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Abstract. We present an improved average case analysis of the maximum cardi-
nality matching problem. We show that in a bipartite or general random graph on
n vertices, with high probability every non-maximum matching has an augment-
ing path of length O(log n). This implies that augmenting path algorithms like the
Hopcroft–Karp algorithm for bipartite graphs and the Micali–Vazirani algorithm
for general graphs, which have a worst case running time of O(m

√
n), run in time

O(m log n)with high probability, where m is the number of edges in the graph. Mot-
wani proved these results for random graphs when the average degree is at least ln(n)
[Average Case Analysis of Algorithms for Matchings and Related Problems, Jour-
nal of the ACM, 41(6):1329–1356, 1994]. Our results hold if only the average degree
is a large enough constant. At the same time we simplify the analysis of Motwani.

1. Introduction

We consider the problem of computing a matching of maximum cardinality in an un-
directed graph G = (V, E) with vertex set V and edge set E . A matching is a subset
M ⊆ E of the edges of G such that no two edges in M have a vertex in common. The
edges in M are called matching edges, edges not in M are called free edges. A vertex is
matched if it has an incident matching edge, otherwise it is free.

∗ This research was partially supported by the Future and Emerging Technologies programme of the EU
under Contract Number IST-1999-14186 (ALCOM-FT). This work was done while Hisao Tamaki was visiting
the Max-Planck Institut für Informatik.
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Augmenting Path Algorithms. Most matching algorithms are augmenting path algo-
rithms. An augmenting path for a non-maximum matching M is a simple path between
two free vertices, where the edges along the path are alternately free edges and matching
edges. For every non-maximum matching, an augmenting path exists (e.g., obtained by
taking the symmetric difference of the set of matching edges with the edge set of an
arbitrary optimal matching). By making each free edge a matching edge and vice versa
along such a path, a matching that is larger by one edge is obtained. Augmenting path
algorithms search for augmenting paths and augment, until the matching is maximum.
The algorithms differ in the way they search for augmenting paths.

Complexity. Maximum matchings can be computed efficiently. Let n and m denote
the number of vertices and edges of G, respectively. In bipartite graphs the algorithm
of Hopcroft and Karp [HK] computes a maximum matching in time O(m

√
n). For

dense graphs, i.e., with m = �(n2), slightly better algorithms are known. Cheriyan
and Mehlhorn [CM] obtained O(n2.5/log n) and Feder and Motwani [FM] achieved, via
graph compression, O(m

√
n/ϕ(n,m)), where ϕ(n,m) = log n/log (n2/m). In general

graphs, Edmonds’ blossom-shrinking algorithm [Ed2], [Ed1], [Ga] computes a max-
imum matching in time O(nmα(m, n)), where α(m, n) denotes the inverse of Acker-
mann’s function. Micali and Vazirani [MV] gave an O(m

√
n) algorithm, which is similar

to the algorithm of Hopcroft and Karp for bipartite graphs.
The algorithms of Hopcroft and Karp [HK] and Micali and Vazirani [MV] are of

particular interest in this paper. The algorithms run in phases. In each phase we first
construct a maximal set of vertex-disjoint shortest augmenting paths, and then augment
the current matching along these paths. A phase requires time O(m). In both algorithms
the length of the shortest augmenting path strictly increases from one phase to the next
and thus a bound on the maximal length of shortest augmenting paths implies a bound
on running time: If every non-maximum matching in a bipartite (general) graph has
an augmenting path of length at most f (n), then the Hopcroft–Karp (Micali–Vazirani)
algorithm runs in time O(m · f (n)).

In practice, augmenting path algorithms perform significantly better than suggested
by the worst case running times, see, e.g., [MN] and [CGM+]. The worst case run-
ning time seems to be an over-pessimistic estimation of the actual running time in
practice. We are therefore interested in the average case behavior of augmenting path
algorithms.

