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Abstract. We introduce a new class of games, called social contribution
games (SCGs), where each player’s individual cost is equal to the cost
he induces on society because of his presence. Our results reveal that
SCGs constitute useful abstractions of altruistic games when it comes
to the analysis of the robust price of anarchy. We first show that SCGs
are altruism-independently smooth, i.e., the robust price of anarchy of
these games remains the same under arbitrary altruistic extensions. We
then devise a general reduction technique that enables us to reduce the
problem of establishing smoothness for an altruistic extension of a base
game to a corresponding SCG. Our reduction applies whenever the base
game relates to a canonical SCG by satisfying a simple social contribu-
tion boundedness property. As it turns out, several well-known games
satisfy this property and are thus amenable to our reduction technique.
Examples include min-sum scheduling games, congestion games, second-
price auctions and valid utility games. Using our technique, we derive
mostly tight bounds on the robust price of anarchy of their altruistic
extensions. For the majority of the mentioned game classes, the results
extend to the more differentiated friendship setting. As we show, our
reduction technique covers this model if the base game satisfies three
additional natural properties.

1 Introduction

The study of the inefficiency of equilibria in strategic games has been one of main
research streams in algorithmic game theory in the last decade and contributed
to the explanation of several phenomena observed in real life. More recently,
researchers have also started to incorporate more complex social relationships
among the players in such studies, accounting for the fact that players cannot
always be regarded as isolated entities that merely act on their own behalf (see
also [12]). In particular, the extent by which other-regarding preferences such as
altruism and spite impact the inefficiency of equilibria has been studied inten-
sively; see, e.g., [1, 4–7, 11, 15, 14, 16].

In this context, some counterintuitive results have been shown that are still
not well-understood. For example, in a series of papers [4, 5, 7] it was observed
that for congestion games the inefficiency of equilibria gets worse as players



become more altruistic, therefore suggesting that altruistic behavior can actually
be harmful for society. On the other hand, valid utility games turn out to be
unaffected by altruism as their inefficiency remains unaltered under altruistic
behavior [7]. These discrepancies triggered our interest in the research conducted
in this paper. The basic question that we are asking here is: What is it that
impacts the inefficiency of equilibria of games with altruistic players?

To this aim, we consider two different models that have previously been
studied in the literature: the altruism model [7] and the friendship model [1]. In
both models, one starts from a strategic game (called the base game) specifying
the direct cost of each player and then extends this game by defining the perceived
cost of each player as a function of his neighbors’ direct costs. In the altruism
model, player i’s perceived cost is a convex combination of his direct cost and
the overall social cost. In the more general friendship model, player i’s perceived
cost is a linear combination of his direct cost and his friends’ costs.

In order to quantify the inefficiency of equilibria in our games we resort to
the concept of the price of anarchy (PoA) [18], which is defined as the worst-
case relative gap between the cost of a Nash equilibrium and a social optimum
(over all instances of the game). By now, a standard approach to prove upper
bounds on the PoA is through the use of the smoothness framework introduced
by Roughgarden [19]. Basically, this framework allows us to derive bounds on
the robust price of anarchy by showing that the underlying game satisfies a
certain (λ, µ)-smoothness property for some parameters λ and µ. The robust
PoA holds for various solution concepts, ranging from pure Nash equilibria to
coarse correlated equilibria (see, e.g., Young [24]).

The original smoothness framework [19] has been extended to both the altru-
ism and the friendship model in [7] and [1], respectively. Applying these adapted
smoothness frameworks to bound the robust PoA is often technically involved
because of the altruistic terms that need to be taken into account additionally
(see also the analyses in [1, 7]).

Instead, we take a different approach here. As we will show, there is a nat-
ural class of games, which we term social contribution games (SCGs), that is
intimately connected with our altruism and friendship games. We establish a
general reduction technique that enables us to reduce the problem of establish-
ing smoothness for our altruism or friendship game to the problem of proving
smoothness for a corresponding SCG. The latter is usually much simpler than
proving smoothness for the altruism or friendship game directly. This also opens
up the possibility to derive better bounds on the robust PoA of these games
through the usage of our new reduction technique.

