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In this paper, we introduce the notion of smoothed competitive analysis of online algorithms. Smoothed analysis has been
proposed by Spielman and Teng [25] to explain the behavior of algorithms that work well in practice while performing very
poorly from a worst-case analysis point of view. We apply this notion to analyze the multilevel feedback algorithm (MLF)
to minimize the total flow time on a sequence of jobs released over time when the processing time of a job is only known at
time of completion.
The initial processing times are integers in the range �1�2K�. We use a partial bit randomization model, i.e., the initial

processing times are smoothed by changing the k least significant bits under a quite general class of probability distributions.
We show that MLF admits a smoothed competitive ratio of O��2k/	
3+�2k/	
22K−k
, where 	 denotes the standard deviation
of the distribution. In particular, we obtain a competitive ratio of O�2K−k
 if 	 =��2k
. We also prove an ��2K−k
 lower
bound for any deterministic algorithm that is run on processing times smoothed according to the partial bit randomization
model. For various other smoothing models, including the additive symmetric smoothing one, which is a variant of the model
used by Spielman and Teng [25], we give a higher lower bound of ��2K
.
A direct consequence of our result is also the first average-case analysis of MLF. We show a constant expected ratio of

the total flow time of MLF to the optimum under several distributions including the uniform one.
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1. Introduction. Smoothed analysis was proposed by Spielman and Teng [25] as a hybrid between average-
case and worst-case analysis to explain the success of algorithms that are known to work well in practice while
presenting poor worst-case performance. The basic idea is to randomly perturb the initial input instances and to
analyze the performance of the algorithm on the perturbed instances. The smoothed complexity of an algorithm
as defined by Spielman and Teng [26] is the maximum over all input instances of the expected running time on
the perturbed instances. Intuitively, the smoothed complexity of an algorithm is small if the worst-case instances
are isolated in the (instance× running time) space. The striking result of Spielman and Teng [26] was to show
that the smoothed complexity of the simplex method with a certain pivot rule and by perturbing the coefficients
with a normal distribution is polynomial. In a series of later papers Blum and Dunagan [8], Spielman and
Teng [24], Banderier et al. [2], and Beier and Vöcking [5, 6], smoothed analysis was successfully applied to
characterize the time complexity of other problems.
Online algorithms, in contrast to traditional optimization techniques, have to make decisions without knowl-

edge of the future. An online algorithm learns about a new piece of input data only at its release time. The
standard yardstick for online algorithms has become competitive analysis (Sleator and Tarjan [23]), which mea-
sures the quality of an online algorithm by comparing its performance to that of an optimal offline algorithm
that has full knowledge of the future. Competitive analysis often provides an overly pessimistic estimation of
the performance of an algorithm, or fails to distinguish between algorithms that perform differently in practice,
due to the presence of pathological bad instances that rarely occur. The analysis of online algorithms seems to
be a natural field for the application of the idea of smoothed analysis.
Several attempts along the line of restricting the power of the adversary have already been taken in the

past. A partial list of these efforts includes the access graph model to restrict the input sequences in online
paging problems to specific patterns (Borodin et al. [10]) and the resource augmentation model for analyz-
ing online scheduling algorithms (Kalyanasundaram and Pruhs [13]). More related to our work is the diffuse
adversary model of Koutsoupias and Papadimitriou [15], a refinement of competitive analysis that assumes
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that the actual distribution of the input is chosen by a worst-case adversary out of a known class of possible
distributions.

Smoothed competitive analysis. In this paper, we introduce the notion of smoothed competitiveness. The
competitive ratio c of an online deterministic algorithm alg for a cost minimization problem is defined as
the supremum over all input instances of the ratio between the algorithm and the optimal cost, i.e., c �=
supǏ �alg�Ǐ
/opt�Ǐ

. Following the idea of Spielman and Teng [25], we smoothen the input instance according
to some probability distribution f . Given an input instances Ǐ , we denote by N�Ǐ
 the set of instances that are
obtainable by smoothing the input instance Ǐ according to f . We define the smoothed competitive ratio as

c �= sup
Ǐ

E
I

f←N�Ǐ


[
alg�I

opt�I


]
� (1)

where the supremum is taken over all input instances Ǐ , and the expectation is taken according to f over all
instances I in N�Ǐ
.
We remark that defining the smoothed competitive ratio of alg as the supremum over all instances Ǐ of

the ratio between the expected cost of the algorithm and the expected optimal cost would give an alternative
and by all means reasonable notion of smoothed competitiveness. However, we are interested in analyzing the
smoothed competitive ratio on a “per-instance basis,” which we think gives a stronger notion of competitiveness,
and therefore adopt the definition in (1); see also Scharbrodt et al. [21] for further comments on this.
This kind of analysis results in having the algorithm and the smoothing process together play a game against

an adversary, in a way similar to the game played by a randomized online algorithm against its adversary.
This definition of smoothed competitive ratio allows us to prove upper and lower bounds against different
adversaries.
In a way similar to the analysis of randomized online algorithms (Borodin and El-Yaniv [9]), we define

different types of adversaries. The oblivious adversary constructs the input sequence only on the basis of the
knowledge of the algorithm and of the smoothing function f . We also define a stronger adversary, the adaptive
adversary, that constructs the input instance revealed to the algorithm after time t also on the basis of the
execution of the algorithm up to time t. This means that the choices of the adversary at some time t only
depend on the state of the algorithm at time t. Both adversaries are charged with the optimal offline cost on the
smoothed input instance. Considering the instance space, in the oblivious case N�Ǐ
 is defined at the beginning,
once the adversary has fixed Ǐ , while in the adaptive case Ǐ , and thus N�Ǐ
, are themselves random variables,
since they depend on the evolution of the algorithm.
Smoothed competitive analysis is substantially different from the diffuse adversary model. In this latter model,

the probability distribution of the input instances is selected by a worst-case adversary, while in the model we
use in this paper, the input instance is chosen by a worst-case adversary and later perturbed according to a
specific distribution.

Multilevel feedback algorithm. One of the most successful online algorithms used in practice is the multi-
level feedback algorithm (MLF) for processor scheduling in a time-sharing multitasking operating system. MLF
is a nonclairvoyant scheduling algorithm, i.e., scheduling decisions are taken without knowledge of the time a
job needs to be executed. Windows NT (Nutt [20]) and Unix (Tanenbaum [26]) have MLF at the very basis of
their scheduling policies. The obvious goal is to provide a fast response to users. A widely used measure for
the responsiveness of the system is the average flow time of the jobs, i.e., the average time spent by jobs in the
system between release and completion. Job preemption is also widely recognized as a key factor to improve
the responsiveness of the system. The basic idea of MLF is to organize jobs into a set of queues Q0�Q1� � � � .
Each job is processed for 2i time units before being promoted to queue Qi+1 if not completed. At any time,
MLF processes the job at the front of the lowest queue.
While MLF turns out to be very efficient in practice, it behaves poorly with respect to worst-case analysis.

Motwani et al. [19] proved two lower bounds on the competitive ratio of any deterministic nonclairvoyant
preemptive scheduling algorithm: an ��2K
 one, if the processing times are in �1�2K�, and an ��n1/3
 one,
where n is the number of released jobs. A randomized version of the multilevel feedback algorithm (RMLF)
was first proposed by Kalyanasundaram and Pruhs [14] for a single machine achieving an O�logn log logn

competitive ratio against the online adaptive adversary. Becchetti and Leonardi [3] present a version of RMLF
achieving an O�logn log�n/m

 competitive result on m parallel machines and a tight O�logn
 competitive ratio
on a single machine against the oblivious adversary, therefore matching for a single machine the randomized
lower bound of Motwani et al. [19].
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Our contribution. In this paper, we apply smoothed competitive analysis to the multilevel feedback algo-
rithm. For smoothing the initial integral processing times, we use the partial bit randomization model. The idea
is to replace the k least significant bits by some random number in �1�2k�. Our analysis holds for a wide class of
distributions that we refer to as well-shaped distributions, including the uniform, the exponential symmetric, and
the normal distribution. For k varying from 0 to K, we “smoothly” move from worst-case to average-case analysis.

(i) We show that MLF admits a smoothed competitive ratio of O��2k/	
3+ �2k/	
22K−k
, where 	 denotes
the standard deviation of the underlying distribution. The competitive ratio therefore improves exponentially
with k and as the distribution becomes less sharply concentrated around its mean. In particular, if we smoothen
according to the uniform distribution, we obtain an expected competitive ratio of O�2K−k
. We remark that our
analysis holds for both the oblivious and the adaptive adversary. However, for the sake of clarity, we first con-
centrate on the oblivious adversary and discuss the differences for the adaptive adversary later.
As mentioned above, one could alternatively define the smoothed competitive ratio as the supremum over the

set of possible input instances, of the ratio between the expected costs of the algorithm and the optimum. We
point out that we obtain the same results under this alternative, weaker definition.
(ii) As a consequence of our analysis, we also obtain an average-case analysis of MLF. As an example,

for k = K, our result implies an O�1
 expected ratio between the flow time of MLF and the optimum for all
distributions with 	 =��2k
, therefore including the uniform one. Very surprisingly, to the best of our knowl-
edge, this is the first average-case analysis of MLF.
Recently, Scharbrodt et al. [21] performed the analysis of the average competitive ratio of the shortest expected

processing time first heuristic to minimize the average completion time where the processing times of the jobs
follow a gamma distribution. Our result is stronger in the following aspects: (a) the analysis of Scharbrodt
et al. [21] applies when the algorithm knows the distribution of the processing times, while in our analysis we
require no knowledge about the distribution of the processing times, and (b) our result applies to average flow
time, a measure of optimality stronger than average completion time. In an early work, Michel and Coffman
[17] only considered the problem of synthesizing a feedback queue system under Poisson arrivals and a known
discrete probability distribution on processing times so that prespecified mean flow time criteria are met.
(iii) We prove a lower bound of ��2K−k
 against an adaptive adversary and a slightly weaker bound of

��2K/6−k/2
, for every k ≤ K/3, against an oblivious adversary for any deterministic algorithm when run on
processing times smoothed according to the partial bit randomization model.
(iv) Spielman and Teng [25] used an additive symmetric smoothing model, where each input parameter is

smoothed symmetrically around its initial value. A natural question is whether a variant of this model is more
suitable than the partial bit randomization model to analyze MLF. In fact, we prove that MLF admits a poor
competitive ratio of ��2K
 under various other smoothing models, including the additive symmetric, the additive
relative symmetric, and the multiplicative smoothing model.

(v) Our analysis holds if the processing times are smoothed by means of a partial bit randomization model.
In many worst-case instances for this kind of scheduling problems, shortly before a job completes, the adversary
releases a long job which delays the tiny fraction of the running job and thus its completion time. Hence,
perturbing release dates slightly could weaken the adversary. A question that arises is whether smoothing the
release dates additionally further reduces the smoothed competitive ratio of MLF. We answer this question in the
negative by proving a lower bound of ��2K−k
 on the smoothed competitive ratio of MLF if only the disruption
of the release dates is not too large.

