

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. COMPUT. c© 2010 Society for Industrial and Applied Mathematics
Vol. 39, No. 8, pp. 3616–3632

STRICT COST SHARING SCHEMES FOR STEINER FOREST∗

LISA FLEISCHER† , JOCHEN KÖNEMANN‡, STEFANO LEONARDI§ , AND

GUIDO SCHÄFER¶

Abstract. Gupta et al. [J. ACM, 54 (2007), article 11] and Gupta, Kumar, and Roughgarden
[in Proceedings of the ACM Symposium on Theory of Computing, ACM, New York, 2003, pp. 365–
372] recently developed an elegant framework for the development of randomized approximation
algorithms for rent-or-buy network design problems. The essential building block of this framework
is an approximation algorithm for the underlying network design problem that admits a strict cost
sharing scheme. Such cost sharing schemes have also proven to be useful in the development of
approximation algorithms in the context of two-stage stochastic optimization with recourse. The
main contribution of this paper is to show that the Steiner forest problem admits cost shares that are
3-strict and 4-group-strict. As a consequence, we derive surprisingly simple approximation algorithms
for the multicommodity rent-or-buy and the multicast rent-or-buy problems with approximation
ratios 5 and 6, improving over the previous best approximation ratios of 6.828 and 12.8, respectively.
We also show that no approximation ratio better than 4.67 can be achieved using the sample-
and-augment framework in combination with the currently best known Steiner forest approximation
algorithms. In the context of two-stage stochastic optimization, our result leads to a 6-approximation
algorithm for the stochastic Steiner tree problem in the black-box model and a 5-approximation
algorithm for the stochastic Steiner forest problem in the independent decision model.

Key words. approximation algorithms, rent-or-buy problems, stochastic optimization, Steiner
forests, strict cost shares

AMS subject classifications. 68Q25, 68W25, 68W40

DOI. 10.1137/090767108

1. Introduction. In the multicommodity rent-or-buy (MRoB) problem we are
given an undirected graph G = (V,E) with nonnegative costs ce for all edges e ∈ E,
a set of k terminal pairs R = {(s1, t1), . . . , (sk, tk)} ⊆ V × V , a positive demand di
for every terminal pair (si, ti) ∈ R, and a parameter M ≥ 1. The goal is to install
capacities on the edges of G such that for all (si, ti) ∈ R we can simultaneously route
di units of flow from si to ti. We can either rent capacity on an edge e at cost
λ(e) · c(e), where λ(e) is the flow traversing edge e, or buy infinite capacity on edge e
at cost M · c(e). Bought edges have no incremental, flow-dependent cost. The overall
objective is to find a feasible solution of smallest total cost.

The MRoB problem generalizes a number of fundamental optimization problems
that are NP-hard. For M = 1 and unit demands, the MRoB problem reduces to the

∗Received by the editors August 4, 2009; accepted for publication (in revised form) August 24,
2010; published electronically October 26, 2010. A preliminary version of the results presented in
this paper was published in Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory
of Computing, ACM, New York, 2006, pp. 663–670.

http://www.siam.org/journals/sicomp/39-8/76710.html
†T. J. Watson Research Ctr., IBM, Yorktown Heights, NY 10598 (lkf@cs.dartmouth.edu). This

author’s work was supported in part by NSF grant CCF-0515127.
‡Department of Combinatorics and Optimization, University of Waterloo, 200 University Avenue

West, Waterloo, ON N2L 3G1, Canada (jochen@uwaterloo.ca). This author’s work was supported
in part by NSERC grant 288340.

§Dipartimento di Informatica e Sistemistica, Sapienza University of Rome, Via Ariosto 25, 00185
Rome, Italy (leon@dis.uniroma1.it). Part of this work was done while the author was visiting the
School of Computer Science at Carnegie Mellon University.

¶Algorithms, Combinatorics and Optimization Group, CWI Amsterdam, Science Park 123, 1098
XG Amsterdam, The Netherlands (g.schaefer@cwi.nl).

3616

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STRICT COST SHARING SCHEMES FOR STEINER FOREST 3617

Steiner forest problem which is to compute a minimum-cost forest that contains an
si, ti-path for all 1 ≤ i ≤ k. It is well known that this problem is NP-hard [12] and even
Max-SNP-hard [7]. The best known approximation algorithm achieves a performance
guarantee of 2 − 1/k and is due to Agrawal, Klein, and Ravi [1]; Goemans and
Williamson [13] generalize these results to a larger class of network design problems.
The single-sink rent-or-buy (SSRoB) problem refers to the special case of the MRoB
problem where all terminal pairs share a common root vertex r ∈ V , i.e., r ∈ {si, ti}
for all 1 ≤ i ≤ k.

The multicast rent-or-buy (MuRoB) problem is a generalization of the MRoB
problem. Here one needs to connect terminal subsets of arbitrary size, called groups.
More precisely, we are given a set of terminal groups R = {g1, . . . , gk} with gi ⊆ V
for every 1 ≤ i ≤ k, and the goal is to install sufficient capacity on the edges of G
such that di units of flow can be routed simultaneously between the terminals of every
group gi. The MuRoB problem is equivalent to the MRoB problem if all groups have
size two.

Kumar, Gupta, and Roughgarden [23] give the first constant-factor approxima-
tion algorithm for the MRoB problem. Gupta, Kumar, and Roughgarden [18] present
a randomized framework, called sample-and-augment, to derive approximation algo-
rithms for the SSRoB, virtual private network design, and single-sink buy-at-bulk
problems. The authors obtain a (2 + ρST) ≈ 3.39-approximation algorithm for the
SSRoB problem, where ρST ≈ ln 4 is the best known performance guarantee for the
Steiner tree problem [8]. Based on the ideas in [18], Gupta et al. [16] extend this
framework to incorporate the MRoB problem as well. A uniform presentation of
the framework and its applications to some other network design problems, including
the MuRoB problem, is given in [17]. We briefly review the sample-and-augment
algorithm for the MRoB problem. The algorithm proceeds in three steps:

1. Sampling Step: Choose a random subset S ⊆ R of terminal pairs by pick-
ing every terminal pair (si, ti) ∈ R independently with probability pi :=
min{di/M, 1}.

2. Subproblem Step: Compute an α-approximate Steiner forest FS on S and buy
all edges in FS .

3. Augmentation Step: Augment FS to a feasible solution for R by renting ad-
ditional edges to connect all remaining terminal pairs in R\S in the cheapest
possible way.

A crucial building block of the sample-and-augment algorithm is the Steiner forest
algorithm used in the Subproblem Step: Gupta et al. [16, 17] show that if the Steiner
forest algorithm has an approximation guarantee of α and additionally admits β-
strict cost shares, then the sample-and-augment algorithm is an (α+β)-approximation
algorithm for the MRoB problem.

Given a forest F in G, let G|F be the graph resulting from contracting all trees
of F . We use cG|F (u, v) to denote the minimum cost of any u, v-path in G|F . A
Steiner forest algorithm ALG is said to be β-strict, β ≥ 1, if there exist nonnegative
cost shares ξst for all (s, t) ∈ R such that

(a)
∑

(s,t)∈R ξst ≤ optR, where optR is the minimum cost of a Steiner forest for
R, and

(b) cG|F−st
(s, t) ≤ β · ξst for all (s, t) ∈ R, where F−st is a Steiner forest for

terminal set R−st = R \ {(s, t)} returned by ALG.

