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Abstract. We study the inefficiency of equilibrium outcomes in bottle-

neck congestion games. These games model situations in which strategic
players compete for a limited number of facilities. Each player allocates
his weight to a (feasible) subset of the facilities with the goal to minimize
the maximum (weight-dependent) latency that he experiences on any of
these facilities. We derive upper and (asymptotically) matching lower
bounds on the (strong) price of anarchy of linear bottleneck congestion
games for a natural load balancing social cost objective (i.e., minimize
the maximum latency of a facility). We restrict our studies to linear
latency functions. Linear bottleneck congestion games still constitute a
rich class of games and generalize, for example, load balancing games
with identical or uniformly related machines with or without restricted
assignments.

1 Introduction

Load balancing games constitute an important class of strategic games that
capture many applications of practical relevance. These games model situations
in which a set of strategically acting players (or jobs) compete for a limited
number of resources (or machines). Every player chooses one of the resources
available to him and assigns his weight (or load) to this resource. The latency of
a resource depends on the total weight of the players using it. The goal of each
player is to select a resource such that the latency that he experiences on this
resource is minimized.

The study of load balancing games is motivated by the need for quantifying
the inefficiency caused by selfish behavior of a set of autonomous players that
utilize distributed processors upon which a system is built. The social cost ob-
jective of an assignment of loads to processors is measured by the makespan,
i.e., the completion time of the most loaded machine, which reflects the distance
from equi-distribution (balancing) of the load to the machines. Load balancing
games have recently been studied extensively for a variety of different machine
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environments, including identical [15], uniformly related [9, 11, 14, 15], restricted
assignment [5, 11], and unrelated machines [2].

A natural extension of load balancing games are the bottleneck congestion
games (BCGs) [6, 12]. Here, every player chooses a subset of the resources (also
called facilities in this context) from a set of feasible facility allocations and
assigns his weight to each of these facilities. The goal of each player is to select a
subset of the facilities such that the maximum latency over the chosen facilities is
minimized. Bottleneck congestion games generalize, for example, load balancing
games and network routing games, and have several applications in practice. De-
spite their importance, bottleneck congestion games have received only very little
attention in the literature and are far from being well-understood. In this paper
we study the inefficiency of stable outcomes in bottleneck congestion games.

Bottleneck congestion games essentially generalize the context of load bal-
ancing games by modeling the activity of each selfish player upon complexes of
interrelated resources. This generalization brings the model closer to practice, as
in most large scale computing systems the workload of a player occupies different
components of the system simultaneously. For example, instantiations of such
games emerge if the components form paths in networks, or if they correspond to
parallel processors, etc. It is natural to assume that each player wants to balance
his load across the different components available to him and hence attempts to
minimize the maximum latency of a facility that he uses.

One of the most prominent solution concepts for the prediction of outcomes
of rational behavior in strategic games is the Nash equilibrium concept. It de-
scribes outcomes that are resilient to unilateral player deviations. Throughout
this paper we will focus exclusively on pure Nash equilibria. A more general
solution concept is the strong equilibrium concept introduced by Aumann [3]. It
describes outcomes of strategic games that are stable with respect to pure devi-
ations of player subsets (also called coalitions). More precisely, an outcome of a
strategic game is a strong equilibrium if no coalition of the players can deviate
such that every member of the coalition strictly benefits. An outcome is said to
be a k-strong equilibrium if this property holds for all coalitions of size at most
k. Strong equilibria thus generalize the pure Nash equilibrium concept (k = 1).
Very recently, Harks, Klimm and Möhring [12] showed that (under rather general
assumptions) bottleneck congestion games always admit strong equilibria.

It is well known that equilibrium outcomes might be inefficient in the sense
that they are suboptimal with respect to some socially desirable objective func-
tion. The price of anarchy (PoA) [15–17] has become the standard measure to
assess the inefficiency of equilibrium outcomes. It is defined as the worst-case
ratio (over all instances) of the maximum cost of a Nash equilibrium outcome
and the cost of a socially optimal outcome. The strong price of anarchy (SPoA)
and the k-strong price of anarchy (k-SPoA) [2] refer to the natural adaptations
of this measure to strong and k-strong equilibrium outcomes, respectively.