Random Graph Models. We define the probability distribution on graphs according to
the model introduced by Erdős and Rényi [ER]. We consider both bipartite and general
graphs. We denote by G(n; n) the set of all undirected bipartite graphs with n vertices on
each side, and by G(n; n; p) the probability distribution on G(n; n), where each of the
n2 potential edges is present with probability p, independent of other edges. Similarly,
we denote by G(n) the set of all undirected graphs with n vertices and by G(n; p) the
probability distribution on G(n), where each of the n(n−1)/2 potential edges is present
with probability p, independent of other edges. The average degree of each vertex in a
graph drawn from G(n; n; p) or G(n; p) is pn and p(n − 1), respectively. We use c to
denote the average degree of a random graph.
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Our Results. We prove that in a random graph drawn from G(n; n; c/n) or from
G(n; c/(n − 1)), with high probability every non-maximum matching has an augment-
ing path of length O(log n), if only c is above a certain constant. For bipartite graphs,
our analysis requires that c ≥ 8.83, for general graphs it requires that c ≥ 32.67. It
follows that under these conditions, the running time of the algorithms of Hopcroft and
Karp on bipartite random graphs and Micali and Vazirani on general random graphs is
O(m log n) with high probability.

We conjecture the existence of short augmenting paths for every value of c. Ob-
serve that for tiny values of c, for example c < 1, all paths are of length O(log n)
and hence all augmenting paths must also be short. It is conceivable that our analy-
sis can be strengthened to cover all values of c; we comment further on this in our
conclusions.

Related Work. Motwani [Mo] presented the first average case analysis for matching
algorithms. He showed that every non-maximum matching in a random graph from
G(n; n; c/n) or from G(n; c/(n − 1)) with c ≥ ln n has a logarithmic length aug-
menting path with high probability. The analysis rests on two key observations: (i)
expander graphs1 admit short augmenting paths with respect to any non-maximum
matching, and (ii) random graphs with c ≥ ln n are structurally so similar to expander
graphs that the short augmenting path property carries over. Motwani’s analysis breaks
down when c is significantly below ln n. When c is constant, for example, with high
probability a constant fraction of the vertices is isolated and a constant fraction of
the vertices has degree one, and such graphs are certainly not structurally similar to
expanders.

Novelty. Nevertheless, on a high level our approach is similar to that of Motwani. We
grow alternating trees as they are constructed in augmenting path algorithms at two
free vertices connected by an augmenting path and show that the trees meet with high
probability after�(log n) layers. Our main technical lemma states that such trees exhibit
exponential growth after �(log n) layers; we remark that they may stay skinny for up
to �(log n) layers. In the proof we exploit several structural properties of these trees,
such as connectivity, degree-one descendence due to the matching edges, etc. In contrast
to this, Motwani works with expansion for plain sets of vertices, which only holds for
c ≥ ln n and gives rise to several complications in the analysis, which we can avoid here.
Our analysis is therefore at the same time stronger and simpler.

2. Main Result

In this section we state our main result, Theorem 1, explain the central ideas of its proof,
and give an overview of the rest of the paper.

1 In an expander graph the cardinality of the set of neighbors of any vertex set S with |S| ≤ n/2 is at
least (1+ ε)|S| for some positive constant ε.



6 H. Bast, K. Mehlhorn, G. Schäfer, and H. Tamaki

(a) (b)

Fig. 1. (a) An augmenting path tree T with |Even(T )| = |Odd(T )| = 8; observe that T has |Even(T )| +
|Odd(T )| = 2|Even(T )| edges. (b) The tree with vertices on odd levels “removed”, as used in the proof of
Lemma 2.

Theorem 1. There is a constant c0 such that a random graph from G(n; n; c/n) or
from G(n; c/(n − 1)), where c ≥ c0, with high probability2 has the property that every
non-maximum matching has an augmenting path of length O(log n). In a graph with
this property, a maximum matching can be computed in O(m log n) time, where m is the
number of edges.

Remark 1. For a random graph from G(n; n; c/n), the theorem holds for c ≥ 8.83.
For a random graph from G(n; c/(n − 1)), it holds for c ≥ 32.67.