The authors originally devised a 6-approximate and 6-strict algorithm for the Steiner
forest problem which yields a 12-approximation algorithm for the MRoB problem.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

3618 FLEISCHER, KÖNEMANN, LEONARDI, AND SCHÄFER

Their analysis can be tightened to achieve an 8-approximation algorithm. Becchetti et
al. [6] reduced the approximation ratio to 6.828 by developing a (2+

√
2)-approximate

and (2 +
√
2)-strict primal-dual Steiner forest algorithm.

A slight adaptation of the sample-and-augment algorithm yields an (α + β)-
approximation algorithm for the MuRoB problem [17]: Pick every terminal group
gi independently with probability pi and buy the edges of an α-approximate group
Steiner forest (also known as generalized Steiner tree) FS on the set S of all selected
groups. Then augment FS by connecting all groups in R \ S in the cheapest possible
way. The group Steiner forest algorithm needs to connect all terminals that belong
to the same group gi in S. It is easy to see that this can be accomplished by using
a Steiner forest algorithm where every group gi is represented by a set of terminal
pairs. However, the major difference is that the Steiner forest algorithm then needs
to satisfy a stronger strictness definition, called group-strictness.

Given a terminal group g ∈ R, let cG|F (g) denote the minimum cost of connecting
all terminals of g in G|F . A Steiner forest algorithm ALG is β-group-strict, β ≥ 1, if
there exist nonnegative cost shares ξg for all g ∈ R such that

(a)
∑

g∈R ξg ≤ optR, where optR is the minimum cost of a Steiner forest for R,
and

(b) cG|F−g
(g) ≤ β · ξg for all g ∈ R, where F−g is a Steiner forest for terminal set

R−g = R \ {g} returned by ALG.

Stochastic Steiner tree and forest. The stochastic Steiner tree (SST) problem that
we consider in this paper is the Steiner tree problem in the model of two-stage stochas-
tic optimization with recourse. We are given a undirected graph G = (V,E) with
nonnegative costs ce for all edges e ∈ E, a probability distribution π : 2V → [0, 1] on
the subsets of vertices, and an inflation factor σ ≥ 1. Here π(R) is the probability
that the subset R ⊆ V is realized as the terminal set. Decisions are made in two
stages: In the first stage, we can choose to buy an arbitrary subset F0 of the edges at
cost c(F0) :=

∑
e∈F0

ce. In the second stage, a subset R of terminals is realized, and
additional edges FR can be bought at an inflated cost σ · c(FR). The objective is to
buy a set of edges in stages one and two so that all vertices in R are connected and
the expected total cost c(F0) + σE [c(FR)] is minimized.

We consider two stochastic models in this paper: In the independent decision
model every vertex v ∈ V is realized independently with probability pv ∈ [0, 1]
such that

∑
v∈V pv = 1; a set of terminals R is then realized with probability

Πv∈RpvΠv �∈R(1 − pv). In the black-box model, we make no assumptions about the
distribution π except that we have access to it via a sampling oracle: on request, the
oracle outputs a subset of vertices R drawn from the distribution. Note that in the
latter model the number of scenarios R ⊆ V with positive probability π(R) might be
exponential in |V |.

The stochastic Steiner forest (SSF) problem is a generalization of the SST problem
where π defines a probability distribution over all possible subsets R ⊆ V × V of
terminal pairs and the goal is to buy a subset of edges such that every terminal pair
in R is connected. Both models described above naturally extend to the SSF problem.

Extending the strictness notion introduced in [16, 17, 18], Gupta et al. [20] provide
a general boost-and-sample framework for two-stage stochastic optimization problems
in the black-box model. The framework applies to optimization problems that satisfy
a certain subadditivity condition. We refer the reader to [20] for a general statement of
this condition and discuss here only the specific case of the SST problem. In this case,
the condition states the following: let R1 and R2 be any two samples from the given

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STRICT COST SHARING SCHEMES FOR STEINER FOREST 3619

probability distribution, and let T1 and T2 be any two feasible Steiner trees spanning
the terminals in R1 and R2, respectively. Then (a) R1∪R2 is a potential sample from
the given distribution, and (b) T1 ∪ T2 is a feasible Steiner tree for R1 ∪R2.

It is not difficult to construct examples that show that the SST problem, in
general, does not satisfy the above subadditivity condition. However, for the rooted
version of the problem, where we require that every sample of terminals contain a
common root vertex r, the condition is satisfied. In this case, the framework by
Gupta et al. yields a 3.39-approximation algorithm. The authors also show that an
α-approximate and β-strict algorithm gives rise to an (α+β)-approximation algorithm
for the respective stochastic optimization problem in the independent decision model.
Using the result in [16], they obtain an 8-approximation algorithm for the SSF problem
in the independent decision model.

An adaptation of their framework was used by Gupta and Pál [19] to derive an
approximation algorithm for the SST problem without a fixed root in the black-box
model. Their algorithm works as follows:

1. Sampling Step: Draw
σ� independent samples g1, . . . , g�σ� of terminals from
the sampling oracle π, and let g := ∪igi.

2. First Stage Solution: Compute an α-approximate group Steiner forest F0 on
g.

3. Second Stage Solution: When the actual terminal set R realizes, augment F0

to a feasible solution for R by adding additional edges FR ⊆ E in the cheapest
possible way.

Gupta and Pál [19] show that this boost-and-sample algorithm yields an (α + β)-
approximation algorithm for the SST problem without a root in the black-box model if
the Steiner forest algorithm used to build the first stage solution is α-approximate and
β-group-strict. The authors then derive a 12.8-approximation for the SST problem
by devising a 3 +

√
5-approximate and 4 + 8√

5
-group-strict Steiner forest algorithm.

Our contributions. The strict Steiner forest algorithms presented in [6, 16, 19] all
adapt the primal-dual approximation algorithms for the Steiner forest problem [1, 13]:
strictness is achieved by adding extra edges to the approximate Steiner forest produced
by these algorithms. This worsens the approximation ratio but reduces the cost of
augmenting a feasible forest F−g into a feasible forest for R. In this paper, we show
that the primal-dual Steiner forest algorithms [1, 13] are 3-strict and 4-group-strict
with appropriate cost sharing rules. We summarize our main result in the following
theorem.

Theorem 1. There exists a primal-dual 2-approximate algorithm for the Steiner
forest problem that is 3-strict and 4-group-strict.

This implies a 5-approximation for the MRoB problem and a 6-approximation
for the MuRoB problem using the framework in [16, 17]. In the context of stochastic
optimization, we obtain a 6-approximation for the SST problem (without a fixed root)
in the black-box model and a 5-approximation for the SSF problem in the independent
decision model using the framework in [19, 20]. We summarize the implications of
Theorem 1 in Table 1.

This is the first algorithm to show that the unmodified primal-dual Steiner forest
algorithms [1, 13] have constant strict or group-strict cost shares. Finally, we present
an example instance that shows that several natural primal-dual Steiner forest al-
gorithms are not (83 − ε)-strict for any ε > 0, therefore showing that the two-stage
analysis of Gupta et al. given in [16, 17] is nearly tight for the MRoB problem.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

3620 FLEISCHER, KÖNEMANN, LEONARDI, AND SCHÄFER

Table 1

Approximation ratios obtained for the different problems considered in this paper. The � indi-
cates that this refers to the independent decision model only.