2. Problem definition and multilevel feedback algorithm. The adversary releases a set J �= �n� of n jobs
over time. For each job j ∈ J , the adversary specifies its release time rj and its initial processing time p̌j , which
we assume to be an integer in �1�2K�. We consider the single machine case. The machine can process at most
one job at a time and a job cannot be processed before its release time. We allow preemption of jobs, i.e., a job
that is running can be interrupted and resumed later on the machine. A scheduling algorithm decides which
uncompleted job should be executed at each time. For a generic schedule � , let C�

j denote the completion time
of job j . The flow time of job j is given by F �

j �= C�
j − rj , i.e., the total time that j is in the system. The

total flow time of a schedule � is defined as F � �=∑
j∈J F �

j and the average flow time is given by �1/n
F � .
A nonclairvoyant scheduling algorithm knows about the existence of a job only at the release time of the job,
and the processing time of a job is only known when the job is completed. The objective is to find a schedule
that minimizes the average flow time. In the clairvoyant case, i.e., when the algorithm knows the length of a job
as soon as it is released, the problem is solved to optimality by the online algorithm shortest remaining processing
time (SRPT) (Schrage [22]). This procedure schedules at any time the job which has least time left to be processed.
We review the multilevel feedback (MLF) algorithm. We say that a job is alive or active at time t in a generic

schedule � if it has been released but not completed at this time, i.e., rj ≤ t < C�
j . Denote by x�

j �t
 the amount
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of time that has been spent on processing job j in schedule � up to time t. We define y�j �t
 �= pj − x�
j �t
 as

the remaining processing time of job j in schedule � at time t. In the sequel, we denote by mlf the schedule
produced by the multilevel feedback algorithm.
The set of active jobs is partitioned into a set of priority queues Q0�Q1� ! ! ! . Within each queue, the priority

is determined by the release dates of the jobs: The job with smallest release time has highest priority. For any
two queues Qh and Qi, we say that Qh is lower than Qi if h< i. At any time t, MLF behaves as follows.

(i) Job j released at time t enters queue Q0.
(ii) Schedule on the machine the alive job that has highest priority in the lowest nonempty queue.
(iii) For a job j in a queue Qi at time t, if xmlfj �t
= pj , assign Cmlf

j �= t and remove the job from the queue.
(iv) For a job j in a queue Qi at time t, if xmlfj �t
= 2i < pj , job j is moved from Qi to Qi+1.
Observe that if the processing times are in �1�2K�, then at most K + 1 queues Q0� � � � �QK are used during

the execution of MLF. Moreover, at any time t and for any queue Qi, at most one job in Qi has been executed.
Put differently, if we consider all jobs that are in queue Qi at time t, then at most one of these jobs satisfies
xmlfj �t
 > 2i−1, while for all other jobs we have xmlfj �t
= 2i−1.
Fact 1. At any time t and for any queue Qi, at most one job, alive at time t, has been executed in Qi but

has not been promoted to Qi+1.

Under which circumstances does MLF achieve a good performance guarantee? We offer some intuition. As
mentioned, shortest remaining processing time (SRPT) is an optimal algorithm for the single machine case.
We can view MLF as trying to simulate SRPT by using estimates for the processing times of the jobs in the
system. When a new job arrives, its estimated processing time is 1; if a job is enqueued into queue Qi, i > 0,
MLF assumes that it has processing time 2i. Put differently, whenever a job has been executed for its estimated
processing time and is not completed, MLF doubles its estimate. Observe that if a job j is enqueued into queue
Qi, i > 0, MLF assumes that it takes 2i−1 additional time to complete j . Therefore, MLF gives precedence to
jobs in lower queues.
Consider a job j with processing time pj ∈ �2i−1�2i�. The final estimate of j’s processing time in MLF is 2i.

Intuitively, if the actual processing time of j is not too far from its final estimate, then the decisions made by
MLF with respect to j are not too different from those made by SRPT. However, if the final estimate is far
off from the actual processing time, then MLF and SRPT may indeed perform very differently. For example,
suppose that the actual processing time of j is 2i−1+ 1. When j enters queue Qi, MLF defers j until all jobs of
processing time at most 2i−1 are completed. On the other hand, SRPT completes j after one additional time unit.
In fact, it can easily be seen that MLF may perform arbitrarily bad on jobs of the latter kind: We release jobs

in two phases. In the first phase, at time t = 0, we release N �= 2K−1 + 1 jobs with processing time 2K−1 + 1.
Let t̂ be the first time when a job, say j∗, has been completed by MLF. At time t̂, all remaining N − 1 jobs
have remaining processing time 1. Now, consider another algorithm alg that does not schedule j∗, and therefore
can allocate 2K−1+ 1 time units on the other jobs. alg will have completed all jobs except j∗ by time t̂. In the
second phase, starting at time t̂, we release one after another a long sequence of jobs with processing time 1.
If we choose this sequence sufficiently long, the total flow time will be dominated by the contribution of the
second phase. Since, during the second phase, MLF has at least N jobs in the system while alg has only two
jobs in the system, we obtain a competitive ratio of ��N
=��2K
.

3. Smoothing models. We smoothen the processing times of the jobs. We remark that we could additionally
smoothen the release dates. However, for our analysis to hold, it is sufficient to only smoothen the processing
times. Furthermore, from a practical point of view, each job is released at a certain time, while processing times
are estimates. Therefore, it is more natural to smoothen the processing times and to leave the release dates
intact. As will be seen in §6, smoothing the release dates additionally does not further improve the smoothed
competitive ratio of MLF.
The input instance may be smoothed according to different smoothing models. We discuss four different

smoothing models below.

Additive symmetric smoothing model. In the additive symmetric smoothing model, the processing time
of each job is smoothed symmetrically around its initial processing time. The difference between the smoothed
and original processing time pj − p̌j of a job j is drawn independently at random according to some probability
function f from a range �−L�L�, for some L. Here, L is the same for all processing times (a similar model is
used by Spielman and Teng [25]):

pj �=max�1� p̌j + %j
� where %j

f← �−L�L�!

The maximum is taken in order to assure that the smoothed processing times are at least 1.



Becchetti et al.: Average-Case and Smoothed Competitive Analysis of Multilevel Feedback Algorithm
Mathematics of Operations Research 31(1), pp. 85–108, © 2006 INFORMS 89

Additive relative symmetric smoothing model. The additive relative symmetric smoothing model is similar
to the previous one. Here, however, the range of the smoothed processing time of j depends on its initial
processing time p̌j . More precisely, for c < 1, the smoothed processing time pj of j is defined as

pj �=max�1� p̌j + %j
� where %j

f← �−�p̌j

c� �p̌j 


c�!

Multiplicative smoothing model. In the multiplicative smoothing model, the processing time of each job
is smoothed symmetrically around its initial processing time. The smoothed processing times are chosen inde-
pendently according to f from the range ��1− &
p̌j � �1+ &
p̌j � for some & > 0. This model is also discussed but
not analyzed by Spielman and Teng [25]:

pj �=max�1� p̌j + %j
� where %j

f← �−&p̌j � &p̌j �!

Partial bit randomization model. The initial processing times are smoothed by changing the k least sig-
nificant bits at random according to some probability function f . More precisely, the smoothed processing time
pj of a job j is defined as

pj �= 2k
⌊
p̌j − 1
2k

⌋
+ %j� where %j

f← �1�2k�!

Note that %j is at least 1 and therefore 1 is subtracted from p̌j before applying the modification. For k= 0, the
smoothed processing times are equal to the initial processing times; for k=K, the processing times are chosen
entirely at random from �1�2K�.
We will show that MLF has a smoothed competitive ratio of ��2K
 under the first three smoothing models.

Therefore, these models are not suitable to explain the success of MLF in practice. The model we use is the
partial bit randomization model. A similar model is used by Beier et al. [7] and by Banderier et al. [2]. However,
in Beier et al. [7] and Banderier et al. [2], only the uniform distribution was considered, while our analysis holds
for a large class of smoothing distributions. At first glance, it may seem odd to allow distributions other than
the uniform one. However, the advantage is that for k=K we obtain processing times that are chosen entirely
at random according to f .

3.1. Feasible smoothing distributions. Our analysis holds for any smoothing distribution f that satisfies
properties (P1), (P2), and (P3) below. Let % be a random variable that is chosen according to density function
f from �1�2k�.
(P1) P

[
% ≥ �1+'
2k−1

]≥ ( for some 0<(≤ 1 and 0<' ≤ 2k−K−1.
(P2)

∑k
i=0 P

[
% ≤ 2i]≤ ) for some 1≤ )≤ k+ 1.

(P3) E�%�≥ * · 2k for some 0<*≤ 1.
We provide some intuition; see also Figure 1. (P1) states that the upper tail probability of f is at least (.

Supposing ) is small, (P2) means that f is slowly increasing from 1. (P3) states that the expectation of f is not
too close to 1. Note that (P2) and (P3) can be trivially satisfied by choosing )= k+ 1 and *= 1/2k. However,
constant values for ) and * improve the smoothed competitive ratio. We remark that our analysis holds for both
discrete and continuous distributions. In the sequel, however, we assume that f is discrete. We use + and 	 to
denote the expectation and standard deviation of f , respectively.

1 2kµ (1+γ)2k–1δ ·2k

α
1 2k

µ

µ

1 2k

Figure 1. Illustration of properties (P1)–(P3).
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For distributions satisfying (P1)–(P3), we prove that MLF has smoothed competitive ratio

O

(
K− k+)

(
+ 1

('
+ 1

*2

)
!

Ideally, if (, ), and * are constants and ' = 2k−K−1, we obtain a smoothed competitive ratio of O�2K−k
.
It is difficult to give a generic characterization for distributions that satisfy (P1)–(P3) with reasonable values
(�'�), and *. We propose the following class of distributions and refer the reader to Appendix B for further
characterizations. We call a distribution f well shaped if the following conditions hold:

(i) f is symmetric around +,
(ii) +≥ 2k−1, and
(iii) f is nondecreasing in �1�2k−1�.
For example, the uniform, the normal, and the double exponential distribution with + = 2k−1 + 1

2 are well-
shaped distributions. In Appendix B, we show that well-shaped distributions satisfy (P1)–(P3) with

(=
(
	

2k

)2

� ' =min
(
1√
2

(
	

2k−1

)
�2k−K−1

)
� )= 2� and *= 1

2
!

Therefore, for a well-shaped distribution we obtain a smoothed competitive ratio of

O

((
2k

	

)3

+
(
2k

	

)2

2K−k

)
!

From the discussion in Appendix B, it will also become apparent that we obtain the same competitive ratio for
any distribution with +≥ 2k−1 and which is nondecreasing in �1�2k�, e.g., for the exponential distribution.

3.2. Properties of smoothed processing times. We state two crucial properties of smoothed processing
times. Define ,j �= 2k��p̌j − 1
/2k�. We have pj = ,j + %j . Consider a job j with initial processing time
p̌j ∈ �1�2k�. Then, the initial processing time of j is entirely replaced by some random processing time in �1�2k�
that is chosen according to the probability distribution f .

Fact 2. For each job j with p̌j ∈ �1�2k� we have ,j = 0 and thus pj ∈ �1�2k�. Moreover, P
[
pj ≤ x

] =
P
[
%j ≤ x

]
for each x ∈ �1�2k�.

Next, consider a job j with initial processing time p̌j ∈ �2i−1�2i� for some integer i > k. Then, the smoothed
processing time pj is randomly chosen from a subrange of �2i−1�2i� according to the probability distribution f .

Fact 3. For each job j with p̌j ∈ �2i−1�2i�, for some integer i > k, we have ,j ∈ �2i−1�2i − 2k� and thus
pj ∈ �2i−1�2i�.

4. Preliminaries. We use mlf and opt to denote the schedules produced by the multilevel feedback algo-
rithm and by an optimal algorithm, respectively. We use � to refer to a generic schedule.
We partition jobs into classes: A job j ∈ J is of class i ∈ �0�K� if pj ∈ �2i−1�2i�. We use Clj ∈ �0�K� to

denote the class of a job j . Note that, for p̌j ∈ �2i−1�2i�, with i > k, Clj is not a random variable; see Fact 3. In
MLF, a job of class i will be completed in queue Qi.
We denote by *� �t
 the number of jobs that are active at time t in � . For each job j and any time t we

define a binary random variable X�
j �t
: X�

j �t
 is 1 if job j is active at time t, and 0 otherwise. We have
*� �t
=∑

j∈J X�
j �t
. Moreover, we use S� �t
 to refer to the set of active jobs at time t.