Our Contributions. Our main contributions are as follows:

– We introduce a new class of games, which we term social contribution games
(SCGs), where each player’s individual cost is defined as the cost he incurs
on society because of his presence. Said differently, player i’s cost is equal
to the difference in social cost if player i is present/absent in the game.
We show that SCGs are altruism-independently smooth, i.e., if the SCG is
(λ, µ)-smooth then every altruistic extension is (λ, µ)-smooth as well.
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Table 1. Robust PoA bounds derived in this paper for the friendship model.

Robust PoA Remarks
Games our results previous best

R||
∑
j wjCj = 4? ≤ 23.31§ [1] RPoA = 4 (selfish players) [10]

P ||
∑
j Cj ≤ 2 RPoA = 3

2
− 1

2m
(selfish players)

linear congestion games = 17
3

≤ 7 [1] 5 ≤ PoA ≤ 17
3

(special case) [2]

p-poly. congestion games ≤ (1 + p)γ(p)† PoA = γ(p)† (selfish players) [8]
second-price auctions = 2 RPoA = 2 (selfish players) [22]

valid utility games = 2‡ = 2‡ [7] RPoA = 2 (selfish players) [19]
? holds only if a certain weight condition is satisfied
§ for the special case R||

∑
j Cj only

† γ(p) = pp(1−o(1))

‡ for the altruism model only

– We derive a general reduction technique to bound the robust PoA of both
altruism and friendship games. Basically, the reduction can be applied when-
ever the underlying base game is social contribution bounded, meaning that
the direct cost of each player is bounded by his respective cost in the corre-
sponding SCG (for the friendship model a slightly stronger condition needs
to hold). It is worth mentioning that this reduction preserves the (λ, µ)-
smoothness parameters, i.e., the altruism or friendship game inherits the
(λ, µ)-smoothness parameters of the SCG.

– We generalize smoothness for friendship extensions to weight-bounded social
cost functions. In previous papers, the used techniques usually required sum-
boundedness, which is a stronger condition [1]. Applying this definition to
scheduling games with weighted sum as social cost, we derive a nice char-
acterization of those scheduling games whose robust PoA does not grow for
friendship extensions.

– We show that social contribution boundedness is satisfied by several well-
known games, like min-sum scheduling games, congestion games, second-
price auctions and valid utility games. Using our reduction technique, we
then derive upper bounds on the robust PoA of their friendship/altruism
extensions. In most cases we prove matching lower bounds. The results are
summarized in Table 1.

Even though we focus on the complete information setting in this paper,
our results extend to the incomplete information setting in which players are
uncertain about the friendship levels of the other players. More details will be
given in the full version of the paper.

Related Work. Several articles propose models of altruism and spite [2, 4–7,
11, 14–16]. Among these articles, the inefficiency of equilibria in the presence
of altruism and spite was studied for various games in [2, 4–7, 11]. After its
introduction in [19], the smoothness framework has been extended to incomplete
information settings [20, 22] and altruism/spite settings [1, 7].
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The robust PoA for minsum scheduling (not taking altruism or friendship
into account) was studied in various papers. In [17] the authors show that it
does not exceed 2 for Q||

∑
j Cj (here we improve this bound to 3

2 −
1

2m for the
special case P ||

∑
j Cj). A robust PoA of 4 for R||

∑
j wjCj has been proven in

[9]. Our work on linear congestion games generalizes a result in [2]. They show
that the pure price of anarchy does not exceed 17/3 in a restricted friendship
setting (αij ∈ {0, 1}).

As indicated above, most related to our work are the articles [1, 7]. We signif-
icantly improve the bounds on the robust price of anarchy for congestion games
and unrelated machine scheduling games in [1] and at the same time simplify
the analysis by using our reduction technique.

2 Preliminaries

Let G = (N, {Σi}i∈N , {Ci}i∈N ) be a cost-minimization game, where N = [n]
is the set of players, Σi is player i’s strategy space, Σ =

∏
i∈N Σi is the set

of strategy profiles, and Ci : Σ → R denotes the cost player i must pay for a
given strategy profile. We assume that each player seeks to minimize his cost. A
social cost function C : Σ → R assigns a social cost to each strategy profile. We
usually require C to be sum-bounded, i.e., C(s) ≤

∑
i∈N Ci(s) for all s ∈ Σ.

We denote payoff-maximization games as G = (N, {Σi}i∈N , {Πi}i∈N ) with
social welfare Π : Σ → R. In this case, each player i tries to maximize his
utility (or payoff) Πi. Again, we usually assume that Π is sum-bounded, i.e.
Π(s) ≥

∑
i∈N Πi(s) for all s ∈ Σ.