Problem Previous best This paper

Multicommodity rent-or-buy 6.828 [6] 5
Multicast rent-or-buy 12.8 [19] 6

Stochastic Steiner tree 12.8 [19] 6
Stochastic Steiner forest 6.828� [6] 5�

Related work. The MRoB problem is a special case of the multicommodity buy-
at-bulk (MBaB) problem. An instance of this problem is defined as for the MRoB
problem, but additionally we are given a subadditive and monotone function l : Z+ →
R+. A feasible solution consists of a vector x ∈ Z

|E|
+ of edge-capacities that allows

us to route di units of flow between every terminal pair (si, ti) ∈ R simultaneously.
The cost of installing the capacities given by x is

∑
e∈E l(xe)ce, and the goal is to

find a feasible capacity installation x of minimum total cost. Awerbuch and Azar [3]
present an O(α)-approximation for the MBaB problem, assuming that any metric
can be probabilistically approximated by a family of tree metrics with an expected
distortion at most α. Bartal shows that α = O(log2 n) [4] and later improves this
bound to α = O(log n log logn) [5]. More recently, Fakcharoenphol, Rao, and Talwar
[11] show that α = O(log n). On the hardness side, Andrews [2] shows that MBaB

does not have an O(log1/4−ε n)-approximation algorithm for any ε > 0 unless NP ⊆
ZTIME(npolylog(n)).

The algorithm by Awerbuch and Azar [3] in combination with Bartal’s tree em-
bedding [4, 5, 11] was the best known approximation algorithm for MRoB for several
years. The first constant-factor approximation algorithm for the MRoB problem is
due to Kumar, Gupta, and Roughgarden [23]. The randomized sample-and-augment
algorithm for the MRoB problem was given by Gupta et al. [16, 17]. This frame-
work has been used successfully in recent years to obtain improved approximation
algorithms for the MRoB problem [6, 18] and also constitutes the basis for our result.

The sample-and-augment framework was originally introduced by Gupta et al. [17,
18] to derive constant-factor approximation algorithms for the SSRoB, virtual private
network design, and single-sink buy-at-bulk problems. The current best approxima-
tion algorithm for the SSRoB special case of the MRoB problem is due to Eisenbrand
et al. [10], who extend the sample-and-augment framework in [17, 18] to connected
facility location problems. They derive a 2.8-approximation algorithm for the SSRoB
problem.1 Moreover, the algorithm can be derandomized leading to a deterministic
3.28-approximation algorithm for SSRoB [10, 27, 28].

The existing literature on two-stage stochastic optimization with recourse is vast.
However, only recently have researchers started to attempt to derive algorithms with
provable approximation guarantees for stochastic variants of NP-hard optimization
problems; see [9, 21, 22, 24] for some examples. General frameworks to derive approx-
imation algorithms for stochastic optimization problems were proposed in [20, 26].

The rooted stochastic Steiner tree problem has been addressed in [14, 20, 21, 22].
Gupta, Ravi, and Sinha [21] give a constant-factor approximation algorithm for the

1The original approximation ratio of 2.92 stated in [10] is based on the Steiner tree approximation
ratio ρST = 1.55 [25]. It reduces to 2.8 by using the currently best Steiner tree approximation
algorithm with ρST ≈ ln 4 [8].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STRICT COST SHARING SCHEMES FOR STEINER FOREST 3621

rooted SST problem if the number of scenarios with positive probability is polynomi-
ally bounded. The current best approximation algorithm for the rooted SST problem
in the black-box model is the randomized 3.39-approximation algorithm based on
the boost-and-sample framework given in [20]. This is also the best approximation
guarantee currently know for the independent decision model. Van Zuylen [28] deran-
domized the algorithm and obtained a deterministic 8-approximation algorithm for
the rooted SST problem in the independent decision model. Furthermore, Goyal et
al. [14] recently gave a deterministic primal-dual 8-approximation algorithm for the
rooted SST problem with a polynomial number of scenarios. All known approxima-
tion algorithms for the SST problem without a root in the black-box model are based
on the adaptation of the boost-and-sample framework given by Gupta and Pál [19].
The authors derive a 12.8-approximation algorithm which is also the current best in
this setting.

The boost-and-sample framework [20] also provides a means to derive approxi-
mation algorithms for the stochastic Steiner forest problem in the black-box model.
However, this requires a Steiner forest algorithm that admits a cost sharing scheme
that satisfies a very strong notion of strictness (see [20] for more details), and it is
still an open question whether such cost shares exist. In the case of the independent
decision model, the boost-and-sample framework has been used successfully to obtain
constant-factor approximation algorithms for the SSF problem; prior to this work, the
best approximation guarantee was 6.828 [6]. Very recently, Gupta and Kumar [15]
gave a constant-factor primal-dual approximation algorithm for the SSF problem in
the black-box model. Their algorithm does not use the boost-and-sample framework.

Outline of paper. In section 2, we define the structure of our cost shares and give
a surprisingly simple property that implies 2α-group-strictness if the cost shares are
based on an α-approximate Steiner forest. In section 2, we also present our improved
3
2α-strictness result for cost shares that satisfy an additional requirement. In section 3,
we review the Steiner forest algorithm of Agrawal, Klein, and Ravi [1] and show how
the cost of every edge of the computed forest is shared between terminal pairs in
order to meet the requirements of our strictness results. Finally, in section 4, we
give examples that demonstrate that our results are nearly tight for the framework
proposed in [16, 17].

2. Strictness of cost sharing algorithms for Steiner forests. Suppose we
are given an α-approximation algorithm ALG that computes a Steiner forest F for the
set of terminal groups R. In this section, we define two different cost sharing schemes
to distribute a fraction of 1

α of the cost of F among the terminals. These schemes
crucially rely on the notion of witnesses that are associated with each edge e ∈ F .
We show that if ALG and the witness definition satisfy certain properties, these cost
sharing schemes yield 2α-group-strict and 3

2α-strict cost shares.
We assume without loss of generality that the terminal sets of two different groups

in R are disjoint. If s appears in two groups, g1 and g2, we can create two new nodes
s1 and s2, add edges (s1, s) and (s2, s) each of zero cost, and replace s with s1 in g1
and with s2 in g2.

Given that F is produced by an α-approximation algorithm ALG, we define the
cost share ξ(e) of an edge e ∈ F as

(1) ξ(e) =
1

α
c(e).

For each edge e ∈ F , we assign two terminals We = {u, v} to be the witnesses of e

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

3622 FLEISCHER, KÖNEMANN, LEONARDI, AND SCHÄFER

and split ξ(e) between the terminals in We. In this section, we give two different ways
of splitting this cost share, yielding two different strictness results.

Let ξu(e) be the share of ξ(e) of terminal u ∈ We according to the split. The
total cost share assigned to terminal u is

ξu =
∑

e∈F : u∈We

ξu(e).

The cost share of a group of terminals g ∈ R is ξg =
∑

u∈g ξu.
We prove that if cost shares are distributed as described above, the total cost

share of all groups of terminals does not exceed the optimum cost. This validates
condition (a) of the definition of group-strictness.