A central notion in our analysis is that of an augmenting path tree. Augmenting
path trees arise in the standard breadth-first search for augmenting paths for a given
non-maximum matching: start from a free vertex, add all its neighbours, if none of them
is free (otherwise an augmenting path is found) add all the incident matching edges and
their other endpoints, and so on. We give the formal definition, and Figure 1 provides an
example.

Definition 1. For a rooted tree T , let Even(T ) denote the set of vertices at even non-
zero levels (i.e., excluding the root), and let Odd(T ) denote the set of vertices at odd
levels, where the root has level 0, its children have level 1, and so on. The largest level
of a vertex in T is denoted by depth(T ).

An augmenting path tree is a rooted tree T of even depth, where each vertex of
Odd(T ) has exactly one child; in particular, |Odd(T )| = |Even(T )|. An augmenting
path tree is for a particular matching, if its root is free with respect to that matching, and
all edges between an odd level and the next larger even level are in the matching.

Our approach to proving Theorem 1 is as follows. Given a non-maximum matching,
we pick the two free vertices of an augmenting path, and from each of these vertices
we grow two augmenting path trees T1 and T2. The following lemma names a set of
properties, which are sufficient for the existence of a short augmenting path.

2 That is, with probability at least 1 − n−β , for a β ≥ 1 that can be fixed arbitrarily, independent of c
and c0. A similar remark applies to Lemmas 2 and 3 that follow.
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Lemma 1. Let T1 and T2 be two augmenting path trees for a given non-maximum
matching in a given graph. Then the following properties imply that there is an aug-
menting path of length at most depth(T1)+ depth(T2)+ 1:

(a) T1 and T2 are (vertex and edge) disjoint.
(b) One of the following holds:

(b1) there is a free vertex adjacent to Even(T1) or to Even(T2);
(b2) there is an edge between Even(T1) and Even(T2).

Proof. If property (b1) holds, there is an augmenting path via just one of the trees,
of length at most max{depth(T1), depth(T2)} + 1. If property (b2) holds, then owing to
(a) there is an augmenting path from the root of T1 to the root of T2 of length at most
depth(T1)+ depth(T2)+ 1.

Our construction of the trees T1 and T2 with these properties is incremental, termi-
nating as soon as property (b1) or (b2) is fulfilled. In Section 3 we give the construction
for bipartite random graphs. In Section 4 we deal with general random graphs.

The main difficulty is to prove that the construction terminates with at most logarith-
mic depth for both trees. The key is the following lemma, which establishes an expansion
property for augmenting path trees, when the average degree is above a certain constant.

While the lemma is formulated and proven completely independently from its later
use, some readers might first prefer to study the construction from Section 3 in more
detail, see how the lemma is used there, and then come back to this section. In the lemma
below, as well as in our constructions, we use �G(X) to denote the neighbourhood of a
vertex set X in G, i.e., the set of vertices adjacent to X in G.

Lemma 2. For each ε > 0 and β > 1 + ε, there exist constants α and c0 such
that a random graph G from G(n; n; c/n) or from G(n; c/(n − 1)), where c ≥ c0,
with high probability has the following property: for each augmenting path tree T with
α · log n ≤ |Even(T )| ≤ n/β, it holds that |�G(Even(T ))| ≥ (1+ ε) · |Even(T )|.

Remark 2. For a random graph from G(n; n; c/n), for ε = 0.001 and β = 2.57, the
lemma holds with c0 = 8.83. For a random graph from G(n; c/(n − 1)), for ε = 2.01
and β = 6.03, the lemma holds with c0 = 32.67. These will be the settings when we
apply the lemma in Sections 3 and 4. The derivation of these constants is explained at
the end of Section 3.

Proof. If a graph G does not have the property from the lemma, the following bottle-
neck3 constellation occurs in G:

(i) an augmenting path tree T with α log n ≤ |Even(T )| ≤ n/β;
(ii) a set � ⊇ Odd(T ) with |�| ≤ (1+ ε) · |Even(T )|;

(iii) for each vertex from �\Odd(T ), an edge to a vertex from Even(T );
(iv) no edge between Even(T ) and V \�, where V is the set of all vertices of G.