Contribution. We study the inefficiency of both pure Nash equilibria and strong
equilibria of BCGs , under the natural assumption that the social cost of an
outcome refers to the maximum latency of a facility. We restrict our studies to



id. facilities arb. facilities (SPoA)
k-SPoA (lower) SPoA id. players arb. players
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{

2, ⌊ m

2k
⌋ + 1

}

2 2 O(m)
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{

√

2m + 1

4
− 1

2
, ⌈ m

k−1
⌉ − 1

}

Θ(
√

m) O(
√

n) Θ(m)

Table 1: Summary of the bounds obtained for the SPoA and the k-SPoA of linear
BCGs. The PoA of linear BCGs is at most 2m − 1 and there is an asymptotically
matching lower bound showing SPoA ≥ m − 1.

linear bottleneck congestion games, where the latency of each facility is a linear
function of the total weight assigned to it. These games still constitute a rich
class of games and generalize, for example, load balancing games with identical or
uniformly related machines with or without restricted assignments. We provide
upper and lower bounds on the (strong) price of anarchy for symmetric and
asymmetric linear BCGs (definitions will be given below). A summary of the
results that we obtain in this paper is given in Table 1. Here, we use n and m
to refer to the number of players and facilities, respectively.

1. We show that both the PoA and the SPoA of linear BCGs is Θ(m). More
precisely, we show that m ≤ PoA ≤ 2m − 1 and m − 1 ≤ SPoA ≤ m.

2. We derive better bounds for identically weighted players. We prove that
SPoA = 2 for symmetric linear BCGs and at most O(

√
n) and O(

√
mγ∗) for

asymmetric linear BCGs, where γ∗ refers to the cost of a socially optimal
outcome.

3. We consider the case of identical facilities, i.e., all facilities have identical
linear latency functions, and show that SPoA = Θ(

√
m).

4. We also give elaborate lower bounds on the k-SPoA for symmetric and asym-
metric BCGs with identical facilities (see Table 1).

We remark that we also provide asymptotically tight worst-case examples for
(directed) network congestion games (definitions will be given below).

Related Work. Network BCGs were considered first by Banner and Orda in [6].
The authors showed existence of pure Nash equilibria and provided an Θ(m)
bound on the PoA for identical network links. Busch and Magdon-Ismail studied
in [7] the PoA of network BCGs for identically weighted players. Very recently,
Harks, Klimm and Möhring introduced general bottleneck congestion games and
showed that strong equilibria are guaranteed to exist in these games.

As mentioned above, bottleneck congestion games generalize load balanc-
ing games, which have been studied intensively in recent years. Load balancing
games were first studied by Koutsoupias and Papadimitriou [15]. Among other
results, the authors provided a lower bound on the PoA of mixed Nash equilibria
for the case of identical machines. Koutsoupias, Mavronicolas and Spirakis [14]
and, independently, Czumaj and Vöcking [9], proved a matching upper bound.
Czumaj and Vöcking also proved that PoA = Θ(log m/ log log m) for pure Nash
equilibria. The same bound on the PoA was shown by Awerbuch et al. [5] for



restricted assignments and identical machines. Gairing et al. [11] obtained in-
dependently the same bounds and proved m − 1 ≤ PoA ≤ m for restricted
assignments and uniformly related machines.

Andelman, Feldman and Mansour [2] were the first to study strong and
k-strong equilibria in the context of load balancing games. They proved that
m ≤ SPoA ≤ 2m − 1 for the case of unrelated machines, which was tight-
ened to exactly m by Fiat et al. [10]. In this latter work it was also shown
that the SPoA of strong equilibria for uniformly related machines is exactly
Θ(log m/(log log m)2). For results in the context of more general scheduling
games and associated scheduling policies (termed coordination mechanisms), the
interested reader is referred to [13] and the references therein.