The total flow time F � of a schedule � is defined as the sum of the flow times of all jobs. Equivalently, we
can express the total flow time as the integral over time of the number of active jobs. We state this as a fact;
see also Leonardi and Raz [16].

Fact 4. F � =∑
j∈J F �

j = ∫
t≥0 *

� �t
dt.

The following obvious fact states that the sum of the processing times of all jobs is a lower bound on the
flow time of any schedule � .

Fact 5. F � ≥∑
j∈J pj .

An important notion in our analysis is the notion of lucky and unlucky jobs. It serves to distinguish between
jobs that are good and those which are bad for the performance of MLF.
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Definition 4.1. A job j of class i is called lucky if pj ≥ �1+'
2i−1; otherwise, it is called unlucky.
For each job j , we define a binary random variable Xl

j which is 1 if j is lucky, and 0 otherwise. Note that for
MLF a lucky job of class i is a job that still has a remaining processing time of at least '2i−1 when it enters its
queue Qi of completion. We use *l�t
 to denote the number of lucky jobs that are active at time t in MLF. We
also define a binary random variable Xl

j�t
 that indicates whether or not a job j is lucky and alive at time t in
MLF, i.e., Xl

j�t
 �=Xl
j ·Xmlf

j �t
. We have *l�t
=∑
j∈J Xl

j�t
.
At time t, the job with highest priority among all jobs in queue Qi (if any) is said to be the head of Qi.

A head job of queue Qi is ending if it will be completed in Qi. We denote by h�t
 the total number of ending
head jobs at time t.
Let X be a generic random variable. For an input instance I , XI denotes the value of X for this particular

instance I . Note that XI is uniquely determined by the execution of the algorithm.

5. Smoothed competitive analysis of MLF. The intuition behind our analysis is as follows. We argued that
MLF tries to simulate SRPT by using estimates of the processing times and that the performance of MLF can
be related to the one of SRPT if the final estimates are not too far from the actual processing times of the jobs.
We make this relation explicit by proving that, at any time t, the number of lucky jobs is at most the number
of ending head jobs plus 6/' times the number of active jobs in an optimal schedule. This argument is purely
deterministic. We also prove an upper bound of K− k+) on the expected number of ending head jobs at any
time t.
We write the total flow time as the integral over time of the number of active jobs. At any time t, we

distinguish between (i) the number of active jobs in MLF is at most 2/( times the number of lucky jobs,
and (ii) where this is not the case. We prove that case (i) occurs with high probability so that we can use the
deterministic bound to relate MLF to the optimal algorithm. The contribution of case (ii) is compensated by the
exponentially small probability of its occurrence.
The high-probability argument is presented in §5.1. Our analysis holds both for the oblivious adversary and

for the adaptive adversary. For the sake of clarity, we first concentrate on the oblivious adversary and discuss
the differences for the adaptive adversary in §5.2.
Lemma 5.1 provides a deterministic bound on the number of lucky jobs in the schedule of MLF for a specific

instance I . The proof is similar to the one given by Becchetti and Leonardi [3] and can be found in Appendix C.

Lemma 5.1. For any input instance I , at any time t, *l
I �t
≤ hI�t
+ �6/'
*optI �t
.

Clearly, at any time t, the number of ending head jobs is at most K+ 1. The following lemma gives a better
upper bound on the expected number of ending head jobs.

Lemma 5.2. At any time t, E�h�t
�≤K− k+).

Proof. Let h′�t
 denote the number of ending head jobs in the first k + 1 queues. Clearly E�h�t
� ≤
K− k+E�h′�t
�, since the last K− k queues can contribute at most K− k to the expected value of h�t
.
We next consider the expected value of h′�t
. Let H�t
 denote the ordered sequence �q0� � � � � qk
 of jobs that

are at time t at the head of the first k+ 1 queues Q0� � � � �Qk, respectively. We use qi =× to denote that Qi

is empty at time t. Let Hi�t
 be a binary random variable indicating whether or not the head job of queue Qi

(if any) is ending, i.e., Hi�t
= 1 if qi �= × and qi is in its final queue, and Hi�t
= 0 otherwise. Let H ∈ �J ∪×
k

denote any possible configuration for H�t
. Observe that by definition P �Hi�t
= 1 �H�t
=H�= 0 if qi =×.
Let qi �= ×. We have

P �Hi�t
= 1 �H�t
=H�= P
[
pqi
≤ 2i �H�t
=H

]
!

In Appendix D, we show that the events �pqi
≤ 2i
 and �H�t
 = H
 are negatively correlated. Thus,

P �Hi�t
= 1 �H�t
=H�≤ P
[
pqi
≤ 2i]. We obtain

E�h′�t
 �H�t
=H�=
k∑

i=0
P �Hi�t
= 1 �H�t
=H�≤

k∑
i=0

P
[
pqi
≤ 2i] !

If a job qi is of class larger than k, we have P
[
pqi
≤ 2i]= 0. Therefore, the sum is maximized if we assume

that each qi is of class at most k. Since the processing times are chosen identically, independently, and (under
the above assumption) entirely at random, we have

E�h′�t
 �H�t
=H�≤
k∑

i=0
P
[
%qi
≤ 2i]≤ k∑

i=0
P
[
% ≤ 2i]≤ )�
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where % is a random variable chosen according to f from �1�2k�, and the last inequality follows from property
(P2) of our distribution. We conclude

E�h′�t
�= ∑
H∈�J∪×
k

E�h′�t
 �H�t
=H�P �H�t
=H�≤ )! �

We define a random variable R as the sum of the random parts of all processing times, i.e., R �=∑
j∈J %j . We

need the following bound on the probability that R is at least a constant fraction of its expectation.

Lemma 5.3. P
[
R≥ 1

2E�R�
]≥ 1− e−n*2/2.

Proof. Observe that E�R� = n+, where + denotes the expectation of f . We use Hoeffding’s bound
(Appendix A, Theorem A.5) and property (P3) to obtain

P
[
R≤ 1

2
E�R�

]
≤ exp

(
− �1/2
E�R�2

n�2k− 1
2
)
≤ exp

(
− �1/2
n+2

22k

)
≤ exp

(
−n*2

2

)
! �

We are now in a position to prove Theorem 5.1. We introduce the following notation. For an instance I , we
define

�I �=
{
t � *mlfI �t
≤ 2

(
*l
I �t


}
and ��I �=

{
t � *mlfI �t
 >

2
(
*l
I �t


}
!

Moreover, we define the event � �= �R≥ 1
2E�R�
 and use

�� to refer to the complement of �.

Theorem 5.1. For any instance Ǐ and any smoothing distribution f that satisfies (P1)–(P3),

E
I

f←N�Ǐ


[
F mlf
I

F opt
I

]
=O

(
K− k+)

(
+ 1

('
+ 1

*2

)
!

Proof. For notational convenience, we omit the subscripts “I” and “I
f←N�

�
F 
” throughout this proof.

E
[
F mlf

F opt

]
=E

[
F mlf

F opt

∣∣∣∣�
]
P ���+E

[
F mlf

F opt

∣∣∣∣ ��
]
P
[ ��]≤E

[
F mlf

F opt

∣∣∣∣�
]
P ���+ ne−n*2/2�

where the inequality follows from Lemma 5.3 and the fact that n is an upper bound on the competitive ratio
of MLF. Define c �= 2/*2. Since e−x < 1/x for x > 0, we have ne−n*2/2 < c. We partition the flow time F mlf =∫
t
*mlf�t
dt into the contribution of time instants t ∈� and t ∈ ��, i.e., F mlf = ∫

t∈� *mlf�t
dt+ ∫
t∈ �� *mlf�t
dt,

and bound these contributions separately. More precisely:

E
[
F mlf

F opt

∣∣∣∣�
]
=E

[∫
t∈� *mlf�t
dt

F opt

∣∣∣∣�
]
+E

[∫
t∈ �� *mlf�t
dt

F opt

∣∣∣∣�
]
!

Now,

E

[∫
t∈� *mlf�t
dt

F opt

∣∣∣∣�
]
P ��� ≤ E

[∫
t∈��2/(
*

l�t
dt

F opt

∣∣∣∣�
]
P ���

≤ E

[∫
t∈��2/(
h�t
dt+

∫
t∈��2/(
 · �6/'
*opt�t
dt
F opt

∣∣∣∣�
]
P ���

≤ E

[∫
t∈��2/(
h�t
dt

F opt

∣∣∣∣�
]
P ���+ 12

('
�

where we use the deterministic bound of Lemma 5.1 on *l�t
 and the fact that F opt ≥ ∫
t∈� *opt�t
dt. By Fact 5

and the definition of event �, we have F opt ≥∑
j pj ≥

∑
j ,j + 1

2E�R�. Hence,

E

[∫
t∈� *mlf�t
dt

F opt

∣∣∣∣�
]
P ��� ≤ E

[∫
t∈��2/(
h�t
dt ��

]
P ���∑

j ,j + �1/2
E�R�
+ 12

('

≤ �2/(
�K− k+)
E�
∑

j pj �∑
j ,j + �1/2
E�R�

+ 12
('

�
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where we use Lemma 5.2 together with the fact that for any input instance h�t
 contributes only in those time
instants where at least one job is in the system, so at most

∑
j pj . Since E�

∑
j pj �=

∑
j ,j +E�R�, we obtain

E

[∫
t∈� *mlf�t
dt

F opt

∣∣∣∣�
]
P ���≤ 4�K− k+)


(
+ 12

('
!

Next, consider the contribution of time instants t ∈ ��. Given �, we have F opt ≥∑
j ,j + 1

2E�R�. Exploiting
Lemma 5.4, which is given below, we obtain

E

[∫
t∈ �� *mlf�t
dt

F opt

∣∣∣∣�
]
P ���≤ E�

∫
t∈ �� *mlf�t
dt ���P ���∑

j ,j + �1/2
E�R�
≤ �8/(
E�

∑
j pj �∑

j ,j + �1/2
E�R�
≤ 16

(
!

Putting everything together, we obtain

E
[
F mlf

F opt

]
≤ 4�K− k+)


(
+ 12

('
+ 16

(
+ 2

*2
! �

Lemma 5.4. E
[∫

t∈ �� *mlf�t
dt ��]P ���≤ �8/(
E�
∑

j pj �.

Proof. We use Lemma 5.5, the proof of which is the subject of §5.1. We have

E
[∫

t∈ ��
*mlf�t
dt

∣∣∣∣�
]
P ��� ≤ E

[∫
t∈ ��

*mlf�t
dt

]

=
∫
t≥0

E
[
*mlf�t
 � t ∈ ��]

P
[
t ∈ ��]

dt

=
∫
t≥0

n∑
s=1

sP
[
*mlf�t
= s � t ∈ ��]

P
[
t ∈ ��]

dt

=
∫
t≥0

n∑
s=1

sP
[
t ∈ �� �*mlf�t
= s

]
P �*mlf�t
= s�dt

≤
∫
t≥0

n∑
s=1

s e−(s/8P �*mlf�t
= s�dt

≤ 8
(

∫
t≥0

n∑
s=1

P �*mlf�t
= s�dt

= 8
(

∫
t≥0

P �*mlf�t
≥ 1� dt

= 8
(
E�

∑
j pj ��

where the fifth inequality is due to Lemma 5.5 and the sixth inequality follows since e−x < 1/x for x > 0. �

5.1. High probability bound. To complete the proof, we are left to show that with high probability at any
time t, the number of lucky jobs is a good fraction of the overall number of jobs in the system. This is stated
by the following lemma:

Lemma 5.5. For any s ∈ �n�, at any time t, P
[
*l�t
 < 1

2(*
mlf�t
 �*mlf�t
= s

]≤ e−(s/8.