Lemma 1. Let F be a Steiner forest computed by an α-approximate algorithm
ALG, and let {We}e∈F be the associated witness set. If the cost shares ξ are computed
as described above, then ∑

g∈R

ξg ≤ optR.

Proof. By our cost sharing rule (1), we have

c(F) =
∑
e∈F

c(e) =
∑
e∈F

∑
u∈We

αξu(e) = α
∑
g∈R

ξg,

and this implies the lemma as c(F) ≤ α · optR.
2.1. Symmetric cost share assignment. Crucial to proving the strictness of

our cost sharing scheme is to define the witness set {We}e∈F to satisfy the following
property. For a group of vertices g ∈ R, let Tg denote the unique tree connecting g
in F if such a tree exists; otherwise Tg = ∅. In the following we abuse notation by
letting a path P or tree T also stand for the set of edges in it.

Property 1. Consider an arbitrary group of terminals g ∈ R and let e be an
edge in tree Tg. If We ∩ g = ∅, then e is part of the forest F−g.

Remove terminal group g from R and run ALG on the set of terminal groups
R−g = R \ {g}. Property 1 implies that if an edge e ∈ Tg is not part of the forest
F−g, then e is witnessed by some terminal in g, i.e., We ∩ g �= ∅.

A natural idea is to split the cost share ξ(e) of e evenly among the two witnesses.
This is what we call the symmetric cost share assignment : The cost share that each
witness u ∈ We receives for edge e is

(2) ξu(e) =
1

2
ξ(e).

It is easy to see that Property 1 together with the symmetric cost share assignment
yields cost shares that are 2α-strict.

Lemma 2. Let F be a Steiner forest computed by an α-approximate algorithm
ALG and let {We}e∈F be the witness set. If algorithm ALG and {We}e∈F satisfy
Property 1, then the symmetric cost shares ξ are β = 2α-strict; i.e., for all g ∈ R

cG|F−g
(g) ≤ 2α · ξg.

Proof. Property 1 ensures that all edges e ∈ Tg that are not part of F−g must be
witnessed by some terminal in g. The claim of the lemma follows since for each edge e
of Tg with We∩g �= ∅, there is some terminal u in g with ξu(e) =

1
2ξ(e) =

1
2αc(e).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STRICT COST SHARING SCHEMES FOR STEINER FOREST 3623

2.2. Asymmetric cost share assignment. We next turn to a refined asym-
metric cost sharing scheme, where we split the cost share ξ(e) of an edge e ∈ F un-
evenly among its witnesses in We. We prove that this asymmetric cost sharing scheme
yields 3

2α-strict cost shares, if only algorithm ALG and the witness set {We}e∈F satisfy
an additional property.

This property is motivated by the following intuition: If terminals in group g
witness some edges that are not in Tg, then it might be cheaper to connect the
terminals of g in F−g by using those edges instead of some edges in Tg \F−g. If these
alternate edges do not provide a cheaper connection than the corresponding edges in
Tg \F−g, then they contribute some significant cost share to g that g can then use to
pay for edges in Tg \ F−g.

Property 2. There exists an order ≺ on the groups of terminals in R such that
for any two terminal groups g, h ∈ R, h ≺ g implies that all edges e of Th \ Tg with
We ∩ g = ∅ are part of the forest F−g.

While we will show in section 3.3 that our witness definition satisfies Property 2
for groups of arbitrary size, the asymmetric cost sharing rule below works only for
the case when all groups are pairs. Thus the remainder of this section is devoted
to the case when all groups consist of just two terminals. In this case, we specialize
our notation as follows: For terminal u, let ū be the terminal it is paired with, i.e.,
(u, ū) ∈ R. The cost share of a terminal pair (u, ū) ∈ R is denoted ξuū. Puū is the
unique path in F connecting u and ū.

We define an asymmetric cost share assignment as follows: Consider an edge
e ∈ F and let We = {u, v}. If u and v belong to the same terminal pair, then we may
split ξ(e) arbitrarily between ξu(e) and ξv(e); e.g., let ξu(e) = ξv(e) =

1
2ξ(e). Without

loss of generality, we will now assume that u and v belong to different terminal pairs,
and that (u, ū) ≺ (v, v̄). We share ξ(e) among the two witnesses u and v as follows:

ξu(e) =

{
1
3 ξ(e) if e /∈ Puū,
2
3 ξ(e) if e ∈ Puū,

and ξv(e) =

{
2
3ξ(e) if e /∈ Puū,
1
3ξ(e) if e ∈ Puū.

(3)

Observe that with this cost sharing rule, the total cost share that the witnesses in We

receive for e ∈ F is ξ(e).
Lemma 3. Let F be a Steiner forest computed by an α-approximate algorithm

ALG and let {We}e∈F be the witness set. If algorithm ALG and {We}e∈F satisfy
Properties 1 and 2, then the asymmetric cost shares ξ are β = 3

2α-strict, i.e., for all
(s, t) ∈ R

cG|F−st
(s, t) ≤ 3

2
α · ξst.

Proof. We prove that we can establish a connection between s and t in the graph
G|F−st at cost at most 3

2α times the cost share ξst of terminal pair (s, t). Consider
the path Pst that connects s and t in F . Let Xst be the set of edges of Pst that are not
part of F−st, i.e., Xst = {e ∈ Pst : e /∈ F−st}. From Property 1 we know that each
edge e ∈ Xst is witnessed by either s or t. We partition the set of edges in G|F−st

that are witnessed by s or t (not necessarily lying on Pst) into two sets

M+
st = {e ∈ G|F−st : ξst(e) ≥ 2

3ξ(e)} and M−
st = {e ∈ G|F−st : ξst(e) =

1
3ξ(e)}.

For an edge set S ⊆ E, define ξst(S) as the total cost share that terminal pair
(s, t) receives for the edges in S, i.e., ξst(S) =

∑
e∈S ξst(e). Note that for each edge

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

3624 FLEISCHER, KÖNEMANN, LEONARDI, AND SCHÄFER

s p1

u1

u2

p2

p3

u3

p̄1

ū1

p̄2

ū2

p̄3

ū3

t

Fig. 1. The figure shows the path Pst and three terminal pairs (ui, ūi), (uj , ūj) ∈ Ist with
1 ≤ i < j ≤ q.

e ∈ M+
st,

3
2α times the cost share ξst(e) is sufficient to cover the cost of e. We

can therefore contract the edges in M+
st in G|F−st using 3

2α times their cost share

ξst(M+
st). Subsequently, we assume without loss of generality that each edge e in

G|F−st that is witnessed by s or t belongs to M−
st. We show that we can connect s

and t at a cost at most 3
2αξst(M−

st).

Consider an edge e ∈ Xst. Then e ∈ M−
st. By the cost share assignment given

in (3), the following must hold: (i) there is a terminal u /∈ {s, t} that together with s
or t witnesses e, (ii) (u, ū) ≺ (s, t), and (iii) e is part of the path Puū that connects
u and ū in F . For these edges we need to collect additional cost share from edges in
Puū \ Pst witnessed by (s, t) and possibly exploit the connectivity provided by Puū

provided in F−st.

Let I0st be the set of terminal pairs that witness edges in Xst together with one
of s and t:

I0st = {(u, ū) ∈ R : ∃e ∈ Xst such that {s, t} ∩We �= ∅ and {u, ū} ∩We �= ∅}.