Subsequently, we state most of the definitions and theorems only for cost-
minimization games. The payoff-maximization case works similarly by reversing
all inequalities. So, unless stated otherwise, G denotes a cost-minimization game
with social cost function C.

Definition 1. A coarse equilibrium is a probability distribution σ over Σ such
that the following holds: If s is a random variable with distribution σ, then for all
players i and all strategies s∗i ∈ Σi, Es∼σ[Ci(s)] ≤ Es−i∼σ−i

[Ci(s
∗
i , s−i)], where

σ−i is the projection of σ on Σ−i =
∏
j 6=iΣj . A mixed Nash equilibrium is a

coarse equilibrium σ that is the product of independent probability distributions
σi on Σi. A (pure) Nash equilibrium (NE) is a strategy profile s ∈ Σ such that
for all s∗ ∈ Σ, Ci(s) ≤ Ci(s∗i , s−i), where s−i = s|Σ−i

.

The coarse (resp. correlated, mixed, pure) price of anarchy (PoA) is defined
as sups C(s)/C(s∗), where s∗ minimizes C and s runs over the coarse (resp. cor-
related, mixed, pure) Nash equilibria of G.3 The coarse (resp. correlated, mixed,
pure) PoA of a class G of games is defined as the supremum of the respective
PoA values of games in G.

3 Similarly, we define the respective types of PoA for a payoff-maximization game as
supΠ(s∗)/Π(s), where s and s∗ are as above.
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Note that pure Nash equilibria constitute a subset of mixed Nash equilibria
which constitute a subset of coarse equilibria. This implies that the respective
prices of anarchy are non-decreasing (in this order).

Due to lack of space, several proofs were omitted from this extended abstract
and will be given in the full version of the paper.

2.1 The Altruism Model

Definition 2 ([7]). Let α ∈ [0, 1]N . The α-altruistic extension of G is defined
as the cost-minimization game Gα = (N, {Σi}i∈N , {Cαi }i∈N ), where for any
i ∈ N the perceived cost is the convex combination Cαi = (1− αi)Ci + αiC. We
call G the base game. The social cost function of Gα is again C, i.e., the cost
of the base game.

The higher the ‘altruism level’ αi, the more i cares about the society in
general.

Definition 3. Let G have sum-bounded social cost and let α ∈ [0, 1]N . Define
C−i := C − Ci. Gα is (λ, µ)-smooth if there exists an optimal strategy s∗ such
that for any strategy s ∈ Σ,∑

i∈N

(
Ci(s

∗
i , s−i) + αi(C−i(s

∗
i , s−i)− C−i(s))

)
≤ λC(s∗) + µC(s),

The robust PoA of Gα is defined as inf{ λ
1−µ |G

α is (λ, µ)-smooth, µ < 1}.

Theorem 1 ([7]). Let Gα be an α-altruistic extension of G. Then the coarse
(and thus the correlated, mixed and pure) PoA of Gα is bounded from above by
the robust PoA of Gα.

2.2 The Friendship Model

Definition 4 ([1]). Let α ∈ [0, 1]N×N such that αii = 1 for all i ∈ N . The α-
friendship extension of G is defined as Gα = (N, {Σi}i∈N , {Cαi }i∈N ), where for
any i ∈ N the perceived cost is defined as Cαi =

∑
j αijCj . Like in the altruism

model, we consider C, the social cost function of the base game, as the social
cost for Gα.

For players i and j, αij can be interpreted as the level of affection i feels
towards j. Note that if C =

∑
j Cj , then the altruism model is a special case of

the friendship model because in this case, Cαi = Ci+
∑
j 6=i αiCj (for α ∈ [0, 1]N ).

Next we adapt the smoothness definition in [1] for the friendship model to
the weighted player case.

Definition 5. Let Gα be friendship extension of a cost-minimization game with
a weight-bounded social cost function, i.e., C ≤

∑
i wiCi for some w ∈ RN+ . Gα
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is (λ, µ)-smooth if there exists a (possibly randomized) strategy profile s̄ such
that for all strategy profiles s and all optima s∗,∑

i∈N
wi
(
Ci(s̄i, s−i) +

∑
j 6=i

αij(Cj(s̄i, s−i)− Cj(s))
)
≤ λC(s∗) + µC(s).