3 In his work, Motwani uses this name in a related context.
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We will show that the probability that any such bottleneck constellation occurs is
polynomially small in n. We first give the proof for a bipartite random graph, and then
describe the (few) changes required for a general random graph.

If a fixed bottleneck constellation occurs in a graph from G(n; n), the following
events occur, where we write l = |Even(T )| and r = |�|: (i) the 2l edges from T are
present, (ii) the r − l edges from �\Odd(T ) to Even(T ) are present, and (iii) none of
the l(n − r) edges between Even(T ) and V ′\� are present, where V ′ is the side of the
bipartite graph containing� and we exploit that in a bipartite graph Even(T ) and� lie on
opposite sides of the graph. It follows that the probability that each of these, obviously
independent, events occurs in a random graph from G(n; n; c/n) is at most

(c/n)l+r · (1− c/n)l(n−r),

which, using that l ≤ n/β, l ≤ r ≤ (1+ ε) · l, and 1− c/n ≤ e−c/n , is bounded by

n−(l+r) · c(2+ε)·l · e−c(1−(1+ε)/β)·l = n−(l+r) ·
(

c2+ε

ec(1−(1+ε)/β)

)l

.

The number of potential bottleneck constellations, i.e., the number of different
bottleneck constellations in the complete bipartite graph on 2n vertices, with |Even(T )| =
l and |�| = r is (i) the number of augmenting path trees T with |Even(T )| = l, times
(ii) the number of ways to choose the r − l vertices for �\Odd(T ) from V ′\Odd(T ),
where V ′ are the vertices on that side of the bipartite graph containing Odd(T ) (vertices
on the other side of the graph cannot be in the neighbourhood of Even(T )), times (iii)
the number of ways to choose for each of these r − l vertices an edge to one of the l
vertices from Even(T ).

Clearly, the number for (iii) is lr−l , and the number for (ii) is

(
n − l

r − l

)
≤
(

n

r − l

)
.

To count the number of augmenting path trees T with |Even(T )| = l, observe that via
“removing” the vertices in Odd(T ), as illustrated by the example in Figure 1, each such
tree corresponds to a unique combination of a tree on l + 1 vertices, and a sequence of
l distinct vertices. By Cayley’s theorem [AZ] the number of trees on l + 1 vertices is
(l + 1)l−1, and the number of sequences of l distinct vertices from one side of a graph
from G(n; n) is n · (n − 1) · · · (n − l + 1) ≤ nl .

The total number of potential bottleneck constellations in a G(n; n) graph is hence
at most

(
n

l + 1

)
· (l + 1)l−1 ·

(
n

r − l

)
· lr−l · nl ≤ nr+l+1 · er+1 ·

(
l

r − l

)r−l

≤ nr+l+1 · er+1 · (ε−ε)l ,
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where we used the estimate
(n

k

) ≤ (en/k)k and where the last inequality holds4 for
r ≤ (1+ ε) · l and ε ≤ 1/e.

Combining the bounds, we conclude that a random graph from G(n; n; c/n) contains
any bottleneck constellation with |Even(T )| = l and |�| = r , with probability at most

en ·
(
ε−εe1+εc2+ε

ec(1−(1+ε)/β)

)l

= en · ql ,

where q is just an abbreviation for the fractional term. For sufficiently large c, we have
q < 1; in particular, this holds for the values stated in the remark to the lemma: ε = 0.001,
β = 2.57, and c ≥ 8.83.

We finally sum over all r , l with α · log n ≤ l ≤ n/β and l ≤ r ≤ (1 + ε) · l, and
get a total probability of at most

en3 · qα log n = en3−α log(1/q),

which for sufficiently large α is polynomially small in n. This finishes the proof of
Lemma 2 for bipartite random graphs.