We first give a high-level idea of the proof of Lemma 5.5. Let S ⊆ J . We condition the probability space on
the event that (i) the set of jobs that are alive at time t in mlf is equal to S, i.e., �Smlf�t
 = S
, and (ii) the
processing times of all jobs not in S are fixed to values that are specified by a vector xS̄ , which we denote by
�pS̄ = xS̄ 
. We define the event � �t� S�xS̄ 
 �= ��Smlf�t
= S
∩ �pS̄ = xS̄ 

.
Recall that we defined Xl

j�t
=Xl
j ·Xmlf

j �t
. Since we condition on �Smlf�t
= S
, we have for each j ∈ J

Xl
j�t
=



Xl

j if j ∈ S, and

0 otherwise.
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Thus,
E�*l�t
 �� �t� S�xS̄ 
�=

∑
j∈J

P
[
Xl

j�t
= 1 �� �t� S�xS̄ 

]=∑

j∈S
P
[
Xl

j = 1 �� �t� S�xS̄ 

]
!

In order to prove Lemma 5.5, we proceed as follows. We first prove that, conditioned on � �t� S�xS̄ 
, the
random variables �Xl

j �� �t� S�xS̄ 

, j ∈ S, are independent (Lemma 5.8). After that, we prove that the expected
number of jobs that are lucky and alive at time t is at least ( times the number of jobs that are active at this
time (Lemma 5.9), i.e.,

E�*l�t
 �� �t� S�xS̄ 
�≥ (�S�!
For the sake of clarity, the proofs of Lemma 5.8 and Lemma 5.9 are presented in §§5.1.1 and 5.1.2, respectively.
We can complete the proof of Lemma 5.5 by using a simple Chernoff bound argument.
Proof of Lemma 5.5 For each j ∈ S, we define Yj �= �Xl

j �� �t� S�xS̄ 

. By Lemma 5.8, the Yj ’s are inde-
pendent. Moreover, E�

∑
j∈S Yj �= E�*l�t
 �� �t� S�xS̄ 
�≥ (�S� by Lemma 5.9. Applying Chernoff’s bound (see

Appendix A, Theorem A.2), we obtain

P
[
*l�t
 <

1
2
(*�t
 �� �t� S�xS̄ 


]
= P

[∑
j∈S

Yj <
1
2
(�S�

]
≤ P

[∑
j∈S

Yj <
1
2
E

[∑
j∈S

Yj

]]
≤ e−(�S�/8!

Finally, summing over all possible subsets S ⊆ J with �S� = s and all possible assignments pS̄ = xS̄ , the lemma
follows. �
In the rest of this section, we only consider properties of the schedule produced by MLF. We therefore omit

the superscript mlf in the notation below.

5.1.1. Independence of being lucky. We first study some properties of the probability space conditioned
on the event � �t� S�xS̄ 
 = ��S�t
 = S
 ∩ �pS̄ = xS̄ 
 more closely and then prove that the random variables
Yj = �Xl

j �� �t� S�xS̄ 

, j ∈ S, are independent.

Lemma 5.6. Assume S�t
= S and pS̄ = xS̄ . Then, the schedule of MLF up to time t is uniquely determined.

Proof. Assume otherwise. Then, there exist two different schedules, �1 and �2, such that S
�1�t
= S�2�t
=

S. Let I1 and I2 be the corresponding instances. Since the processing times of jobs not in S are fixed, I1 and
I2 differ in the processing times of some subset of the jobs in S. Let t′ ≤ t be the first time where �1 and �2

differ. MLF changes its scheduling decision if either (i) a new job is released, or (ii) an active job is completed.
Since the release dates are the same in I1 and I2, a job j was completed at time t′ in one schedule, say �1, but
not in the other. Since j must belong to S and t′ ≤ t, this contradicts the hypothesis that S�1�t
= S. �
Corollary 1. Assume S�t
 = S and pS̄ = xS̄ . Then, for each j ∈ S, xmlfj �t
 is a uniquely determined

constant.

Subsequently, given that S�t
 = S and pS̄ = xS̄ , we set 6j �= xmlfj �t
 for all j ∈ S. We state the following
important fact.

Fact 6. Let I be an instance such that S�t
 = S and pS̄ = xS̄ . Then, every instance I ′, with pS̄ = xS̄ and
pjI ′ ≥ pjI for each j ∈ S, satisfies xmlfjI ′ �t
= xmlfjI �t
 for each j ∈ J .

In particular, we can generate all instances satisfying S�t
 = S and pS̄ = xS̄ as follows. Let I0 be defined as
pS̄ = xS̄ and pjI0

�= 6j for each j ∈ S. Note that I0 is not contained in � �t� S�xS̄ 
, since SI0
�t
=�; but every

instance I with pS̄ = xS̄ and pjI > pjI0
, for each j ∈ S, is contained in � �t� S�xS̄ 
.

Lemma 5.7. Assume S�t
 = S and pS̄ = xS̄ . Moreover, let 6j = xmlfj �t
 for all j ∈ S. Then, the following
events are equivalent:

�S�t
= S
∩ �pS̄ = xS̄ 
≡
⋂
j∈S

�pj > 6j
∩ �pS̄ = xS̄ 
!

Proof. Let I be an instance such that S�t
 = S and pS̄ = xS̄ . By Lemma 5.6, the time spent by MLF on
j ∈ S up to time t is xmlfj �t
=6j . Since j is active at time t, pj > xmlfj �t
=6j .
Next, let I be an instance such that pjI > 6j for each j ∈ S and pS̄ = xS̄ . Let I0 be defined as pS̄ = xS̄ and

pjI0
�=6j for each j ∈ S. For each j ∈ S, we have pjI > 6j = pjI0

. From the discussion above, we conclude that
I ∈� �t� S�xS̄ 
. �
Lemma 5.8. The variables Yj = �Xl

j �� �t� S�xS̄ 

, j ∈ S, are independent.
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Proof. Let R ⊆ S. For each j ∈ R, let aj ∈ 80�19 and let Lj denote the set of processing times such that
�pj ∈ Lj
 if and only if �X

l
j = aj
. From Lemma 5.7, we obtain

P

[⋂
j∈R

Xl
j = aj

∣∣∣∣� �t� S�xS̄ 


]
= P

[⋂
j∈R

pj ∈ Lj

∣∣∣∣ ⋂
j∈S

�pj > 6j
∩ �pS̄ = xS̄ 


]

= P
[⋂

j∈R�pj ∈ Lj
∩
⋂

j∈S�pj > 6j
∩ �pS̄ = xS̄ 

]

P
[⋂

j∈S�pj > 6j
∩ �pS̄ = xS̄ 

]

= P
[⋂

j∈R�pj ∈ L′j 
∩
⋂

j∈S\R�pj > 6j
∩ �pS̄ = xS̄ 

]

P
[⋂

j∈S�pj > 6j
∩ �pS̄ = xS̄ 

] �

where L′j is defined as the intersection of Lj and �6j�2
K�. Using the fact that processing times are perturbed

independently, we obtain

P

[⋂
j∈R

Xl
j = aj

∣∣∣∣� �t� S�xS̄ 


]
=

∏
j∈R P

[
pj ∈ L′j

]
P
[⋂

j∈S\R�pj > 6j
∩ �pS̄ = xS̄ 

]

∏
j∈R P

[
pj > 6j

]
P
[⋂

j∈S\R�pj > 6j
∩ �pS̄ = xS̄ 

]

= ∏
j∈R

P
[
pj ∈ L′j

]
P
[
pj > 6j

] =∏
j∈R

P
[
Xl

j = aj �pj > 6j

]
! (2)

The above equality holds for any subset R⊆ S. In particular, for a singleton set 8j9, we obtain

P
[
Xl

j = aj �� �t� S�xS̄ 

]= P

[
Xl

j = aj �pj > 6j

]
! (3)

Therefore, combining (2) and (3), we obtain

P

[⋂
j∈R

Xl
j = aj

∣∣∣∣� �t� S�xS̄ 


]
=∏

j∈R
P
[
Xl

j = aj �� �t� S�xS̄ 

]
! �

5.1.2. Expected number of lucky and alive jobs. From Equation (3) in the proof of Lemma 5.8, we learn
that if we concentrate on the probability space conditioned on the event � �t� S�xS̄ 
, then

P
[
Xl

j = aj �� �t� S�xS̄ 

]= P

[
Xl

j = aj �pj > 6j

]
for each j ∈ S!

This relation is very useful in proving the following lemma.

Lemma 5.9. For every j ∈ S, P
[
Xl

j = 1 �� �t� S�xS̄ 

]≥ (. Thus, E�*l�t
 �� �t� S�xS̄ 
�≥ (�S�.

Proof. First, let p̌j ∈ �2i−1�2i� for some integer i > k. Due to Fact 3, the processing time pj is chosen
randomly from a subrange of �2i−1�2i�. Hence,

P
[
Xl

j = 1 �� �t� S�xS̄ 

]= P

[
pj ≥ �1+'
2i−1 �pj > 6j

]≥ P
[
%j ≥ '2i−1 �pj > 6j

]
�

where the second inequality is due to the fact that ,j ≥ 2i−1. In Appendix D, we show that the events �%j ≥ '2i−1

and �pj > 6j
 are positively correlated. We therefore have

P
[
Xl

j = 1 �� �t� S�xS̄ 

]≥ P

[
%j ≥ '2i−1

]≥ P
[
%j ≥ �1+'
2k−1

]
�

where the last inequality holds for every i, k < i≤K, if we choose ' ≤ 2k−K .
Next, let p̌j ∈ �1�2k�. Due to Fact 2, the processing time pj is chosen completely at random from �1�2k�. Let

Lj denote the set of all processing times such that �X
l
j = 1
 holds. Then,

P
[
Xl

j = 1 �� �t� S�xS̄ 

]= P

[
%j ∈ Lj �%j > 6j

]≥ P
[
%j ≥ �1+'
2k−1

]
!

To prove that the last inequality holds, we distinguish two cases:
(a) Let 6j < �1+'
2k−1. Since P

[
%j > 6j

]≤ 1,
P
[
%j ∈ Lj �%j > 6j

]≥ P
[
�%j ∈ Lj
∩ �%j > 6j


]≥ P
[
%j ≥ �1+'
2k−1

]
!

(b) Let 6j ≥ �1+'
2k−1. Then,

P
[
%j ∈ Lj �%j > 6j

]= 1≥ P
[
%j ≥ �1+'
2k−1

]
!

Assuming that the smoothing distribution f satisfies (P1), the lemma follows. �
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5.2. Adaptive adversary. Recall that the adaptive adversary may change the input instance on basis of the
outcome of the random process. This additional power may affect the correlation technique that we used in
Lemmas 5.2 and 5.9. However, as discussed in Appendix D, these lemmas also hold for an adaptive adversary.
Thus, the upper bound on the smoothed competitive ratio given in Theorem 5.1 also holds against an adaptive
adversary.