We define the robust PoA of Gα as inf{ λ
1−µ |G

α is (λ, µ)-smooth, µ < 1}.

Theorem 2. Let Gα be a friendship extension of a cost-minimization game with
weight-bounded social cost function C. If Gα is (λ, µ)-smooth with µ < 1, then
the coarse PoA of Gα is at most λ

1−µ .

In both models, we can replace the deterministic factor α by a stochastic
variable that is distributed with respect to some probability distribution over
[0, 1]N (in the altruism model) or [0, 1]N×N (in the friendship model). Thus, we
can incorporate incomplete information into our model, reflecting the fact that
often players are uncertain about other players’ feelings. The bounds on the PoA
continue to hold in this case. We defer the details to the full version of the paper.

3 Social Contribution Games

Definition 6. We call G a (cost-minimization) social contribution game (SCG)
if for all players i there exists a default strategy ∅i such that for all s ∈ Σ,
Ci(s) = C(s)− C(∅i, s−i).

The strategy ∅i is often interpreted as ‘refusing to participate in the game’.
In that sense, i pays exactly the social cost he causes by choosing to play; in
the payoff-maximization case, he gets exactly what he contributes to the social
welfare. So social contribution games are ‘fair’ in some sense.

Basic utility games [23] satisfy the definition of an SCG (see also Section
7). In particular, the competitive facility location game (which is a basic utility
game by [23]) is an SCG.

We now show that social contribution games satisfy the following invariance
property with respect to their α-altruistic extensions.

Lemma 1. Any social contribution game is altruism-independently smooth,
i.e., for all α = (αi)i∈N and corresponding altruistic extensions Gα of G, the
robust price of anarchy in G and Gα is the same.

Proof. For all players i, C−i(s) = C(s)−Ci(s) is independent of si since C(s)−
Ci(s) = C(∅i, s−i). Thus for all strategy profiles s, s∗, and all α ∈ RN ,∑

i

(
Ci(s

∗
i , s−i) + αi(C−i(s

∗
i , s−i)− C−i(s))

)
=
∑
i

Ci(s
∗
i , s−i).

It follows that for all (λ, µ) ∈ R2, Gα is (λ, µ)-smooth iff G is. ut

The notions of α-altruistic extensions and α-independent smoothness can be
easily extended to α ∈ RN . The above lemma continues to hold in this case. So
even if a player wants to hurt society, the robust PoA stays the same for SCGs.
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3.1 Social Contribution Bounded Games

Definition 7. Assume C is sum-bounded. We call G social contribution bounded
(SC-bounded) if for all players i there exists a default strategy ∅i such that for
all s ∈ Σ, Ci(s) ≤ C(s) − C(∅i, s−i). In this case, we define the correspond-
ing social contribution game Ḡ = (N, {Σi}i∈N , {C̄i}i∈N ) by setting C̄i(s) =
C(s)− C(∅i, s−i).

As before, we think of ∅i as the option that i does not participate.4

The following theorem shows that if we want to get a bound on the PoA of
α-altruistic extensions of an SC-bounded game, we might as well consider the
corresponding SCG regardless of α.

Theorem 3. Let G be SC-bounded and suppose that the robust PoA of the cor-
responding SCG Ḡ is ξ. Then for all altruistic extensions Gα of G, the robust
PoA is at most ξ.

In order to be able to derive our results for the friendship extensions, we
need a slightly stronger definition.

Definition 8. A cost minimization game G with weight-bounded social cost is
strongly SC-bounded if for all s ∈ Σ and every player i:

1. Ci(∅i, s−i) = 0 (if i does not participate, he pays nothing)
2. ∀j 6= i : Cj(∅i, s−i) ≤ Cj(s) (other players’ costs can only increase if i

participates)
3. wi

∑
j(Cj(s) − Cj(∅i, s−i)) ≤ C(s) − C(∅i, s−i) (the weighted impact of i’s

participation on the players’ costs is bounded by his impact on the social cost)

If all weights are 1, then assumption (3) easily follows from
3b. C(s) =

∑
j Cj(s) (social cost is sum of individual costs).

Theorem 4. Let G be strongly SC-bounded. Suppose the robust PoA of Ḡ is ξ.
Then for all friendship extensions Gα, the robust PoA is at most ξ.