In a random graph from G(n; c/(n − 1)), the bound on the probability that a fixed
constellation with |Even(T )| = l and |�| = r occurs, is

(
c

n − 1

)l+r

·
(

1− c

n

)l(n−r)

≤ (n − 1)−(l+r) ·
(

c2+ε

ec(1−(1+ε)/β)

)l

.

The number of bottleneck constellations can be bounded just like before by

(
n

l + 1

)
· (l + 1)l−1 ·

(
n

r − l

)
· lr−l · nl ≤ nr+l+1 · er+1 ·

(
l

r − l

)r−l

≤ nr+l+1 · er+1 · 1.45l ,

where the last inequality now holds5 for r ≤ (1+ ε) · l, but without restriction on ε (for
arbitrary random graphs, we apply the lemma with ε > 2). The probability that a random
graph from G(n; c/(n − 1)) contains any bottleneck constellation with |Even(T )| = l
and |�| = r is hence at most

4e3n ·
(

e1.38+εc2+ε

ec(1−(1+ε)/β)

)l

= 4e3n · ql ,

where the additional 4e2 factor comes from (n− 1)−(l+r) · nr+l = (1+ 1/(n− 1))r+l ≤
(1 + 1/(n − 1))2n ≤ 4 · (1 + 1/(n − 1))2(n−1) ≤ 4e2, the 1.38 is just a number ≥
1+ ln 1.45, and q is again an abbreviation for the fractional term. For sufficiently large

4 Let r = (1+ κ) · l with 0 ≤ κ ≤ ε. If κ = 0, the claim is obvious (recall 00 = 1). If κ > 0, we have
(l/(r − l))r−l = (1/κ)κ·l ≤ (1/ε)ε·l , since (1/κ)κ is increasing for κ ≤ 1/e.

5 Let r = (1+κ) ·l with 0 ≤ κ ≤ ε. Then (l/(r−l))r−l = (1/κ)κ·l ≤ 1.45l since (1/κ)κ ≤ e1/e ≤ 1.45.
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c, and in particular for ε = 2.01, β = 6.03, and c ≥ 32.67, we have q < 1, and a
summation over all r, l with α log n ≤ l ≤ n/β and l ≤ r ≤ (1+ ε) · l gives us at most
4e3n3 ·qa log n = 4e3n3−α log(1/q), which for sufficiently large α is a negligible probability.
This proves Lemma 2 also for arbitrary random graphs.

The following simple property of random graphs was already stated and proven in
Lemma 3(d) of [Mo], except that Motwani did not make the threshold on c explicit. We
remark that this threshold is one of the major bottlenecks for reducing the threshold on
c in our main result, Theorem 1.

Lemma 3. For every β > 1, and for c > 2 · β2 · H(1/β) · ln 2, where H(x) =
−x log2 x − (1 − x) log2(1 − x) is the binary entropy function, a random graph from
G(n; n; c/n) or from G(n; c/(n − 1)) with high probability has the property that every
two disjoint sets of vertices, both of size at least n/β, have an edge between them.

Proof. The probability that no edge runs between two disjoint sets of sizes l and r is at
most (1− c/n)lr . If two disjoint subsets of size at least n/β and with no edge between
them exist, then there exist also two subsets of size exactly �n/β� with no edge between
them (just remove the necessary number of vertices from each set), and this happens
with probability at most

(
n

�n/β�
)2

·
(

1− c

n

)�n/β�2
.

Now
(n

k

) ≤ 2n·H(k/n), where H is the binary entropy function as stated in the lemma.6

Furthermore, an easy calculation shows that the derivative of H(x)/x is x−2 log2(1− x),
hence H(x)/x is monotonically decreasing on (0, 1), and we have

(
n

�n/β�
)
≤ 2n·H(�n/β�/n) = 2H(�n/β�/n)·n/�n/β�·�n/β� ≤ 2β·H(1/β)·�n/β�.

The quantity (1− c/n)�n/β�
2

we bound by e−c/β·�n/β�. This give us the following bound
on the above probability:

(2β·H(1/β) · e−c/(2β))2�n/β�.

