by all players
together. The social welfare also depends on the entire set of facilities selected by
all individuals together. Thus, valid utility games naturally model investments in
infrastructure where society loses some welfare by possible duplication between
individuals’ choices.

We are interested in the outcomes of these games reached by partially altruistic
players. In Section 3, we formally define the altruistic extension for finite (atomic)
games and for non-atomic congestion games. Our general definition is applicable to
other classes of games, and is our main modeling contribution. The model is based
on a suggestion of Ledyard [Ledyard 1997, p. 154]. In the version for atomic games,
each player i has an associated altruism parameter αi, and player i’s cost (or payoff)
is a convex combination of (1 − αi) times his direct cost (or payoff) and αi times the
social cost (or social welfare). By tuning the parameters αi, this model allows smooth
interpolation between pure selfishness (αi = 0) and pure altruism (αi = 1). For non-
atomic games, we argue (also in Section 3) that the natural analogue is to consider the
derivative of the social cost or social welfare.

As discussed above, the second modeling contribution of our work is to consider more
permissive solution concepts than pure Nash equilibria, allowing us to study the joint
effects of relaxing both standard assumptions. Most of our results are valid for coarse
correlated equilibria and limits of best-response dynamics (defined in Section 2), using
an extension of the smoothness technique of Roughgarden [Roughgarden 2009], which
constitutes the second modeling contribution of the present work. (Some results in
our work only hold for pure Nash equilibria, and delineate quantitative differences
between the different solution concepts.)

1.1. Our Contributions and Results
As discussed above, our first main contribution is in terms of modeling: we propose a
clean model of altruism that applies to most games, and extend Roughgarden’s model
of smoothness to it (Section 3). We provide several general results that will be useful to
analyze the robust price of anarchy for games with altruism in our and other scenarios
(Section 3.3). We then investigate congestion games with altruism in depth, and also
show how to apply the general methodology to other games.

(1) For atomic congestion games with linear cost functions, Caragiannis et al. [Cara-
giannis et al. 2010] derived a tight bound of 5+4α

2+α on the pure price of anarchy when
all players have the same altruism level α.1 Our general framework makes it an

1The altruism model of [Caragiannis et al. 2010] differs from ours in a slight technicality discussed in
Section 3 (see Remark 3.2). Therefore, various bounds we cite here are stated differently in [Caragiannis
et al. 2010].

ACM Transactions on Economics and Computation, Vol. V, No. N, Article A, Publication date: January YYYY.



A:4 P.-A. Chen et al.

easy observation that their proof in fact bounds the robust price of anarchy. We
generalize their bound to the case when different players have different altruism
levels, obtaining a bound in terms of the maximum and minimum altruism levels.
(These results are presented in Section 4.)
For the special case of symmetric singleton congestion games with linear cost func-
tions (which corresponds to selfish scheduling on machines), we can analyze some
cases with non-uniform altruism. When an ᾱ fraction of the players are entirely
altruistic and the remaining players are entirely selfish, we obtain an improved
bound of 4−2ᾱ

3−ᾱ on the pure price of anarchy. (These bounds are proven in Section 5.)
(2) For non-atomic congestion games, we are able to bound the robust price of anarchy

for any given class of cost functions on resources in terms of an optimization prob-
lem for those functions. When cost functions can be arbitrary semi-convex func-
tions, we show that if all players are (at least) α-altruistic, then the robust price of
anarchy is always bounded by 1

α . For the special case of linear cost functions, our
general bound implies a robust price of anarchy of 4

3+2α−α2 . (These results are the
subject of Section 6.)
We also study the special case of symmetric singleton congestion games with ar-
bitrary altruism distributions. We give a theorem characterizing the pure price of
anarchy for any given class of cost functions and arbitrary altruism distributions.
When the cost functions are semi-convex, the theorem implies a bound of 1

ᾱ on the
pure price of anarchy, where ᾱ is the mean of the altruism distribution. (These
bounds are proven in Section 7.)

(3) For fair cost-sharing games, our framework lets us easily derive a bound of n
1−α̂ on

the robust price of anarchy, where α̂ is the maximum altruism level of a player. This
bound is tight for uniformly altruistic players. (This result is shown in Section 8.)

(4) For valid utility games, using our framework, we prove a tight bound of 2 on the ro-
bust price of anarchy. The bound remains at 2 regardless of the (possibly different)
altruism levels of the players. (The proof is given in Section 9.)

(5) We study the general properties of the robust price of anarchy for abitrary classes
of games. We prove that the robust price of anarchy behaves in a quasi-convex way.
As a consequence, the worst-case robust price of anarchy is achieved at a {0, 1}-
altruism vector. Moreover, the set of altruism parameters for which the best price
of anarchy is achieved is convex. (This is proved in Section 10.)

Notice that many of our bounds on the robust price of anarchy reveal a counter-
intuitive trend: For utility games, the price of anarchy is independent of the level
of altruism. For atomic linear congestion games and cost-sharing games, it actually
increases in the altruism level (and even goes to infinity in the case of cost-sharing
games). Intuitively, this phenomenon is explained by the fact that a change of strategy
by player i may affect many players. An altruistic player will care more about these
other players than a selfish player; hence, an altruistic player accepts more states of
the game as “stable.” This suggests that the best stable solution can also be chosen
from a larger set, and the price of stability should thus decrease. We provide some pre-
liminary results on the price of stability which support this intuition: for linear atomic
congestion games, we derive an upper bound on the price of stability which decreases
as 2

1+α ; similarly, for cost-sharing games, we establish an upper bound which decreases
as (1− α)Hn + α.

The increase in the price of anarchy is not a universal phenomenon: for non-atomic
congestion games with altruism, the price of anarchy improves with increasing altru-
ism. This raises the interesting question of which type of system behavior one should
more likely expect in reality. The answer to this question may depend on the structure
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of the game, the levels of altruism, and the equilbrium concept. We are not aware of
any systematic real-world study that has investigated this phenomenon; this is not too
surprising, given the incredibly high number of variables one would need to control for.
At a very high level it appears that apparently altruistic behavior, with positive out-
comes for social welfare, is frequently engaged in, e.g., in environmentally conscious
behavior of individuals.

1.2. Altruism: A Discussion
In this work, we adopt a fairly simple linear model of altruistic behavior in games.
To the best of our knowledge, the first published suggestion of a similar model is due
to Ledyard [Ledyard 1997]. Of course, a simple linear model should not be expected
to accurately capture the behavior of rational agents; instead, our modeling goal is to
derive qualitative insights regarding whether and what kind of impact altruism will
have on the outcome of games.

That said, the type of linear expression we use is supported by widely accepted mod-
els in evolutionary biology. Hamilton’s Rule [Hamilton 1963; 1964] (see also [West.
et al. 2011]) states the following: Let A,B be two agents, and r ∈ [0, 1] a measure of
how related they are, for example, in terms of genetic overlap. Consider some action,
which has a cost of cA for A and will provide a benefit of uB to B. Hamilton’s rule states
that we would expect for A to undertake the action if r · uB > cA. Indeed, as is well
known among evolutionary biologists, behavior that appears altruistic (and thus irra-
tional) is frequently explained as rational and selfish if the agents are taken to be the
genes rather than the phenotypes. When the relatedness between A and B is not read-
ily apparent to individual A in the above example, then the level of altruism we would
expect to see would correspond to the average relatedness in the population.2 Indeed,
as explained by West et al. [West. et al. 2011] in detail, many alternative behavioral
or economic models explaining altruism reduce to Hamilton’s rule once relatedness
uncertainty and population mixing are taken into account.

Besides models based on linear combinations of individual players’ costs (as well
as social welfare), several other approaches have been studied. Generally, altruism
or other “other-regarding” social behavior has received attention in the behavioral eco-
nomics literature (e.g., [Gintis et al. 2005]). Fehr and Schmidt [Fehr and Schmidt 2005]
summarize theoretical models of other-regarding preferences that attempt to explain
observed experimental evidence in different experiments. There are three main differ-
ent approaches:

. Models of “social preferences” assume that a player’s preference does not only
depend on his own material payoff, but may also be a function of the allocation
of resources to other players. Some simpler models such as the one proposed by
Ledyard [Ledyard 1997] as well as ours fall into this category.
. Models of “interdependent preferences” assume that players care about another
player’s “type.” For example, suppose that each player may be either of selfish type
or conditionally altruistic type. If an altruistic player is aware that he interacts
with another altruistic player, his preference becomes altruistic, and he is willing
to be generous; if he knows that he interacts with a selfish player, his preference is
to act selfishly. Some concrete examples of models in this approach include the one
proposed by Levine [Levine 1998].

2At a level of individuals, or even larger groups, irrational altruistic behavior can of course arise from
misestimating the relatedness r, or from following simple behavioral rules derived for certain relatedness
values.
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. Models of “intention based reciprocity” assume that players are concerned with
other players’ intentions. If a player perceives that the other player intends to
treat him kindly, he will try to reciprocate and be kind to the other player, too; if he
feels that the other player has hostile intentions, he will want to hurt that player.
Thus, a player’s interpretation of the other player’s behavior matters crucially in
this modeling approach. Alternative models such as the ones proposed by Rabin
[Rabin 1993] and by Geneakoplos et al. [Geanakoplos et al. 1989] belong to this
category and are designed more with the goal of modeling the psychological pro-
cesses underlying spite or altruism (and reciprocity): they involve players forming
beliefs about other players.

As a result, most models in the second or third approach are well-suited for experi-
mental work, but perhaps not as directly suited for the type of analysis in this paper.
They try to explain actual human behavior and the outcomes of economic experiments.
To the best of our knowledge, our focus in this paper on the effects of other-regarding
behavior on social welfare has not appeared in the behavioral economics literature.
A discussion of some of their advantages and disadvantages can also be found in the
survey by West et al. [West. et al. 2011]. Distinguishing altruism, reciprocity, inequal-
ity aversion and other types of other-regarding behavior from experimental evidence
can be challenging. For a discussion of experimental designs and results partly dis-
ambiguating motivations, see the classic paper by Charness and Rabin [Charness and
Rabin 2002].

The model of altruism used in our work can be naturally extended to include αi < 0,
modeling spiteful behavior. While the modeling extension is natural, many results in
this and other papers do not continue to hold directly for negative αi.

1.3. Taxes and Stackelberg Strategies
Our definition of partial altruism naturally relates to two strategies that have been
proposed in the literature for dealing with the selfishness of players: Pigou taxes and
Stackelberg strategies.

The idea of taxes or tolls from a mechanism design viewpoint is to discourage players
from choosing actions that will hurt social welfare. In a sense, this socializes the cost
of a strategy profile. The underlying assumption is that money (taxes, tolls) and cost in
the game (e.g., delay for congestion games) can be measured on the same scale, or that
one can be converted linearly to the other at a player-specific rate ρi. Then, players
will minimize a (weighted) sum of the two types of cost. If we think of charging each
player the full social cost (possibly minus a large constant term), then our altruistic
model captures the incentives of players by setting αi = ρi.

Consider the following toll scheme, due to Pigou [Pigou 1920]: For every facility e,
consider the load on e in a socially optimal solution, and set the toll on e to be the
marginal cost a player would inflict on other users of e by using e as well. It is well-
known [Pigou 1920] that these tolls induce an optimal solution, in the sense that the
Nash equilibrium will minimize the social cost. Our model of partial altruism, after
subtracting out constant terms not under a player’s control, can instead be interpreted
as charging players a traffic-dependent marginal cost. Our results can thus also be
interpreted as investigating the (robust) price of anarchy when different players have
different tradeoffs between taxes and delay, and tolls are based on marginal costs.
Similar models of tolls were considered, e.g., in [Dafermos 1972; Smith 1979]. Cole
et al. [Cole et al. 2003; 2006] study optimization problems arising from non-uniform
taxation in networks. (However, their goal is to minimize the total tolls, subject to
forcing the flow to be optimal.)
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Another interpretation of the model suggests itself when the altruism distribution
has support {0, 1}. In this case, a λ fraction of players (having αi = 1) is entirely al-
truistic, while a 1− λ fraction is entirely selfish. In the case of atomic games, we have
seen that altruism can lead to worse price of anarchy, but in the case of non-atomic
games, we can interpret the λ fraction of altruistic players as being under the control
of a benevolent authority aiming to minimize the social cost. When the benevolent au-
thority commits to a strategy first, and the selfish players adapt subsequently, this is
an instance of a Stackelberg game (see, e.g., [Roughgarden 2004]). Indeed, any equilib-
rium of the game with selfish and altruistic players gives rise to a Stackelberg strategy
for the benevolent authority, such that the resulting equilibrium among selfish play-
ers matches the equilibrium of the game with altruism.3 In particular, this means that
all the price of anarchy bounds we derive for non-atomic congestion games with al-
truism support {0, 1} imply the same bounds for Stackelberg games with a benevolent
authority.

1.4. Related Work
Much of our analysis is based on extensions of the notion of smoothness as proposed by
Roughgarden [Roughgarden 2009] (see Section 3.2). The basic idea is to bound the sum
of cost increases of individual players switching strategies by a combination of the costs
of two states. Because these types of bounds capture local improvement dynamics, they
bound the price of anarchy not only for Nash equilibria, but also more general solution
concepts, including coarse correlated equilibria. The smoothness notion was refined in
the local smoothness framework by Roughgarden and Schoppmann [Roughgarden and
Schoppmann 2011]. They require the types of bounds described above only for nearby
states, thus obtaining tighter bounds, albeit only for more restrictive solution concepts
and convex strategy sets. Using the local smoothness framework, they obtained op-
timal upper bounds for atomic splittable congestion games. Nadav and Roughgarden
[Nadav and Roughgarden 2010] showed that smoothness bounds apply all the way to
a solution concept called “average coarse correlated equilibrium,” but not beyond.

A comparison between the costs in worst-case outcomes among sets of solution con-
cepts was recently undertaken by Bradonjic et al. [Bradonjic et al. 2009] under the
name “price of mediation:” Specifically, for the case of symmetric singleton congestion
games with convex delay functions, they showed that the ratio between the most ex-
pensive correlated equilibrium and the most expensive Nash equilibrium can grow
exponentially in the number of players.

Hayrapetyan et al. [Hayrapetyan et al. 2006] studied the impact of “collusion” in
network congestion games, where players form coalitions to minimize their collective
cost. These coalitions are assumed to be formed exogenously, i.e., conceptually, each
coalition is replaced by a “super-player” that acts on behalf of its members. The authors
show that collusion in network congestion games can lead to Nash equilibria that are
inferior to the ones of the collusion-free game (in terms of social cost). They also derive
bounds on the price of anarchy caused by collusion. Note that the cooperation within
each coalition can be interpreted as a kind of “locally” altruistic behavior, i.e., each
player only cares about the cost of the members of his coalition. In a sense, the setting
considered in [Hayrapetyan et al. 2006] can therefore be regarded as being orthogonal
to the viewpoint that we adopt in this paper: in their setting, players are assumed to
be entirely altruistic but locally attached to their coalitions. In contrast, in our setting,
players may have different levels of altruism but locality does not play a role.

3We do not know if the converse is true, i.e., if every Stackelberg strategy gives rise to a Nash equilibrium
of the same social cost for the game with altruism support {0, 1}.
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Several recent studies investigate “irrational” player behavior in games; examples
include studies on malicious (or spiteful) behavior [Babaioff et al. 2009; Brandt et al.
2007; Karakostas and Viglas 2007] and unpredictable (or Byzantine) behavior [Blum
et al. 2008; Moscibroda et al. 2006; Roth 2008]. The work that is most related to our
work in this context is the one by Blum et al. [Blum et al. 2008]. The authors consider
repeated games in which every player is assumed to minimize his own regret. They de-
rive bounds on the inefficiency, called total price of anarchy, of the resulting outcomes
for certain classes of games, including congestion games and valid utility games. The
exhibited bounds exactly match the respective price of anarchy and even continue to
hold if only some of the players minimize their regret while the others are Byzantine.
The latter result is surprising in the context of valid utility games because it means
that the price of total anarchy remains at 2, even if additional players are added to the
game that behave arbitrarily.