By assumption, s and t obtain cost share 1
3ξ(e) for all edges e in Xst. Hence, for

every (u, ū) ∈ I0st we have (u, ū) ≺ (s, t). It follows from Property 2 that every edge
e ∈ Puū \Pst that is not witnessed by s or t must be part of F−st. For a terminal pair
(u, ū) ∈ I0st, we let P̄uū = Puū∩Pst be the nonempty subpath of Puū consisting of edges
on Pst. For distinct terminal pairs (u, ū), (w, w̄) ∈ I0st, we say that (u, ū) encapsulates
(w, w̄) if P̄ww̄ ⊆ P̄uū. As long as I0st contains such pairs (u, ū) and (w, w̄), remove
(w, w̄) from I0st. Call the final set of pairwise nonencapsulating terminal pairs Ist.

For ease of notation, we assume that

Ist = {(u1, ū1), . . . , (uq, ūq)},

and we use Pi for the unique ui, ūi-path in F . Also define pi and p̄i to be the endpoints
of P̄uiūi and assign these labels such that pi is closer to s than p̄i. We will call pi and
p̄i the projections of terminal pair (ui, ūi) ∈ Ist. Since the pairs of Ist are pairwise
nonencapsulating, we may order the indices such that pi is closer to s than pj and p̄i
is closer to s than p̄j for all 1 ≤ i < j ≤ q. Refer to Figure 1 for an example.

In the following, we let P i
st be the s, p̄i-segment of Pst for all 0 ≤ i ≤ q, where we

define p̄0 = s. We then define

P i = P i
st ∪ P1 ∪ · · · ∪ Pi

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STRICT COST SHARING SCHEMES FOR STEINER FOREST 3625

s p̄i z pi+1

ui+1

p̄i+1

ūi+1

(i)

s pi+1

z1

fui ui+1

p̄i

l

p̄i+1

z2

ūi+1

Ml

Mf

Ml

Mf

(ii)

Fig. 2. The figure illustrates the cases used in the proof of Lemma 3. Solid edges represent
segments of Pst, and dotted edges represent connectivity in F−st.

as the union of path P i
st and the paths of the first i terminal pairs in Ist. It is

important for the remainder of this proof to observe that the edges in P i form a tree
for all i, as F is a forest.

Finally, let

Mi
st = M−

st ∩ P i

be the set of edges in P i that are witnessed by s or t. We first prove the following
proposition.

Proposition 1. For every 0 ≤ i ≤ q and for every vertex z ∈ P i, we can
reconstruct an s, z-path in G|F−st at a cost at most 3

2αξst(Mi
st).

Proof. The proof is by induction over 0 ≤ i ≤ q. The claim is clearly true for
i = 0. Now assume that the claim holds for some 0 ≤ i < q. Consider first the case
where p̄i precedes pi+1 on Pst and p̄i �= pi+1 (see also Figure 2(i)). Let z be a node on
the p̄i, pi+1-segment P of Pst. Observe that none of the edges e ∈ P can be contained
on Pj for any 1 ≤ j ≤ q since the projections of the pairs in Ist are nonnested. If
s or t witnessed some edge e ∈ P , they would receive at least a cost share of 2

3ξ(e),

and thus e ∈ M+
st. We excluded those edges initially, and hence, using the inductive

hypothesis, we can reconstruct an s, z-path in G|F−st at a cost at most 3
2αξst(Mi

st).
For the above argument, we will now assume that pi+1 precedes p̄i on Pst (possibly

p̄i = pi+1). Let f and l be the first and last vertices on Pi+1, respectively, that
are incident to edges of P i (refer to Figure 2(ii)). Clearly, the unique f, l-path Pfl

in F must be contained in P i. Let z1 be a node on Pfl. We can then use the
induction hypothesis in order to reconstruct an s, z1-path in G|F−st at a cost at most
3
2αξst(Mi

st).
Now consider a node z2 ∈ Pi+1 \ Pfl. Assume that z2 is contained on the l, ūi+1-

segment of Pi+1 (the case where z2 is contained on the ui+1, f -segment of Pi+1 works
analogously). We consider two ways to reconstruct an s, z2-path in G|F−st:

1. Use Pf for the union of the ui+1, f - and z2, ūi+1-segments of Pi+1, and let Mf

be the set of edges on Pf that are witnessed by s or t. We can then inductively
reconstruct an s, f -path in G|F−st at a cost at most 3

2αξ(Mi
st). Using the

fact that ui+1 and ūi+1 are connected in F−st, we obtain an s, z2-path by
reconstructing Pf . Recall that the edges of Pf that are missing in F−st must
be witnessed by s or t (because (ui+1, ūi+1) ≺ (s, t) and by Property 2). Thus
this costs at most 3αξst(Mf).

2. Use Pl for the l, z2-segment of Pi+1, and let Ml be the set of edges on Pl

that are witnessed by s or t. We can then inductively reconstruct an s, l-
path in G|F−st at a cost at most 3

2αξ(Mi
st). We obtain an s, z2-path by

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

3626 FLEISCHER, KÖNEMANN, LEONARDI, AND SCHÄFER

reconstructing Pl. Note that the only edges in Pl that are missing in F−st

must be witnessed by s or t. Thus, reconstructing Pl costs at most 3αξst(Ml).
In summary, reconstructing an s, z2-path in G|F−st costs at most

3

2
αξst(Mi

st) + 3αmin{ξst(Mf), ξst(Ml)} ≤ 3

2
α
(
ξst(Mi

st) + ξst(Mf) + ξst(Ml)
)
.

Observing that Mf ∪ Ml ∪ Mi
st is a partition of Mi+1

st finishes the proof of the
proposition.

By the above proposition, we can establish a connection between s and p̄q in
G|F−st at a cost at most

3

2
αξst(Mq

st) ≤
3

2
αξst(M−

st).

Finally, observe that every edge e ∈ Xst on the p̄q, t-segment of Pst must belong to
M+

st. We excluded these edges from G|F−st initially. Thus we can reconstruct an s, t-
path in G|F−st at a total cost at most 3

2αξst(M−
st), which concludes the proof.

3. A primal-dual based strict algorithm for Steiner forests. In this sec-
tion we review a (2 − 1/k)-approximate primal-dual algorithm for Steiner forests.
The algorithms for Steiner forests presented in [1] and [13] differ only slightly. In
this paper, we focus on the viewpoint taken in [1]. We use AKR to refer to this al-
gorithm. We then show that AKR together with an appropriate witness definition
satisfies Properties 1 and 2.

While the Steiner forest problem is traditionally defined on pairs of nodes, it is
easy to extend the definition to groups of nodes. However, in the case of the Steiner
forest problem, the group problem can be modeled and solved as the problem defined
on pairs by creating a pair for each pair of nodes in a group.

3.1. Primal-dual algorithms for Steiner forests. The primal-dual algorithm
AKR constructs both a feasible primal and a feasible dual solution for a linear pro-
gramming formulation of the Steiner forest problem and its dual, respectively. A
standard integer programming formulation for the Steiner forest problem has a bi-
nary variable xe for all edges e ∈ E. Variable xe has value 1 if edge e is part of
the resulting forest. We let U contain exactly those subsets U of V that separate
at least one terminal pair in R. In other words, U ∈ U iff there is (s, t) ∈ R with
|{s, t} ∩ U | = 1.