Bottleneck congestion games owe their name to their similarity to congestion
games, which were introduced by Rosenthal [18]. In these games, the latency
on each facility depends on the number of players using it (i.e., players have
unit weights). The goal of each player is to minimize his cost which is defined
as the sum (as opposed to the maximum for BCGs) of the latencies over the
facilities used by the player. Rosenthal [18] proved the existence of pure Nash
equilibria in congestion games. The price of anarchy of pure Nash equilibria
for congestion games was resolved by Christodoulou and Koutsoupias [8] and,
independently, by Awerbuch, Azar and Epstein [4]. It is shown in [8] that PoA =
Θ(

√
n) for asymmetric linear congestion games and the social cost being the

maximum over the players’ cost, and PoA = 5
2 for (symmetric and asymmetric)

linear congestion games and the social cost being the sum of the players’ costs.
Bounds for polynomial latency functions were also derived in [8]. Exact bounds
for polynomial latencies and also for weighted players were developed in [1].

2 Preliminaries

In a bottleneck congestion game, we are given a set N = [n] of n players that
want to utilize (non-cooperatively) a set E = [m] of m resources, which we also
call facilities.1 Every player i ∈ N has a positive weight (or load) wi > 0 and
a strategy set Σi ⊆ 2E of feasible facility subsets from which he can choose. If
player i chooses facility subset Si ∈ Σi, he allocates his entire weight wi to each
facility e ∈ Si. Let Σ = (Σ1, . . . , Σn) be the set of all possible strategy choices
of the players. A strategy profile S = (S1, . . . , Sn) ∈ Σ specifies for each player
i ∈ N a strategy Si ∈ Σi that he has chosen. We define Ne(S) as the set of players
that have chosen facility e ∈ E under S, i.e., Ne(S) = {i ∈ N | e ∈ Si}. The total
weight of facility e ∈ E with respect to S is defined as we(S) =

∑

i∈Ne(S) wi.

Every facility e ∈ E has a latency function le : Σ → R+ which satisfies the
following three properties (see also [12]):

1. Non-negativity: le(S) ≥ 0 for all S ∈ Σ.
2. Independence of irrelevant alternatives: le(S) = le(S

′) for all S, S′ ∈ Σ
with Ne(S) = Ne(S

′).

1 We use notation [k] to refer to the set {1, . . . , k} for some positive integer k.



3. Monotonicity: le(S) ≥ le(S
′) for all S, S′ ∈ Σ with Ne(S) ⊇ Ne(S

′).

Given a strategy profile S ∈ Σ, every player i ∈ N experiences an individual
cost ci(S) equal to the latency of the most loaded facility that he uses, i.e.,
ci(S) = maxe∈Si

le(S). We assume that every player i ∈ N acts strategically
and chooses his strategy Si ∈ Σi in order to minimize his own individual cost
ci(S).

Aumann [3] introduced the notion of a strong equilibrium. Here we consider
the refined notion of k-strong equilibrium. We use the standard notation S−i to
refer to (S1, . . . , Si−1, Si+1, . . . , Sn). Similarly, we use SI and S−I to refer to the
strategy profiles of S induced by the players in I and N \ I, respectively.

Definition 1. A strategy profile S ∈ Σ is a k-strong equilibrium if for every
non-empty player set I ⊆ N with |I| ≤ k and every possible joint deviation S′

I

of I there is at least one player i ∈ I whose cost with respect to S′ = (S−I , S
′
I)

is not better than with respect to S, i.e., ci(S−I , S
′
I) ≥ ci(S).

With this definition, a strong equilibrium is a k-strong equilibrium with k =
n, and a pure Nash equilibrium is a k-strong equilibrium with k = 1. Very
recently, Harks, Klimm and Möhring [12] showed that strong equilibria always
exist in BCGs satisfying Properties 1–3 above.

