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Abstract. We introduce natural strategic games on graphs, which cap-
ture the idea of coordination in a local setting. We show that these games
have an exact potential and have strong equilibria when the graph is a
pseudoforest. We also exhibit some other classes of graphs for which a
strong equilibrium exists. However, in general strong equilibria do not
need to exist. Further, we study the (strong) price of stability and an-
archy. Finally, we consider the problems of computing strong equilibria
and of determining whether a joint strategy is a strong equilibrium.

1 Introduction

Motivation. In game theory coordination games are used to model situations in
which players are rewarded for agreeing on a common strategy, e.g., by deciding
on a common technological or societal standard. In this paper we propose and
study a very simple and natural class of coordination games, which we call
coordination games on graphs: We are given an undirected graph the nodes of
which correspond to the players of the game. Each player chooses a colour from a
set of colours available to her. The payoff of a player is the number of neighbours
who choose the same colour.

This model captures situations in which players have to choose between mul-
tiple competing providers offering the same service (or product), such as peer-to-
peer networks, social networks, photo sharing platforms, mobile phone providers,
etc. In these applications the benefit of a player subscribing to a specific provider
increases as certain other players (e.g., friends, relatives, etc.) opt for the same
provider. As a consequence, players have an interest to coordinate their choices
in order to maximize their benefit.

Our contributions. The focus of our investigations is on coalitional equilibria in
coordination games on graphs. Recall that in a strong equilibrium (k-equilibrium)
no coalition of players (of size at most k) can deviate so that every player of the
coalition strictly improves her payoff. Our main contributions are as follows:

1. Existence. We show that k-equilibria for k ≥ 5 do not exist in general.
Further, we identify several graph structural properties that guarantee the



existence of strong equilibria and also ensure that every sequence of profitable
joint deviations terminates. Further, we show that 2-equilibria (and hence
Nash equilibria) always exist.

2. Inefficiency. We derive almost matching lower and upper bounds of 2n−1
k−1 −1

and 2n−1
k−1 , respectively, on the k-price of anarchy. Further, the strong price of

anarchy is exactly 2. We also provide conditions on the graph guaranteeing
that the strong price of stability is 1.

3. Computability. We prove that the problem of deciding whether a given joint
strategy is a k-equilibrium is co-NP-complete. On the positive side, for cer-
tain graph classes the decision problem is in P and we can efficiently compute
a strong equilibrium.

Related work. Given their simplicity, it is not surprising that coordination games
on graphs are related to various well-studied types of games. Due to lack of space,
we only mention the most relevant references below.

First, they are similar to additively separable hedonic games [6, 4]. Here play-
ers are nodes on a weighted graph and form coalitions. The payoff of a node
is the total weight of all incident edges to neighbours in the same coalition.
These games were originally introduced in a cooperative setting but have more
recently also been investigated in a strategic setting, with a particular focus on
computational issues (e.g., [8]); for a survey see [7]. Aziz and Brandl [3] study
the existence of strong equilibria in these games. Despite the similarity between
these games and our coordination games, in the former every player can choose
to enter every possible coalition and hence they do not generalize the games we
study here.

Next, coordination games on graphs are polymatrix games (see [10]). Recall
that this is a finite strategic game in which the payoff for each player is the
sum of the payoffs obtained from the individual 2-player games she plays with
each other player separately. Hoefer [9] studied clustering games that are also
polymatrix games based on graphs. However, in his setup each player has the
same set of strategies, so the resulting games are not comparable to ours.

When the graph is complete, coordination games on graphs are special cases
of congestion games with monotone increasing utility functions. Rozenfeld and
Tennenholtz [12] give a characterization of the existence of strong equilibria for
these games. Bilò et al. [5] study congestion games in which the players form a
(possibly directed) influence graph, focusing on the existence of Nash equilibria.
However, because the latency functions are assumed to be increasing in the
number of players, these games do not cover the games we study here.

As for the solution concepts, strong equilibria were introduced in [2]; the
strong price of anarchy was defined in [1]; and finally, exact potentials were
introduced in [11].

2 Coordination games on graphs

We next introduce some standard notion and define our coordination games on
graphs.



A strategic game G := (N, (Si)i∈N , (pi)i∈N ) consists of a set N :=
{1, . . . , n} of n > 1 players and a non-empty set Si of strategies and a payoff
function pi : S1× · · · ×Sn→ R for each player i ∈ N . We denote S1× · · · ×Sn

by S and call each element s ∈ S a joint strategy .
We call a non-empty subset K := {k1, . . . , km} of N a coalition . Given a

joint strategy s we abbreviate the sequence (sk1
, . . . , skm

) of strategies to sK ;
we also write (sK , s−K) instead of s. Given two joint strategies s and s′ and a
coalition K, we say that the players in K can profitably deviate from s to s′ if
s′ = (s′K , s−K) and pi(s

′) > pi(s) for every player i ∈ K. A joint strategy s a k-
equilibrium (1 ≤ k ≤ n) if no coalition of at most k players that can profitably
deviate from s. Using this definition, a Nash equilibrium is a 1-equilibrium
and a strong equilibrium is an n-equilibrium.

Given a joint strategy s, its social welfare is defined as SW (s) =∑
i∈N pi(s). When the social welfare of s is maximal we call s a social op-

timum . Given a finite game that has a k-equilibrium its k-price of anarchy
(resp. stability) is the ratio SW (s)/SW (s′), where s is a social optimum and
s′ is a k-equilibrium with the lowest (resp. highest) social welfare. In the case of
division by zero, we interpret the outcomes as ∞. The (strong) price of an-
archy refers to the k-price of anarchy with k = 1 (resp. k = n). The (strong)
price of stability is defined analogously.