For a subset U of the nodes we also let δ(U) denote the set of those edges that have
exactly one endpoint in U . We then obtain the following integer linear programming
formulation for the Steiner forest problem:

min
∑
e∈E

ce · xe(IP)

s.t.
∑

e∈δ(U)

xe ≥ 1 ∀U ∈ U ,

x integer.

The linear programming dual of the standard LP-relaxation (LP) of (IP) has a variable
yU for all node sets U ∈ U . There is a constraint for each edge e ∈ E that limits the
total dual assigned to sets U ∈ U that contain exactly one endpoint of e to be at most

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STRICT COST SHARING SCHEMES FOR STEINER FOREST 3627

ce.

max
∑
U∈U

yU(D)

s.t.
∑

U∈U :e∈δ(U)

yU ≤ ce ∀e ∈ E,(4)

y ≥ 0.

Algorithm AKR constructs a primal solution for (LP) and a dual solution for (D).
The algorithm has two goals:

1. Compute a feasible solution for the given Steiner forest instance. The algo-
rithm reduces the degree of infeasibility as it progresses.

2. Create a dual feasible packing of sets of the largest possible total value. The
algorithm raises dual variables of certain subsets of nodes at all times. The
final dual solution is maximal in the sense that no single set can be raised
without violating a constraint of type (4).

Consider the execution of algorithm AKR as a process over time, and let xτ and
yτ be the primal incidence vector and feasible dual solution at time τ . Note that in
any optimal solution to (IP), xe ∈ {0, 1}. Let F τ denote the forest corresponding to
the set of edges with xτ

e = 1. Initially, let x0
e = 0 for all e ∈ E and y0U = 0 for all

U ∈ U . The algorithm maintains the invariant xτ
e ≤ xτ ′

e and yτU ≤ yτ
′

U for all τ < τ ′.
An edge e ∈ E is tight if the corresponding constraint (4) holds with equality;

and a path is tight if every edge in the path is tight. Assume that the forest F τ at
time τ is infeasible. A terminal node v ∈ R is active at time τ if v and its mate
v̄, i.e., (v, v̄) ∈ R, are in different trees in the forest F τ ; v is inactive otherwise.2

Let F̄ τ denote the subgraph of G that is induced by the tight edges for dual yτ . To
avoid confusion between connected components in F τ and those in F̄ τ , the term moat
refers to a connected component in F̄ τ . The algorithm maintains that if C ∈ F τ ,
then C ⊆ U for some moat U ∈ F̄ τ . A moat U of F̄ τ is active at time τ if U contains
an active terminal; U is inactive otherwise. Let Aτ be the set of all active moats in
F̄ τ at time τ . AKR raises the dual variables for all sets in Aτ uniformly at all times
τ ≥ 0, so that if U is active from time τ ′ until time τ ′′, then yU = τ ′′ − τ ′.

Two disjoint moats collide at time τ in the execution of AKR if there is a path
in G from one moat to the other that becomes tight at time τ . In order for this
to happen, at least one of the two moats must be active. Suppose that a path P
connecting two active terminals u and u′ becomes tight at time τ in the execution of
AKR. Then u is contained in some active moat U and u′ is in a disjoint active moat
U ′. When this happens, AKR adds the edges of P not already in F τ to F τ : that is,
for all e ∈ P , the algorithm sets xτ

e = 1. For τ ′ > τ , sets U and U ′ are part of the
same moat of F̄ τ ′

.
Subsequently, we use U τ (v) to refer to the moat in F̄ τ that contains node v ∈ V

at time τ . Similarly, we let U τ (C) denote the moat in F̄ τ that contains the connected
component C ∈ F τ at time τ . Let F be the final forest.

The following is the main theorem of [1].
Theorem 2. Let F be the forest computed by AKR on terminal set R. We then

have c(F) ≤ (
2− 1

k

) · optR, where optR is the minimum cost of a Steiner forest for

2Note that for the problem defined on groups, each terminal in the group will become inactive
at exactly the same time, since if the group is not connected, then each terminal is not connected to
some other terminal in the group.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

3628 FLEISCHER, KÖNEMANN, LEONARDI, AND SCHÄFER

C1

C3

C2

P4

P3P2

C′

u′
P1u

C

Fig. 3. A path P that becomes tight at time τP in AKR(R).

the given input instance with terminal set R.

3.2. Witness definition. We define a set {We}e∈F of witnesses that are used to
distribute the cost shares as described in section 2. Let AKR(S) refer to the execution
of AKR on terminal set S ⊆ R. Let F be the forest computed by AKR(R) for terminal
set R. The witnesses We for each edge e ∈ F are defined by the execution of AKR(R).

Consider a path P that becomes tight at time τP in AKR(R), as depicted in
Figure 3. Path P starts from a node u in a connected component C of F τP , passes
through a (possibly empty) sequence C1, . . . , Cl of connected components of F τP , and
ends in a node u′ of a connected component C′ of F τP . Let P1, . . . , Pl+1 be the
sequence of paths of P \ F τP , and let PP be the set of edges in P\F τP . When P
becomes tight, the set PP is added to F , and we determine for each edge e ∈ PP the
corresponding witnesses We as follows.

Each edge e ∈ PP will have the same witness set We = {w,w′}. We will also say
that P is witnessed by w and w′. Since the moats U τP (C) and U τP (C′) are active
at time τP , both C and C′ must contain at least one active terminal. We will choose
one witness among the active terminals in each of C and C′. Intuitively, the witness
chosen in C is the active terminal whose moat intersects P1 earliest among all active
terminals in C. Similarly, the moat of the witness chosen in C′ is the first to intersect
Pl+1 among all active terminals in C′. To make this precise, let AC be the set of
terminals in C that are active at time τP . By definition of C, all terminals in AC are
connected to u in F τP .

Lemma 4. Let τu be the first time that moat U τ (u) collides with a moat Uu

containing a terminal in AC . There is a terminal w in Uu ∩AC whose moat collides
with u’s moat at time τu even if all terminals in AC \{w} are not part of the terminal
set R.

Proof. If u ∈ AC , then τu = 0 and w = u. Otherwise, we will prove the lemma
by showing a stronger claim: For all terminals v in C that become inactive before
time τP , let τv be the first time that moat U τ (v) collides with a moat Uv containing
at least one terminal from AC . Then there is a terminal w ∈ Uv ∩ AC whose moat
collides with v’s moat at time τv even if all terminals in AC \ {w} are not part of the
terminal set R. This clearly implies the lemma.

Fix a terminal v in C that becomes inactive at some time before τP . Observe
that by the definition of τv, U

τ (v) does not intersect AC before time τv, and therefore
the growth of v’s moat until time τv is not affected by the removal of AC .

The proof is by induction on |Uv|. If |Uv| = 1, then the set consists of only a
terminal w ∈ AC , and the growth of w’s moat is not affected by the removal of other
terminals in AC .