Proof. We have for every player i,

wi
(
Ci(s̄i, s−i) +

∑
j 6=i

αij(Cj(s̄i, s−i)− Cj(s))
)

(2)

≤ wi
(
Ci(s̄i, s−i) +

∑
j 6=i

αij(Cj(s̄i, s−i)− Cj(∅i, s−i))
)

4 Note that ∅i need not actually be an element of Σi. In many games (such as schedul-
ing or congestion games) it is not an option to not participate. So, formally we should
require that there exists a function C :

∏
i(Σi ∪ {∅i}) → R such that C|Σ = C and

Ci(s) ≤ C(s) − C(∅i, s−i) for all i and s. However, there is a natural way to extend
C (and Ci) on

∏
i(Σi ∪ {∅i}), as we will see later. For notational convenience, we

write C instead of C.
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(2)

≤ wi
(
Ci(s̄i, s−i) +

∑
j 6=i

(Cj(s̄i, s−i)− Cj(∅i, s−i))
)

(1)
= wi

∑
j

(Cj(s̄i, s−i)− Cj(∅i, s−i))
(3)

≤ C(s̄i, s−i)− C(∅i, s−i) = C̄i(s̄i, s−i).

Summing over all i, it follows that if Ḡ is (λ, µ)-smooth5, then so is Gα. ut

If all weights are 1, then SC-boundedness follows from strong SC-bounded-
ness. To see this, consider the case where α = 0 and carry out the proof of
Theorem 4 for s instead of (s̄i, s−i).

4 Minsum Machine Scheduling

A scheduling game G = (m,n, (pij)i∈M,j∈N , (wj)j∈N ) consists of a set of jobs
(players) [n] = {1, . . . , n} and a set of machines [m] = {1, . . . ,m}. For each
machine i and job j, pij ∈ R+ denotes the processing time of j on i. Furthermore,
wj is the weight of job j. The strategy space Σi of a job j is simply the set of
machines. By ∅i = ∅ we mean the strategy where i uses no machine.

Let x be a strategy profile. For a machine i, we denote by Xi the set of jobs
that are scheduled on i. Furthermore, xj denotes the machine j is assigned to.
Following the notation by Cole et al. [9], we define ρij = pij/wj . We assume that
the jobs on a machine are scheduled in increasing order of ρij , which is known as
Smith’s rule [21]; if two jobs on a machine have the same time-to-weight ratio,
we use a tie-breaking rule. The cost Cj of job j which it seeks to minimize is
simply its completion time. In the following, we assume for simplicity that the ρij
are pairwise distinct (but the results continue to hold without this assumption).
Then we can write Cj(x) =

∑
k∈Xi:ρik≤ρij pik. The social cost C we consider is

the weighted sum of the players’ completion times, i.e., C =
∑
j wjCj .

In the following, we use the three-field notation by Graham et al [13]. In this
notation, the problem we described is denoted by R||

∑
j wjCj . If all weights are

1, we write
∑
j Cj instead of

∑
j wjCj . Furthermore, if there are speeds si for

each machine i and fixed processing times pj for each job such that pij = pj/si,
we write Q instead of R. Finally, if we have in addition identical speeds si = 1
for all machines i, the problem is denoted by P .

4.1 R||
∑

j wjCj

Lemma 2 ([9]). For all strategy profiles x and x∗,∑
i∈[m]

∑
j∈X∗i

wjpij +
∑
i∈[m]

∑
j∈X∗i

∑
k∈Xi

wjwk min{ρij , ρik} ≤ 2C(x∗) +
1

2
C(x),

where X∗i is defined similarly to Xi as X∗i = {j ∈ J | x∗j = i}.
5 in the sense that there exist s̄ ∈ Σ and an optimal s∗ ∈ Σ such that for all s ∈ Σ it

holds that
∑
i Ci(s̄i, s−i) ≤ λC(s) + µC(s∗), generalizing Roughgarden’s definition

of smoothness [19].
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Proof. The claim is shown in the proof of [9, Theorem 3.2]. ut

Theorem 5. Let G be an instance of R||
∑
j wjCj that satisfies the following

condition for all jobs j, k and all machines i: ρij ≤ ρik implies wj ≤ wk (i.e.,
if k gets scheduled after j on i, then it is because of its processing time, not its
weight). Then the robust PoA of all friendship extensions Gα of G is at most 4.