Our findings allow us to draw an even more dramatic conclusion. Our bounds on
the robust price of anarchy also extend to the total price of anarchy of the respective
repeated games (see Section 3.3). As a consequence, our result for valid utility games
implies that the price of total anarchy would remain at 2, even if the “Byzantine”
players were to act altruistically. That is, while the result in [Blum et al. 2008] suggests
that arbitrary behavior does not harm the inefficiency of the final outcome, our result
shows that altruistic behavior does not help.

Brandt et al. [Brandt et al. 2007] focus on deriving symmetric Bayesian Nash equi-
libria of first-price and second-price sealed bid auctions with uniform spite in the linear
spite model. Their spite model is straightforward: There is a spite parameter β ∈ [0, 1],
and the perceived utility of a player is equal to (1 − β) times his direct utility, and
−β times the sum of the utilities of the other players. In general, the expected rev-
enue is shown to be increasing with growing uniform spite. They further show that the
expected revenue in second-price auctions is higher than the expected revenue in first-
price auctions when all agents are neither completely selfish nor completely spiteful.
This says that spite is breaking the well-known revenue equivalence theorem, which
states that a large class of auctions all yield the same revenue under certain condi-
tions. They also prove that in the presence of spite, complete information makes equi-
libria for the first-price and second-price auctions identical, and reduces the revenue in
second-price auctions (compared with the revenue in the Bayesian setting), while it in-
creases the revenue in first-price auctions (compared with the revenue in the Bayesian
setting).

For the generalization of congestion games to congestion games with “player-specific”
cost functions (which subsume models of non-uniform altruism), Milchtaich [Milch-
taich 1996] proved the existence of pure Nash equilibria for singleton congestion
games, and Ackermann et al. [Ackermann et al. 2006] for matroid congestion games, in
which the strategy space of each player is the basis of a matroid on the set of resources.

1.5. Subsequent Work
Since the original publication of the conference version of [Chen and Kempe 2008],
several other papers have studied identical or similar models of altruism applied to
different types of games. Caragiannis et al. [Caragiannis et al. 2010] studied a nearly
identical model of altruism in atomic congestion games. Several of our present results
and models generalize results of Caragiannis et al., and we discuss them in more detail
in the corresponding sections of this paper.

If players’ altruism levels in congestion games are not uniform (a special case of
player-specific congestion games), then even the existence of pure Nash equilibria is
not obvious. Hoefer and Skopalik established it for several subclasses of atomic con-
gestion games [Hoefer and Skopalik 2009a]. They also show the existence of pure Nash
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equilibria and convergence for selfish scheduling with altruistic players using a time-
sharing policy, while pure Nash equilibria may not exist under other standard coordi-
nation mechanisms [Hoefer and Skopalik 2009b].

Milchtaich [Milchtaich 2012] uses the concept of “stability of equilibrium” to clarify
that the real, material payoff in equilibrium for a group of altruistic players may be
lower than for selfish or spiteful groups only when the equilibria involved are unstable.
If they are stable, the total (or equivalently, average) payoff can only increase or remain
unchanged with an increasing degree of altruism.

Elias et al. [Elias et al. 2010] consider social awareness (a definition similar to our
definition of altruism) in the context of network design games, and show that it im-
proves the price of anarchy and other efficiency measures. The impact on system per-
formance of altruistic behavior is also considered in communication networks, in par-
ticular mobile social and opportunistic networks [Hui et al. 2009a; 2009b].

Chen et al. [Chen et al. 2010] study a model of altruism similar to ours in the context
of a network vaccination game, in which each individual can decide whether or not
to get vaccinated, and trades off a vaccination cost vs. the cost he might incur later
if he becomes infected over the network. Pure Nash equilibria may not exist in this
game, but [Chen et al. 2010] show that under a natural opt-out dynamic, the price of
anarchy is bounded by 1/α. Meier et al. [Meier et al. 2008] study a similar model in
which altruism is replaced by “friendship,” meaning that individuals only care about
the utility of their neighbors in the network, not all nodes.

The idea of considering “friendship networks” (and thus non-uniform altruism across
pairs of individuals), which is pursued by Meier et al. [Meier et al. 2008] is also present
in several other articles on “social games.” For instance, such analyses are carried out
in analyzing the price of anarchy and stability in [Anshelevich et al. 2012; Buehler
et al. 2011].

As discussed in the context of the work by Brandt et al. [Brandt et al. 2007] above, al-
truism, spite or friendship are types of “externalities” in auction design, where bidders’
perceived utilities are partly dependent on others’ utilities. Fiat et al. [Fiat et al. 2013]
study the design of externality-resistant auctions. They use a notion called “strong
truthfulness” for preventing a decrease in performance as a result of externalities
among the players.

Most recently, Anagnostopoulos et al. [Anagnostopoulos et al. 2013] study a gener-
alization of our altruism model considering player-specific directed altruistic behavior
with social context and the price of anarchy in such altruistic extensions of games. Bilò
et al. [Bilò et al. 2013] study similar models that can in some cases be considered gen-
eralizations or variations of our altruism model. Their work provides bounds on the
price of anarchy under these models, for linear congestion games (among other classes
of games). Moreover, Rahn and Schäfer [Rahn and Schäfer 2013] introduce so-called
social contribution games, where each player’s individual cost is equal to the cost he
induces on society because of his presence. They show that such games constitute use-
ful abstractions of altruistic games when it comes to the analysis of the robust price of
anarchy.

2. PRELIMINARIES
In this section, we formally introduce the classes of games studied in this paper and
define the solution concepts and inefficiency measures used subsequently.

Throughout this paper, we define [n] = {1, . . . , n}. Vectors are denoted in bold face.
For a vector x, we write x−i for the vector with the ith coordinate removed. We ex-
tend this notation to distributions over vectors: for a distribution ξ over vectors x, we
will write ξ−i for the projection obtained by drawing a vector x according to ξ, then
removing the ith coordinate.
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2.1. Strategic Games: Definitions and Classes Studied
Let G = (N, (Σi)i∈N , (Ci)i∈N ) be a finite strategic game, where N = [n] is the set of
players, Σi the strategy space of player i, Σ = Σ1 × · · · × Σn, and Ci : Σ → R the
cost function of player i, mapping every strategy profile s ∈ Σ to the player’s direct
cost. Unless stated otherwise, we assume that every player i wants to minimize his
individual cost function Ci. We also call such games cost-minimization games. A social
cost function C : Σ → R maps strategies to social costs. We require that C is sum-
bounded, that is, C(s) ≤

∑n
i=1 Ci(s) for all s ∈ Σ.4

Payoff-maximization games G = (N, (Σi)i∈N , (Πi)i∈N ) are defined similarly. Here ev-
ery player i strives to maximize his payoff function Πi. The social welfare function is
denoted by Π : Σ→ R.

2.1.1. Atomic Congestion Games. The bulk of this paper focuses on (atomic and non-
atomic) congestion games. In an atomic congestion game G = (N,E, (Σi)i∈N , (de)e∈E),
there is a set E of facilities. Players’ strategies are subsets of facilities, Σi ⊆ 2E . Each
facility e ∈ E has an associated delay function de : N→ R. For any set S ⊆ E, we write
xS(s) for the number of players using exactly S as their strategy under s. We extend
this notation to write xe(s) for the number of players using facility e as part of their
strategy, i.e., xe(s) = | {i ∈ N : e ∈ si} |. When s is clear from the context, we will omit
it. Player i’s cost is

Ci(s) =
∑
e∈si

de(xe(s)), (1)

and the social cost is C(s) =
∑n
i=1 Ci(s).

Symmetric singleton congestion games are an important special case of congestion
games, in which Σi = E for every i.5 In that case, we will also sometimes call the
facilities machines, as the game can be understood as each player choosing a machine
on which to have his job processed, where the processing speed of a machine decreases
as the load increases. We refer to these games simply as singleton congestion games
below.

2.1.2. Non-Atomic Congestion Games. Non-atomic congestion games are defined almost
identically to atomic congestion games, except players now constitute a continuum, so
the delay functions are defined on the non-negative real numbers: de : R≥0 → R. In the
most general version, we only assume that each de is continuous and non-decreasing.
For most of the results on non-atomic congestion games, we will want to assume that
delay functions are semi-convex: a function de is semi-convex iff x · de(x) is a convex
function. Notice that the set of facilities E remains finite; in particular, there can only
be a finite number of player types. More specifically, each player type is characterized
by the collection of subsets S ⊆ E of facilities that would constitute a feasible solution
for the player. Thus, the player types can be associated with collections S ⊆ 2E , and
there are at most 22|E| types.

For each S, let rS ≥ 0 be the total rate of players with strategy set S. Then,
r =

∑
S⊆2E rS is the total rate of players. Thus, a non-atomic congestion game is char-

acterized by G = (E, (rS)S⊆2E , (de)e∈E). In specifying the strategy profiles, we avoid
the s notation, since we have a continuum of players. Strategy profiles of non-atomic

4The most “natural” special case is studying the social welfare, i.e., the case when C(s) =
∑n

i=1 Ci(s).
However, many of our results apply to the more general setting, and some games are most naturally modeled
in this framework.
5We sometimes identify singleton sets with their element to improve readability, and write e instead of {e}.
We will do so only when we believe that no confusion can arise, and to stress one aspect or the other of the
strategy under consideration.
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games are characterized by flows: For each type S, we have a flow fS,S ≥ 0 for each
set of facilities S ∈ S, such that

∑
S∈S fS,S = rS . We also call the fS,S feasible flows.

Notice that while (single-commodity or multi-commodity) network flows are examples
of flows for non-atomic congestion games, our definition extends to much more general
settings. For notational convenience, we also write fS =

∑
S3S fS,S for the overall flow

on a set S, and fe =
∑
S3e fS for the overall flow on facility e. Similar to the atomic

case, we call a non-atomic congestion game a singleton congestion game if all players
have the same type S and S = E.

2.1.3. Cost-Sharing Games. A fair cost-sharing game G = (N,E, (Σi)i∈N , (ce)e∈E) is de-
fined similarly to an atomic congestion game. The difference is in the nature of the cost
functions only: for a fair cost-sharing game, the individuals’ costs are

Ci(s) =
∑
e∈si

ce
xe(s)

. (2)

This captures that the cost ce of acquiring the necessary facilities is shared evenly
between all users. In particular, usage of a resource by multiple players decreases the
cost to each of them, rather than increasing it. For notational convenience, we write
U(s) =

⋃
i∈N si for the set of all facilities used by at least one player. The social cost

function is then C(s) =
∑n
i=1 Ci(s) =

∑
e∈U(s) ce.

2.1.4. Valid Utility Games. A valid utility game [Vetta 2002] is a payoff maximization
game given by G = (N,E, (Σi)i∈N , (Πi)i∈N , V ). Again, E is a ground set of resources,
and the strategy sets Σi are subsets of 2E . Πi is the payoff function that player i wants
to maximize, and V is a submodular6 and non-negative function on E. As before, let
U(s) =

⋃
i∈N si ⊆ E be the union of all players’ strategies under s. The social welfare

function Π : Σ → R to be maximized is Π(s) = V (U(s)), and thus depends only on the
union of the players’ chosen strategies, evaluated by V . The individual payoff functions
of all players i ∈ N are assumed to satisfy7 Πi(s) ≥ Π(s)−Π(∅, s−i) for every strategy
profile s ∈ Σ. Intuitively, this means that the individual payoff of a player is at least
his contribution to the social welfare. Moreover, it is assumed that Π(s) ≥

∑n
i=1 Πi(s)

for every s ∈ Σ. See [Vetta 2002] for a detailed description and justification of these
assumptions.

Examples of games falling into this framework include natural game-theoretic vari-
ants of the facility location, k-median and network routing problems [Vetta 2002].

2.2. Equilibrium Concepts
The most general equilibrium concept that we will deal with in this paper is the fol-
lowing one.

Definition 2.1 (Coarse equilibrium). A coarse equilibrium (or coarse correlated equi-
librium) of a game G is a probability distribution σ over Σ = Σ1 × · · · × Σn with the
following property: if s is a random variable with distribution σ, then for each player
i, and all s∗i ∈ Σi:

Es∼σ [Ci(s)] ≤ Es−i∼σ−i [Ci(s
∗
i , s−i)] .

The set of all coarse equilibria is also known as the Hannan Set (see, e.g., [Young
1995]). It includes several other solution concepts, such as correlated equilibria, mixed
Nash equilibria and pure Nash equilibria. We briefly review these equilibrium notions.

6For a finite set E, a function f : 2E → R is submodular iff f(A ∪ {e})− f(A) ≥ f(B ∪ {e})− f(B) for any
A ⊆ B ⊆ E, e ∈ E.
7We abuse notation and write Π(∅, s−i) := V

(⋃
j∈N\{i} sj

)
.
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Informally, the difference between a coarse equilibrium and a correlated equilibrium
is the following: in a coarse equilibrium, a player will play according to s when he is
informed of the distribution σ from which s is drawn. In a correlated equilibrium, a
player will play according to s when he is informed of the distribution σ as well as the
strategy that has been drawn for him, i.e., that he will play under s. More formally,
this means that in a correlated equilibrium, for all s∗i ∈ Σi,

Es∼σ [Ci(s)] ≤ Es∼σ [Ci(s
∗
i , s−i)] .

A mixed Nash equilibrium is a coarse equilibrium whose distribution σ is the Carte-
sian product of independent distributions σ1, . . . , σn for the players. Thus, any mixed
Nash equilibrium is also a correlated equilibrium. A pure Nash equilibrium is a strat-
egy profile s such that for each player i, Ci(s) ≤ Ci(s′i, s−i) for all s′i ∈ Σi. A pure Nash
equilibrium is a special case of a mixed Nash equilibrium where the support of σi has
cardinality 1 for all i.

We use PNE(G), MNE(G), CE(G), and CCE(G) to denote the set of pure Nash equi-
libria, mixed Nash equilibria, correlated equilibria, and coarse equilibria of a game G,
respectively.

2.3. Inefficiency of Equilibria
The price of anarchy [Koutsoupias and Papadimitriou 1999] and price of stability [An-
shelevich et al. 2004] are natural ways of quantifying the inefficiency of equilibria for
classes of games:

Definition 2.2 (Price of anarchy, price of stability). Let S ⊆ Σ be a set of strategy
profiles for a cost-minimization game G with social cost function C, and let s∗ be a
strategy profile that minimizes C. We define

PoA(S,G) = sup
s∈S

C(s)

C(s∗)
and PoS(S,G) = inf

s∈S

C(s)

C(s∗)
.

The coarse (respectively correlated, mixed, pure) price of anarchy of a class of games G
is defined as

sup
G∈G

PoA(SG, G), (3)

where SG = CCE(G) (respectively CE(G), MNE(G), PNE(G)). The coarse (respectively
correlated, mixed, pure) price of stability of a class of games is defined analogously, i.e.,
by replacing PoA by PoS in Equation (3).

We extend Definition 2.2 in the obvious way to payoff-maximization games G with
social welfare function Π by considering the ratio Π(s∗)/Π(s), where s∗ refers to a
strategy profile maximizing Π.

3. ALTRUISM MODEL AND SMOOTHNESS TECHNIQUE
We first introduce our altruism model and show how the smoothness approach of
Roughgarden [Roughgarden 2009] can be extended to altruistic games.

3.1. Altruistic Extensions
We study altruistic extensions of strategic games equipped with sum-bounded social
cost functions. Our definition is based on a suggestion first put forward by Ledyard
[Ledyard 1997] (to the best of our knowledge). We first define the altruistic extension
for finite games, and then extend it to games with a continuum of players; the latter
extension, however, is only defined for non-atomic congestion games.
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3.1.1. Finite Games. We define altruistic extensions of finite games as follows.

Definition 3.1 (Altruistic extension of atomic games). Let G = (N, (Σi)i∈N , (Ci)i∈N )
be a finite cost-minimization game with a sum-bounded social cost function C. Let
α ∈ [0, 1]n. The α-altruistic extension of G (or simply α-altruistic game) is defined as
the strategic game Gα = (N, (Σi)i∈N , (C

α
i )i∈N ), where for every i ∈ N and s ∈ Σ,

Cαi (s) = (1− αi)Ci(s) + αiC(s). (4)

Thus, the perceived cost Cαi (s) that player i experiences under s is a convex combi-
nation of his direct (selfish) cost Ci(s) and the social cost C(s); we call such a player
αi-altruistic.8 When αi = 0, player i is entirely selfish; thus, α = 0 recovers the original
game. A player with αi = 1 is entirely altruistic. Given an altruism vector α ∈ [0, 1]n,
we let α̂ = maxi∈N αi and α̌ = mini∈N αi denote the maximum and minimum altru-
ism levels, respectively. When αi = α (a scalar) for all i, we call such games uniformly
α-altruistic games.