6. Lower bounds.

6.1. Lower bounds for the partial bit randomization model. In this section, we present lower bounds
on the smoothed competitive ratio for any deterministic algorithm against the oblivious adversary and the
stronger, adaptive one. We first proceed with the most intuitive lower bound: the one against the adaptive
adversary. The next theorem gives an ��2K−k
 lower bound on the smoothed competitive ratio under the partial
bit randomization model, thus showing that MLF achieves up to a constant factor the best possible ratio in
this model. The lower bound is based on ideas similar to those used by Motwani et al. [19] for an ��2K

nonclairvoyant deterministic lower bound. In the lower bound proofs, we assume that the smoothing distribution
is well-shaped with += 2k−1+ 1/2.
Theorem 6.1. Any deterministic algorithm alg has smoothed competitive ratio ��2K−k
 against an adaptive

adversary in the partial bit randomization model.

Proof. The input sequence for the lower bound is divided into two phases.
Phase 1. At time t = 0, the adversary releases N �= ⌊

�2K−k− 2
/3⌋ + 1 jobs. We run alg on these jobs
up to the first time t̂ when a job, say j∗, has been processed for 2K − 2k+1 time units. Let xmlfj �t̂
 denote the
amount of time spent by algorithm alg on job j up to time t̂. We fix the initial processing time of each job j to
p̌j �= xmlfj �t̂
+ 2k+1. Note that after smoothing the p̌js, we have xmlfj �t̂
+ 2k < pj < xmlfj �t̂
+ 3 · 2k for each j .
That is, each job has a remaining processing time between 2k and 3 · 2k. Therefore, alg will not complete any
job at time t̂, i.e., *alg�t̂
=N .
Consider the optimal algorithm opt. If opt does not process j∗ until time t̂, 2K − 2k+1 time units can be

allocated on the other jobs. Thus, at least

2K − 2k+1
3 · 2k ≥

⌊
2K−k− 2

3

⌋
=N − 1

of these jobs are completed by opt until time t̂, i.e., *opt�t̂
= 1.
Phase 2. The adaptive adversary releases a sequence N + 1�N + 2� ! ! ! of jobs. The release time of job

j =N + i is rj �= t̂ for i= 1 and rj �= rj−1+pj−1 for i > 1. Each such job j has initial processing time p̌j �= 1
and therefore its smoothed processing time satisfies pj ≤ 2k.
opt will then complete every job released in the second phase before the next one is released. The optimal

strategy for alg is also to process the jobs released in the second phase to completion as soon as they are
released, since every job left uncompleted from the first phase has remaining processing time larger than 2k.
The second phase goes on for a time interval larger than 23K−2k, which is an upper bound on the contribution

to the total flow time of any algorithm in the first phase of the input sequence. Therefore, in terms of total flow
time, the second phase dominates the first phase for both alg and opt. Since in the second phase alg has ��N

jobs and opt has O�1
 jobs in the system, we obtain a competitive ratio of ��N
=��2K−k
. �
As mentioned before, the adaptive adversary is stronger than the oblivious one, as it may construct the input

instance revealed to the algorithm after time t also, on the basis of the execution of the algorithm up to time t.
In the next theorem, we prove a slightly weaker bound of ��2K/6−k/2
 on the smoothed competitive ratio for
any deterministic algorithm against an oblivious adversary under the partial bit randomization smoothing model.

Theorem 6.2. Any deterministic algorithm alg has smoothed competitive ratio ��2K/6−k/2
 for every k ≤
K/3 against an oblivious adversary in the partial bit randomization model.

Proof. For notational convenience, we assume that K is even. The input sequence for the lower bound is
divided into two phases.
Phase 1. At time t = 0, the adversary releases N �= 2K/2+ ⌊

�2K−k− 2
/3⌋ jobs and runs alg on these jobs
up to the first time t̂ when one of the following two events occurs: (i) 2K/2 jobs, denoted by j∗1 � j

∗
2 � ! ! ! � j

∗
2K/2 ,

have been processed for at least 2K/2 time units, or (ii) one job, say j∗, has been processed for 2K − 2k+1 time
units. In the sequel, we call jobs released in the first phase phase-1 jobs.
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Let xmlfj �t̂
 denote the amount of time spent by algorithm alg on job j up to time t̂. We fix the initial
processing time of each job j to p̌j �= xmlfj �t̂
+ 2k+1. Note that after smoothing the p̌js, we have xmlfj �t̂
+ 2k <
pj < xmlfj �t̂
+ 3 · 2k for each j . That is, in the schedule produced by alg, each job has a remaining processing
time between 2k and 3 · 2k at time t̂. Moreover, alg has not completed any job at this time, i.e., *alg�t̂
=N .
Instead of considering an optimal scheduling algorithm, we consider a scheduling algorithm � that schedules

the jobs as described below. Clearly, the total flow time of opt is upper bounded by the total flow time of � .
Let t̂ be determined by case (i). Then, � does not process jobs j∗1 � j

∗
2 � � � � � j

∗
2K/2 before all other jobs are

completed. Therefore, at least 2K time units can be allocated on the other jobs. Since each of these N − 2K/2

jobs has remaining processing time at most 3 · 2k, � has completed at least

min
(
N − 2K/2�

⌊
2K

3 · 2k
⌋)

≥N − 2K/2

jobs, i.e., all these jobs. In case (ii), by not processing job j∗, � completes at least

min
(
N − 1�

⌊
2K − 2k+1
3 · 2k

⌋)
≥N − 2K/2

of the other jobs. Thus, we obtain *� �t̂
≤ 2K/2.
Phase 2. Starting from time t̂, the adversary releases a sequence of L �= 25K/3−k jobs, denoted by N+1�N+2�

! ! ! �N +L, for a period of t̃ �=+L, where + �= 2k−1+ 1
2 . The release time of job j =N + i is rj �= t̂+ �i−1
+,

for i= 1� ! ! ! �L. Each such job j has initial processing time p̌j �= 1 and its smoothed processing time satisfies
pj ≤ 2k. In the sequel, we call jobs released in the second phase phase-2 jobs.
To analyze the number of jobs in the system of alg and � during the second phase, we define the random

variables Xj �= pN+j − +, for j = 1� � � � �L. Note that the Xjs are independently distributed random variables
with zero mean. Define S0 �= 0 and Si �=

∑i
j=1Xj , for i = 1� � � � �L. Applying Kolmogorov’s inequality (see

Appendix A, Theorem A.1), we obtain

P
[
max
0≤i≤L

�Si� ≥+
√
L

]
≤ E

[
S2L

]
+2L

≤ 1
3

(4)

The last inequality follows since E�S2L�= Var�SL� and the variance of the random variable SL for the uniform
distribution is L�22k−1
/12. The bound holds for any well-shaped distribution, since among these distributions
the variance is maximized by the uniform distribution.
Consider a schedule � only processing phase-2 jobs. The amount of idle time up to time t̂+ i+ is given by

I0 �= 0 and Ii �=max
(
Ii−1� i+−

i∑
j=1

pN+j

)
!

Hence, the total idle time up to time t̂+ i+ for this algorithm is

Ii =max
0≤j≤i

−Sj !

By (4), we know that with probability at least 2
3 the total idle time at any time t̂+ i+ stays below +

√
L.

We first derive a lower bound on the number of jobs that are in the system of alg during the second phase.

Lemma 6.1. With probability at least 2
3 , at any time t ∈ �t̂� t̂+ t̃�: *alg�t
≥N − 1

2

√
L− 1.

Proof. alg can do no better than the SRPT rule during the second phase. Each phase-1 job has remaining
processing time larger than 2k. Therefore, alg follows � using the idle time to schedule phase-1 jobs, unless a
phase-1 job has received so much processing time that its remaining processing time is less than the processing
time of the newly released job. This leads to at most an additional 2k time spent on phase-1 jobs. Hence, with
probability at least 2

3 , at most
1
2

√
L+ 1 phase-1 jobs are finished by alg during the second phase. �

� also follows � during the second phase using the idle time to schedule phase-1 jobs. We next give an upper
bound on the number of jobs in the system of � during the second phase.

Lemma 6.2. With probability at least 2
3 , at any time t ∈ �t̂� t̂+ t̃� � *� �t
≤ 2K/2+ 2√L+ 2.
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Proof. Consider the amount of additional volume brought into the system. Just before time t = t̂ + i+,
this is

i∑
j=1

pj − �i+− Ii
�

i.e., the total processing time of phase-2 jobs released before time t minus the amount of time processed on
phase-2 jobs. Hence, the maximum amount of additional volume before the release of a phase-2 job is given by

:V = max
0≤i≤L

�Si+ Ii
= max
0≤i≤L

�Si+max
0≤j≤i

−Sj
= max
0≤j≤i≤L

�Si− Sj
!

The probability that this value exceeds some threshold value is bounded by

P�:V > 2<�≤ P
[
max
0≤i� j≤L

�Si− Sj
 > 2<
]
≤ P

[
max
0≤i≤L

�Si�><

]
!

Setting < to +
√
L, by (4) this probability is at most 1

3 .
To conclude the proof we need the following fact, which can easily be proven by induction on the number of

phase-2 jobs released.

Fact 7. Just before the release of a phase-2 job, � has no more than one phase-2 job with remaining
processing time less than +.

Assume :V attains its maximum just before time t′ �= t̂+ i+. Due to Fact 7, no more than one phase-2 job
has remaining processing time less than +. At time t′, a new phase-2 job is released. Therefore, with probability
at least 2

3 , the number of phase-2 jobs that are in the system is bounded by

2+
√
L

+
+ 2= 2√L+ 2! �

By the above two lemmas, with constant probability the total flow time of the two schedules is bounded by

F alg ≥ (
N −√L/2− 1)t̃�

F � ≤ N t̂+ (
2K/2+ 2√L+ 2)t̃+ (

2K/2+ 2√L+ 2)(3N2k+ 2+√L
)
�

where the contribution of the period after time t̂+ t̃ for � is bounded by the number of jobs at time t̂+ t̃ times
the remaining processing time at the start of this phase.
To bound the ratio between F alg and F � , we note that by definition of N and as t̂ ≤ 2K/2�2K − 2k+1
 +

�N −2K/2
2K/2, it follows that N t̂ ≤ 2�2K/2+2√L+2
+L. Moreover, we know from the definition of N and +
that 3N2k+ 2+√L≤ 8+L. Hence, by restricting k≤K/3, we have that

E
[
F alg

F opt

]
=�

(
N −√L/2− 1
2K/2+ 2√L+ 2

)
=�

(
2K−k+ 2K/2− 25K/6−k/2

25K/6−k/2

)
=�

(
2K/6−k/2

)
! �

6.2. Lower bounds for symmetric smoothing models. Since we are using the partial bit randomization
model, we do not smoothen the processing times symmetrically around their initial values. Therefore, a natural
question is whether or not symmetric smoothing models, as defined in §3, are more suitable to analyze MLF.
We answer this question in the negative by providing a lower bound of ��2K
 on the performance of MLF
under the following symmetric smoothing model.
Consider a function = ��+ →�+ which is continuous and nondecreasing. In the symmetric smoothing model,

according to = we smoothen the initial processing times as follows:

pj �=max�1� p̌j + %j
� where %j

f← �−=�p̌j
/2�=�p̌j
/2��

and f is the uniform distribution.
In the following theorem, we prove that for certain functions = , the smoothed competitive ratio against an

oblivious adversary can be as bad as ��2K
. As for the previous two lower bounds, we define a two-phase
sequence. The jobs released in the first phase should be large enough such that they all enter QK−1. Moreover,
with constant probability, a large enough fraction of these jobs should enter queue QK .