We are interested in characterizing the inefficiency of k-strong equilibria for
BCGs. We assess the efficiency of a strategy profile S by the maximum load of
a facility under S. That is, the social cost C(S) of a strategy profile S ∈ Σ is
defined as the maximum latency over all facilities, which is equivalent to the
maximum cost over all players, i.e., C(S) = maxe∈E le(S) = maxi∈N ci(S). We
will use S∗ to refer to an optimal strategy profile that minimizes C(S) and
denote its cost by γ∗ = C(S∗).

The k-strong price of anarchy (k-SPoA) [2, 15] refers to the worst-case ratio
over all possible input instances of the maximum cost of a k-strong equilibrium
and the cost γ∗ of the social optimum. We will simply refer to the price of
anarchy (PoA) and strong price of anarchy (SPoA) for the 1-SPoA and the n-
SPoA, respectively. One can easily make an example to show that the SPoA is
unbounded in general. This motivates our studies of linear BCGs: We assume
that the latency function le of each facility e ∈ E is a linear function of the
total weight assigned to it, i.e., le(S) = aewe(S) for some ae ≥ 0. Linear BCGs
constitute an important class of BCGs because they generalize, for example,
various load balancing games as outlined in the Introduction.

A BCG is called a network BCG if there exists a directed graph G = (V, E)
such that every player i ∈ N is associated with a source si ∈ V and a sink ti ∈ V
and i’s strategy set Σi refers to the set of all directed paths from si to ti in G.
We call a game symmetric if all players have the same strategy set, i.e., Σi = Σj

for all i, j ∈ N ; we call a game asymmetric otherwise. Observe that the above
example corresponds to a network BCG, but is not symmetric.

Unless stated otherwise, we assume subsequently that all player weights are
at least one, i.e., wi ≥ 1 for every i ∈ N , and that the coefficient of each latency
function is at least one, i.e., le(S) = aewe(S) with ae ≥ 1 for every e ∈ E. These



assumptions are without loss of generality as we can always enforce them by
scaling the weights and coefficients appropriately.

3 Arbitrary Facilities

In this section, we derive bounds on the PoA and SPoA of linear BCGs. We
consider both the general and the identical player case.

3.1 Arbitrary Players

We first consider the most general case of arbitrary linear latency functions and
arbitrary player weights. We show that the PoA is at most 2m − 1 in this case.
We obtain a better bound of m on the SPoA and present an almost tight lower
bound.

Theorem 1. The price of anarchy of linear BCGs is at most 2m − 1 and at
least m.

Proof. Let S be a pure Nash equilibrium with cost C(S) = αγ∗ for some α ≥ 1.
We prove by induction that for every integer k, 1 ≤ k < α+1

2 + 1, there is a set
Ek of k distinct facilities such that for every e ∈ Ek, le(S) ≥ (α − k + 1)γ∗.

The claim holds true for k = 1 because there must exist a facility e ∈ E
with latency le(S) = αγ∗. Suppose that the induction hypothesis holds true for
k < α+1

2 . We will prove that there exists a set Ek+1 of k + 1 distinct facilities
such that le(S) ≥ (α − k)γ∗ for every e ∈ Ek+1. Choose from Ek a facility ê
with smallest ae, i.e., ê = arg mine∈Ek

ae. By the induction hypothesis, we have
lê(S) ≥ (α − k + 1)γ∗ > kγ∗. Let Iê = Nê(S) be the set of players choosing ê
under S. Note that wê(S) ≥ lê(S)/aê > kγ∗/aê. Consider the strategies that the
players in Iê choose under S∗ and suppose for the sake of a contradiction that
for every i ∈ Iê, S∗

i ∩ Ek 6= ∅. Then there is a facility e ∈ Ek with we(S
∗) ≥

wê(S)/k > γ∗/aê. By the choice of ê, we have le(S
∗) = aewe(S

∗) > γ∗, which
is a contradiction to the definition of γ∗. Thus there is a player j ∈ Iê that
chooses a strategy S∗

j that is disjoint from Ek. Note that for every e ∈ S∗
j we

have aewj ≤ γ∗. Since S is a pure Nash equilibrium, player j cannot decrease
his cost by deviating to S∗

j and thus there is some facility e′ ∈ S∗
j such that:

le′(S) = (ae′we′(S) + ae′wj) − ae′wj ≥ ci(S) − ae′wj ≥ lê(S) − γ∗ ≥ (α − k)γ∗

The inductive step follows by setting Ek+1 = Ek ∪ {e′}. By choosing k =
⌈α+1

2 ⌉ < α+1
2 + 1, we obtain that there is a set Ek ⊆ E with |Ek| ≥ k and thus

m ≥ |Ek| ≥ k ≥ α+1
2 . We conclude that PoA = α ≤ 2m − 1.