Remark 3.2. In a recent paper, Caragiannis et al. [Caragiannis et al. 2010] model
uniformly altruistic players by defining the perceived cost of player i as (1− ξ)Ci(s) +
ξ(C(s) − Ci(s)), where ξ ∈ [0, 1]. It is not hard to see that in the range ξ ∈ [0, 1

2 ] this
definition is equivalent to ours by setting α = ξ/(1− ξ) or ξ = α/(1 + α).9

The altruistic extension of a payoff-maximization game, in which players seek to
maximize their payoff functions (Πi)i∈N , with a social welfare function Π is defined
analogously to Definition 3.1; the only difference is that every player i wants to maxi-
mize Παi instead of minimizing Cαi here.

3.1.2. Non-Atomic Congestion Games. To motivate the definition of the altruistic exten-
sion of non-atomic congestion games, we consider them as the limit of finite congestion
games as the number of players grows to infinity. If we increase the number of play-
ers while keeping the “scale” of the delay functions constant, the delay on the (finitely
many) facilities will grow to infinity, so in the limit, the comparison of strategies will
be meaningless. Probably the most natural way to circumvent this issue is to keep the
total “rate” of players constant, and make the impact of each individual player smaller
as the number of players grows.

Specifically, fix a total rate rS for each possible player type S ⊆ 2E , and let
r =

∑
S⊆2E rS be the total rate of players. The delay functions of the non-atomic game

are de : [0, r]→ R. When we consider an atomic game with N players, we will consider
having NS = N · rSr players of type S, and define the cost functions De(k) := de(rk/N).
(Here, and subsequently, we will treat NS and similar large numbers as integers, and
omit ceiling/floor operators.) Consider a strategy profile in which a player with altru-
ism α plays the strategy S ⊆ E; for each e ∈ E, as before, let xe be the number of
players whose strategy includes the facility e. Equation (4) for this player’s perceived
cost then becomes

Cα(s) = (1− α)
∑
e∈S

De(xe) + α
∑
e∈E

xeDe(xe).

Define x′e = xe − 1 for e ∈ S, and x′e = xe for e /∈ S to be the total load on each
resource when the player is not participating at all. Thus, x′ is independent of the

8We note that the altruistic part of an individual’s perceived cost does not recursively take other players’ per-
ceived cost into account. Such recursive definitions of altruistic utility have been studied, e.g., by Bergstrom
[Bergstrom 1999], and can be reduced to our definition under suitable technical conditions.
9The model of [Caragiannis et al. 2010] with ξ ∈ ( 1

2
, 1] has players assign strictly more weight to others

than to themselves, a possibility not present in our model.
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strategy chosen by this player, and minimizing Cα(s) is equivalent to minimizing

Cα(s)− α
∑
e∈E

x′eDe(x
′
e) = (1− α)

∑
e∈S

De(xe) + α
∑
e∈S

(xeDe(xe)− (xe − 1)De(xe − 1)).

We express the number of players on a facility e in terms of the flow on the facility as
follows: xe = Nfe/r. We substitute this definition as well as the definition of De, and
then write δ = r/N , to obtain that the player minimizes

(1− α)
∑
e∈S

de(fe) + α
∑
e∈S

(fede(fe)− (fe − r/N)de(fe − r/N))

r/N

= (1− α)
∑
e∈S

de(fe) + α
∑
e∈S

(fede(fe)− (fe − δ)de(fe − δ))
δ

.

Keeping the total rate r of players fixed, and letting N →∞ results in δ → 0, which
means that the expression that the player minimizes converges to

(1− α)
∑
e∈S

de(fe) + α
∑
e∈S

(fede(fe))
′

This derivation motivates the following definition.

Definition 3.3. In an altruistic extension of a non-atomic congestion game, each α-
altruistic player of type S with α ∈ [0, 1] chooses a subset S ∈ S so as to minimize the
cost function

d
(α)
S (f) := (1− α)

∑
e∈S de(fe) + α

∑
e∈S(fede(fe))

′.

The expression (fede(fe))
′ denotes the derivative with respect to fe. Notice that we can

rewrite d(α)
S (f) =

∑
e∈S de(fe) + α

∑
e∈S fed

′
e(fe).

While our definition is motivated mathematically, there is a “psychological” interpre-
tation of the underlying choice: in order to behave (partially) altruistically, infinitesi-
mally small players must give infinitesimally small weight to their own cost or payoff,
which is achieved implicitly by making the altruistic component the derivative of the
social welfare. When there are infinitely many infinitesimally small players, then no
individual’s actions will have an impact on the overall welfare. This kind of reasoning
can be observed in the real world when individuals refuse to take the “right” action on
the grounds that their actions “don’t matter” (e.g., “It does not affect pollution whether
I personally drive to work”). Altruistic behavior is more likely to arise when individu-
als project their actions on the population as a whole (“What would happen if everyone
acted the way I do?”), which is mathematically accomplished by considering the rate of
change of the welfare.

Based on Definition 3.3, we would like to define the altruistic extension of a game
with possibly different altruism levels for different players. In the most general case,
for each possible player type S, we are given an arbitrary altruism density function
ψS on the interval [0, 1]. We only require that all these functions ψS be indeed dis-
tributions, i.e., forming a Borel measure of total measure 1. If the rate for type S is
rS , then the overall altruism density function is ψ = 1

r

∑
S rSψS . The average altru-

ism of a distribution ψ is then
∫ 1

0
tψ(t)dt. An instance of the altruistic extension of a

non-atomic congestion game is thus the quadruple (E, r,d, (ψS)S⊆2E ). In symmetric
non-atomic congestion games, in which all players are of the same type S ⊆ 2E , we
write (E, r,d, ψ), and if the altruism is uniform (i.e., the distribution deterministically
takes the value α), we simplify further to (E, r,d, α).
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3.2. Inefficiency of Altruistic Games and Smoothness
Many proofs bounding the price of anarchy for specific games (e.g., [Roughgarden 2005;
Vetta 2002]) use the fact that deviating from an equilibrium to the strategy at opti-
mum is not beneficial for any player. The addition of these inequalities, combined with
suitable properties of the social cost function, then gives a bound on the equilibrium’s
cost. Roughgarden [Roughgarden 2009] captured the essence of this type of argument
with his definition of (λ, µ)-smoothness of a game, thus providing a generic template
for proving bounds on the price of anarchy. Indeed, because such arguments only rea-
son about local moves by players, they immediately imply bounds not only for Nash
equilibria, but all classes of equilibria defined in Section 2.2, as well as the outcomes
of no-regret sequences of play [Blum et al. 2006; Blum et al. 2008]. Recent work has
explored both the limits of this concept [Nadav and Roughgarden 2010] and a refine-
ment requiring smoothness only in local neighborhoods [Roughgarden and Schopp-
mann 2011]. The latter permits more fine-grained analysis of games, but applies only
to correlated equilibria and their subclasses.

In this article, we study the price of anarchy and the price of stability of altruistic
extensions Gα with respect to the original social cost function C, not accounting for the
altruistic components. This reflects our desire to understand the overall performance
of the system (or strategic game), which is not affected by different perceptions of costs
by individuals. Note, however, that if all players have a uniform altruism level αi =
α ∈ [0, 1] and the social cost function C is equal to the sum of all players’ individual
costs, then for every strategy profile s ∈ Σ, Cα(s) = (1 − α + αn)C(s), where Cα(s) =∑
i∈N C

α
i (s) denotes the sum of all players’ perceived costs. In particular, bounding the

price of anarchy with respect to C is equivalent to bounding the price of anarchy with
respect to total perceived cost Cα in this case.

In extending the definition of smoothness to altruistic games, we have to exercise
some care. Simply applying Roughgarden’s definition to the new game does not work,
as the social cost function we wish to bound is the sum of all direct costs without con-
sideration of the altruistic component. Thus, with respect to the social cost, altruistic
games are in general not sum-bounded. For this reason, we propose a slightly revised
definition of (λ, µ,α)-smoothness.

For notational convenience, we define C−i(s) = C(s)−Ci(s) ≤
∑
j 6=i Cj(s). Note that

when the social cost is the sum of all players’ costs, the inequality is an equality.

Definition 3.4 ((λ, µ,α)-smoothness). LetGα be an α-altruistic extension of a game
with sum-bounded social cost function C. Gα is (λ, µ,α)-smooth if for any two strategy
profiles s, s′ ∈ Σ,

n∑
i=1

Ci(s
′
i, s−i) + αi(C−i(s

′
i, s−i)− C−i(s)) ≤ λC(s′) + µC(s). (5)

We also define the notion of smoothness for non-atomic games. To avoid notational
overload, we only define it for the case of uniform altruism α; we only use it in this
case here. For a non-atomic game Gα = (E, r,d, α), we say that Gα is (λ, µ, α)-smooth
if for any two feasible flows f and f ′,∑

e∈E
(f ′ede(fe) + (f ′e − fe)αfed′e(fe)) ≤ λC(f ′) + µC(f). (6)

For α = 0, this definition coincides with Roughgarden’s notion of (λ, µ)-smoothness,
and indeed, we recover Roughgarden’s smoothness result as a special case of Proposi-
tion 3.5. To gain some intuition, consider two strategy profiles s, s′ ∈ Σ, and a player
i ∈ N who switches from his strategy si under s to s′i, while the strategies of the other
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players remain fixed at s−i. The contribution of player i to the left-hand side of (5) then
accounts for the individual cost that player i perceives after the switch, plus αi times
the difference in social cost caused by this switch excluding player i. The sum of these
contributions needs to be bounded by λC(s′) + µC(s). We will see that this definition
of (λ, µ,α)-smoothness allows us to quantify the price of anarchy of some large classes
of altruistic games with respect to the very broad class of coarse correlated equilibria.

The definition of smoothness can be naturally extended to payoff maximization
games. Let Gα be an α-altruistic extension of a payoff maximization game with so-
cial welfare function Π. Define Π−i(s) = Π(s) − Πi(s). Gα is (λ, µ,α)-smooth iff for
every two strategy profiles s, s′ ∈ Σ,

n∑
i=1

Πi(s
′
i, s−i) + αi(Π−i(s

′
i, s−i)−Π−i(s)) ≥ λΠ(s′)− µΠ(s). (7)

3.3. Robust Price of Anarchy
As a useful tool for our subsequent analysis, we first show that many of the results in
[Roughgarden 2009] following from (λ, µ)-smoothness carry over to our altruistic set-
ting using the extended (λ, µ,α)-smoothness notion (Definition 3.4). Even though some
care has to be taken in extending these results, most of the proofs of the propositions
in this section follow along similar lines as their analogues in [Roughgarden 2009].
The proofs are in Appendix A.

PROPOSITION 3.5. Let Gα be an α-altruistic extension of a game with sum-bounded
social cost function C. If Gα is (λ, µ,α)-smooth with µ < 1, then the coarse (and thus
correlated, mixed, and pure) price of anarchy of Gα is at most λ

1−µ .

For α = 0, we recover Roughgarden’s smoothness result as a special case. Proposi-
tion 3.5 can be naturally extended to smooth non-atomic congestion games with uni-
form altruism.

PROPOSITION 3.6. Let Gα be a uniformly α-altruistic non-atomic congestion game.
If Gα is (λ, µ, α)-smooth with µ < 1, then the coarse price of anarchy of Gα is at most
λ

1−µ .

As we show later, for many important classes of games, the bounds obtained by
(λ, µ,α)-smoothness arguments are actually tight, even for pure Nash equilibria.
Therefore, as in [Roughgarden 2009], we define the robust price of anarchy as the best
possible bound on the coarse price of anarchy obtainable by a (λ, µ,α)-smoothness ar-
gument.

Definition 3.7. The robust price of anarchy of an α-altruistic game Gα is defined as

RPoAG(α) = inf

{
λ

1− µ
: Gα is (λ, µ,α)-smooth, µ < 1

}
.

For a class G of games, we define RPoAG(α) = supG∈G RPoAG(α). We omit the subscript
when the game (or class of games) is clear from the context.

The definition extends naturally to non-atomic congestion games; we will only con-
sider such games with uniform altruism α.

The smoothness condition also proves useful in the context of no-regret sequences
and the price of total anarchy, introduced by Blum et al. [Blum et al. 2008].

PROPOSITION 3.8. Let Gα be an α-altruistic extension of a game with sum-bounded
social cost function C. Let s∗ be a strategy profile minimizing the social cost function C
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of Gα, and let s1, . . . , sT be a sequence of strategy profiles in which every player i ∈ N
experiences vanishing average external regret, i.e.,

T∑
t=1

Cαi (st) ≤

(
min
s′i∈Σi

T∑
t=1

Cαi (s′i, s
t
−i)

)
+ o(T ). (8)

The average cost of this sequence of T strategy profiles then satisfies

1

T

T∑
t=1

C(st) ≤ RPoA(α) · C(s∗) as T →∞.

Proposition 3.8 extends to the case of non-atomic congestion games. In order to
state the conditions and proof precisely, we use the following notation. Let τ : [0, r] →
{S : S is a type of player} be any (fixed) map with the property that |τ−1(S)| = rS for
all types S. In other words, we associate the continuum of players with the interval
[0, r] and associate with each point y the type of the particular player. Then, we consider
a valid flow f as a mapping φ : [0, r]→

{
S ∈ 2E

}
with the property that φ(y) ∈ τ(y); in

other words, we assign a strategy to each among the continuum of players.10

PROPOSITION 3.9. Consider a uniformly α-altruistic non-atomic congestion game
Gα that is (λ, µ, α)-smooth with µ < 1. Let f∗ be a flow minimizing the social cost C, and
f1, . . . , fT a sequence of flows in which every infinitesimal player y ∈ [0, r] experiences
vanishing average external regret in the following sense:

T∑
t=1

∑
e∈φt(y)

de(f
t
e) + αf ted

′
e(f

t
e) ≤ min

Ŝ∈τ(y)

T∑
t=1

∑
e∈Ŝ

(de(f
t
e) + αf ted

′
e(f

t
e)) + o(T ).

The average cost of this sequence of T flows then satisfies

1

T

T∑
t=1

C(f t) ≤ RPoA(α) · C(f∗) + o(1)

as T →∞.

The results in this section continue to hold for altruistic extensions of payoff-
maximization games using the modified definition according to (7). Given this smooth-
ness definition, all the results above hold when we replace λ

1−µ by 1+µ
λ and µ < 1 by

µ > −1 in Definition 3.7.

4. ATOMIC CONGESTION GAMES
We begin by studying atomic linear congestion games. Atomic congestion games were
defined in Section 2.1.1; linear congestion games are the special case in which the delay
functions are of the form de(x) = aex+ be, where ae, be are non-negative rational num-
bers. Pure Nash equilibria of altruistic extensions of linear congestion games always
exist [Hoefer and Skopalik 2009a]; this may not be the case for arbitrary (non-linear)
congestion games.

The price of anarchy of linear congestion games (without altruism) is known to be
5
2 [Christodoulou and Koutsoupias 2005]. Recently, Caragiannis et al. [Caragiannis
et al. 2010] extended this result to linear congestion games with uniformly altruistic
players. Applying the transformation outlined in Remark 3.2, their result can be stated
as follows:

10This assignment is of course not unique, and we choose one arbitrarily.
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THEOREM 4.1 (CARAGIANNIS ET AL. [CARAGIANNIS ET AL. 2010]). The pure
price of anarchy of uniformly α-altruistic linear congestion games is at most 5+4α

2+α .