Theorem 6.3. Let = ��+ →�+ be a continuous and nondecreasing function such that there exists a x∗ ∈�+

satisfying x∗ −=�x∗
/2> 2K−2 and x∗ +=�x∗
/2= 2K−1+a for some constant 1≤ a≤ 2K−1. Then, there exists
an ��2K/a
 lower bound on the smoothed competitive ratio of MLF against an oblivious adversary in the
symmetric smoothing model according to = .
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The symmetric smoothing model according to = captures the additive symmetric, the additive relative sym-
metric, and the relative smoothing model, which can be seen as follows.
The additive symmetric smoothing model over �−c� c� is equivalent to the above defined model with =�x
 �=

2c. Since x∗ − c > 2K−2 and x∗ = 2K−1+a− c, we obtain c < 2K−3+a/2. By fixing a �= 1, Theorem 6.3 yields
an ��2K
 lower bound for the symmetric additive smoothing model against an oblivious adversary.
For the additive relative symmetric smoothing model, we define =�x
 �= 2xc, for c ≥ 0. From the condition

x∗−�x∗
c > 2K−2 and the definition of x∗, we obtain �x∗
c < 2K−3+a/2. We fix a �= 1 and require �x∗
c ≤ 2K−3,
and thus c ≤ �K − 3
/ log�2K−1 + 1
. Theorem 6.3 then yields an ��2K
 lower bound for the additive relative
symmetric smoothing model.
The relative smoothing model is equivalent to the symmetric smoothing model according to = with =�x
 �=

2&x. The conditions in Theorem 6.3 are fulfilled if 0 ≤ & ≤ �2K−2 + a
/�3 · 2K−2 + a
. Hence, for a �= 1, we
obtain an ��2K
 lower bound for the relative smoothing model.
Proof of Theorem 6.3. The input sequence of the adversary consists of two phases. Let � be the algorithm

that during the first phase schedules the jobs to completion in the order in which they are released, and during
the second phase schedules the jobs that are released in this phase to completion in the order in which they are
released. After having completed all phase-2 jobs, � finishes the remaining phase-1 jobs. We upper bound opt
by � . To prove the theorem, we show that with constant probability F mlf/F � =��2K/a
. Then E�F mlf/F opt�=
��2K/a
. Without loss of generality, we assume that K ≥ 3, and we define L �==�x∗
.
Phase 1. At time t = 0, M �= 8max�L3/2K�1
 jobs are released with initial processing time p̌1 �= x∗, and

then every p̌1 time units one job with the same initial processing time is released. The total number of jobs
released in the first phase is N �=max�L4�22K/L2
. Note that by definition of x∗, the smoothed processing time
of each phase-1 job is at least 2K−2.
Let T1�i
 be the total processing time of jobs released in phase 1 at or before time ip̌1, for i= 0�1� � � � �N −M .

Define S0 �= 0 and Si �= Si−1 + %i =
∑i

j=1 %j , for i = 1� � � � �N . As E�%j � = 0 and all %j are drawn indepen-
dently, we have E�Si� = 0 and E�S2i � = iL2/12, for all i = 0� � � � �N . Applying Kolmogorov’s inequality (see
Appendix A, Theorem A.1), we obtain [

max
0≤k≤N

�Sk�>L
√
N
]
≤ 1

12 !

Hence, we have with probability at least 11/12 that for all i= 0� � � � �N −M

�i+M
p̌1−L
√
N ≤ T1�i
≤ �i+M
p̌1+L

√
N! (5)

In the sequel, we assume that (5) holds.
Let t̂ �= �N −M +1
p̌1, and consider a t ∈ �0� t̂
. Then, the remaining processing time for � as well as MLF

at time t is

T1��t/p̌1�
− t ≥ ��t/p̌1�+M
p̌1−L
√
N − t

≥ t− p̌1+Mp̌1−L
√
N − t ≥ �M − 1
2K−2−L

√
N − 1

≥ 2max�L3�2K
−max�L3�2K
− 2K−2− 1> 0! (6)

Hence, � and MLF do not have any idle time during the first phase. Moreover, the remaining processing time
for both algorithms is at most Mp̌1+L

√
N .

Consider some t ∈ �0� t̂
. There is at most one job that has been processed on by � but is not yet completed.
Hence,

*� �t
≤ Mp̌1+L
√
N

2K−2
+ 1=O�M
!

Consider the schedule produced by MLF up to time t̂. The probability that a job released in phase 1 is of
class K is at least a/L. The expected number of phase-1 class K jobs is at least aN/L. Applying Chernoff’s
bound (Appendix A, Theorem A.2), we know that with probability at least 1− e−aN/�8L
 ≥ �e−1
/e, there are at
least aN/�2L
 class K phase-1 jobs. In the sequel, we assume that this property holds. Note that the probability
that both (5) and the bound on the number of class K jobs hold is at least �e− 1
/e− 1/12.
If MLF does not finish any class K job up to time t̂, then

*mlf�t̂
≥ aN

2L
!
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Otherwise, consider the last time t ∈ �0� t̂
 that MLF was processing a job in queue QK . By definition of MLF,
we know that at this time all lower queues were empty. Moreover, we know that the remaining processing time
of each job in this queue is at most a, and we also know from (6) that the total remaining processing time is at
least max�L3�2K
− 1= L

√
N − 1. Hence, at this time, the number of alive jobs in the schedule of MLF is at

least �L
√
N − 1
/a, and also

*mlf�t̂
≥ L
√
N − 1
a

!

Phase 2: At time t̂, M jobs with p̌2 �= 2K−2 are released and then, every p̌2 time units, one job with the same
p̌2 is released. The total number of jobs released in this phase is 2N . As =�p̌2
/2≤ a/2≤ 2K−2, no job released
in the second phase enters queue QK .
Let T2�i
 be the total processing time of the phase-2 jobs released at or before time t̂ + ip̌2. Applying

Kolmogorov’s inequality yields that with probability at least 11/12, we have

�i+M
p̌2−L
√
2N ≤ T2�i
≤ �i+M
p̌2+L

√
2N! (7)

In the sequel, we assume that also (7) holds. The probability that the bound on the number of class K jobs and
(5) and (7) hold is at least �e− 1
/e− 1/6> 0!46.
Using the same arguments as before, we now show that MLF continuously processes phase-2 jobs until time

t̄ �= t̂ + �2N −M + 1
p̌2. Namely, consider a t ∈ �t̂� t̄
. Then, the remaining processing time for � as well as
MLF at time t is

T2
(⌊
�t− t̂
/p̌2

⌋)− �t− t̂
 ≥ (⌊
�t− t̂
/p̌2

⌋+M
)
p̌2−L

√
2N − �t− t̂


≥ �M − 1
p̌2−L
√
2N − 1≥ �M − 1
2K−2−L

√
2N − 1

≥ 2max�L3�2K
−√2max�L3�2K
− 2K−2− 1> 0!

Thus, if MLF does not finish any phase-1 job of class K up to time t̂, we have

*mlf�t
≥ aN

2L
� for t ∈ �t̂� t̄
� and F mlf =�

(
aN

2L
�2N −M + 1
p̌2

)
!

Otherwise, we have

*mlf�t
≥ L
√
N − 1
a

� for t ∈ �t̂� t̄
� and F mlf =�

(
L
√
N

a
�2N −M + 1
p̌2

)
!

Moreover, using the same argumentation as for phase 1, we know that during �t̂� t̄
, � has at most �Mp̌2 +
L
√
2N
/2K−3+ 1= �2+√2
M + 1 phase-2 jobs in its system. Hence,

*� �t
=O�M
 for t ∈ �t̂� t̄
!

After time t̄, the time needed by � to finish all jobs is at most

Mp̌1+L
√
N +Mp̌2+L

√
2N ≤

(
9+√2
2

+ 1
)
Mp̌2 ≤

(
9+√2
2

+ 1
)
�2N −M + 1
p̌2!

Hence,
F � =O�M�2N −M + 1
p̌2
!

If N = L4, then M = 8L3/2K and

F mlf/F � =�

(
aN

2LM

)
=��a2K
 or F mlf/F � =�

(
L
√
N

M

)
=�

(
2K

a

)
!

If N = 22K/L2, then L3 ≤ 2K and M = 8. Moreover,

F mlf/F � =�

(
aN

2LM

)
=��a2K
 or F mlf/F � =�

(
L
√
N

M

)
=�

(
2K

a

)
!

Since the probability that (5), (7), and the bound on the number of class K jobs hold is constant and a≥ 1,
we have

E
[
F mlf

F opt

]
=�

(
2K

a

)
! �

Obviously, Theorem 6.3 also holds for the adaptive adversary. Finally, we remark that we can generalize the
theorem to the case that f is a well-shaped function.
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6.3. Lower bound when smoothing release dates and processing times. We present a lower bound of
��2K−k
 on the smoothed competitive ratio of MLF under the partial bit randomization model, if the release
dates are perturbed additionally. The lower bound holds for any smoothing model of release dates that satisfies
�rj − řj � ≤ 2K−1. We may even allow negative release dates.

Theorem 6.4. Let the processing times be smoothed according to the partial bit randomization model, and
the release dates be smoothed such that the disruption is no more than 2K−1. Then, there exists an ��2K−k

lower bound on the smoothed competitive ratio of MLF.

Proof. The instance consists of n+3 jobs, where n �= 2K−k. All jobs have original processing time 2K−1+1,
i.e., the smoothed processing time pj is in �2K−1+ 1�2K−1+ 2k�. The first three jobs, denoted by −2�−1�0, are
originally released at time řj = 0. The other jobs have original release date řj �= j · 2K−1, j = 1� ! ! ! � n.
Lemma 6.3. Let rmax �=max−2≤j≤n rj be the largest smoothed release date. MLF does not finish any of the

jobs j ≥ 1 until time rmax+ 2K−1.
Proof. Any job will be completed in queue QK , and thus we have to prove that when a job j ≥ 1 has been

processed for in total 2K−1 time units, another job has been released. Therefore, no job j ≥ 2 will be processed
in QK until all jobs have been released.
Let r1 be the smoothed release date of job 1. If 0≤ r1 <max�r−2� r−1� r0
≤ 2K−1, then a job is released within

2K−1 time units after the release of job j = 1. Suppose that r2 ≥ r1 ≥max�r−2� r−1� r0
. Then, job 1 enters QK ,
not before min�r−2� r−1� r0
+ 4 · 2K−1 ≥ 3 · 2K−1 (due to possible negative release dates of the first three jobs).
As the smoothed release date of job j = 2 is r1 ≤ r2 ≤ 3 · 2K−1, job j = 2 is released before MLF can start
processing job 1 in queue QK . Suppose that r2 < r1, then job j = 1 has been processed for 2K−1 time units not
before min�r−2� r−1� r0
+ 5 · 2K−1 ≥ 4 · 2K−1, and this is the latest possible release date for job j = 3.
We can repeat this argument for all jobs j > 1. �
From Lemma 6.3, it follows that in the interval �j2K−1� �j + 1
2K−1
, for j = 1� � � � � n− 1, at least j jobs are

alive in the schedule of MLF. Hence, the total flow time for MLF is bounded from below by

F mlf ≥ 1
2n�n− 1
2K−1!

Lemma 6.4. If n≤ 2K−k, then SRPT has at each time a constant number of jobs.