For jobs j and k, αjk has an influence on j’s strategy in an equilibrium only
if there is a machine i such that k gets scheduled after j on i because j cannot
influence k’s costs otherwise. Hence the weight condition tells us that the only
jobs that could potentially have an influence on j are in fact the jobs that are at
least equally important as j. Hence j cannot ‘misplace his affections’ and care
too much about unimportant jobs.

Proof. First we show that G is strongly SC-bounded. Clearly, (1) and (2) are
satisfied. For (3), note that for all jobs j, strategy profiles x, and i = xj ,

wj
∑
k

(Ck(x)− Ck(∅, x−i)) = wj

(
Cj(x) +

∑
k∈Xi: ρik>ρij

pij

)
≤ wjCj(x) +

∑
k∈Xi: ρik>ρij

wkpij = C̄j(x),

where the inequality follows from the condition on the weights. We calculate

C̄j(x
∗
j , x−j) = wjCj(x

∗
j , x−j) +

∑
k∈Xi: ρik>ρij

wkpij

= wjpij +
∑

k∈Xi: ρik<ρij

wkwjρik +
∑

k∈Xi: ρik>ρij

wkwjρij

≤ wjpij +
∑
k∈Xi

wjwk min{ρij , ρik}.

Summing over all machines i and j ∈ X∗i , this is the same expression as in
Lemma 2. Hence

∑
j C̄j(x

∗
j , x−j) ≤ 2C(x∗) + 1

2C(x) and Ḡ is (2, 1
2 )-smooth. It

follows by Theorem 4 that the robust PoA in Gα is at most 4. ut

This bound is tight and the weight condition is necessary. In fact, if we drop
it, the pure PoA is unbounded even for P ||

∑
j wjCj instances with unit-size

jobs. We defer these results to the full version.

4.2 P ||
∑

j Cj

Fix an ordering of the jobs such that pj > pj′ implies j > j′. We use the same
notation as in [17]: For a schedule x, a job j and a machine i, let hxi (j) = |{j′ >
j |xj′ = xj}|. This is the number of jobs that are scheduled after j on i. Using this
notation, we can write C̄j(x) = Cj(x)+hxxj

(j) ·pj for instances with unit speeds.
Throughout this section, let x̄ denote the randomized schedule that assigns each
job to each machine with probability 1

m .
The following theorem will be helpful to establish an upper bound on the

robust PoA for the friendship model and might be of independent interest.
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Theorem 6. For any schedule x and any optimal x∗,
∑
j Cj(x̄j , x−j) ≤ C(x∗)+

( 1
2−

1
2m )

∑
j pj. In particular, the robust price of anarchy of P ||

∑
j Cj is at most

3
2 −

1
2m . This bound is tight.

Theorem 7. Let G be an instance of P ||
∑
j Cj. Then the robust PoA for any

friendship extension Gα is at most 2.

Proof. Let x be arbitrary. Then by linearity of expectation,

E
[∑

j

C̄j(x̄j , x−j)
]

=
∑
j

E[Cj(x̄j , x−j)] +
∑
j

E[hxx̄j
(j)] · pj .

We know that

E[hxx̄j
(j)] =

1

m

∑
i

hxi (j) =
1

m
|{j′ ∈ J | j′ > j}| = E[hx̄xj

(j)].

Hence the second term evaluates as∑
j

E[hxx̄j
(j)] · pj =

∑
j

E[hx̄xj
(j)] · pj =

∑
j

E[Cj(x̄j , xj)]−
∑
j

pj .

We know by Theorem 6 that
∑
j E[Cj(x̄j , x−j)] ≤ C(x∗)+( 1

2−
1

2m )
∑
j pj . Hence∑

j

E[C̄j(x̄j , x−j)] = 2
∑
j

E[Cj(x̄j , x−j)]−
∑
j

pj ≤ 2C(x∗)− 1

m

∑
j

pj ≤ 2C(x∗),

for any schedule x∗. Hence the robust PoA for the friendship extension is at
most 2. ut

5 Congestion Games

An atomic congestion game G = (N,E, {Σi}i∈N , (de)e∈E) is given by a set E
of resources together with delay functions de : N→ R+ indicating the delay on
e for a given number of players using e. Each player’s strategy set consists of
subsets of E; Σi ⊆ P(E) for all i. For s ∈ Σ, let xe(s) = |{i ∈ N | e ∈ si}|. The
cost of each player i under s is given by Ci(s) =

∑
e∈si de(xe(s)). If all delay

functions are linear, we say that G is linear. Further, if all delay functions are
polynomials of maximum degree p with non-negative coefficients, we say that G
is p-polynomial. The social cost C is simply the sum over all individual cost. By
∅i = ∅ we mean the strategy where player i uses no machine.