The proof in [Caragiannis et al. 2010] implicitly uses a smoothness argument in the
framework we define here for altruistic games. Thus, without any additional work,
our framework allows the extension of Theorem 4.1 to the robust PoA. Caragiannis et
al. [Caragiannis et al. 2010] also showed that the bound of Theorem 4.1 is asymptoti-
cally tight, based on singleton examples. A somewhat simpler non-singleton example
(given below) proves tightness of this bound (not only asymptotically). Thus, the robust
price of anarchy is exactly 5+4α

2+α . We give a refinement of Theorem 4.1 to non-uniform
altruism distributions, obtaining a bound in terms of the maximum and minimum
altruism levels.

THEOREM 4.2. The robust price of anarchy of α-altruistic linear congestion games
is at most 5+2α̂+2α̌

2−α̂+2α̌ .

As a first step in the proof of Theorem 4.2, we show that without loss of generality, we
can focus on simpler instances of linear congestion games. The proof is in Appendix B.

LEMMA 4.3. Without loss of generality, all delay functions are of the form de(x) = x.

The next step in the proof of Theorem 4.2 is the following technical lemma:

LEMMA 4.4. For every two non-negative integers x, y and α̂, α̌ ∈ [0, 1] with α̂ ≥ α̌,

((1 + α̂)x+ 1)y + α̌(1− x)x ≤ 5 + 2α̂+ 2α̌

3
y2 +

1 + α̂− 2α̌

3
x2.

To prove this lemma, we make use of the following result whose proof is also in
Appendix B:

LEMMA 4.5. For all x, y ∈ N0, η ∈ [0, 1] and β ∈ [0, 1], and all γ ∈ [ 1
3 (1+η−2βη), 1+η],

((1 + η)x+ 1)y + βη(1− x)x ≤ (2 + η − γ)y2 + γx2.

Now we can complete the proof of Lemma 4.4.

Proof of Lemma 4.4. Let β = α̌
α̂ ∈ [0, 1]. Using Lemma 4.5, we obtain

((1 + α̂)x+ 1)y + α̌(1− x)x = ((1 + α̂)x+ 1)y + βα̂(1− x)x ≤ (2 + α̂− γ)y2 + γx2,

for any γ ∈ [ 1
3 (1 + α̂− 2βα̂), 1 + α̂]. By choosing γ = 1

3 (1 + α̂− 2βα̂), we obtain that

((1 + α̂)x+ 1)y + α̌(1− x)x ≤ 5 + 2α̂+ 2βα̂

3
y2 +

1 + α̂− 2βα̂

3
x2.

Substituting βα̂ = α̌ yields the claim. 2

We remark that the choice of γ in the proof above has been made in order to minimize
the expression λ/(1− µ) (which is an increasing function in γ).

Proof of Theorem 4.2. We show that the α-altruistic extension Gα of a linear con-
gestion game is ( 1

3 (5 + 2α̂+ 2α̌), 1
3 (1 + α̂− 2α̌),α)-smooth.

Let s and s′ be two strategy profiles, and write xe = xe(s), x
′
e = xe(s

′). Using that
C−i(s) = C(s) − Ci(s) by definition, the left-hand side of the smoothness condition (5)
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can be rewritten as
n∑
i=1

((1− αi)Ci(s′i, s−i) + αi(C(s′i, s−i)− C(s)) + αiCi(s))

=

n∑
i=1

(1− αi)

 ∑
e∈s′i\si

(xe + 1) +
∑

e∈si∩s′i

xe

+ αi

 ∑
e∈s′i\si

(2xe + 1) +
∑

e∈si\s′i

(1− 2xe)

+ αiCi(s)


=

n∑
i=1

 ∑
e∈s′i\si

((1 + αi)xe + 1) + (1− αi)
∑

e∈si∩s′i

xe + αi
∑

e∈si\s′i

(1− 2xe) + αi
∑
e∈si

xe


≤

n∑
i=1

∑
e∈s′i

((1 + αi)xe + 1) + αi
∑
e∈si

(1− 2xe) + αi
∑
e∈si

xe


=

n∑
i=1

∑
e∈s′i

((1 + αi)xe + 1) + αi
∑
e∈si

(1− xe)


≤
∑
e∈E

(((1 + α̂)xe + 1)x′e + α̌(1− xe)xe) .

In the above derivation, the first inequality follows from the fact that (1 − αi)xe ≤
(1 + αi)xe + 1 + αi(1 − 2xe) for every e ∈ si ∩ s′i. The second inequality holds because
1 − xe ≤ 0 for every i ∈ N and e ∈ si, and by the definition of α̂ and α̌. The bound on
the robust price of anarchy now follows from Lemma 4.4. 2

The following is a simple example that shows that the bound of 5+4α
2+α on the robust

price of anarchy for uniformly α-altruistic linear congestion games is tight, even for
pure Nash equilibria. It slightly improves the lower bound example of Caragiannis et
al. [Caragiannis et al. 2010], because it is simpler and it shows tightness of the bound
not only asymptotically.

Example 4.6. Consider a game with six resources E = E1 ∪ E2, E1 =
{h0, h1, h2} , E2 = {g0, g1, g2} and three α-altruistic players. The delay functions are
de(x) = (1 +α)x for e ∈ E1, and de(x) = x for e ∈ E2. Each player i has two pure strate-
gies: {hi−1, gi−1} and

{
h(i−2) (mod 3), hi (mod 3), gi (mod 3)

}
. The strategy profile in which ev-

ery player selects his first strategy is a social optimum of cost (1 +α) ·3 + 3 = (2 +α) ·3.
Consider the strategy profile s in which every player chooses his second strategy.

We argue that s is a Nash equilibrium. Each player’s perceived individual cost is c1 =
(1−α)(4(1 +α) + 1) +α(5 + 4α) · 3, whereas if a player unilaterally deviates to his first
strategy, the new social cost would become 11α + 16 = (5 + 4α) · 3 + 1 − α. Thus, the
player’s new perceived individual cost is c2 = (1−α)(3(1+α)+2)+α((5+4α) ·3+1−α).
Because c1 = c2, s is a Nash equilibrium, of cost 4(1+α) ·3+3 = (5+4α) ·3. We conclude
that the pure price of anarchy is at least 5+4α

2+α for α ∈ [0, 1].

We turn to the pure price of stability of α-altruistic congestion games. Notice that an
upper bound on the pure price of stability extends to the mixed, correlated and coarse
price of stability.

PROPOSITION 4.7. The pure price of stability of uniformly α-altruistic linear conges-
tion games is at most 2

1+α .
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PROOF.The proof exploits a standard technique to bound the pure price of stability
of exact potential games (see, e.g., [Anshelevich et al. 2004; Nisan et al. 2007]). Let
Gα be a uniformly α-altruistic extension of a linear congestion game. It is not hard to
verify that Gα is an exact potential game with potential function Φα(s) = (1−α)Φ(s)+

αC(s), where Φ(s) =
∑
e∈E

∑xe(s)
i=1 i is Rosenthal’s potential function [Rosenthal 1973].

Observe that for any strategy profile s,

Φα(s) = (1− α)
∑
e∈E

xe(s)∑
i=1

i+ αC(s)

=
1− α

2

∑
e∈E

(f2
e (s) + xe(s)) + α

∑
e∈E

x2
e(s) =

1 + α

2
C(s) +

1− α
2

∑
e∈E

xe(s).

We therefore have 1+α
2 C(s) ≤ Φα(s) ≤ C(s). Now, let s∗ be an optimal profile, min-

imizing C(s∗), and s a Nash equilibrium profile, minimizing Φα(s). Then, C(s) ≤
2

1+αΦα(s) ≤ 2
1+αΦα(s∗) ≤ 2

1+αC(s∗), completing the proof.

5. ATOMIC SYMMETRIC SINGLETON CONGESTION GAMES
As defined in Section 2.1.1, symmetric singleton congestion games are the special case
of congestion games in which Σi = E for all players, i.e., every strategy consists of
a single resource, and each player has the same strategy space. In singleton linear
congestion games, the focus here, delay functions are also assumed to be linear, i.e., of
the form de(x) = aex+ be.

5.1. Lower Bounds
Caragiannis et al. [Caragiannis et al. 2010] prove the following theorem (stated using
the transformation from Remark 3.2). It shows that the pure price of anarchy does not
always increase with the altruism level; the relationship between α and the price of
anarchy is thus rather subtle.

THEOREM 5.1 (CARAGIANNIS ET AL. [CARAGIANNIS ET AL. 2010]). The pure
price of anarchy of uniformly α-altruistic singleton linear congestion games is 4

3+α .

We show that even the mixed price of anarchy (and thus also the robust price of
anarchy) will be at least 2 regardless of the altruism levels of the players, by general-
izing a result of Lücking et al. [Lücking et al. 2008, Theorem 5.4]. This implies that
the benefits of higher altruism in singleton congestion games are only reaped in pure
Nash equilibria, and the gap between the pure and mixed price of anarchy increases in
α. Also, it shows that singleton congestion games constitute a class of games for which
the smoothness argument cannot deliver tight bounds.

PROPOSITION 5.2. For every α ∈ [0, 1]n, the mixed price of anarchy for α-altruistic
singleton linear congestion games is at least 2.

PROOF.Let m ≥ 2, and consider the instance with player set {1, . . . ,m} and facility
set {1, . . . ,m}, with de(x) = x for each facility e. Denote by σ the mixed strategy in
which each player chooses each facility with probability 1/m. When αi = 0 for every
player, σ is a mixed Nash equilibrium, and Es∼σ [C(s)] = 2m−1, as proved in [Lücking
et al. 2008]. The optimum is clearlym, so the price of anarchy of this instance is 2−1/m.

All that is left to show is that σ is also a Nash equilibrium under arbitrary altruism
levels. By symmetry, it suffices to show that the expected perceived cost of player 1
increases if he deviates to the strategy where he chooses facility 1 with probability
1. In the following derivation, all expectations are taken over s ∼ σ. By linearity of
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expectation,

E [Cα1 (1, s−1)] = (1− α1)E [C1(1, s−1)] + α1E [C(1, s−1)] .

We already know that E [C1(1, s−1)] ≥ E [C1(s)], because σ is a Nash equilibrium when
the players are completely selfish, so it only remains to show that E [C(1, s−1)] ≥
E [C(s)] = 2m− 1.

For an arbitrary pure strategy profile s′, let Xi,e(s
′) be the indicator function that

maps to 1 if player i chooses facility e under s′, and 0 otherwise. Then Ci(s
′) =∑

eXi,e(s
′)de(s

′) for i = 1, . . . ,m, with de(s
′) =

∑
iXi,e(s

′) for e = 1, . . . ,m. So
Ci(s

′) =
∑
e,j Xi,e(s

′)Xj,e(s
′). Using this last identity, along with symmetry, inde-

pendence, and linearity of expectation, we obtain the following derivation (letting
s′ = (1, s−1)):

E [C(s′)] =

m∑
i=1

E [Ci(s
′)] = E [C1(s′)] + (m− 1)E [C2(s′)]

= E [d1(s′)] + (m− 1)

m∑
e,j=1

E [X2,e(s
′)Xj,e(s

′)]

=

m∑
i=1

E [Xi,1(s′)] + (m− 1)

 m∑
j=1

E [X2,1(s′)Xj,1(s′)] + (m− 1)

m∑
j=1

E [X2,2(s′)Xj,2(s′)]


=

(
1 + (m− 1)

1

m

)
+ (m− 1)

(
1

m
+

1

m
+ (m− 2)

1

m2
+ (m− 1)

(
1

m
+ (m− 2)

1

m2

))
= 2m− 1.

5.2. Upper Bounds
As a first step in the long-term goal to extend upper bounds to arbitrary non-uniform
altruism distributions, we analyze the case when all altruism levels are in {0, 1}, i.e.,
each player is either completely altruistic or completely selfish. Then, the altruism dis-
tribution is entirely characterized by the fraction of altruistic players (which coincides
with the average altruism level ᾱ). The next theorem shows that in this case, too, the
pure price of anarchy improves with the overall altruism level.

THEOREM 5.3. Assume that an ᾱ fraction of the players are completely altruistic,
and the remaining (1−ᾱ) fraction are completely selfish. Then, the pure price of anarchy
of the altruistic singleton linear congestion game is at most 4−2ᾱ

3−ᾱ .

Before proving Theorem 5.3, we note that the theorem implies that for linear single-
ton congestion games, entirely altruistic players will ensure that Nash equilibria are
optimal. In fact, Lemma 5.5 below implies that Nash equilibria reached by entirely
altruistic players are optimal for singleton congestion games if the delay functions are
semi-convex. We summarize this result in the following corollary.

COROLLARY 5.4. The pure price of anarchy of 1-altruistic extensions of singleton
congestion games with semi-convex delay functions is 1.

We begin with a high-level outline of the proof of Theorem 5.3. Let s be a pure Nash
equilibrium of Gα, and s∗ an optimal strategy profile. Again, we write xe = xe(s) and
x∗e = xe(s

∗). Based on the strategy profile s, we partition the facilities in E into two
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sets E0 and E1:

E1 = {e ∈ E : ∃i ∈ N with αi = 1 and si = {e}} ,
E0 = E \ E1.

That is, E1 is the set of facilities having at least one altruistic player, while E0 is the
set of facilities that are used exclusively by selfish players or not used at all. Let N1

and N0 refer to the respective player sets that are using E1 and E0. N1 may contain
both altruistic and selfish players, while N0 consists of selfish players only. Let n1 =
|N1| =

∑
e∈E1

xe and n0 = |N0| = n − n1 denote the number of players in N1 and N0,
respectively.

The high-level approach of our proof is as follows: We split the total cost C(s) of
the pure Nash equilibrium into C(s) = γC(s) + (1 − γ)C(s) for some γ ∈ [0, 1] such
that γC(s) =

∑
e∈E0

xede(xe) and (1 − γ)C(s) =
∑
e∈E1

xede(xe). We bound these two
contributions separately to show that

3

4
γC(s) + (1− γ)C(s) ≤ C(s∗). (9)

The pure price of anarchy is therefore at most ( 3
4γ + (1− γ))−1 = 4

4−γ . The bound then
follows by deriving an upper bound on γ in Lemma 5.7.

Our first lemma shows that in a sense, altruistic players “emulate” the social op-
timum. While we will only need the lemma for linear cost functions, it holds more
generally for semi-convex functions, so we state and prove it in this generality.

LEMMA 5.5. Assume that all cost functions (de)e∈E are semi-convex. Let s be a pure
Nash equilibrium. Then, there is an optimal strategy profile s∗ such that xe(s) ≤ xe(s∗)
for every facility e ∈ E1.

PROOF.Assume that x∗e < xe for some e ∈ E1. Then, there is some facility e′ ∈ E
with x∗e′ > xe′ . Consider an altruistic player i ∈ N1 with si = {e}. (Note that i must
exist by the definition of E1.) Because s is a pure Nash equilibrium, i has no incentive
to deviate from e to e′, i.e., C({e′} , s−i) ≥ C(s), or, equivalently,

(xe′ + 1)de′(xe′ + 1)− xe′de′(xe′) ≥ xede(xe)− (xe − 1)de(xe − 1). (10)

Since x∗e ≤ xe − 1 and xe′ ≤ x∗e′ − 1, the semi-convexity of the delay functions implies
that

(x∗e + 1)de(x
∗
e + 1)− x∗ede(x∗e) ≤ xede(xe)− (xe − 1)de(xe − 1), (11)

(xe′ + 1)de′(xe′ + 1)− xe′de′(xe′) ≤ x∗e′de′(x∗e′)− (x∗e′ − 1)de′(x
∗
e′ − 1). (12)

By combining Inequalities (10), (11) and (12) and rearranging terms, we obtain that

(x∗e + 1)de(x
∗
e + 1) + (x∗e′ − 1)de′(x

∗
e′ − 1) ≤ x∗ede(x∗e) + x∗e′de′(x

∗
e′).

The above inequality implies that by moving a player j with s∗j = {e′} from e′ to e, we
obtain a new strategy profile s′ = ({e} , s∗−j) of cost C(s′) ≤ C(s∗). (Note that j must
exist because x∗e′ > xe′ ≥ 0.) Moreover, the number of players using facility e under the
new strategy profile s′ increased by one. We can repeat the above argument (with s′ in
place of s∗) until we obtain an optimal strategy profile that satisfies the claim of the
lemma.