The following instance shows that PoA ≥ m, even for symmetric BCGs
with identical facilities and identical players. Consider a BCG with player set
N = [n] and facility set E = [m] with m = n. Every player i ∈ N has unit weight
wi = 1 and the latency function le(S) of every e ∈ E is the identity function,



i.e., le(S) = we(S). Suppose that each player i ∈ N has strategy set Σi = 2E .
If every player chooses a distinct facility we obtain an optimal strategy profile
S∗ with γ∗ = 1. On the other hand, consider the strategy profile S in which
every player allocates all facilities in E. This is a pure Nash equilibrium of cost
C(S) = m. ⊓⊔

We derive a better upper bound on the SPoA for linear BCGs. The following
key lemma will be used several times in the paper.

Lemma 1. Let S be a strong equilibrium and let Iλ ⊆ I be a non-empty subset
of the players such that for every i ∈ Iλ we have ci(S) ≥ λγ∗, for some λ ≥ 1.

1. Then there is a player i ∈ Iλ and a facility e ∈ S∗
i such that le(S−Iλ

) ≥
(λ − 1)γ∗.

2. Suppose that Iλ is maximal. Then there is a player set Tλ ⊆ N \ Iλ with
w(Tλ) ≥ λ − 1 and for every i ∈ Tλ we have (λ − 1)γ∗ ≤ ci(S) < λγ∗.

Proof. We first prove the first part of the lemma. Note that for every player
i ∈ Iλ and every e ∈ S∗

i we have

le(S
∗
Iλ

) ≤ le(S
∗) ≤ γ∗. (1)

Suppose for the sake of a contradiction that for every player i ∈ Iλ and for
every e ∈ S∗

i it holds that le(S−Iλ
) < (λ − 1)γ∗. Consider the strategy profile

S′ = (S−Iλ
, S∗

Iλ
) in which the players in Iλ deviate to their optimal strategies in

S∗. Using (1), we obtain for every i ∈ Iλ and for every e ∈ S∗
i :

le(S
′) = le(S

∗
Iλ

) + le(S−Iλ
) < γ∗ + (λ − 1)γ∗ = λγ∗. (2)

Thus, for every i ∈ Iλ, ci(S
′) = maxe∈S∗

i
le(S

′) < λγ∗, which is a contradic-
tion to S being a strong equilibrium.

We next prove the second part of the lemma. Let i ∈ Iλ be a player and e ∈ S∗
i

be a facility satisfying le(S−Iλ
) ≥ (λ− 1)γ∗. Define Tλ as the set of players that

choose e under S but are not contained in Iλ, i.e., Tλ = Ne(S)\ Iλ ⊆ N \ Iλ. We
have

aew(Tλ) = le(STλ
) = le(S−Iλ

) ≥ (λ − 1)γ∗. (3)

Since e ∈ S∗
i and wi ≥ 1 for every i ∈ N , we have ae ≤ γ∗. Thus, w(Tλ) ≥

λ−1. Consider an arbitrary player i ∈ Tλ. By the above we have, ci(S) ≥ le(S) ≥
le(STλ

) ≥ (λ − 1)γ∗. Moreover, by the maximality of Iλ and since i 6∈ Iλ, we
have ci(S) < λγ∗. ⊓⊔

Remark 1. Observe that in the above proof we exploit the linearity of the latency
functions only in (2). In fact, we can draw exactly the same conclusion if all
latency functions are sub-additive, i.e., for every e ∈ E, le(x + y) ≤ le(x) + le(y)
for every x, y ∈ R+. As a consequence, all our upper bounds on the SPoA (which
exploit Lemma 1) hold for sub-additive latency functions.