A coalitional improvement path , in short a c-improvement path , is
a maximal sequence (s1, s2, . . .) of joint strategies such that for every k > 1
there is a coalition K such that sk is a profitable deviation of the players in K
from sk−1. Clearly, if a c-improvement path is finite, its last element is a strong
equilibrium. We say that G has the finite c-improvement property (c-FIP)
if every c-improvement path is finite.

Our coordination games on graphs are defined as follows: We are given a
finite set of colours M , an undirected graph G = (V,E) without self-loops, and
a colour assignment A. The latter is a function that assigns to each node i ∈ V
a non-empty set of colours Ai ⊆M . Let Ni denote the set of all neighbours of
node i, i.e., Ni = {j ∈ V | {i, j} ∈ E}. We define a strategic game G(G,A) as
follows:

– the players are identified with the nodes, i.e., N = V ,
– the set of strategies of player i is the set of colours Ai ⊆M ,
– the payoff function of player i is pi(s) = |{j ∈ Ni | si = sj}|.

So each node simultaneously chooses a colour and the payoff to the node is the
number of neighbours who chose the same colour. Subsequently, we refer to these
games simply as coordination games.

3 Existence

We identify several graph structural properties that guarantee the existence of
strong equilibria in coordinate games. Most of our existence results are based on
the following key lemma.



Given a set of nodes K, we denote by G[K] the subgraph of G induced by K
and by E[K] the set of edges in E that have both endpoints in K. Recall that an
edge set F ⊆ E[K] is a feedback edge set of G[K] if the graph (K,E[K] \ F )
is acyclic. Given a joint strategy s we denote by E+

s the set of edges {i, j} ∈ E
such that si = sj .

Lemma 1 (Key lemma). Suppose a coalition K can profitably deviate from s
to s′. Let F be a feedback edge set of G[K]. Then

SW (s′)− SW (s) > 2|F ∩ E+
s | − 2|F ∩ E+

s′ |.

Using this key lemma, we can derive several existence results.

Theorem 1. Every c-improvement path in which deviations of coalitions of size
at most 2 are allowed is finite. In particular, 2-equilibria (and thus Nash equi-
libria) always exist.

Theorem 2. Every coordination game with at most 2 colours has the c-FIP.

For a colour x ∈ M let Vx = {i ∈ V | x ∈ Ai} be the set of nodes that can
choose x. We call G a colour forest (with respect to A) if G[Vx] is a forest for
all x ∈M .

Theorem 3. Every coordination game on a colour forest has the c-FIP.

Recall that a pseudoforest is a graph in which every connected component
contains at most one cycle.

Theorem 4. Every coordination game on a pseudoforest has the c-FIP.

Theorem 5. Let G be such that cycles are pairwise edge-disjoint. Let k be the
minimum length of a cycle in G. Then every coalitional improvement path of
coalitions of size at most k is finite. Hence a k-equilibrium exists.

We also establish the c-FIP property for some additional classes of coordina-
tion games. We call a coordination game on a graph G uniform if for every joint
strategy s and for every edge {i, j} ∈ E it holds: if si = sj then pi(s) = pj(s).

Theorem 6. Every uniform coordination game has the c-FIP.

A class of coordination games that we can capture by Theorem 6 is as follows.
We say that G is colour complete (with respect to A) if each component of
G[Vx] is complete for every x ∈M . In particular, every complete graph is colour
complete.

Corollary 1. Every coordination game on a colour complete graph has the c-
FIP.

Above we identified sufficient properties of graphs that ensure the existence of
strong equilibria. In general, coordination games may not admit strong equilibria.
To see this, consider the coordination game depicted in Figure 1. It is not hard
to verify that for every joint strategy there is an improving move by a coalition
of size at most 5. Thus, 5-equilibria (and hence strong equilibria) do not need
to exist.
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Fig. 1. A coordination game with three colours that does not admit a 5-equilibrium.

4 Inefficiency

The next two theorems summarize our results on the inefficiency of k-equilibria.

Theorem 7. The price of anarchy of coordination games is ∞; the strong price
of anarchy is 2. Further, for all k ∈ {2, . . . , n − 1}, the k-price of anarchy for
coordination games is between 2n−1

k−1 − 1 and 2n−1
k−1 .

Theorem 8. The strong price of stability is 1 in each of the following cases: G
is a pseudoforest; G is a colour forest; there are only two colours.

5 Computation

In general it is hard to decide whether a given joint strategy is a k-equilibrium.

Theorem 9. Given a joint strategy s of a coordination game and k ∈ {1, . . . , n},
it is co-NP-complete to decide whether s is a k-equilibrium.

However, we can derive positive results for colour forests and pseudoforests.

Theorem 10. Let G be a colour forest. Then there exists an algorithm that
determines in polynomial time whether a given joint strategy is a k-equilibrium.
Further, a strong equilibrium can be computed in polynomial time.

Theorem 11. Let G be a pseudoforest. Then a strong equilibrium can be com-
puted in polynomial time.

6 Extensions and future work

A natural generalization of our games are coordination games on weighted
graphs. For these games, Theorem 7 continues to hold, while Theorem 1 does



not. An interesting direction which we leave for future work is to derive a charac-
terization of graph classes that guarantee the existence of strong equilibria. Yet
another generalization is to allow players to choose multiple colours. Our results
on the existence and inefficiency of equilibria then continue to hold; details are
deferred to the full version of the paper.

An intriguing open question is whether k-equilibria exist for k = 3, 4. Recall
that they are guaranteed to exist for k ≤ 2 and may not exist for k ≥ 5. Also it
would be interesting to derive existence results for other graph classes.
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