It is known that we can without loss of generality assume that all latency
functions are of the form le(x) = x. This was first mentioned in [8]; for a proof
see [7]. The following lemma is shown in the proof of [8, Theorem 1].

Lemma 3 ([8]). Let G be a linear congestion game and s, s∗ ∈ Σ. Then∑
i Ci(s

∗
i , s−i) ≤

∑
e xe(s

∗)(xe(s) + 1).
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Lemma 4 ([2]). For any pair α, β ∈ N, it holds that 2
5α

2 + 17
5 β

2 ≥ β(2α+ 1).

Bilò et al. show in their paper [2] that the pure PoA lies between 5 and 17/3
for a restricted friendship setting, where αij ∈ {0, 1} for all i, j. We generalize
their result to the robust PoA for arbitrary αij ∈ [0, 1] and show tightness.

Theorem 8. Let G be a linear congestion game. Then the robust PoA of all
friendship extensions Gα is bounded by 17

3 ≈ 5.67. This bound is tight.

Proof. We have

C̄i(s) = Ci(s) +
∑
e∈si

|{j 6= i | e ∈ sj}| = Ci(s) +
∑
e∈si

xe(∅, s−i) ≥ Ci(s),

so G is SC-bounded. Also G is strongly SC-bounded: If i does not use any
resource, he experiences no cost; the other’s costs can only increase if another
player enters; and finally, C =

∑
j Cj .

Let s, s∗ ∈ Σ. We abbreviate xe(s) and xe(s
∗) by xe and x∗e, respectively.

The calculation of the robust PoA for Ḡ yields∑
i

C̄i(s
∗
i , s−i) =

∑
i

Ci(s
∗
i , s−i) +

∑
i

∑
e∈s∗i

xe(∅, s−i).

The first term is at most
∑
e x
∗
e(xe+1) by Lemma 3. The second term is bounded

by
∑
i

∑
e∈s∗i

xe(s) =
∑
e∈E xex

∗
e. Hence we get in total by Lemma 4

∑
e

x∗e(2xe + 1) ≤
∑
e

(
17

5
(x∗e)

2 +
2

5
x2
e

)
=

17

5
C(s∗) +

2

5
C(s).

It follows that the robust PoA of Ḡ is at most 17
5 /(1−

2
5 ) = 17

3 .
We show now that the bound of 17

3 is asymptotically tight. Let n ≥ 0.
Consider an instance with n+3 blocks of players B0, . . . , Bn+2 consisting of three
players each: Bk = {ak, bk, ck}. We construct a NE s and an optimal strategy
profile s∗ as follows. For all resources e, we set le(x) = x. For 0 ≤ k ≤ n, the
pattern of strategies repeats (see Figure 1). Here player i = ak has two strategies
si = {3k, 3k + 1, 3k + 2} and s∗i = {3k + 6}. Player i = bk has two strategies
si = {3k + 2, 3k + 3} and s∗i = {3k + 7}. Player i = ck has two strategies
si = {3k + 3, 3k + 4} and s∗i = {3k + 8}.

The strategies si of players in the final blocks Bn+1 and Bn+2 are defined
as above. However, we need to change the definition of s∗i because otherwise, s
is not a Nash equilibrium. So for each i ∈ Bn+1 ∪ Bn+2, we insert sets of new,
previously unused resources s∗i such that Ci(si) = |s∗i |.

We define αij = 1 for the following pairs of players: (ak, bk+1), (ak, ck+1),
(ak, ak+2) as well as (bk, ck+1), (bk, ak+2) and (ck, ak+2), (ck, bk+2), where 0 ≤
k ≤ n. All other αij are zero. Hence αij = 1 iff s∗i intersects sj . Note that if
si ∩ sj 6= ∅, then αij = 0.

Now, we claim that s is a NE. In fact, for all 0 ≤ k ≤ n and i = ak,
Cα(s) = C(s) +

∑
j 6=i αijCj(s) = 7 + 5 + 5 + 7 = 24, which equals Cαi (s∗, s−i) =

11



Bk−1

Bk

Bk+1

Bk+2

ak
bk
ck

Fig. 1. The strategy profiles s (grey) and s∗ (white). Columns correspond to resources.