Proof. Up to time 2K−1, no more than four jobs have been released. Consider a time i · 2K−1 ≤ t <
�i+1
2K−1. No more than �i+4
 jobs have been released and each has processing time at least 2K−1+1 and at
most 2K−1+2k. That is, at time t, the total remaining processing time is at most �i+4
�2K−1+2k
−�t−2K−1
≤
5 ·2K−1+ �i+4
2k ≤ 11 ·2K−1, for i≤ 2K−k and k≤K−1. Hence, in the optimal schedule, no more than 11 jobs
are alive. �
From this lemma, it follows that, if k≤K− 1, the total flow time in the optimal schedule is no more than

F opt ≤ 11�2K−k+ 3
�2K−1+ 2k
≤ 11 · 2K−k2K−1+ 88 · 2K−1 ≤ 99 · 2K−k2K−1!

Hence, the ratio between F mlf and F opt is bounded from below by

F mlf

F opt
≥ 0!5 · 2K−k�2K−k− 1
2K−1

99 · 2K−k2K−1
≥ c · 2K−k�

for some constant c. �

7. Concluding remarks. We analyzed the performance of the multilevel feedback algorithm using the novel
approach of smoothed analysis. Smoothed competitive analysis provides a unifying framework for worst-case
and average-case analysis of online algorithms. We considered several smoothing models, including the additive
symmetric smoothing model proposed by Spielman and Teng [25]. The partial bit randomization model yields
the best upper bound.
In particular, we proved that the smoothed competitive ratio of MLF using this model is O��2k/	
3 +

�2k/	
22K−k
, where 	 is the standard deviation of the smoothing distribution. The analysis holds for various
distributions. For distributions with 	 =��2k
, e.g., for the uniform distribution, we obtain a smoothed compet-
itive ratio of O�2K−k
. By choosing k=K, the result implies a constant upper bound on the average competitive
ratio of MLF. We also proved that any deterministic algorithm has smoothed competitive ratio ��2K−k
. Hence,
in this model, MLF is optimal up to a constant factor. Moreover, we showed that ��2K−k
 is a lower bound for
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the smoothed competitive ratio of MLF if the release dates are smoothed additionally. For the other proposed
smoothing models, we have obtained lower bounds of ��2K
. Thus, these models do not seem to capture the
good performance of MLF in practice.
As mentioned in the introduction, one could alternatively define the smoothed competitive ratio as the ratio

between the expected cost of the algorithm and the expected optimal cost (Scharbrodt et al. [21]), rather than
the expected competitive ratio. We remark that from Lemmas 5.1, 5.2, and 5.9, we obtain the same bound under
this alternative definition, without the need for any high-probability argument.
Interesting open problems are the analysis of MLF when the release times of the jobs are smoothed, and

to improve the lower bound against the oblivious adversary in the partial bit randomization model. It can also
be of some interest to extend our analysis to the multiple machine case. Following the work of Becchetti and
Leonardi [3], we can extend Lemma 5.1 having an extra factor of K, which will also be in the smoothed
competitive ratio. Finally, we hope that this framework of analysis will be extended to other online problems.

Appendix A. Bounds on large deviations. For the sake of completeness, we state several well-known
results that we will use in the paper. The first is known as Kolmogorov’s inequality; see, e.g., Feller [11].

Theorem A.1. Let X1� ! ! ! �Xn be a sequence of independent random variables such that E�Xj�= 0 for all j .
Define S0 �= 0 and Si �=

∑
j≤i Xj . Then,

P
[
max
0≤k≤n

�Sk� ≥ <

]
≤ E�S2n�

<2
for any <> 0!

We will also use the following versions of Chernoff bounds.

Theorem A.2. Let X be the sum of a finite number of mutually independent binary random variables such
that + �=E�X� is positive. Then,

P �X ≤ �1− *
+� < e−+*2/2 for any * ∈�+ with *< 1!

Theorem A.3. Let X be the sum of a finite number of mutually independent binary random variables such
that + �=E�X� is positive. Then,

P �X ≥ �1+ *
+� <

(
e*

�1+ *
1+*

)+

for any * ∈�+!

Theorem A.4. Let X be the sum of a finite number of mutually independent binary random variables such
that + �=E�X� is positive. Then,

P ��X−+�>*+� < 2e−+*2/3 for any * ∈�+!

We also use the following bound, known as the Hoeffding bound.

Theorem A.5. Let X1� � � � �Xn be independent random variables. Define X �=∑
i∈�n� Xi and + �= E�X�.

If each Xi ∈ �ai� bi�, i ∈ �n�, for some constants ai and bi, then, for any t > 0,

P �X ≤E�X�− t� ≤ exp
( −2t2∑

i�bi− ai

2

)
� and

P �X ≥E�X�+ t� ≤ exp
( −2t2∑

i�bi− ai

2

)
!

Appendix B. Characterization of feasible smoothing distributions. In the following, we attempt to char-
acterize distributions that satisfy properties (P1)–(P3).
We start with (P1). A trivial lower bound on the tail probability P

[
% ≥ �1+'
2k−1

]
is given by the following

lemma, where we assume a uniform distribution over �1� �1+'
2k−1
. We remark that although Lemma B.1 is
straightforward, it might be indeed tight, e.g., for the uniform distribution.

Lemma B.1. Let % be a random variable chosen according to a distribution f over �1�2k�. Moreover, let M
be such that P �% = x�≤M for each x ∈ �1� �1+'
2k−1
. Then, P

[
% ≥ �1+'
2k−1

]≥ 1−M�1+'
2k−1.

Proof.
P
[
% ≥ �1+'
2k−1

]= 1−P
[
% < �1+'
2k−1

]≥ 1−M�1+'
2k−1! �



Becchetti et al.: Average-Case and Smoothed Competitive Analysis of Multilevel Feedback Algorithm
Mathematics of Operations Research 31(1), pp. 85–108, © 2006 INFORMS 103

We also obtain two other lower bounds on the tail probability of f . Both use an “inverse” version of
Chebyshev’s inequality. We first prove the following lemma; see also Grimmett and Stirzaker [12].

Lemma B.2. Let % be a random variable and let h�%
 be a nonnegative function such that h�%
 ≤M for
each %. Then,

P �h�%
 > <�≥ E�h�%
�−<

M −<
!

Proof. Let Xh�%
 be 1 if �h�%
 > <
 and 0 otherwise. We have

h�%
≤M ·Xh�%
+< · �1−Xh�%

�

and by linearity of expectation,

E�h�%
�≤M ·E�Xh�%
�+< · �1−E�Xh�%
�
!

The proof now follows from the fact that E�Xh�%
�= P �h�%
 > <�. �
We are now in a position to obtain our first inverse Chebyshev inequality.

Lemma B.3 (Inverse Chebyshev Inequality I). Let % be a random variable chosen according to a dis-
tribution f over �1�2k� with mean + and standard deviation 	 . Then, for each 0<<< 2k,

P �% > <�≥ 	2++2−<2

22k−<2
!

Proof. Define h�%
 �= %2. Then, h�%
≤ 22k for each %. The bound now follows from Lemma B.2, where
we exploit that 	2 =E�%2�−+2. �
The following lemma shows that for ' �= 2k−K−1, we obtain (= �	/2k
2, if only the expectation of f is large

enough. We remark that the requirement on * is always satisfied if +≥ 3
4 · 2k.

Lemma B.4. Let % be a random variable chosen according to a distribution f over �1�2k� with mean
+≥ * · 2k and standard deviation 	 . Define ' �= 2k−K−1. If *≥ 1

2 �1+'
, then P�% ≥ �1+'
2k−1�≥ �	/2k
2.

Proof. The proof follows from Lemma B.3 and since +≥ * · 2k ≥ �1+'
2k−1. �
We derive our second inverse Chebyshev inequality.

Lemma B.5 (Inverse Chebyshev Inequality II). Let % be a random variable chosen according to a dis-
tribution f over �1�2k� with mean + and standard deviation 	 . Then, for each 0<<< 2k−+,

P ��%−+� ≥ <�≥ 	2−<2

�2k−+
2−<2
!

Proof. Define h�%
 �= �%−+
2. Then h�%
≤ �2k−+
2 for each %. The proof follows from Lemma B.2. �
The next lemma applies if the underlying distribution f satisfies P�% ≥++	/

√
2�≥ P�% ≤+−	/

√
2�. For

example, this condition holds if f is symmetric around + or if f is nondecreasing over �1�2k�.

Lemma B.6. Let % be a random variable chosen according to a distribution f over �1�2k� with mean
+≥ * · 2k and standard deviation 	 , and assume P�% ≥++ �	/

√
2
�≥ P�% ≤+− �	/

√
2
�. Define

' �=min
(
2*− 1+ 1√

2

(
	

2k−1

)
�2k−K−1

)
!

Then,

P
[
% ≥ �1+'
2k−1

]≥ 1
4

(
	

�1− *
2k

)2

!

Proof. If ' ≤ 2*− 1+ �1/
√
2


(
	/2k−1

)
, we obtain

P
[
% ≥ �1+'
2k−1

]≥ P
[
% ≥++ 	√

2

]
≥ 1
2
·P

[
�%−+� ≥ 	√

2

]
�

where the last inequality holds because P�% ≥ ++ �	/
√
2
�≥ P�% ≤ +− �	/

√
2
�. Since 2k −+≤ �1− *
2k,

we obtain from Lemma B.5

P
[
% ≥ �1+'
2k−1

]≥ 1
2
· 	

2− �1/2
	2

��1− *
2k
2
= 1
4

(
	

�1− *
2k

)2

! �
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Note that we have to make sure that ' > 0. Therefore, for * < 1
2 , the definition of ' in Lemma B.6 makes

sense only if we require �	/2k−1
 > �1− 2*
 ·√2.
Corollary 2. If f is a well-shaped distribution, we have *= 1

2 and thus,

(=
(
	

2k

)2

� where ' =min
(
1√
2

(
	

2k−1

)
�2k−K−1

)
!

We come to property (P2). The next lemma characterizes distributions that satisfy (P2).

Lemma B.7. Let % be a random variable chosen according to a distribution f over �1�2k�. Let l be some
integer, 0≤ l≤ k, such that for each i, 0≤ i≤ k− l, P�% ≤ 2i�≤ 2i · �1/2
k−l. Then,

∑k
i=0 P�% ≤ 2i�≤ 2+ l.

Proof.

k∑
i=0

P
[
% ≤ 2i]= k−l∑

i=0
P
[
% ≤ 2i]+ k∑

i=k−l+1
P
[
% ≤ 2i]≤ k−l∑

i=0

(
1
2

)k−l−i

+
k∑

i=k−l+1
1=

k−l∑
i=0

(
1
2

)i

+ l≤ 2+ l! �

Corollary 3. If f is a well-shaped distribution, then )= 2.
Proof. Since f is nondecreasing in �1�2k−1�, the distribution function F �x
 �= P �% ≤ x� of f is strictly

increasing once F �x
 > 0. Moreover, since f is symmetric around + and +≥ 2k−1, F �2k−1
≤ 1
2 . Thus, F �2i
≤

2i · �1/2
k for each i, 0≤ i≤ k− 1. Clearly, F �2k
≤ 1. �
Finally, consider property (P3). We remark that P

[
% ≥ �1+'
2k−1

]≥ ( implies E�%�≥ 1
2 �1+ '
(2k. How-

ever, this bound on * might be too weak. In Lemma B.7, we require P �% ≤ x� ≤ x · �1/2
k−l only for each
x= 2i, where 0 ≤ i ≤ k− l. If we instead require that this relation holds for every x ∈ �1�2k−l�, we obtain a
characterization for (P3).