Henceforth, we assume without loss of generality that s∗ is an optimal strategy
profile satisfying the statement of Lemma 5.5. Next, we bound the cost that the Nash
equilibrium incurs on the facilities that are not exclusively used by altruistic players.
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LEMMA 5.6. Define y∗ as y∗e = x∗e − xe ≥ 0 for every e ∈ E1, and y∗e = x∗e for every
facility e ∈ E0. Then,

∑
e∈E0

xede(xe) ≤ 4
3

∑
e∈E y

∗
ede(x

∗
e).

PROOF.Consider the game Ḡ induced by Gα if all n1 players in N1 are fixed on the
facilities in E1 according to s. Note that all remaining n0 = n − n1 players in N0 are
selfish. That is, Ḡ is a symmetric singleton congestion game with player set N0, facility
set E and delay functions (d̄e)e∈E , where d̄e(z) = de(xe + z) if e ∈ E1 and d̄e(z) = de(z)
for e ∈ E0. Let s̄ be the restriction of s to the players in N0, and define x̄ to be the
induced flows: that is, x̄e = 0 for e ∈ E1 and x̄e = xe for e ∈ E0.
s̄ is a pure Nash equilibrium of the game Ḡ, because each of the selfish players in

N0 faces exactly the same situation in Ḡ under s̄ as in Gα under s. Let s̄∗ be a socially
optimum profile for Ḡ; for each facility e, let x̄∗e be the total number of players on e
under s̄∗. Then,

∑
e∈E0

xede(xe) =
∑
e∈E

x̄ed̄e(x̄e) ≤
4

3

∑
e∈E

x̄∗e d̄e(x̄
∗
e) ≤

4

3

∑
e∈E

y∗e d̄e(y
∗
e) =

4

3

∑
e∈E

y∗ede(x
∗
e).

The first inequality follows from Theorem 5.1, and the second inequality follows from
the optimality of s̄∗.

LEMMA 5.7. γ is bounded by γ ≤ 2n0

n+n0
≤ 2(1−ᾱ)

2−ᾱ .

PROOF.The claim follows directly from Theorem 5.1 if N1 = ∅, and it holds trivially
whenever N0 = ∅ by definition of γ. So assume that N0 6= ∅, N1 6= ∅, and let j ∈ N1

be arbitrary with sj = {e′} , e′ ∈ E1. Let C̄(s) =
∑
i∈N0

Ci(s)/n0 be the average cost
experienced by the (selfish) players in N0. We first show Cj(s) ≥ 1

2 C̄(s). Let i ∈ N0 be
arbitrary, si = {e} , e ∈ E0. Because s is a Nash equilibrium, and i does not want to
deviate to facility e′,

Ci(s) = aexe + be ≤ ae′(xe′ + 1) + be′ ≤ 2(ae′xe′ + be′) = 2Cj(s).

By summing over all n0 selfish players in N0, we obtain that Cj(s) ≥ 1
2 C̄(s), and thus∑

j∈N1
Cj(s) ≥ 1

2n1C̄(s). By definition of γ,

γ =

∑
i∈N0

Ci(s)∑
i∈N0

Ci(s) +
∑
j∈N1

Cj(s)
≤ n0C̄(s)

n0C̄(s) + 1
2n1C̄(s)

=
2n0

n+ n0
≤ 2(1− ᾱ)

2− ᾱ
,

where the last inequality follows because n0 ≤ (1− ᾱ)n.

Proof of Theorem 5.3. Using the above lemmas, and the definition of y∗e from
Lemma 5.6, we can prove Inequality (9):
3

4
γC(s) + (1− γ)C(s) =

3

4

∑
e∈E0

xede(xe) +
∑
e∈E1

xede(xe) ≤
∑
e∈E

y∗ede(x
∗
e) +

∑
e∈E1

xede(xe)

=
∑
e∈E

x∗ede(x
∗
e) +

∑
e∈E1

(xede(xe)− xede(x∗e)) ≤
∑
e∈E

x∗ede(x
∗
e) = C(s∗).

The first inequality follows from Lemma 5.6, and the last inequality follows from
Lemma 5.5 and because cost functions are monotone non-decreasing. We use
Lemma 5.7 to conclude that the pure price of anarchy is at most(

3

4
γ + (1− γ)

)−1

=
4

4− γ
≤ 4− 2ᾱ

3− ᾱ
.

2
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6. NON-ATOMIC CONGESTION GAMES
In this section, we turn our attention to studying non-atomic congestion games, as
defined in Section 2.1.2. We first prove that such games always have Nash equilibria
for arbitrary altruism distributions and delay functions.

THEOREM 6.1. Each instance (E, r,d, (ψi)) of a non-atomic congestion game with
(non-uniform) altruism has a Nash equilibrium.

PROOF.Theorem 1 of Mas-Collel [Mas-Colell 1984] proves that each game of in-
finitely many players has a Nash equilibrium. A game is characterized by a distri-
bution (Borel measure) over utility functions which are continuous in the action of the
player and the distribution of actions by the remaining players. It is easy to see that
each player in the congestion game has a utility function −d(α)

S (f) continuous in the
choice of strategy S ∈ S (trivially, since each strategy space S is finite) and in the distri-
bution of other players’ strategies f (by continuity of each de). The utility for sets S /∈ S
is −∞ (or a suitably negative constant). The distribution of altruism values α implies
a corresponding distribution over utility functions. Thus, the theorem of Mas-Collel
implies the existence of Nash equilibria for non-atomic congestion games.

The proof of Mas-Collel is inherently non-constructive; accordingly, Theorem 6.1
does not imply any algorithm for finding such equilibria. Indeed, even if the altru-
ism distribution has support of size 2, we are not aware of an algorithm for finding a
Nash equilibrium.

Another difficulty arising for general altruism distributions is that the price of an-
archy can easily become unbounded. Indeed, even if the altruism distribution has sup-
port {0, 1} with an arbitrarily large average altruism level ᾱ < 1, a result on Stack-
elberg routing due to Bonifaci et al. [Bonifaci et al. 2007] implies that the price of
anarchy can become unbounded. This result applies even in the case when facilities
are edges of a graph, and all players are of the same type, with feasible sets consisting
of all s-t paths for a fixed pair (s, t) of nodes.

In order to address this prohibitive negative result, we focus on two special cases:
first, we consider the case of uniform altruism; subsequently, we focus on symmetric
singleton congestion games with arbitrary altruism distributions (see Section 7).

6.1. Uniform Altruism
In this section, we focus on the case of uniformly altruistic players. Furthermore, we
assume that all latency functions de are semi-convex. Then, there is an explicit char-
acterization of pure Nash equilibria via a convex program.

PROPOSITION 6.2. Let (E, r,d, α) be an instance with uniform altruism α ≥ 0 and
semi-convex latency functions de. Then, the pure Nash equilibria are the optima of the
convex program

Minimize
∑
e

∫ fe
0
d

(α)
e (t)dt

subject to f is a feasible solution for (E, r).

The proof of this proposition is virtually identical to that of Proposition 2.6.1 from
[Roughgarden 2005]. The proof there only uses the fact that each agent is minimizing
a sum of monotone increasing functions

∑
e ge(fe), in order to conclude that the Nash

equilibrium minimizes the (convex) objective
∑
e

∫ fe
0
ge(t)dt. Thus, it applies equally to

ge(t) := d
(α)
e (t).

When there is an efficient oracle for feasible solutions for (E, r), the convex program
can also be solved in polynomial time. In particular, this is the case when E is the set of
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edges in a graph, and the feasible sets of player type i are paths from si to ti, for some
source node si and sink ti. In that case, feasible solutions are exactly multi-commodity
flows of rates ri.

Nash equilibria can be characterized by the following variational inequality, which
we will use below. The proof is in Appendix C.

PROPOSITION 6.3. Let (E, r,d, α) be an instance with uniform altruism α ≥ 0.
Then, f is a Nash equilibrium for α-altruistic players if and only if it minimizes∑
S⊆E d

(α)
S (f)f̃S over all solutions f̃ feasible for (E, r).

As an easy warm-up, we give a simple proposition bounding the pure price of anarchy
for arbitrary congestion games with semi-convex delay functions.

PROPOSITION 6.4. If all delay functions de are nondecreasing and semi-convex, then
for all congestion games, and any altruism level α ∈ (0, 1], the pure price of anarchy is
at most 1/α.

PROOF.Let f̂ be a pure Nash equilibrium flow, minimizing the potential function
Φ(f) =

∑
e

∫ fe
0
d

(α)
e (t)dt, the objective function of the convex program in Proposition 6.2.

Also, let f∗ be the optimum flow, minimizing the total cost C(f) =
∑
e

∫ fe
0

(tde(t))
′dt.

Simply from the definition of d(α)
e (t), it follows that for any flow f , we have Φ(f) ≤

C(f) ≤ 1
αΦ(f). Applying the first inequality to f∗ and the second to f̂ , and using the

optimality of f̂ for Φ, we obtain

C(f̂) ≤ 1

α
Φ(f̂) ≤ 1

α
Φ(f∗) ≤ 1

α
C(f∗).

More generally, we derive a result bounding the robust price of anarchy when all
delay functions de are drawn from a given class of delay functions. As a special case
of this general result, we will derive the same bound of 1/α as a robust price of an-
archy when the delay functions are arbitrary increasing semi-convex functions. Our
characterization will be in terms of the anarchy value σ(α)(C) of a set C of functions
for α-altruistic players, which is defined as a generalization of the anarchy value of
functions in [Roughgarden 2005].

Definition 6.5.

(1) For any delay function d, the anarchy value σ(α)(d) of d for α-altruistic players is
defined as

σ(α)(d) = sup
r,x≥0

r · d(r)

x · d(x) + (r − x) · d(α)(r)
, (13)

where 0/0 is defined to be 1.
(2) For any class C of delay functions, the anarchy value for α-altruistic players σ(α)(C)

is
supd∈C,d 6=0 σ

(α)(d).

The motivation for this definition of σ(α)(d) is that it captures the price of anarchy
for uniformly α-altruistic symmetric players with two facilities, where one facility has
delay function d and the other has a worst-case constant. Indeed, we will prove this to
be the case in Lemma 6.10 below. Notice that Lemma 6.10 immediately implies that
σ(α)(C) is a lower bound on the pure price of anarchy in the worst case when all facility
delay functions are chosen from C. Our main theorem in this section shows that it
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is also an upper bound on the coarse price of anarchy for all networks and arbitrary
commodities.

THEOREM 6.6. Let C be a set of delay functions, and G = (E, r,d, α) an instance with
delay functions de ∈ C and uniform altruism α. Then, the coarse price of anarchy is at
most σ(α)(C).

PROOF.Let f, f ′ be any two feasible flows. By rearranging Definition 6.5, we obtain
the bound

x · de(x) ≥ r · de(r)
σ(α)(C)

+ (x− r) · d(α)
e (r)

for any x, r ≥ 0. Applying this bound to each facility e, with x = f ′e and r = fe, we get
that

C(f ′) =
∑
e∈E

f ′ede(f
′
e)

≥ 1

σ(α)(C)
·
∑
e∈E

fede(fe) +
∑
e∈E

(f ′e − fe) · d(α)
e (fe)

=
C(f)

σ(α)(C)
+
∑
e∈E

(f ′e − fe) · (de(fe) + αfed
′
e(fe))

= C(f) ·
(

1

σ(α)(C)
− 1

)
+
∑
e∈E

(f ′ede(fe) + (f ′e − fe) · αfed′e(fe)).

Rearranging gives us that∑
e∈E

(f ′ede(fe) + (f ′e − fe) · αfed′e(fe)) ≤ C(f ′) +

(
1− 1

σ(α)(C)

)
· C(f).

Hence, the game is (1, 1− 1
σ(α)(C) , α)-smooth, and Proposition 3.6 implies that the coarse

price of anarchy is at most σ(α)(C).
As a corollary of Theorem 6.6 whose proof is in Appendix C, we obtain a tight bound

in the case where the delay functions are polynomials of degree at most p with non-
negative coefficients. We denote this class by Cp.

THEOREM 6.7. If (E, r,d, α) has delay functions in Cp, then the coarse price of anar-
chy is at most ((

1 + αp

1 + p

)1/p(
1 + αp

1 + p
− 1− αp

)
+ 1 + αp

)−1

.

It is not difficult to verify that the previous bound converges to 1
α as p → ∞; the

worst case behavior is in fact attained with polynomials of high degree. However, for
p = 1, Theorem 6.7 also allows us to obtain a tighter bound in the special case that all
delay functions are linear.

COROLLARY 6.8. If (E, r,d, α) has linear delay functions, then the coarse price of
anarchy is at most 4

3+2α−α2 .

Remark 6.9.Notice that for any α > 0, this bound improves on the bound by Rough-
garden and Tardos [Roughgarden and Tardos 2000] of 4/3 when all players are com-
pletely selfish. As the bound is also shown to be tight below, it characterizes exactly the
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gain by altruism with linear delay functions. Also notice that the bound for non-atomic
games is significantly better than the bound of 5+4α

2+α from Theorem 4.1 for arbitrary
atomic linear congestion games, and slightly better than the bound of 4/(3 + α) from
Theorem 5.1. This improved bound results from the fact that players are non-atomic,
avoiding the cost of slight “rounding issues.”

Finally, we show that the bounds derived in Theorem 6.6 are indeed tight, even for
the pure price of anarchy in symmetric singleton congestion games with two facilities:

LEMMA 6.10. Consider a symmetric singleton congestion game with two facilities
and flow rate r = 1. Let the delay functions be d1(x) = d(x) for the first facility, and the
constant delay function d2(x) = d(α)(1) = d(1) + αd′(1) for the second facility. The pure
price of anarchy of this instance is σ(α)(d).

PROOF.It is easy to observe from the definition of d2 that all α-altruistic players will
end up using facility 1, so that the total cost of the Nash equilibrium is d(1), while the
socially optimum solution has total cost

inf
x≤1

(x · d(x) + (1− x) · d(1) + α(1− x)d′(1)).

Hence, the pure price of anarchy is exactly σ(d).

By applying this characterization together with Theorem 6.7 and letting the degree
of the polynomial go to ∞, we obtain instances (E, r,d, α) whose price of anarchy ap-
proaches 1/α arbitrarily closely. Similarly, by choosing p = 1, we obtain that the bound
in Corollary 6.8 is tight.

7. NON-ATOMIC SYMMETRIC SINGLETON CONGESTION GAMES
We next extend our study to the case of arbitrary distributions ψ of altruism. In light
of the negative result of Bonifaci et al. [Bonifaci et al. 2007], who proved an unbounded
price of anarchy even for the case of symmetric congestion games, we focus on the case
of symmetric singleton congestion games. Recall that such games naturally model the
assignment of infinitesimally small jobs to machines with load-dependent delays. Our
main theorem in this section gives a (tight) upper bound on the pure price of anarchy
in non-atomic symmetric singleton congestion games with arbitrary sets of (convex)
delay functions closed under addition of constants.

THEOREM 7.1. Let C be a set of convex and nondecreasing functions closed under
addition of constants; that is, if d ∈ C, then d̂(x) = d(x) + c is in C for every constant c.
Then, for every non-atomic symmetric singleton congestion game (with arbitrary altru-
ism distribution ψ), the pure price of anarchy is at most(∫ 1

0

ψ(t)
1

σ(t)(C)
dt

)−1

.

Before proving Theorem 7.1, we observe and prove several interesting corollaries.
First, we obtain a much simplified bound when C is the set of all semi-convex non-
decreasing functions.

COROLLARY 7.2. If all delay functions de are semi-convex and nondecreasing, then
for any non-atomic symmetric singleton congestion game with arbitrary altruism den-
sity distribution ψ, the pure price of anarchy is at most 1/ᾱ, where ᾱ is the average
altruism under ψ.
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PROOF.If C is specifically the set of all increasing semi-convex functions, Proposi-
tion 6.4 implies that 1

σ(t)(C) ≥ t. Substituting this bound into the integral in Theo-

rem 7.1 gives us that the pure price of anarchy is at most
(∫ 1

0
ψ(t) t dt

)−1

= 1/ᾱ.