4 + 6 + 6 + 8. A similar calculation shows Ci(s) = Ci(si, s−i) for i = bk, ck.
Observe that for k = n+ 1, n+ 2, and i ∈ Bk, Cαi (s) = C(s) = |s∗i | = C(s∗i , s−i)
by our construction of s∗i . Hence s is indeed a NE.

For k = 1, . . . , n, block Bk has the same cost: C(Bk) :=
∑
i∈Bk

Ci(s) = 17
and C∗(Bk) :=

∑
i∈Bk

Ci(s
∗) = 3. Let X = C(B0) + C(Bn+1) + C(Bn+2) and

X∗ = C∗(B0) + C∗(Bn+1) + C∗(Bn+2) and observe that these are constants
independent of n. It follows that

C(s)

C(s∗)
=

17n+X

3n+X∗
=

17 + o(n)

3 + o(n)
. ut

We obtain the following result for friendship extensions of p-polynomial con-
gestion games. Note that the pure PoA of the base game is γ(p) := pp(1−o(1)) [8].
That is, altruism increases the PoA by at most a factor of (1 + p) in this case.

Theorem 9. Let G be a p-polynomial congestion game. Then the robust PoA
of all friendship extensions Gα is bounded by (1 + p) · pp(1−o(1)).

6 Second-Price Auctions

A single-item auction G consists of an allocation rule a : Σ → N which deter-
mines which bidder gets the item and a pricing rule p : Σ → RN indicating how
much each player should pay. Each bidder i is assumed to have a certain valua-
tion vi ∈ R+ for the item. For a given bidding profile b ∈ RN+ , the social welfare
is Π(b) = va(b). Player i’s utility is given by Πi(b) = vi − pi(b) if he gets the
object and −pi(b) otherwise. In a second-price auction, the highest bidder gets
the item and pays the second highest bid, while everybody else pays nothing.

We do not allow overbidding, i.e., for all bidders i, bi ≤ vi. This is a standard
assumption because overbidding is a dominated strategy. We denote by β(b, i)
the name of the player who places the i-th highest bid in b. We write β(i)
instead of β(b, i) if the bidding profile is clear from the context. ∅i = 0 denotes
the strategy where bidder i bids nothing.

12



Note that here the friendship model is not a generalization of the altruism
model because Π 6=

∑
iΠi. We summarize our results in the following theorem.

Theorem 10. Let G be a second-price auction. Then the robust PoA of all
altruism extensions Gα is at most 2. Further, the coarse PoA of the class of
friendship extensions of G is exactly 2.

7 Valid Utility Games

A valid utility game [23] is defined as a payoff-maximization game G =
(N,E, {Σi}i∈N , {Π}i∈N , V ), where E is a ground set of resources, Σi ⊆ P(E)
and V is a submodular and non-negative function on E. The social welfare Π is
given by Π(s) = V (

⋃
i∈N si) and is assumed to be sum-bounded. Furthermore,

we require G to satisfy Πi(s) ≥ Π(s)−Π(∅, s−i) for all s ∈ Σ. If G additionally
satisfies the last inequation with equality, it is called basic utility game [23]. For
all players i, set ∅i = ∅.

Theorem 11 ([19]). The robust PoA of valid utility games with non-decreasing6

set function V is bounded by 2.

An example for valid utility games with non-decreasing set functions are
competitive facility location games without fixed costs [23].

The following theorem has already been proven in [7] and tightness of this
bound has been shown in [3] for the base game. We now use our framework to
provide a shorter proof that illustrates why the robust PoA does not increase
for altruistic extensions: The corresponding SCG falls into the same category of
games.

Theorem 12. Let G be a valid utility game with non-decreasing V . Then the
robust price of anarchy of every altruistic extension Gα of G is bounded by 2.

Proof. It follows directly from the definition that G is SC-bounded. It is easy to
verify that the corresponding SCG Ḡ = (N,E, {Σi}i∈N , {Π̄}i∈N , V ) is again a
valid utility game:

∑
i Π̄i(s) ≤

∑
iΠi(s) ≤ Π(s) and Π̄i(s) = Π(s)−Π(∅, s−i).

So the robust PoA of Ḡ is at most 2. Our claim follows by Theorem 3. ut
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