This is a negligible probability, provided that the term in parentheses is less than 1, i.e.,
c > 2 · β2 · H(1/β) · ln 2. We remark that, had we estimated the binomial coefficient
via the standard

(n
k

) ≤ (en/k)k , we would have obtained the slightly more restrictive
condition c > 2β(1+ lnβ).

6 This bound for the binomial coefficient, which is stronger than the more well known
(

n
k

)
≤ (en/k)k ,

can be derived from Stirling’s approximation for the factorial; see, for example, Lemma 7 on p. 309 of [MS].
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3. Constructing the Trees for Bipartite Random Graphs

For a given non-maximum matching of a graph G from G(n; n), consider an augmenting
path and pick its two free endpoints, f1 and f2. Note that since every augmenting path
has odd length, in a bipartite graph these two free vertices lie on opposite sides of G.
The following procedure constructs T1 and T2:

0. Initially let T1 and T2 be the trees with f1 and f2 as the only vertex and root,
respectively. Each of the following iterations will add two more levels to T1 and
to T2.

1. Let �(T ) = �G(Even(T ))\Odd(T ), for T = T1, T2.
2. If �(T1) or �(T2) contains a free vertex, STOP.
3. If �(T1) contains a vertex which is already in Even(T2), or vice versa, STOP.
4. If there is a matching edge between �(T1) and �(T2), add it to (say) T1, together

with the endpoint and edge connecting it to T1, then STOP.
5. Otherwise add to T all the vertices from �(T ), and for each such vertex, add one

edge connecting it to Even(T ), for T = T1, T2.
(The vertices added in this step constitute a new odd level below the largest

even level of T before the step: if any of them were adjacent to a vertex in a
smaller level then it would have been added to T in an earlier iteration.)

6. Add the matching edges incident to �(T ) together with their other endpoints to
T , for T = T1, T2.

(Note that neither can these endpoints be in T before step 5—because all
vertices there were matched by edges in the tree, except the root vertex, which is
free; see Figure 1—nor can there be a matching edge between two vertices from
�(T ), because they are all on the same side of the bipartite graph.)

7. Repeat 1–6.

We first show that this construction fulfills the properties of Lemma 1. When the
procedure stops in step 2, we have property (b1). When it stops in step 3 or 4, we have an
edge between Even(T1) and Even(T2), which is property (b2). Since the roots of T1 and T2

lie on opposite sides of the bipartite graph G, we have Even(T1)∩Even(T2) = Odd(T1)∩
Odd(T2) = ∅. Steps 3 and 4 ensure that Odd(T1)∩Even(T2) = Odd(T2)∩Even(T1) = ∅,
hence we have complete disjointness of T1 and T2, which is property (a).

It remains to show that the procedure terminates within O(log n) iterations (note
that by what we have shown so far, the procedure could run forever, namely when at
some point �(T ) = ∅ in step 1). Since each iteration adds two levels to each tree, the
depth of the trees would then be O(log n), which by Lemma 1 would prove Theorem 1.

By construction, in step 6 of every iteration at least the matching edge of the aug-
menting path starting in f1 is added to T1, and the same holds for f2 and T2. After α log n
iterations therefore, |Even(T )| ≥ α · log n. Consider an iteration i , for i > α · log n,
which passes steps 2–4. Let T denote one of the trees (the following argument holds
for T1 as well as for T2) at the beginning of the iteration, and let T ′ denote the tree
at the end of the iteration, with two new levels added to it. We apply Lemma 2 with
ε = 0.001 and β = 2.57; the value for ε is just a small one satisfying the requirement
ε > 0 of Lemma 2, the choice for β will be explained in the next but one paragraph.
When |Even(T )| < n/β, Lemma 2 gives that |�G(Even(T ))| ≥ (1 + ε) · |Even(T )|.
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Since |Even(T ′)| = |Even(T )| + |�(T )| = |Even(T )| + |�G(Even(T ))\Odd(T )| =
|�G(Even(T ))|, we have |Even(T ′)| ≥ (1 + ε) · |Even(T )|. This proves that when
the procedure runs for α log n + log1+ε(n/β) = O(log n) iterations, then certainly
|Even(T )| ≥ n/β, for T = T1, T2.