In turn, an immediate corollary of Corollary 7.2 can be obtained by choosing the
distribution ψ to have a λ fraction of completely altruistic players, and a 1− λ fraction
of completely selfish ones. As discussed in Section 1.3, such a scenario corresponds to a
Stackelberg scheduling game with a centrally controlled fraction λ of jobs. Since ᾱ = λ
for this distribution, Corollary 7.2 immediately implies

COROLLARY 7.3. In symmetric singleton congestion games, the pure price of anarchy
under Stackelberg scheduling with a λ-fraction of jobs being controlled by a central
authority is at most 1/λ.

This result was already proved constructively (and giving efficient algorithms) by
Roughgarden [Roughgarden 2004]; nevertheless, it is interesting that it follows di-
rectly from our general result. More generally, by using the same distribution with
support {0, 1} in Theorem 7.1, we obtain the following corollary:

COROLLARY 7.4. In symmetric singleton congestion games, the pure price of anarchy
under Stackelberg scheduling with a λ-fraction of jobs controlled by a central authority
is at most ( 1−λ

σ(C) + λ)−1.

Corollary 7.4 improves (albeit in a non-constructive way) a result of Swamy [Swamy
2007] for Stackelberg scheduling: we bound the PoA under Stackelberg scheduling by
the weighted harmonic mean of the PoA for selfish and altruistic players, whereas
Swamy’s bounds give the arithmetic mean. It is known that the harmonic mean is
always bounded above by the arithmetic mean.

We can also show that the case of Stackelberg scheduling is in fact the worst case for
the bound of Theorem 7.1, in the sense that the right-hand side is maximized. While
the bound of Theorem 7.1 will in general not be tight, this nevertheless gives rise to
the philosophical interpretation that, conditioned on a given average altruism level ᾱ,
the scenario in which completely altruistic players or a central authority compensate
for completely selfish players is the worst case, while uniform altruism throughout the
population is the best case. The proof is in Appendix D.

PROPOSITION 7.5. Conditioned on the mean of ψ being any given ᾱ, the quantity(∫ 1

0
ψ(t) 1

σ(t)(C)dt
)−1

is maximized when ψ has a point mass of ᾱ on 1 and 1− ᾱ on 0. It
is minimized when ψ has a point mass of 1 on ᾱ.

7.1. Proof of Theorem 7.1
The remainder of this section is devoted to the proof of Theorem 7.1. The proof ’s struc-
ture is similar to that of Theorem 5.3, although the proof is technically more involved,
since we allow arbitrary altruism distributions, while Theorem 5.3 only considered
altruism levels in {0, 1}.

Let f be a pure Nash equilibrium flow. We first show that without loss of generality,
we can assume that each facility e contains only one type of players (i.e., if players have
different altruism values α, α′, then they do not share a facility) and that the support
of ψ is finite. To see this, assume that f has players of altruism values α < α′ sharing
a facility e. Now replace all players on e with altruism α by players with altruism α′.
f must still be a flow at Nash equilibrium for the new instance (because α′-altruistic
players are on facility e in Nash equilibrium). By repeating this process, we eventually

ACM Transactions on Economics and Computation, Vol. V, No. N, Article A, Publication date: January YYYY.



Altruism and Its Impact on the Price of Anarchy A:29

obtain an instance with altruism density ψ′ which stochastically dominates ψ and has
finite support. For this new ψ′, the bound on the price of anarchy for f provided by the
right-hand side of Theorem 7.1 can only be smaller, giving us an even better bound
than required. Thus, we can from now on focus on the case described above.

Let 0 ≤ α1 < α2 < . . . < αk ≤ 1 be the (finite) support of ψ, where the rate of αi-
altruistic players is ri (so

∑k
i=1 ri = r). We need to show that for all flows g of rate r (in

particular, the optimum flow), we have

C(g) ≥ C(f)

k∑
i=1

ri
r

1

σ(αi)(C)
,

which we will do by induction on k. The base case k = 0 is of course trivial.
For the inductive step, let f be a Nash equilibrium, and g any flow of rate r. For each

i, let Ei be the set of facilities with positive flow of αi-altruistic players under f . Notice
that by our assumption, the sets Ei are pairwise disjoint. For any set E′ of facilities, let
f(E′) =

∑
e∈E′ fe (similarly, g(E′)) denote the total flow on E′. Let E′ := E \ E1 denote

the set of all facilities not used by α1-altruistic players.
Intuitively, because the more altruistic players prefer the facilities in E′ over E1, we

would expect a “good” flow g to do the same. Indeed, we first show that the delay under
f on all facilities in E1 is no larger than in E′, while the marginal cost, i.e., (x · d(x))′,
is no larger in E′ than in E1. Let e ∈ E1, e

′ ∈ Ej , j > 1 be arbitrary facilities with
positive flow f . Thus, all players using e have altruism α1, while all players using e′
have altruism αj > α1. Because f is at Nash equilibrium,

de(fe) + α1fed
′
e(fe) ≤ de′(fe′) + α1fe′d

′
e′(fe′), (14)

de(fe) + αjfed
′
e(fe) ≥ de′(fe′) + αjfe′d

′
e′(fe′). (15)

Combining appropriately scaled versions of (14) and (15) gives us that

de(fe) ≤ de′(fe′), (16)
(1− ξ)de(fe) + (αj − ξα1)fed

′
e(fe) ≥ (1− ξ)de′(fe′) + (αj − ξα1)fe′d

′
e′(fe′), (17)

where ξ ∈ [0, 1] is a scalar, which we can set later.
Our high-level strategy will be to bound the Nash equilibrium flow on E′ against a

restriction g′ of g of rate r − r1 on E′ by induction, and use a comparison argument
for the flow on E1. We will construct a flow h of rate r1 whose cost is cheaper than a
component of g of the same rate, and which is optimal for modified “residual” facility
costs. We can thus compare it against the flow f on E1 using Theorem 6.6.

Define f ′ to be the restriction of f to the set E′, i.e., f ′e = fe for e ∈ E′, and f ′e = 0 for
e ∈ E1. Thus, f ′ is a flow of rate r′ := r − r1. Define the modified delay function

d̃e(x) := de(f
′
e + x) + α1f

′
ed
′
e(f
′
e)

for all facilities e. Thus, d̃e(x) is the delay incurred by flow on e if f ′e is unalterable,
but not considered part of the actual flow, plus a suitable constant term to “mimic” the
altruistic component. This definition of d̃e(x) implies that the perceived cost of facility
e to α1-altruistic players is

d̃(α1)
e (x) = de(f

′
e + x) + α1xd

′
e(f
′
e + x) + α1f

′
ed
′
e(f
′
e).

Thus, for e ∈ E′, we have that d̃(α1)
e (x) ≥ d(α1)

e (f ′e) for all x ≥ 0, while for e ∈ E1, because
f ′e = 0, d̃(α1)

e (x) = d
(α1)
e (x+ f ′e). In particular, this implies that the α1-altruistic players

are at Nash equilibrium with respect to the modified delay functions d̃e(x). Hence, by
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Theorem 6.6, and because d̃e(x) = de(x) for all e ∈ E1, we get

C(f − f ′) = C̃(f − f ′) ≤ σ(α1)(C) · C̃(f̃),

where f̃ is an optimum flow of rate r1 with respect to the modified delay functions d̃e.
In order to compare f ′ against the part of g on the set E′, it will be useful to assume

that g(E′) ≥ f(E′). We will show next that we can make this assumption w.l.o.g. For
assume that it did not hold. Then, let e ∈ E1, e

′ ∈ E′ be facilities with ge > fe > 0
and ge′ < fe′ . (The existence of e, e′ follows from the assumption g(E′) < f(E′)). By
the bound on the derivatives in Inequality (17), and using the semi-convexity of the
facility cost functions, we show that

(gede(ge))
′ ≥ (fede(fe))

′ ≥ (fe′de′(fe′))
′ ≥ (ge′de′(ge′))

′

in the following. The first and last inequalities hold simply by the semi-convexity of de
and de′ . The second equality is obtained by setting ξ =

1−αj
1−α1

to get 1− ξ = αj − ξα1, so
Inequality (17) implies that

(fede(fe))
′ = de(fe) + fed

′
e(fe) ≥ de′(fe′) + fe′d

′
e′(fe′) = (fe′de′(fe′))

′.

Thus, g can be made cheaper by moving some of its flow from e to e′. By repeating this
process, we can thus assume that g(E′) ≥ f(E′).

Let γ be such that C(f − f ′) = γC(f). Because f ′ and f − f ′ use disjoint sets of
facilities, we get C(f ′) = (1 − γ)C(f). (Notice that the assumption of disjoint sets is
indeed crucial. Due to the non-constant cost of facilities, in general, it does not hold
that C(f) + C(f ′) = C(f + f ′).)

By Lemma 7.6 below, we can decompose g = h + g′, where g′ is a flow of rate r′

entirely on E′, and h is a flow of rate r1 satisfying the property (19), namely

C̃(f̃) ≤
∑
e

hede(ge) +
∑
e

g′e(de(ge)− de(g′e)).

We can thus apply induction on the flows f ′ and g′ of rate r′ on the modified instance
with facility set E′. Notice that while f ′ may not be an equilibrium flow on E, it is
indeed an equilibrium flow on E′. Thus, we obtain that

C(g) = C(g′) +
∑
e

h(e)de(ge) +
∑
e

g′e(de(ge)− de(g′e))

≥ C(f ′)

k∑
i=2

ri
r′

1

σ(αi)(C)
+ C(f − f ′) 1

σ(α1)(C)
(18)

= C(f)

k∑
i=2

(
ri
r′

1

σ(αi)(C)
· (1− γ) +

1

σ(α1)(C)
· γ
)
.

We next show that γ ≤ r1
r . By (16), every player on E1 incurs lower delay than every

player on Ej , and consequently on E′. Thus, the average delay 1
r1
C(f − f ′) of players

on E1 is at most the average delay 1
rC(f) of all players, so C(f − f ′) ≤ r1

r C(f).
The lower bound (18) is a convex combination of the non-negative terms

k∑
i=2

ri
r′

1

σ(αi)(C)
and

1

σ(α1)(C)

with coefficients (1 − γ) and γ, respectively, The anarchy value σ(α)(C) is a monotone
non-increasing function of α, so the weighted average reciprocal anarchy value for
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altruism levels α2, . . . , αk is at least the reciprocal for α1. Thus, the convex combination
is minimized when the coefficient γ of the smaller term 1

σ(α1)(C) is as large as possible,
i.e., when γ = r1/r. Substituting this bound,

C(g) ≥ C(f)

k∑
i=2

(
ri
r′

1

σ(αi)(C)
· r
′

r
+

1

σ(α1)(C)
· r1

r

)
= C(f)

k∑
i=1

ri
r′

1

σ(αi)(C)
,

completing the inductive step, and thus the proof. 2

LEMMA 7.6. Let f ′ be a flow of rate r′ using only facilities from E′, and define
d̃e(x) := de(f

′
e + x) + α1f

′
ed
′
e(f
′
e). Let g be any flow of rate r = r′ + r1, with g(E′) ≥ r′.

Let f̃ be the optimum flow of rate r1 with respect to facility costs d̃e. Then, g can be
decomposed as g = h+ g′, where g′ is a flow of rate r′ on E′, satisfying

C̃(f̃) ≤
∑
e

hede(ge) +
∑
e

g′e(de(ge)− de(g′e)). (19)

PROOF.Let ∆ := g(E′) − r′ ≥ 0 be the amount of “excess flow” that g sends on E′,
compared to f . We begin by setting he = ge for all facilities e ∈ E1, giving us a flow of
rate r1 − ∆. So we need to add ∆ more units of flow to h. Let E′′ := {e ∈ E′ : ge ≥ f ′e}
be the set of facilities in E′ on which g sends more flow than f ′. Thus, we have that
g(E′′)− f ′(E′′) ≥ g(E′)− f ′(E′) = ∆. In particular, we can define a flow h of total rate
∆ on E′′, such that he ≤ ge − f ′e for all e ∈ E′′. For all other facilities e, we set he = 0,
and thus obtain a flow h of rate r1, such that he ≤ ge for all facilities e. We then have
that∑

e

hede(ge) =
∑
e∈E1

hede(he) +
∑
e∈E′′

hede(ge) ≥
∑
e∈E1

hede(he) +
∑
e∈E′′

hede(f
′
e + he),

where the inequality follows from the monotonicity of the delays de. Next, because
g′e ≥ f ′e for all e ∈ E′, and the delay functions are convex, (de(ge) − de(g′e))/he ≥ d′e(f

′
e)

for all e ∈ E′′ with he > 0. Combining this bound with the fact that α1 ≤ 1, we obtain
that

∑
e

g′e(de(ge)− de(g′e)) ≥
∑
e∈E′′

g′e(de(ge)− de(g′e)) ≥
∑
e∈E′′

f ′eα1hed
′
e(f
′
e).

Summing the previous two inequalities now gives us∑
e

hede(ge) +
∑
e

g′e(de(ge)− de(g′e)) ≥
∑
e∈E1

hede(he) +
∑
e∈E′′

hede(f
′
e + he) +

∑
e∈E′′

heα1f
′
ed
′
e(f
′
e)

=
∑
e

hed̃e(he) ≥ C̃(f̃),

where the final inequality follows from the optimality of f̃ with respect to the delay
functions d̃e.

8. FAIR COST-SHARING GAMES
In this section, we analyze the robust price of anarchy of fair cost-sharing games. It is
well-known that the pure price of anarchy is n [Nisan et al. 2007]. We show that the
pure price of anarchy can get significantly worse in the presence of altruistic players:
the following theorem gives an upper bound of n/(1− α̂), which we subsequently show
to be tight, even for the pure price of anarchy.
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THEOREM 8.1. The robust price of anarchy of α-altruistic cost-sharing games is at
most n

1−α̂ (with n/0 =∞).

PROOF.The claim is true for α̂ = 1 because RPoA(α) ≤ ∞ holds trivially. We show
that Gα is (n, α̂,α)-smooth for α̂ ∈ [0, 1). Let s and s′ be two strategy profiles. Fix an
arbitrary player i ∈ N . We have

C(s′i, s−i)− C(s) =
∑

e∈U(s′i,s−i)

ce −
∑

e∈U(s)

ce ≤
∑

e∈s′i\U(s)

ce.

We use this inequality to obtain the following bound:

(1− αi)Ci(s′i, s−i) + αi(C(s′i, s−i)− C(s)) ≤ (1− αi)
∑
e∈s′i

ce
xe(s′i, s−i)

+ αi
∑

e∈s′i\U(s)

ce
xe(s′i, s−i)

≤
∑
e∈s′i

ce
xe(s′i, s−i)

≤
∑
e∈s′i

n · ce
xe(s

′)
.

The first inequality holds because xe(s′i, s−i) = 1 for every e ∈ s′i \ U(s), and the last
inequality follows from xe(s

′
i, s−i) ≥ xe(s

′)/n for every e ∈ s′i. The left-hand side of the
smoothness condition (5) can be rewritten as
n∑
i=1

((1− αi)Ci(s′i, s−i) + αi(C(s′i, s−i)− C(s)) + αiCi(s)) ≤
n∑
i=1

∑
e∈s′i

n · ce
xe(s

′)

+ α̂C(s)

= nC(s′) + α̂C(s).

We conclude that the robust price of anarchy is at most n
1−α̂ . Example 8.2 shows that

this bound is tight, even for pure Nash equilibria of symmetric singleton cost-sharing
games.

Example 8.2. Consider the (symmetric singleton) cost-sharing game in which n
players can choose between two different facilities e1 and e2 of cost 1 and n/(1 − α),
respectively. Let s∗ = (e1, . . . , e1) and s = (e2, . . . , e2) refer to the strategy profiles in
which every player chooses e1 and e2, respectively. ThenC(s∗) = 1 andC(s) = n/(1−α).
Note that s is a pure Nash equilibrium of the α-altruistic extension of this game be-
cause for every player i, we have

(1− α)Ci(s) + αC(s) = 1 + α
n

1− α
= Cαi ({e1} , s−i).

The pure price of anarchy is therefore at least n/(1− α).