Theorem 2. The strong price of anarchy of linear BCGs is at most m.

Proof. Let S be a strong equilibrium with cost C(S) = αγ∗ for some α > 1.
For an arbitrary real value 1 < λ ≤ α, let Iλ be the maximal non-empty set
of players Iλ = {i ∈ N | ci(S) ≥ λγ∗}. Applying Lemma 1, we obtain a player
set Tλ such that for every i ∈ Tλ we have (λ − 1)γ∗ ≤ ci(S) < λγ∗. Moreover,
w(Tλ) ≥ λ−1 > 0 because λ > 1 and thus Tλ is non-empty. We can thus identify
a family F = {Tα, Tα−1, . . . , Tα−k} of k + 1 player sets that are non-empty and
pairwise disjoint, where k is the largest integer satisfying α − k > 1. Every set
Tλ ∈ F identifies at least one distinct facility e ∈ E with (λ−1)γ∗ ≤ le(S) < λγ∗.
Moreover, there is one facility e ∈ E with le(S) = αγ∗. We conclude that
m ≥ |F | + 1 = k + 2 ≥ α and thus SPoA = α ≤ m. ⊓⊔

Theorem 3. The strong price of anarchy is at least m − 1 in general linear
BCGs and at least m+1

3 in single-sink linear network BCGs.

The proof of this result is deferred to the full version. The lower bound of m− 1
can also be derived by a construction in [11].

3.2 Identical Players

We next derive an upper bound on the SPoA for linear BCGs if the weights of
all players are identical. In this subsection, we assume without loss of generality
that the weight of each player i ∈ N is wi = 1.

Theorem 4. The strong price of anarchy is at most O(min{√n,
√

mγ∗}) for
linear BCGs with identical players and 2 for linear symmetric BCGs with iden-
tical players.

Proof. We prove the first part of the theorem. Let S be a strong equilibrium
with cost C(S) = αγ∗ for some α > 1. As in the proof of Theorem 2, we can
apply Lemma 1 to identify a family F = {Tα, Tα−1, . . . , Tα−k} of k + 1 player
sets that are non-empty and pairwise disjoint, where k is the largest integer
satisfying α − k > 1. Each such set Tλ ∈ F contains at least λ − 1 players, i.e.,
|Tλ| ≥ ⌈λ − 1⌉ for every α − k ≤ λ ≤ α. Moreover, there is at least one player
that experiences a congestion of αγ∗. Thus

n ≥ 1 +

⌈α−1⌉
∑

λ=1

λ ≥ 1 +
α(α − 1)

2
.

Solving for α we obtain α ≤ 1
2 +

√

2n − 3/2. Recall that we assume without
loss of generality that ae ≥ 1 for every e ∈ E and thus γ∗ ≥ n/m. We therefore
also obtain α ≤ 1

2 +
√

mγ∗ − 3/2. Thus SPoA ≤ α = O(min{√n,
√

mγ∗}).
We next prove the second part of the theorem. In a strong equilibrium S,

at least one player i ∈ N must have cost ci(s) ≤ γ∗ since otherwise the grand
coalition could deviate to the socially optimal strategy profile. Suppose there
is a player j ∈ N whose cost is more than two times larger than the cost of i.



Consider the deviation S′ = (S−j , Si) where player j deviates to the strategy of
player i. Then cj(S

′) ≤ maxe∈Si
ae(we(S) + 1) ≤ maxe∈Si

2aewe(S) ≤ 2ci(S),
which is a contradiction to S being a strong equilibrium.

The following example establishes the tightness of this bound: Let N = [3]
and E = [6]. The strategy set of every player is {σ1 = {1}, σ2 = {2, 3}, σ3 =
{4, 5}, σ4 = {2, 5, 6}}. The social optimum is S∗

i = σi for every player i ∈ [3]
with γ∗ = 1. A strong equilibirum is given by S1 = σ4 and S2 = S3 = σ1. The
cost of S is C(S) = 2. It is easy to see that this example is a network BCG . ⊓⊔

4 Identical Facilities

In this section, we study the SPoA for the case of linear BCGs with identical
facilities, i.e., the latency function of every facility e ∈ E is le(S) = we(S).