Consider the first iteration, where both |Even(T1)| and |Even(T2)| are at least n/β.
By property (a), already established above, the two sets are disjoint, hence by Lemma 3,
with high probability there is an edge between them. With such an edge, the procedure
stops in step 3. This proves that with high probability the procedure terminates within
O(log n) iterations, and hence with two trees of depth O(log n). This finishes the proof
of Theorem 1 for random bipartite graphs.

We finally comment on our choice of β = 2.57 above, and how it leads to the
requirement c ≥ 8.83 in Theorem 1. Both Lemmas 2 and 3 put a lower bound on c. For
Lemma 2, this bound comes from the quantity q, defined in the proof of that lemma,
which has to be strictly less than 1; this quantity depends on both β and c, hence we write
q(β, c). Lemma 3 gives an explicit lower bound on c, depending only on β; we write c(β)
for this bound. We are looking for the smallest β, where q(β, c(β)) < 1, which, in turn,
will give us the smallest c for which our argument goes through. Using Gnuplot [Gn],
we find that we can choose β as small as 2.57; then for c ≥ 8.83, both lemmas (just)
hold. For the analysis of the construction for arbitrary random graphs, given in the
next section, the values are found in the same manner, though with a different q (see
the proof of Lemma 2), and with ε = 2.01, because the construction there requires
that ε > 2.

4. Constructing the Trees for Arbitrary Random Graphs

For a given non-maximum matching of a graph G from G(n), consider an augmenting
path and pick its two free endpoints, f1 and f2. The procedure for constructing T1 and T2

is similar as for bipartite graphs but with three complications: (i) two vertices from the
neighborhood of Even(T1) or of Even(T2) may be incident to the same matching edge,
so that we can add only one of them to the tree (step 5 below), (ii) the disjointness of the
neighborhoods of Even(T1) and Even(T2) has to be taken care of explicitly now (step 6
below), and (iii) because only part of the neighborhood of Even(T ) is eventually added
to T , for T = T1, T2, starting from the free vertices alone it could now indeed happen
that �(T1) = ∅ or �(T2) = ∅ in one of the first α log n iterations; therefore in step 0 we
now start with a piece of size 2�α log n� of the augmenting path for each tree.

0. Let T1 be the prefix of length 2�α log n� of the augmenting path starting at f1,
and let T2 be the suffix of length 2�α log n�. If the two are not disjoint, i.e., the
length of the augmenting path is 4α log n or less, remove T1 ∩ T2 from one of
the trees and STOP (the properties of Lemma 1 are then fulfilled). Otherwise,
T1 and T2 are (edge and vertex) disjoint, |Even(T1)|, |Even(T2)| ≥ α log n, and
each of the following iterations will grow T1 and T2 by at most two levels each.

1. Let �(T1) = �G(Even(T1))\(T1 ∪ Odd(T2)), and let �(T2) = �G(Even(T2))\
(T2 ∪ Odd(T1)).

2. If �(T1) or �(T2) contains a free vertex, STOP.



Matching Algorithms Are Fast in Sparse Random Graphs 13

3. If �(T1) contains a vertex which is already contained in Even(T2), or vice versa,
STOP.

4. If there is a matching edge between �(T1) and �(T2), add it, together with the
endpoint and edge connecting it to (say) T1, then STOP.

5. Let �′(T ) be a maximal subset of �(T ) in which no two vertices match each
other, for T = T1, T2; then |�′(T )| ≥ �|�(T )|/2�.

6. Let �′′(T1) ⊆ �′(T1) and �′′(T2) ⊆ �′(T2) such that |�′′(T1)| = |�′′(T2)| ≥
�min{|�′(T1)|, |�′(T2)|}/2� and �′′(T1) ∩ �′′(T2) = ∅.