Now assume that |Uv| > 1. Let z ∈ Uv be the endpoint of the path Pv that
becomes tight when Uv collides with U τ (v). If z is in AC , we are done: We define
w = z and observe that w’s moat intersects Pv at all times 0 ≤ τ ≤ τv even if the
terminals in AC \ {w} are not part of the terminal set.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STRICT COST SHARING SCHEMES FOR STEINER FOREST 3629

Assume that z is not in AC . In this case, let τz be the first time that U τ (z)
collides with a moat Uz that contains a terminal from AC . We have |Uz| < |Uv| and
can therefore apply the induction hypothesis to z and Uz. That is, there is a terminal
w ∈ Uz whose moat collides with z’s moat at time τz even if all terminals in AC \{w}
are not part of the terminal set R. Since w is in AC , it causes the moat containing
z to grow after time τz regardless of other terminals in AC . Thus, w’s moat collides
with that of v at time τv, and this finishes the proof of the lemma.

The witness w is a terminal described by Lemma 4. The witness w′ with respect
to C′ is defined analogously.

3.3. Properties of AKR. We show that Properties 1 and 2 hold for AKR and
the witness definition given above. Let {We}e∈F be the set of witnesses assigned by
AKR. Let G−g (where G = U, F or F̄) refer to set G in run AKR(R−g). For example,
U τ−g(u) refers to the moat of u at time τ in AKR(R−g). Let τg denote the time at
which all terminals in group g become inactive in AKR(R). Subsequently, we abuse
notation by letting R also refer to the set of all terminals that are contained in the
groups of R.

Lemma 5. For all τ ≤ τg and for all terminals v ∈ R−g, U τ
−g(v) ⊆ U τ (v).

Moreover, if U τ (v) ∩ g = ∅, then U τ
−g(v) = U τ (v).

Proof. We prove the lemma by induction over time τ . At time τ = 0 we have
U τ−g(v) = U τ (v) for all v ∈ R−g, and thus the induction hypothesis clearly holds.
Assume the induction hypothesis holds at time τ < τg. We will show that it remains
true at time τ + ε for any small ε > 0.

Consider the case U τ (v) ∩ g = ∅ and thus U τ−g(v) = U τ (v). That is, U τ−g(v)

is active at time τ iff U τ (v) is active at that time. Then U τ+ε
−g (v) = U τ+ε(v) if

U τ+ε(v) ∩ g = ∅; and U τ+ε
−g (v) ⊆ U τ+ε(v) otherwise. Now assume U τ (v) ∩ g �= ∅

and thus U τ−g(v) ⊆ U τ (v). Clearly, U τ+ε(v) ∩ g �= ∅. Since τ < τg, all termi-
nals in g are active at time τ and thus U τ (v) is active at time τ . It follows that
U τ+ε
−g (v) ⊆ U τ+ε(v).

Corollary 1. Consider a terminal v ∈ R−g. If v is active at time τ ≤ τg in
AKR(R), then v must be active until time at least τ in AKR(R−g).

As in Figure 3, let P be a path connecting two components C and C′ that becomes
tight at time τP ≤ τg in the execution of AKR(R). Recall that the moats U τP (C) and
U τP (C′) are active at time τP . As before, let u and u′ be the two endpoints in C and
C′, respectively, and let C1, . . . , Cl be the connected components of F τP that lie on
P . Moreover, assume that P is witnessed by w and w′.

Lemma 6. Assume that neither of the two witnesses w,w′ of P is in g, i.e.,
We ∩ g = ∅ for all edges e ∈ PP . Then for each edge e ∈ P , the contribution to (4)
before time τP is the same in AKR(R) as it is in AKR(R−g). In particular, the edges
in PP are added at time τP in both runs.

Proof. First we show that the contribution to (4) from variables corresponding
to moats not containing u and u′ is the same in both runs. For all 1 ≤ i ≤ l, let
τi = τ be the first time at which the moat U τ (Ci) of component Ci becomes inactive.
Then τi < τP ≤ τg and thus Ci ∩ g = ∅. Then, by Lemma 5, U τ

−g(v) = U τ (v) for all
τ ≤ τi, for all v ∈ Ci, and for all 1 ≤ i ≤ l. Thus, the dual variable values for all sets
restricted to subsets of Ci are the same in both AKR(R) and AKR(R−g).

Now consider the contribution to (4) from variables corresponding to moats con-
taining u. Let τ̂ be the first time at which moat U τ̂ (u) collides with a moat Û
containing a terminal in AC . By the definition of τ̂ , U τ (u) ∩ g = ∅ for all τ ∈ [0, τ̂).
Thus, by Lemma 5, U τ

−g(u) = U τ (u) for all τ ∈ [0, τ̂); and the contribution to (4) from

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

3630 FLEISCHER, KÖNEMANN, LEONARDI, AND SCHÄFER

s s′ t t′
2 2

(i)

2

4− ε 4− ε

s s′ t t′
2 2

(ii)

2

4− ε 4− ε

Fig. 4. Instance used in the lower bound argument.

variables corresponding to moats containing u before time τ̂ is the same in AKR(R)
and AKR(R−g). From time τ̂ , w and u are in the same moat in AKR(R), and by
Lemma 4, they are also in the same moat at this time in AKR(R−g). By Lemma 5,
w is still active at time τP in both AKR(R) and AKR(R−g). Thus the contribution to
(4) of variables corresponding to moats containing u from time τ̂ until time τP is also
the same in both runs. A symmetric argument for variables corresponding to moats
containing u′ shows that path P is tight at time τP in AKR(R−st).

Finally, note that Lemma 5 also implies that w and w′ are contained in disjoint
moats in AKR(R−g) before time τP . Hence the edges in PP are added at time τP in
AKR(R−g), and the lemma follows.

Note that the above lemma implies Property 1 for our definition of witnesses. To
see this, consider an arbitrary edge e in the tree Tg of AKR(R) and assume We∩g = ∅.
Let P be the path that becomes tight at time τP in the run AKR(R) with e ∈ PP .
Then τP ≤ τg. By Lemma 6, the edges in PP are added at time τP in the run
AKR(R−g), and thus e ∈ F−g.

We show that the following precedence order ≺ together with the witness defini-
tion described above implies Property 2 for AKR. Consider the run AKR(R), and fix
an order on the terminal groups in R = {gi}1≤i≤k such that

τg1 ≤ τg2 ≤ · · · ≤ τgk .

We define gi ≺ gj if i ≤ j in this order.
The following lemma implies Property 2.
Lemma 7. Let g and h be two groups of terminals in R such that h ≺ g, and let

e be an edge of tree Th in F . If We ∩ g = ∅, then e ∈ F−g.
Proof. The proof is by contradiction. Assume that edge e is not part of F−g.

Edge e ∈ Th is added to F at time τ ≤ τh ≤ τg. By Lemma 6 and since We ∩ g = ∅,
e is picked at time τ in AKR(R−g). This is a contradiction.

4. A lower bound on the strictness factor. Figure 4 shows a simple Steiner
forest instance with two terminal pairs R = {(s, t), (s′, t′)}. The solid lines in Figure
4(i) correspond to edges of forest F returned by algorithm AKR when run on this
instance. The total cost share of all edges in F is 3, and therefore there must be a
terminal pair in R whose cost share is at most 3

2 . Without loss of generality, assume
that ξst ≤ 3

2 . Running AKR on terminal set R−st = {(s′, t′)} yields the forest in
Figure 4(ii). As cG|F−st

(s, t) = 4 − ε, this example shows that the strictness of AKR

is at least (4 − ε)/ 3
2 ≈ 8

3 whenever the sum of the cost shares of all terminal pairs is
at most half of the cost of the computed forest.