Lemma B.8. Let % be a random variable chosen according to a distribution f over �1�2k�. Let l be some
integer, 0≤ l≤ k, such that for each x ∈ �1�2k−l�, P �% ≤ x�≤ x · �1/2
k−l. Then, E�%�≥ �1/2l+1
 · 2k.
Proof. Consider a uniform random variable U over �1�2k−l�. We have G�x
 �= P �U ≤ x� = min�x ·

�1/2
k−l �1
; see also Figure 2. By definition, P �% > x�≥ P �U > x� for each x ∈ �1�2k�. That is, % stochastically
dominates U , and therefore E�%�≥E�U �= �2k−l+ 1
/2. �
For example, well-shaped distributions satisfy Lemma B.8 with l= 1, which yields E�%�≥ 1

4 · 2k.

Appendix C. Proof of Lemma 5.1. We introduce some additional notation. The volume V � �t
 is the sum
of the remaining processing times of the jobs that are active at time t. L� �t
 denotes the total work done prior
to time t, i.e., the overall time the machine has been processing jobs until time t. For a generic function = (= *,
V , or L), we define :=�t
 �==mlf�t
−=opt�t
. For = (= *, V , :V , L, or :L), the notation ==k�t
 will denote
the value of = at time t when restricted to jobs of class k. We use =≥h�≤k�t
 to denote the value of = at time t
when restricted to jobs of classes between h and k.

1

2λ

2–λ

G (x) F(x)

1 2k

Figure 2. F �x
 �= P �% ≤ x�, G�x
 �=min�x · �1/2
< �1
, where < �= k− l.
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Lemma 5.1. For any input instance I , at any time t, *l
I �t
≤ hI�t
+ �6/'
*optI �t
.

Proof. In the following, we omit I when clear from the context. Denote by k1 and k2, respectively, the
lowest and highest class such that at least one job of that class is in the system at time t. We bound the number
of lucky jobs that are active at time t as follows:

*l�t
≤ h�t
+ 1
'

k2∑
i=k1

V mlf
=i �t


2i−1
! (8)

The bound follows since every job that is lucky at time t is either an ending head job or not. An ending
head job might have been processed, and therefore we cannot assume anything about its remaining processing
time. However, the number of ending head jobs is h�t
. For all other lucky jobs, we can bound the remaining
processing time from below: A job of class i has remaining processing time at least '2i−1. We have

k2∑
i=k1

V mlf
=i �t


2i−1
=

k2∑
i=k1

V opt
=i �t
+:V=i�t


2i−1

≤ 2*opt≥k1�≤k2�t
+
k2∑

i=k1

:V=i�t


2i−1

= 2*opt≥k1�≤k2�t
+ 2
k2∑

i=k1

:V≤i�t
−:V≤i−1�t

2i

= 2*opt≥k1�≤k2�t
+ 2
:V≤k2�t

2k2

+ 2
k2−1∑
i=k1

:V≤i�t

2i+1

≤ 2*opt≥k1�≤k2�t
+ *opt≤k1−1�t
+ 4
k2∑

i=k1

:V≤i�t

2i+1

≤ 2*opt≤k2�t
+ 4
k2∑

i=k1

:V≤i�t

2i+1

� (9)

where the second inequality follows since a job of class i has size at most 2i, while the fourth inequality follows
since :V≤k1−1�t
= 0 by definition.
We are left to study the sum in (9). For any t1 ≤ t2 ≤ t and a generic function = , denote by =�t1�t2��t
 the

value of = at time t when restricted to jobs released between t1 and t2, e.g., L
�t1�t2�
≤i �t
 is the work done by time

t on jobs of class at most i released between time t1 and t2. Denote by ti < t the maximum between 0 and the
last time prior to time t in which a job was processed in queue Qi+1 or higher in this specific execution of MLF.
Observe that, for i= k1� � � � � k2, �ti+1� t
⊇ �ti� t
.
At time ti, either the algorithm was processing a job in queue Qi+1 or higher, or ti = 0. Thus, at time ti no

jobs were in queues Q0� � � � �Qi. Therefore,

:V≤i�t
≤:V
�ti�t�
≤i �t
≤ L

mlf�ti�t�
>i �t
−L

opt�ti�t�
>i �t
=:L

�ti�t�
>i �t
!

In the following, we adopt the convention tk1−1 �= t. From the above, we have

k2∑
i=k1

:L
�ti�t�
>i �t


2i+1
=

k2∑
i=k1

L
mlf�ti� t�
>i �t
−L

opt�ti� t�
>i �t


2i+1

=
k2∑

i=k1

i−1∑
j=k1−1

L
mlf�tj+1� tj �
>i �t
−L

opt�tj+1� tj �
>i �t


2i+1

=
k2−1∑

j=k1−1

k2∑
i=j+1

L
mlf�tj+1� tj �
>i �t
−L

opt�tj+1� tj �
>i �t


2i+1
�

where the second equality follows by partitioning the work done on the jobs released in the interval �ti� t� into
the work done on the jobs released in the intervals �tj+1� tj �, j = k1− 1� � � � � i− 1.
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Let ī�j
 ∈ 8j + 1� ! ! ! � k29 be the index that maximizes Lmlf�tj+1�tj �
>i −L

opt�tj+1�tj �
>i . Then,

k2∑
i=k1

:L
�ti� t�
>i �t


2i+1
≤

k2−1∑
j=k1−1

k2∑
i=j+1

L
mlf�tj+1� tj �
>ī�j


�t
−L
opt�tj+1� tj �
>ī�j


�t


2i+1

≤
k2−1∑

j=k1−1

L
mlf�tj+1� tj �
>ī�j


�t
−L
opt�tj+1� tj �
>ī�j


�t


2j+1

≤
k2−1∑

j=k1−1
*
opt�tj+1�tj �
>ī�j


�t
≤ *
opt�tk2 � t�

≥k1 �t
≤ *opt≥k1�t
!

To prove the third inequality, observe that every job of class larger than ī�j
 > j released in the time interval
�tj+1� tj � is processed by MLF in the interval �tj+1� t� for at most 2j+1 time units. Order the jobs of this specific
set by increasing xmlfj �t
. Now, observe that each of these jobs has initial processing time at least 2ī�j
 ≥ 2j+1 at
their release, and we give to the optimum the further advantage that it finishes every such job when processed
for an amount xmlfj �t
≤ 2j+1. To maximize the number of finished jobs, the optimum places the work L

opt�tj+1� tj �
>ī�j


on the jobs with smaller xmlfj �t
. The optimum is then left at time t with a number of jobs

*
opt�tj+1� tj �
>ī�j


�t
≥
L
mlf�tj+1� tj �
>ī�j


�t
−L
opt�tj+1� tj �
>ī�j


�t


2j+1
!

Altogether, we obtain from (8), (9), and (10)

*l�t
≤ h�t
+ 2
'
*opt≤k2�t
+

4
'
*opt≥k1�t
≤ h�t
+ 6

'
*opt�t
! �

Appendix D. Proving positive and negative correlations. In Lemmas 5.2 and 5.9, we use a technique
described in the book by Alon and Spencer [1, Chapter 6] to prove that two events are negatively or positively
correlated. Two events A and B are positively correlated if P �A∩B�≥ P �A�P �B�, while A and B are negatively
correlated if P �A∩B�≤ P �A�P �B�. We give some more details in this section.
Let � denote a finite probability space with probability function P. Let A and B denote two events in �. A

and B are positively or negatively correlated if the following three conditions hold:
(i) � forms a distributive lattice. A lattice ���≤�∨�∧
 is a partially ordered set ���≤
 in which every two

elements x and y have a unique minimal upper bound, denoted by x ∨ y, and a unique maximal lower bound,
denoted by x∧ y. A lattice ���≤�∨�∧
 is distributive if for all x� y� z ∈�: x∧ �y∨ z
= �x∧ y
∨ �x∧ z
.
(ii) The probability function P is log supermodular, i.e., for all x� y ∈�,

P �x� ·P �y�≤ P �x∨ y� ·P �x∧ y� !

(iii) An event E ⊆� is monotone increasing if x ∈E and x≤ y implies that y ∈E, while E ⊆� is monotone
decreasing if x ∈E and x≥ y implies that y ∈E. A and B are positively correlated if both A and B are monotone
increasing or monotone decreasing. A and B are negatively correlated if A is monotone decreasing and B is
monotone increasing or vice versa.
In both Lemma 5.2 and Lemma 5.9, we need to prove that two events A′ and B′ are correlated; in Lemma 5.2,

A′ �= �pqi
≤ 2i
 and B′ �= �H�t
=H
, and in Lemma 5.9, A′ �= �%j ≥ '2i−1
 and B′ �= �pj > 6j
. In both cases,

A′ is an event that solely depends on the perturbation of some job j , e.g., j �= qi in Lemma 5.2 and j itself
in Lemma 5.9. We condition the probability space in order to make sure that only the processing time of j is
random. That is, we fix the processing times of all jobs other than j to xj̄ , which we denote by �pj̄ = xj̄ 
. Define
A �= �A′ �pj̄ = xj̄ 
 and B �= �B′ �pj̄ = xj̄ 
. Let � denote the conditioned probability space and let P denote the
underlying conditioned probability distribution. The following two statements are easy to verify.
(i) � together with the partial order ≤ and the standard max and min operations constitutes a distributive

lattice.
(ii) P is log supermodular. The inequality holds even with equality and does not depend on the underlying

probability distribution.
We next argue that the events A and B are monotone increasing or decreasing.
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Addition to Proof of Lemma 5.2. Let the processing time pjI of job j = qi in I be fixed such that I ∈
A= �pqi

≤ 2i �pj̄ = xj̄ 
. Define an instance I ′ with pjI ′ ≤ pjI . Then, I
′ ∈ A. Hence, A is monotone decreasing.

On the other hand, if the processing time pjI in I is chosen such that I ∈ B = �H�t
= H �pj̄ = xj̄ 
, i.e., j is
a head job at time t, then j remains a head job in any instance I ′ with pjI ′ ≥ pjI . Therefore, B is monotone
increasing. From the discussion above, we conclude that A and B are negatively correlated.
Addition to Proof of Lemma 5.9. Let I be an instance with processing time pjI of j being such that

I ∈A= �%j ≥ '2i−1 �pj̄ = xj̄ 
. Consider an instance I ′ with processing time pjI ′ ≥ pjI . Clearly, I
′ ∈A and thus,

A is monotone increasing. Similarly, let pjI be fixed such that I ∈ B = �pj > 6j �pj̄ = xj̄ 
. If we consider an
instance I ′ with pjI ′ ≥ pjI , then j also satisfies �pjI ′ >6j
 and thus, I

′ ∈ B. That is, B is monotone increasing.
We conclude that A and B are positively correlated.
Since the processing times of all jobs are perturbed independently, A′ and �pj̄ = xj̄ 
 are independent, i.e.,

P
[
A′ �pj̄ = xj̄

] = P �A′�. We exploit this fact as follows in order to prove that the events A′ and B′ are also
correlated the second inequality is due to the correlation of A and B:

P �A′ ∩B′� = ∑
xj̄

P
[
A′ ∩B′ �pj̄ = xj̄

]
P
[
pj̄ = xj̄

]

�
∑
xj̄

P
[
A′ �pj̄ = xj̄

]
P
[
B′ �pj̄ = xj̄

]
P
[
pj̄ = xj̄

]
= P �A′�

∑
xj̄

P
[
B′ �pj̄ = xj̄

]
P
[
pj̄ = xj̄

]= P �A′�P �B′� !

The above reasoning clearly holds for the oblivious adversary. Observe, however, that it also holds in the adaptive
case: The event A′ only depends on the random outcome %j of job j , which the adaptive adversary cannot
control. In principle, the event B′ might be influenced by a change in the processing time of j . However, since
pj is increased in both cases, this change is revealed to the adversary only after the completion of j itself. So,
up to time t, the behavior of the adaptive adversary will be the same.
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