Intuitively, the reason that the price of anarchy can get worse in the presence of
altruism is that altruistic players worry more about hurting others with a strategy
change, and are thus more likely to be stuck in a suboptimal equilibrium. The same
phenomenon — being ready to accept more states as equilibria — should lead to a
lower price of stability. Indeed, we next show an improved upper bound for the pure
price of stability of uniformly α-altruistic cost-sharing games. Note that for the com-
pletely selfish case α = 0, it is well known that the tight upper bound for the pure price
of stability is Hn. Clearly, this upper bound extends to the mixed, correlated and coarse
price of stability. The proof of the following proposition exploits a standard technique
to bound the pure price of stability of exact potential games (see, e.g., [Nisan et al.
2007]).

PROPOSITION 8.3. The pure price of stability of uniformly α-altruistic cost-sharing
games is at most (1− α)Hn + α.
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PROOF.Let Gα be a uniformly α-altruistic cost-sharing game. It is not hard to verify
that Gα is an exact potential game with potential function Φα(s) = (1−α)Φ(s)+αC(s),
where Φ(s) =

∑
e∈E

∑xe(s)
i=1 ce/i. Observe that

Φα(s) = (1− α)
∑
e∈E

xe(s)∑
i=1

ce
i

+ α
∑

e∈U(s)

ce ≤ ((1− α)Hn + α)
∑

e∈U(s)

ce = ((1− α)Hn + α)C(s).

We therefore have that C(s) ≤ Φα(s) ≤ ((1− α)Hn + α)C(s).
Let s be a strategy profile that minimizes Φα, and let s∗ be an optimal strategy pro-

file that minimizes the social cost function C. Note that s is a pure Nash equilibrium
of Gα. We have

C(s) ≤ Φα(s) ≤ Φα(s∗) ≤ ((1− α)Hn + α)C(s∗),

which proves the claim.

9. VALID UTILITY GAMES
In this section, we analyze valid utility games with altruism. Vetta [Vetta 2002] proved
a bound of 2 on the pure price of anarchy for valid utility games with non-decreasing
V , and Roughgarden showed in [Roughgarden 2009] how this bound is achieved via a
smoothness argument. We extend this result to altruistic extensions of these games.

THEOREM 9.1. The robust price of anarchy of α-altruistic valid utility games is 2.

Note that in the statement above, the claim holds for arbitrary non-uniform altruism.

PROOF.We show that the α-altruistic extensionGα of a valid utility game is (1, 1,α)-
smooth.

Fix two strategy profiles s, s′ ∈ Σ, and consider an arbitrary player i ∈ N . By defini-
tion of a valid utility game, we have

Πi(s) ≥ Π(s)−Π(∅, s−i). (20)

Therefore, for each player i ∈ N ,

Π(s′i, s−i)−Π(s) + Πi(s) = (Π(s′i, s−i)−Π(∅, s−i))− (Π(s)−Π(∅, s−i)) + Πi(s)

≥ Π(s′i, s−i)−Π(∅, s−i). (21)

Now let Ui =
⋃n
j=1 sj ∪

⋃i
j=1 s

′
j . Recalling that Π−i(s) = Π(s) − Πi(s), and summing

over all i ∈ N ,
n∑
i=1

((1− αi)Πi(s
′
i, s−i) + αi(Π(s′i, s−i)−Π(s) + Πi(s)))

≥
n∑
i=1

(Π(s′i, s−i)−Π(∅, s−i)) ≥
n∑
i=1

(V (Ui)− V (Ui−1)) ≥ Π(s′)−Π(s).

Here, the first inequality follows from (20) and (21), the second inequality holds be-
cause V is submodular, and the final inequality follows from V being non-decreasing.
We conclude that Gα is (1, 1,α)-smooth, which proves an upper bound of 2 on the ro-
bust price of anarchy. This bound is tight, as shown by Example 9.2.

Example 9.2. Consider a valid utility game G with two players N = {1, 2}, a ground
set E = {1, 2} of two elements and strategy sets Σ1 = {{1} , {2}} ,Σ2 = {∅, {1}}. Define
V (S) = |S| for every subset S ⊆ E. Note that V is non-negative, non-decreasing and
submodular.
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For a given strategy profile s ∈ Σ, the individual payoffs Π1(s) and Π2(s) of player
1 and player 2, respectively, are defined as follows: Π1(s) = 1 for all strategy profiles
s. Π2(s) = 1 if s = ({2} , {1}) and Π2(s) = 0 otherwise. It is not hard to verify that
for every player i and every strategy profile s ∈ Σ, we have Πi(s) ≥ Π(s) − Π(∅, s−i).
Moreover, Π(s) ≥ Π1(s) + Π2(s) for every s ∈ Σ. We conclude that G is a valid utility
game.

Let α ∈ [0, 1]2 be arbitrary, and consider the α-altruistic extension Gα of G. We claim
that s = ({1} ,∅) is a pure Nash equilibrium of Gα. The utility of player 1 under s is
(1− α1) + α1 = 1. His utility remains 1 if he switches to the strategy {2}. The utility of
player 2 under s is α2. If he switches to the strategy {1}, then his utility is α2 as well.
Thus, s is a pure Nash equilibrium. Since Π(s) = 1 and Π(({2} , {1})) = 2, the pure
price of anarchy of Gα is 2.

10. GENERAL PROPERTIES OF SMOOTHNESS
Most of the analysis of games in this work (with the exception of symmetric singleton
congestion games) proved robust price of anarchy results using (λ, µ,α)-smoothness
as the key tool. In this section, we provide some general results about (λ, µ,α)-
smoothness.

PROPOSITION 10.1. Let G be a class of cost-minimization games equipped with sum-
bounded social cost functions. The set

SG = {(λ, µ,α) : Gα is (λ, µ,α)-smooth for all G ∈ G}
is convex.

PROOF.Let G ∈ G be arbitrary. It suffices to show that
SG = {(λ, µ,α) : Gα is (λ, µ,α)-smooth}

is convex, because the intersection of any collection of convex sets is also convex.
Let (λ1, µ1,α

(1)), (λ2, µ2,α
(2)) ∈ SG be two elements in SG, and let γ ∈ [0, 1] be arbi-

trary. For all pairs (s, s′) of strategy profiles of G, smoothness implies that

γ

n∑
i=1

(
Ci(s

′
i, s−i) + α

(1)
i (C−i(s

′
i, s−i)− C−i(s))

)
+ (1− γ)

n∑
i=1

(
Ci(s

′
i, s−i) + α

(2)
i (C−i(s

′
i, s−i)− C−i(s))

)
≤ γ(λ1C(s∗) + µ1C(s)) + (1− γ)(λ2C(s∗) + µ2C(s)).

By rewriting both sides of the above inequality, we obtain
n∑
i=1

(
Ci(s

′
i, s−i) + (γα

(1)
i + (1− γ)α

(2)
i ) · (C−i(s′i, s−i)− C−i(s))

)
≤ (γλ1 + (1− γ)λ2)C(s∗) + (γµ1 + (1− γ)µ2)C(s).

We conclude that G is (γ(λ1, µ1,α
(1)) + (1 − γ)(λ2, µ2,α

(2)))-smooth. Therefore, SG is
convex.

A natural question to ask is whether the robust price of anarchy is also a convex
function ofα. This turns out not to be the case. For instance, the robust price of anarchy
for uniformly α-altruistic congestion games is 5+4α

2+α (see Section 4), which is a non-
convex function. However, we can prove a somewhat weaker statement: For a subset
S ⊆ Rn, we call a function f : S → R quasi-convex iff f(γx+ (1− γ)y) ≤ max(f(x), f(y))
for all γ ∈ [0, 1].

THEOREM 10.2. Let G be a class of games equipped with sum-bounded social cost
functions. Then RPoAG(α) is a quasi-convex function of α.
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PROOF.Let G ∈ G. We show that for any α(1),α(2) ∈ Rn and γ ∈ [0, 1],

RPoA(γα(1) + (1− γ)α(2)) ≤ max(RPoA(α(1)),RPoA(α(2))).

Let ε1, ε2, . . . be a decreasing sequence of positive real numbers that tends to 0. More-
over, let (λ1,1, µ1,1,α

(1)), (λ1,2, µ1,2,α
(1)), . . . and (λ2,1, µ2,1,α

(2)), (λ2,2, µ2,2,α
(2)), . . . be

sequences of elements in SG (where SG is as defined in the proof of Proposition 10.1)
such that for all j,

RPoA(α(1)) + εj =
λ1,j

1− µ1,j
and RPoA(α(2)) + εj =

λ2,j

1− µ2,j
.

By Proposition 10.1, for all j,
n∑
i=1

(Ci(s
′
i, s−i) + (γα

(1)
i + (1− γ)α

(2)
i ) · (C−i(s′i, s−i)− C−i(s)))

≤ γ(λ1,jC(s′) + µ1,jC(s)) + (1− γ)(λ2,jC(s′) + µ2,jC(s))

≤ max(λ1,jC(s′) + µ1,jC(s), λ2,jC(s′) + µ2,jC(s)).

Hence, for all j,

RPoA(γα(1) + (1− γ)α(2)) ≤ max

(
λ1,j

1− µ1,j
,

λ2,j

1− µ2,j

)
≤ max(RPoA(α(1)),RPoA(α(2))) + εj ,

By taking the limit j → ∞, we conclude RPoA(γα(1) + (1 − γ)α(2)) ≤
max(RPoA(α(1)),RPoA(α(2))), which proves the claim.

The quasi-convexity of RPoAG implies:

COROLLARY 10.3.The altruism vectors α that minimize RPoAG(α) on the domain
[0, 1]n form a convex set. The altruism vectorsα that maximize RPoAG(α) on the domain
[0, 1]n include at least one point that is a 0-1 vector.

11. CONCLUSIONS AND FUTURE WORK
At first sight, it might seem counterintuitive that the price of anarchy is greater than 1
when every player is entirely altruistic, i.e., α = 1. This phenomenon is less surprising
when viewed from a local-search perspective. Note that for α = 1, all players seek to
minimize the social cost function C. A pure Nash equilibrium then corresponds to a
local optimum of C with respect to the neighborhood of single-player deviations. Our
bounds on the pure price of anarchy therefore also bound the relative gap between the
worst-case cost of a local optimum and the cost of a global optimum; this gap is also
known as locality gap and was introduced by Arya et al. [Arya et al. 2004].

The phenomenon that the price of anarchy can get worse as the altruism level α
gets closer to 1 has been observed before (see [Caragiannis et al. 2010]). The fact that
the price of anarchy does not necessarily get worse in all cases is exemplified by our
analysis of the price of anarchy in non-atomic congestion games and the pure price of
anarchy in symmetric singleton congestion games.

The most immediate future directions include analyzing atomic singleton congestion
games with more general delay functions than linear ones. While the price of anarchy
of such functions increases (e.g., the price of anarchy for polynomials increases expo-
nentially in the degree [Awerbuch et al. 2005; Christodoulou and Koutsoupias 2005]),
this also creates room for potentially larger reductions due to altruism. Similarly, the
characterization of the robust price of anarchy of atomic altruistic congestion games
with more general delay functions (e.g., polynomials) is left for future work.
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For games where the smoothness argument cannot give tight bounds, would a re-
fined smoothness argument like local smoothness in [Roughgarden and Schoppmann
2011] work? For symmetric singleton congestion games, this seems unlikely, as the
price of anarchy of pure and mixed Nash equilibria differ. It is also worth trying to
apply the smoothness argument or its refinements to analyze the price of anarchy for
other dynamics in other classes of altruistic games, for example, (altruistic) network
vaccination games [Chen et al. 2010], which are known to not always possess pure
Nash equilibria, or to find examples to see why smoothness-based arguments do not
work.

Our work also suggests several interesting directions for further research regarding
non-atomic congestion games. First, how far can the analysis with arbitrary altru-
ism distributions be extended? For network congestion games with arbitrary topolo-
gies (and just one type of player), any improved result would prove the corresponding
bounds on Stackelberg routing, so the lower bound of Bonifaci et al. [Bonifaci et al.
2007] precludes a general extension. However, an extension to restricted classes of
network congestion games (e.g., series-parallel graphs) seems plausible at this point.
While we proved the existence of Nash equilibria for all routing games with non-atomic
players, regardless of the distributions of altruism, the proof is non-constructive. The
work of Roughgarden [Roughgarden 2004] implies that finding the best Stackelberg
strategy (and thus the best equilibrium with altruism levels in {0, 1}) is NP-complete.
However, it would be interesting whether other equilibria can always be found effi-
ciently. Alternatively, in light of the PPAD-completeness of finding Nash equilibria
[Chen and Deng 2006], it may be possible that finding Nash equilibria for network
congestion games with two (or more) altruism values is also PPAD-complete.

We have seen that the impact of altruism depends on the underlying game. It would
be nice to identify general properties that enable one to predict whether a given game
suffers from altruism or not. What is it that makes valid utility games invariant to
altruism? Furthermore, what kind of “transformations” (not just altruistic extensions)
might be applied to a strategic game such that the smoothness approach can still
be adapted to give (tight) bounds? More generally, while the existence of pure Nash
equilibria has been shown for singleton and matroid congestion games with player-
specific delay functions [Ackermann et al. 2006; Milchtaich 1996], the price of anarchy
(for pure Nash equilibria or more general equilibrium concepts) has not yet been ad-
dressed. Studying the price of anarchy in such a general setting (in which our setting
with altruism can be embedded) by either smoothness-based techniques or other meth-
ods is undoubtedly intriguing.
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A. MISSING PROOFS FOR SECTION 3.3
Proposition 3.5. Let Gα be an α-altruistic extension of a game with sum-bounded
social cost function C. If Gα is (λ, µ,α)-smooth with µ < 1, then the coarse (and thus
correlated, mixed, and pure) price of anarchy of Gα is at most λ

1−µ .

PROOF.Let σ be a coarse equilibrium of Gα, s a random strategy profile with joint
distribution σ, and s∗ ∈ Σ a socially optimal strategy profile. The coarse equilibrium
condition implies that for every player i ∈ N :

E [(1− αi)Ci(s) + αiC(s)] ≤ E [(1− αi)Ci(s∗i , s−i) + αiC(s∗i , s−i)] .

By linearity of expectation, for every player i ∈ N :

E [Ci(s)] ≤ E [Ci(s
∗
i , s−i) + αi(C(s∗i , s−i)− Ci(s∗i , s−i))− αi(C(s)− Ci(s))] .

By summing over all players, using linearity of expectation and the sum-boundedness
of C, we obtain

E [C(s)] ≤ E

[
n∑
i=1

Ci(s
∗
i , s−i) + αi(C−i(s

∗
i , s−i)− C−i(s))

]
.

Now we use the smoothness property (5) to conclude

E [C(s)] ≤ E [λC(s∗) + µC(s)] = λC(s∗) + µE [C(s)] .

Solving for E [C(s)] and exploiting that µ < 1, now proves the claim. As coarse equilib-
ria include correlated equilibria, mixed Nash equilibria and pure Nash equilibria, the
correlated, mixed, and pure price of anarchy are thus also bounded by λ

1−µ .

Proposition 3.6. Let Gα be a uniformly α-altruistic non-atomic congestion game. If Gα
is (λ, µ, α)-smooth with µ < 1, then the coarse price of anarchy of Gα is at most λ

1−µ .

PROOF.Let F be a coarse equilibrium of the game Gα. Thus, F is a distribution over
feasible flows f . Let f∗ be a feasible flow minimizing C. Consider a player type S and
an infinitesimally small player of type S. F induces a distribution FS over flows fS for
players of type S, and thus also over strategies s ∈ S for those players. The distribution
satisfies ProbfS∼FS [s = S | fS ] = fS,S/rS . The expected cost of a player of type S under
F is thus

E(s,f)∼F

[∑
e∈s

de(fe) + αfed
′
e(fe)

]
= Ef∼F

[∑
S∈S

fS,S
rS
·
∑
e∈S

de(fe) + αfed
′
e(fe)

]
(22)

=
1

rS
·
∑
S∈S

Ef∼F

[
fS,S ·

∑
e∈S

de(fe) + αfed
′
e(fe)

]
, (23)

by linearity of expectation. Because F is a coarse equilibrium, it also satisfies

E(s,f)∼F

[∑
e∈s

de(fe) + αfed
′
e(fe)

]
≤ Ef∼F

[∑
e∈s′

de(fe) + αfed
′
e(fe)

]
(24)

for every s′ ∈ S.
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For each s′ ∈ S, we multiply (24) by f∗S,s′ ; adding these inequalities for all s′ ∈ S;
substituting Equation (23) and using that

∑
s′∈S f

∗
S,s′ = rS then implies that

∑
S∈S

Ef∼F

[
fS,S ·

∑
e∈S

de(fe) + αfed
′
e(fe)

]
≤
∑
S∈S

f∗S,S ·Ef∼F

[∑
e∈S

de(fe) + αfed
′
e(fe)

]
.