We remark that the previously known algorithms for the MRoB problem in [16]
and [6] essentially distribute half of the cost of a forest computed by AKR as cost
shares among the terminal pairs. Given a terminal pair (s, t) ∈ R, both of these
algorithms use an adaptation of the standard primal-dual Steiner forest algorithm

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STRICT COST SHARING SCHEMES FOR STEINER FOREST 3631

(so-called timed or boosted primal-dual algorithms) to compute a forest F−st. In a
nutshell, the idea behind these adaptations is to produce a forest whose connectivity
is higher than that of a forest produced by standard primal-dual algorithms. For the
example above, however, both algorithms in [16] and [6] return the forest in Figure
4(ii). Thus, the above example provides an 8

3 lower bound for the strictness of these
algorithms as well.

REFERENCES

[1] A. Agrawal, P. Klein, and R. Ravi, When trees collide: An approximation algorithm for the
generalized Steiner problem on networks, SIAM J. Comput., 24 (1995), pp. 440–456.

[2] M. Andrews, Hardness of buy-at-bulk network design, in Proceedings of the IEEE Symposium
on Foundations of Computer Science, IEEE, Washington, DC, 2004, pp. 115–124.

[3] B. Awerbuch and Y. Azar, Buy-at-bulk network design, in Proceedings of the IEEE Sympo-
sium on Foundations of Computer Science, IEEE, Washington, DC, 1997, pp. 542–547.

[4] Y. Bartal, Probabilistic approximation of metric spaces and its algorithmic applications, in
Proceedings of the IEEE Symposium on Foundations of Computer Science, IEEE, Wash-
ington, DC, 1996, pp. 184–193.

[5] Y. Bartal, On approximating arbitrary metrics by tree metrics, in Proceedings of the ACM
Symposium on Theory of Computing, ACM, New York, 1998, pp. 161–168.

[6] L. Becchetti, J. Könemann, S. Leonardi, and M. Pál, Sharing the cost more efficiently: Im-
proved approximation for multicommodity rent-or-buy, ACM Trans. Algorithms, 3 (2007),
article 23.

[7] M. Bern and P. Plassmann, The Steiner problem with edge lengths 1 and 2, Inform. Process.
Lett., 32 (1989), pp. 171–176.

[8] J. Byrka, F. Grandoni, T. Rothvoß, and L. Sanità, An improved LP-based approximation
for Steiner tree, in Proceedings of the ACM Symposium on Theory of Computing, ACM,
New York, 2010, pp. 583–592.

[9] S. Dye, L. Stougie, and A. Tomasgar, The stochastic single resource service-provision prob-
lem, Naval Res. Logist., 50 (2003), pp. 869–887.

[10] F. Eisenbrand, F. Grandoni, T. Rothvoß, and G. Schäfer, Approximating connected fa-
cility location problems via random facility sampling and core detouring, in Proceedings
of the ACM-SIAM Symposium on Discrete Algorithms, ACM, New York, SIAM, Philadel-
phia, 2008, pp. 1174–1183.

[11] J. Fakcharoenphol, S. Rao, and K. Talwar, A tight bound on approximating arbitrary
metrics by tree metrics, in Proceedings of the ACM Symposium on Theory of Computing,
ACM, New York, 2003, pp. 448–455.

[12] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, Freeman, San Francisco, CA, 1979.

[13] M. X. Goemans and D. P. Williamson, A general approximation technique for constrained
forest problems, SIAM J. Comput., 24 (1995), pp. 296–317.

[14] V. Goyal, A. Gupta, S. Leonardi, and R. Ravi, Pricing tree access networks with connected
backbones, in Proceedings of the European Symposium on Algorithms, Lecture Notes in
Comput. Sci. 4698, Springer, New York, 2007, pp. 498–509.

[15] A. Gupta and A. Kumar, A constant-factor approximation for stochastic Steiner forest, in
Proceedings of the ACM Symposium on Theory of Computing, ACM, New York, 2009, pp.
659–668.

[16] A. Gupta, A. Kumar, M. Pál, and T. Roughgarden, Approximation via cost-sharing: A
simple approximation algorithm for the multicommodity rent-or-buy problem, in Proceed-
ings of the IEEE Symposium on Foundations of Computer Science, IEEE, Washington,
DC, 2003, pp. 606–617.

[17] A. Gupta, A. Kumar, M. Pál, and T. Roughgarden, Approximation via cost sharing:
Simpler and better approximation algorithms for network design, J. ACM, 54 (2007), article
11.

[18] A. Gupta, A. Kumar, and T. Roughgarden, Simpler and better approximation algorithms
for network design, in Proceedings of the ACM Symposium on Theory of Computing,
ACM, New York, 2003, pp. 365–372.

[19] A. Gupta and M. Pál, Stochastic Steiner trees without a root, in Proceedings of the Inter-
national Colloquium on Automata, Languages and Programming, Lisbon, Portugal, 2005,
pp. 1051–1063.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

3632 FLEISCHER, KÖNEMANN, LEONARDI, AND SCHÄFER

[20] A. Gupta, M. Pál, R. Ravi, and A. Sinha, Boosted sampling: Approximation algorithms for
stochastic optimization, in Proceedings of the ACM Symposium on Theory of Computing,
ACM, New York, 2004, pp. 417–426.

[21] A. Gupta, R. Ravi, and A. Sinha, An edge in time saves nine: LP rounding approximation
algorithms, in Proceedings of the IEEE Symposium on Foundations of Computer Science,
IEEE, Washington, DC, 2004, pp. 218–227.

[22] N. Immorlica, D. Karger, M. Minkoff, and V. S. Mirrokni, On the costs and benefits
of procrastination: Approximation algorithms for stochastic combinatorial optimization
problems, in Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, ACM,
New York, SIAM, Philadelphia, 2004, pp. 691–700.

[23] A. Kumar, A. Gupta, and T. Roughgarden, A constant factor approximation algorithm
for the multicommodity rent-or-buy problem, in Proceedings of the IEEE Symposium on
Foundations of Computer Science, IEEE, Washington, DC, 2002, pp. 333–344.

[24] R. Ravi and A. Sinha, Hedging uncertainty: Approximation algorithms for stochastic opti-
mization problems, Math. Program., 108 (2006), pp. 97–114.

[25] G. Robins and A. Zelikovsky, Improved Steiner tree approximation in graphs, in Proceedings
of the ACM-SIAM Symposium on Discrete Algorithms, ACM, New York, SIAM, Philadel-
phia, 2000, pp. 770–779.

[26] D. B. Shmoys and C. Swamy, An approximation scheme for stochastic linear programming
and its application to stochastic integer programs, J. ACM, 53 (2006), pp. 978–1012.

[27] D. Williamson and A. van Zuylen, A simpler and better derandomization of an approxima-
tion algorithm for single source rent-or-buy, Oper. Res. Lett., 35 (2007), pp. 707–712.

[28] A. van Zuylen, Deterministic sampling algorithms for network design, in Proceedings of the
European Symposium on Algorithms, Lecture Notes in Comput. Sci. 5193, Springer, New
York, 2008, pp. 830–841.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