Theorem 5. The strong price of anarchy of linear BCGs with identical facilities

is at most − 1
2 +

√

2m + 1
4 in general and exactly 2 in case of symmetric games.

Proof. For the symmetric case we claim that in any stronf equilibrium configu-
ration S, there is at least one player i0 with ci0(S) ≤ γ∗. Indeed, if ci(S) > γ∗ for
all players, then the grand coalition would deviate to S∗. Now for any player i we
have γ∗ ≥ wi. Let i be any player with e ∈ Si such that ci(S) = le(S) = C(S).
Consider unilateral deviation S′

i = Si0 of i. Then, because S is also a pure Nash
equilibrium, C(S) = ci(S) ≤ ci0(S)+wi ≤ 2γ∗. A tight lower bound has already
been presented in Theorem 4.

For the asymmetric case let the cost of a strong equilibrium S be C(S) = αγ∗,
for some α > 1. Similar to the proof of Theorem 2, let Iλ be the maximal
non-empty set of players Iλ = {i ∈ N | ci(S) ≥ λγ∗} for some 1 < λ ≤ α.
By Lemma 1, we obtain a player set Tλ such that for every i ∈ Tλ we have
(λ − 1)γ∗ ≤ ci(S) < λγ∗. We can refine the argument given in the proof of
Lemma 1 to bound the weight of Tλ for identical facilities as follows: By in-
equality (3), we have w(Tλ) ≥ (λ − 1)γ∗/ae = (λ − 1)γ∗, where the last equal-
ity holds because for identical facilities ae = 1 for every e ∈ E. Moreover,
w(Tλ) ≥ (λ − 1)γ∗ > 0 because λ > 1 and thus Tλ is non-empty. That is,
we can identify a family F = {Tα, Tα−1, . . . , Tα−k} of k + 1 player sets that
are non-empty and pairwise disjoint, where k is the largest integer satisfying
α− k > 1. Moreover, by construction we have Iα ∩ Tλ = ∅ for every Tλ ∈ F and
w(Iα) ≥ αγ∗ since facilities are identical. The total weight w(N) is then:

w(N) ≥ αγ∗ +

α
∑

λ=α−k

w(Tλ) ≥ αγ∗ +

α
∑

λ=α−k

(λ − 1)γ∗ ≥ αγ∗ +

α−1
∑

λ=0

λγ∗

The latter equals 1
2αγ∗(1+α). Observe that γ∗ ≥ w(N)/m because facilities

are identical. We obtain 2m ≥ α(1 + α) or equivalently α ≤ − 1
2 +

√

2m + 1/4.
Since SPoA ≤ α the claim follows. ⊓⊔



Theorem 6. The strong price of anarchy of linear BCGs with identical players

and identical facilities is at least − 1
2 +

√

2m + 1
4 in general and at least − 1

4 +
1
2

√
2 + 2m in single-sink network BCGs .

Proof. We give a family of instances with m facilities and n = Θ(m) unweighted
players, which we turn into a family of network instances subsequently. Consider
a partition of the set of players N into q subsets, N =

⋃q

j=1 Pj , where |Pj | = j,
j ∈ [q]. Denote players in Pj by pji, i ∈ [j]. For each subset Pj make a new

set of j distinct facilities Ej = {ej
1, . . . , e

j
j}. Define Eq+1 = E1. For every player

pji ∈ Pj , i ∈ [j], set the strategy space of pji to:

Σpji
=

{

{e} | e ∈ Ej

}

∪ {Ej+1}

For the socially optimal configuration set S∗
pji

= {ej
i}. Then C(s∗) = 1.