Summing over all types S, using linearity of expectation, and changing the order of
summation between (S, S) and e then gives

Ef∼F

[∑
e

fede(fe) + αf2
e d
′
e(fe)

]
≤ Ef∼F

[∑
e

f∗e de(fe) + αf∗e fed
′
e(fe)

]
,

which can be rearranged to give

Ef∼F [C(f)] = Ef∼F

[∑
e

fede(fe)

]
≤ Ef∼F

[∑
e

f∗e de(fe) + α(f∗e − fe)fed′e(fe)

]
.

By the definition of smoothness for non-atomic games (see Equation (6)), the right-
hand side is upper-bounded by

Ef∼F [λC(f∗) + µC(f)] = λC(f∗) + µEf∼F [C(f)] .

Now, solving for Ef∼F [C(f)] shows that Ef∼F [C(f)] ≤ λ
1−µ · C(f∗).

Proposition 3.8. Let Gα be an α-altruistic extension of a game with sum-bounded
social cost function C. Let s∗ be a strategy profile minimizing the social cost function C
of Gα, and let s1, . . . , sT be a sequence of strategy profiles in which every player i ∈ N
experiences vanishing average external regret, i.e.,

T∑
t=1

Cαi (st) ≤

(
min
s′i∈Σi

T∑
t=1

Cαi (s′i, s
t
−i)

)
+ o(T ).

The average cost of this sequence of T strategy profiles then satisfies

1

T

T∑
t=1

C(st) ≤ RPoA(α) · C(s∗) as T →∞.

PROOF.Consider a sequence s1, . . . , sT of strategy profiles of an α-altruistic game
Gα that is (λ, µ,α)-smooth with µ < 1. For every i ∈ N and t ∈ {1, . . . , T}, define

δi,t = Cαi (st)− Cαi (s∗i , s
t
−i).

Let ∆t =
∑n
i=1 δi,t. We have

∆t =

n∑
i=1

Cαi (st)− Cαi (s∗i , s
t
−i)

=

n∑
i=1

(
(1− αi)Ci(st) + αiC(st)−

(
(1− αi)Ci(s∗i , st−i) + αiC(s∗i , s

t
−i)
))

≥ C(st)−
n∑
i=1

(
Ci(s

∗
i , s

t
−i) + αi(C−i(s

∗
i , s

t
−i)− C−i(st))

)
,

where the inequality holds because C is sum-bounded.
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Exploiting the (λ, µ,α)-smoothness property, we obtain

C(st) ≤ λ

1− µ
C(s∗) +

1

1− µ
∆t. (25)

By assumption, s1, . . . , sT is a sequence of strategy profiles in which every player ex-
periences vanishing average external regret, i.e., for every i ∈ N , Inequality (8) holds.
We obtain that for every player i ∈ N :

1

T

T∑
t=1

δi,t ≤
1

T

(
T∑
t=1

Cαi (st)− min
s′i∈Σi

T∑
t=1

Cαi (s′i, s
t
−i)

)
= o(1).

Using this inequality and (25), we obtain that the average cost of the sequence of T
strategy profiles is

1

T

T∑
t=1

C(st) ≤ λ

1− µ
C(s∗) +

1

1− µ

n∑
i=1

(
1

T

T∑
t=1

δi,t

)
T→∞−→ λ

1− µ
C(s∗).

Proposition 3.9. Consider a uniformly α-altruistic non-atomic congestion game Gα
that is (λ, µ, α)-smooth with µ < 1. Let f∗ be a flow minimizing the social cost C, and
f1, . . . , fT a sequence of flows in which every infinitesimal player y ∈ [0, r] experiences
vanishing average external regret in the following sense:

T∑
t=1

∑
e∈φt(y)

de(f
t
e) + αf ted

′
e(f

t
e) ≤ min

Ŝ∈τ(y)

T∑
t=1

∑
e∈Ŝ

(de(f
t
e) + αf ted

′
e(f

t
e)) + o(T ).

The average cost of this sequence of T flows then satisfies

1

T

T∑
t=1

C(f t) ≤ RPoA(α) · C(f∗) + o(1)

as T →∞.

PROOF.Consider a sequence f1, . . . , fT of flows with vanishing average external re-
gret in the sense defined above. Let φt be the corresponding mappings of strategies;
similarly, let φ∗ be a mapping from [0, r] corresponding to the optimum flow f∗. For ev-
ery player y ∈ [0, r] and t ∈ {1, . . . , T}, define the difference in cost between y’s strategy
at time t and the cost y would incur by unilaterally choosing the strategy φ∗(y):

δy,t =
∑

e∈φt(y)

(de(f
t
e) + αf ted

′
e(f

t
e))−

∑
e∈φ∗(y)

(de(f
t
e) + αf ted

′
e(f

t
e)).

Applying the vanishing regret condition to player y, we obtain that 1
T

∑T
t=1 δy,t ≤ o(1).

Let ∆t =
∫ r

0
δy,tdy. By exchanging the integration and summation,

∆t(f
t) =

∑
e∈E

f tede(f
t
e)−

∑
e∈E

(f∗e de(f
t
e) + (f∗e − f te)αf ted′e(f te)) ≥ C(f t)− (λC(f∗) + µC(f t)),

by the (λ, µ, α)-smoothness property (6). Solving for C(f t), we obtain

C(f t) ≤ λ

1− µ
C(f∗) +

1

1− µ
∆(f t).
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Combining this bound with the vanishing regret condition, the average cost of the
sequence of T flows is

1

T

T∑
t=1

C(f t) ≤ λ

1− µ
· C(f∗) +

1

1− µ
· 1

T
·
T∑
t=1

δy,t →
λ

1− µ
· C(f∗),

as T →∞.

B. MISSING PROOFS FOR SECTION 4
Lemma 4.3. Without loss of generality, all delay functions are of the form de(x) = x.

PROOF.First, we may assume that for every delay function de, the ae and be co-
efficients are integers. This can be ensured by multiplying all coefficients among all
facilities by the least common multiple of all denominators. In the resulting game,
all coefficients are integers, the price of anarchy is the same, and so is the set of all
equilibria.

Next, we can assume that be = 0 for all e ∈ E. To show this, we replace any facility
e ∈ E with delay function d(x) = aex+be by n+1 facilities e0, . . . , en with delay functions
de0(x) = aex and dej (x) = bex for 1 ≤ j ≤ n. We then adapt the strategy space Σi of
each player i as follows: we replace every strategy si ∈ Σi in which e occurs by the
strategy si \ {e} ∪ {e0, ei}. There is an obvious bijection between the strategy profiles
in the original game and those in the new game, preserving the values of individual
cost functions and the social cost function. (Notice that this construction exploits the
fact that all players have unit weight, and would not carry over to weighted congestion
games.)

Finally, for the same reason, we can also assume that ae = 1 for all e ∈ E. We
replace e with facilities e1, . . . , eae , each having delay function dei(x) = x, and adapt
the strategy space Σi of each player i by replacing each strategy si in which e occurs
by si \ {e} ∪ {e1, . . . , aae}. Now, all delay functions are de(x) = x.

Lemma 4.5. For all x, y ∈ N0, η ∈ [0, 1] and β ∈ [0, 1], and all γ ∈ [ 1
3 (1 + η− 2βη), 1 + η],

((1 + η)x+ 1)y + βη(1− x)x ≤ (2 + η − γ)y2 + γx2.

PROOF.The inequality is equivalent to

((1 + η)x+ 1)y + βη(1− x)x− (2 + η)y2 ≤ γ(x2 − y2).

Assume that x = y. The inequality is then trivially satisfied because x ≤ x2 for all
x ∈ N0. Next suppose that x > y. Then, we need to show that for all γ in the given
range,

γ ≥ ((1 + η)x+ 1)y + βη(1− x)x− (2 + η)y2

x2 − y2
.

We show that the maximum of the expression on the right-hand side is attained by
x = 2 and y = 1. First, we fill in these values: the right-hand side evaluates to 1

3 (1 +

η−2βη) ≥ 0, and γ ≥ 1
3 (1 +η−2βη) by assumption on γ. We now write x as y+a, a ≥ 1,

and rewrite the right-hand side as

f(y, a) =
(1 + η)y + βη

2y + a
+

(1 + βη)(y − y2)

a(2y + a)
− βη.

Because we know that there are choices of y and a for which f(y, a) is positive (e.g.,
when y = 1 and a = 1), and because a only occurs in the denominators, f(y, a) reaches
its maximum when a = 1. So we assume that a = 1. When we then set y = 0, we see
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that f(0, 1) = 0, so f(1, 1) ≥ f(0, 1). When y > 1, we can write y as w + 2, where w ≥ 0;
we can now further rewrite f(y, a) as

f(w + 2, 1) =
2η − 6βη

2w + 5
− (2− η + 5βη)w + (1 + βη)w2

2w + 5
≤ 2η − 6βη

2w + 5
.

When 2η − 6βη is negative, this term is certainly less than f(1, 1). When 2η − 6βη is
positive, we have

f(w + 2, 1) ≤ 2η − 6βη

2w + 5
≤ 2η − 6βη

5
≤ 1

3
(2η − 6βη) ≤ 1

3
(1 + η − 2βη) = f(1, 1).

Thus, f(y, a) ≤ f(1, 1) = 1
3 (1 + η− 2βη); in particular, the inequality is always satisfied

when γ ≤ 1
3 (1 + η − 2βη).

The final case is when x < y. Then, the inequality we need to prove is equivalent to

γ ≤ (2 + η)y2 − ((1 + η)x+ 1)y − βη(1− x)x

y2 − x2
.

We show that the minimum of the expression on the right-hand side is attained by
x = 0 and y = 1. First, we fill in these values: the right-hand side then evaluates to
1 + η, so for all choices of γ, we do indeed have γ ≤ 1 + η. We now write y = x+ a, a ≥ 1,
and rewrite the right-hand side as

g(x, a) =
(1 + βη)x2 − (1 + a+ (a+ β)η)x− a

a(2x+ a)
+ 2 + η.

Suppose first that x = 0 and that a ≥ 2. Then we can write a as 1 + b, b > 0, and
therefore

g(0, 1 + b) = 2 + η − 1

1 + b
≥ 3

2
+ η ≥ 1 + η = g(0, 1).

When x ≥ 1, we can write x = b+ 1, b ≥ 0. We then have

g(1 + b, a) = 2 + η − 2 + η + (1− η)b

2b+ 2 + a
+

(1 + βη)(b2 + b)

a(2b+ 2 + a)
.

The last of these terms is positive; hence,

g(1 + b, a) ≥ 2 + η − 2 + η + (1− η)b

2b+ 2 + a
≥ 2 + η − 2 + 1 + b

2b+ 2 + a

≥ 2 + η − 1 = 1 + η = g(0, 1).

This shows that g(x, a) ≥ g(0, 1) = 1 + η for all x, a, and in particular, for the choices of
γ we allow, γ ≤ 1 + η ≤ g(x, a).

C. MISSING PROOFS FOR SECTION 6
Proposition 6.3. Let (E, r,d, α) be an instance with uniform altruism α ≥ 0. Then, f is
a Nash equilibrium for α-altruistic players if and only if it minimizes

∑
S⊆E d

(α)
S (f)f̃S

over all solutions f̃ feasible for (E, r).

PROOF.By fixing a Nash equilibrium f ,
∑
S d

(α)
S (f)f̃S is the social cost of a feasible

solution f̃ , where the cost of each set S is the congestion-independent constant d(α)
S (f).

If a flow f is at Nash equilibrium for α-altruistic players, then a player of type S selects
a set S ∈ S to minimize d(α)

S (f), so
∑
S d

(α)
S (f)f̃S is minimized over all feasible solutions

f̃ . Conversely, if a solution f̃ is not at Nash equilibrium for α-altruistic players, a player
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can decrease his (perceived) cost at f̃ by deviation. Thus,
∑
S d

(α)
S (f)f̃S (or, equivalently,∑

e d
(α)
e (fe)f̃e) is not minimized.

Theorem 6.7. If (E, r,d, α) has delay functions in Cp, then the coarse price of anarchy
is at most ((

1 + αp

1 + p

)1/p(
1 + αp

1 + p
− 1− αp

)
+ 1 + αp

)−1

.

PROOF.As observed in [Roughgarden 2005], it suffices to focus only on polynomials
d(x) = axi with x ≤ p. For any instance (E, r,d, α) with arbitrary polynomials can be
equivalently transformed into one with only such monomials, by replacing each facility
with delay function de(x) =

∑p
i=0 aix

i by a set of p+1 new facilities, the ith of which has
delay function d̃e,i(x) = aix

i. In order to compute the anarchy value σ(d) of a nonzero
polynomial function d(x) = axi, we first write x = λr in Equation (13) and cancel out a
factor r, obtaining that

σ(α)(d) = sup
r≥0

max
λ≥0

(
λd(λr)

d(r)
+ (1− λ)

(
1 +

αrd′(r)

d(r)

))−1

.

For any r, let λr ≥ 0 be the maximizer of this expression. Setting the derivative of the
expression to zero shows that λr must satisfy d(1)(λr) = d(α)(r). Notice that because

d(1)(0 · r) ≤ d(α)(r) ≤ d(1)(r)

and d(1)(·) is continuous, there is in fact a λ ∈ [0, 1] solving the equation.
Next, we calculate λr in the special case d(x) = axi. Solving the equation d(1)(λr) =

d(α)(r) for λr gives us that λr = ( 1+αi
1+i )1/i, which is independent of r. Thus,

d(λrr)

d(r)
=

1 + αi

1 + i
and

d′(r)

d(r)
=
i

r
.

Substituting these values into the expression for σ(α)(d) gives us that

σ(α)(d) =

((
1 + αi

1 + i

)1/i(
1 + αi

1 + i
− 1− αi

)
+ 1 + αi

)−1

,

which is independent of a and increasing in i (by a derivative test). Hence, the largest
σ(d) is attained for d = xp, giving

σ(α)(Cp) =

((
1 + αp

1 + p

)1/p(
1 + αp

1 + p
− 1− αp

)
+ 1 + αp

)−1

,

as claimed.

D. MISSING PROOF FOR SECTION 7
Proposition 7.5. Conditioned on the mean of ψ being any given ᾱ, the quantity(∫ 1

0
ψ(t) 1

σ(t)(C)dt
)−1

is maximized when ψ has a point mass of ᾱ on 1 and 1 − ᾱ on
0. It is minimized when ψ has a point mass of 1 on ᾱ.

PROOF.We will show that 1
σ(α)(C) is concave as a function of α. Both results then

follow readily from Jensen’s Inequality. To prove concavity, let p1, p2 ≥ 0 satisfy p1 +
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p2 = 1. For any delay function d ∈ C, writing x = λr in Definition 6.5 and canceling a
factor r gives us

1

σ(p1α1+p2α2)(d)
= inf
r,λ≥0

λd(λr) + (1− λ)d(r) + (1− λ)(p1α1 + p2α2)d′(r)

d(r)

= inf
r,λ≥0

(
p1(λd(λr) + (1− λ)d(r) + (1− λ)α1d

′(r))

d(r)

+
p2(λd(λr) + (1− λ)d(r) + (1− λ)α2d

′(r))

d(r)

)
≥ inf
r,λ≥0

p1(λd(λr) + (1− λ)d(r) + (1− λ)α1d
′(r))

d(r)

+ inf
r,λ≥0

p2(λd(λr) + (1− λ)d(r) + (1− λ)α2d
′(r))

d(r)

= p1
1

σ(α1)(d)
+ p2

1

σ(α2)(d)
.

Finally, we take an infimum over all d ∈ C on both sides to complete the proof of
concavity.
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