(This takes from �′(T1) and �′(T2) two maximally large subsets that are dis-
joint and of equal size, where the worst case is when �′(T1) and �′(T2) are equal
and of odd size.)

7. Add to T all the vertices from �′′(T ), and for each such vertex, add one edge
connecting it to Even(T ), for T = T1, T2.

(Note that unlike for the bipartite case, vertices added in this step are not
necessarily adjacent to the largest level of T before the step, since no longer is
the complete neighbourhood �(T ) from step 1 added in every iteration.)

8. Add the matching edges incident to �′′(T ) together with their other endpoints,
to T , for T = T1, T2.

9. Repeat 1–8.

Like in the bipartite case, it is easy to see that the properties of Lemma 1 are fulfilled.
After step 0, T1 and T2 are disjoint, and by steps 3–6, disjoint sets of vertices are added
to T1 and T2 in steps 7 and 8, which yields property (a). When the procedure stops in
step 2, we have property (b1), if it stops in step 3 or 4, we have property (b2).

Let T denote one of the trees at the beginning of a fixed iteration, assuming that it
has passed steps 2–4. Assume that |Even(T )| < n/β. Then by Lemma 2, applied with
ε = 2.01 and β = 6.19, |�G(Even(T ))| ≥ (3 + 9ε′)|Even(T )|, where ε′ = 0.001.
Steps 0 and 6 ensure that at the beginning and end of every iteration, |Even(T1)| =
|Even(T2)|, so that |Even(T1)|, |Odd(T1)|, |Even(T2)|, |Odd(T2)| are all equal, and thus
|T1 ∪ Odd(T2)| = |T2 ∪ Odd(T1)| = 3|Even(T )| + 1. Hence after step 1, |�(T )| ≥
|�G(Even(T ))| − (3|Even(T )| + 1) ≥ 9ε′|Even(T )| − 1 ≥ 8ε′|Even(T )|, where we
assume without loss of generality that α ≥ 1/ε′ and hence ε′|Even(T )| ≥ ε′α log n ≥ 1.
Then after step 5, |�′(T )| ≥ 4ε′|Even(T )|, and since this holds for T = T1 and for
T = T2, after step 6, |�′′(T )| ≥ �4ε′|Even(T )|/2� ≥ 2ε′|Even(T )| − 1 ≥ ε′|Even(T )|.
In step 8 one vertex per vertex in �′′(T ) is added, so that, if T ′ denotes the tree at the
end of the iteration, we have

|Even(T ′)| = |Even(T )| + |�′′(T )| ≥ |Even(T )| + ε′|Even(T )|
= (1+ ε′)|Even(T )|.

This proves that within O(log n) iterations, either the procedure terminates or at some
point |Even(T1)| = |Even(T2)| ≥ n/β.

As for the bipartite case, once Even(T1) and Even(T2) contain n/β or more vertices
each, by Lemma 3 there will be an edge between the two sets, and the procedure will
stop in step 3. This proves that with high probability the procedure terminates within
O(log n) iterations, so that upon termination both trees have depth O(log n). This finishes
the proof of Theorem 1 for arbitrary random graphs.
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5. Conclusion

We proved that in a random graph on n vertices with high probability every non-maximum
matching has an augmenting path of length O(log n). Motwani could prove this when
the average degree is at least ln n, whereas we only require that c is above a certain
constant. Our expansion lemma is more powerful than Motwani’s and at the same time
makes the whole analysis simpler; in fact, the present writeup contains all proofs with
all details.

While the expansion property on which the analysis in [Mo] is built does not hold
when c is significantly smaller than ln n, our condition on c does not appear to reflect
a principal limit of our analysis. More refined versions of Lemmas 2 and 3 might well
be able to do without any condition on c. For Lemma 2, an idea would be to consider
augmenting path trees which have expansion not on every level but only over a certain
constant number of levels. For Lemma 3, one might be able to exploit the special structure
of the two large sets between which we need an edge.
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