Now consider the configuration S where Spji
= Ej+1 for i ∈ [j], j ∈ [q]. The

cost of S is defined by the latency of the unique facility e = e1
1 ∈ E1 and is

C(S) = le(S) = |Pq| = q. For every player p ∈ Pj , we have cp(S) = j. We claim
that S is a strong equilibrium. Consider any deviation of any coalition I ⊆ N .
Denote by S′

p the novel strategy that any player p ∈ I adopts and let S′ denote
the resulting configuration. Notice that for the unique player p ∈ P1 we have
cp(S) = 1, hence no deviation may lessen his cost and P1 ∩ I = ∅.

Let j = min{j′ | Pj′ ∩ I 6= ∅}; then j ≥ 2, and S′
j ∩ Ej 6= ∅. For all j − 1

players pj−1,i ∈ Pj−1 it holds that Spj−1,i
= Ej , because I ∩ Pj−1 = ∅. Hence,

cj(S
′) = j − 1 + 1 = j = cj(S). In any deviation of any coalition I, at least one

player does not have incentive to deviate jointly with I and hence SPoA ≥ q. Now

for q we have m = |∪jEj | =
∑q

j=1 j = q(q+1)
2 , which yields q ≥ − 1

2+
√

2m + 1/4.
We convert the example into a network BCG . To grant access to players in

Pj−1 to facilities in Ej , we make a path of length 3, {(sj , uji), (uji, vji), (vji, t)},
for every facility ej

i ∈ Ej , i ≤ j − 1 and a length-2 path {(sj, ujj), (ujj , t)}
for ej

j . Let Aj be the set of arcs in these paths. Node sj is the source of all
players in Pj and t is a common sink for all players. Now we add auxiliary arcs
A′

j = {(vji, uj,i+1) | i ∈ [j − 1]}. And, finally, an arc (sj−1, uj1), j ∈ {2, . . . , q},
by which players Pj−1 gain access to Aj . For the last group of players we add
an arc (sq, t). Let us illustrate the analog of configuration S on the constructed
network. All players in pji ∈ Pj , i ∈ [j], play the same path strategy:

Sji = {(sj , uj+1,1}
∪ {(uj+1,r, vj+1,r), (vj+1,r , uj+1,r+1) | r ∈ [j − 1]}
∪ {(uj+1,j , vj+1,j), (vj+1,j , t)}

and Siq = (sq, t) for i ∈ [q]. See Fig. 1a for an example with q = 4. The proof
that S is strong is analogous to the proof given for the non-network example.
For the optimal configuration we set S∗

ji = {(sj, uji), (uji, vji), (vji, t)}, for each
player pij ∈ Pj , i < j, and Sjj = {(sj, ujj), (ujj , t)}. The number of links m is:



1 player

s4

s3

s2

s1

t

4 players

3 players

2 players

(a) SPoA on identical links.
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(b) 2-SPoA for 6 identical players on
identical links; player indices mark
links used by each player.

Fig. 1: Lower bound constructions for Strong and 2-Strong Equilibria on identical links.

m =

q
∑

j=1

(|Aj | + |A′
j |) + q =

q
∑

j=1

(3j − 1 + (j − 1)) + q − 1 = 2q2 + q − 1

which yields q ≥ − 1
4 + 1

2

√
2 + 2m. ⊓⊔

4.1 Lower Bounds On k-Strong Equilibria

For the k-SPoA of symmetric and general BCGs with identical facilities we show:

Theorem 7. The k-strong price of anarchy of linear BCGs is at least:

1. ⌊m
2k
⌋ + 1 for symmetric BCGs and ⌈m+2

6k
⌉ for symmetric network BCGs,

when 2 ≤ k ≤ m
2 .

2. ⌈ m
k−1⌉ − 1 in general, when 2 ≤ k ≤ 3

4 + 1
2

√

1
4 + 2m.

The proofs of these results are deferred to the full version. Figure 1b presents a
2-strong equilibrium for 6 identical players and 34 identical links. The maximum
latency over all links under this configuration is 3. The social optimum has cost
1 and emerges when all players use link-disjoint paths to reach t from s.
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