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ABSTRACT
In the multi-commodity rent-or-buy network design problem
(MRoB) we are given a network together with a set ofk termi-
nal pairsR= {(s1,t1), . . . ,(sk,tk)}. The goal is to install capacities
on the edges of the network so that a prescribed amount of flowfi
can be routed between all terminal pairssi and ti simultaneously.
We can eitherrent capacity on an edge at some cost per unit flow
or buy infinite capacity on an edge at some larger fixed cost. The
overall objective is to install capacities at a minimum total cost.

The version of the stochastic Steiner tree problem (SST) con-
sidered here is the Steiner tree problem in the model of two-stage
stochastic optimization with recourse. In stage one, thereis a
known probability distribution on subsets of vertices and we can
choose to buy a subset of edges at a given cost. In stage two, a
subset of verticesT from the prior known distribution is realized,
and additional edges can be bought at a possibly higher cost.The
objective is to buy a set of edges in stages one and two so that all
vertices inT are connected, and the expected cost is minimized.

Gupta et al. (FOCS ’03) give a randomized scheme for the
MRoB problem that was both used subsequently to improve the
approximation ratio for this problem, and extended to yieldthe
best approximation algorithm for SST. One building block ofthis
scheme is a good approximation algorithm for the Steiner forest
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problem.
We present a surprisingly simple 5-approximation algorithm for

MRoB and 6-approximation for SST, improving on the best previ-
ous guarantees of 6.828 and 12.6, and show that no approximation
ratio better than 4.67 can be achieved using the above mentioned
randomized scheme in combination with the currently best known
Steiner forest approximation algorithms. A key component of our
approach are cost shares that are 3-strict for theunmodifiedprimal-
dual Steiner forest algorithm.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems

General Terms
Algorithms, Design, Theory

Keywords
approximation algorithms, stochastic optimization, costsharing

1. INTRODUCTION
Multicommodity Rent-or-Buy. In the multi-commodity rent-

or-buy problem(MRoB) we are given an undirected graphG =
(V,E), terminal pairsR = {(s1,t1), . . . ,(sk,tk)} ⊆ V ×V, non-
negative costsce for all edgese ∈ E, and a parameterM ≥ 0.
The goal is to install capacities on the edges ofG such that for
all (si ,ti) ∈ R we can simultaneously route a given amount of flow
fi from si to ti . We can eitherrent capacity on an edgee at cost
λ (e) ·c(e), whereλ (e) is the flow traversing edgee, or buy infinite
capacity on edgeeat costM ·c(e). Bought edges have no incremen-
tal, flow-dependent cost. The overall objective is to find a feasible
solution of smallest total cost.

The MRoB problem generalizes a number of fundamental opti-
mization problems. ForM = ∞, an optimum solution for an MRoB
instance can be found by connecting each pair of terminals bytheir
shortest path.

For M = 1, MRoB reduces to the Steiner forest problem. The
Steiner forest problemis to compute a minimum-cost forest that
contains ansi ,ti-path for all 1≤ i ≤ k. It is well-known that this
problem is NP-hard [9] and even Max-SNP hard [7]. The best
known approximation algorithm achieves a performance guarantee
of 2−1/k and is due to Agrawal, Klein and Ravi [3]. Goemans and
Williamson [15] generalize these results to a larger class of network
design problems.

The MRoB problem is a generalization of thesingle-commodity
rent-or-buyproblem (SRoB). Here, in addition to the input given in



an instance of the MRoB problem, one also has aroot node r∈V.
The root r is part of every terminal pair, i.e.,r ∈ {si ,ti} for all
1≤ i ≤ k. Gupta et al. [11] gave a randomized 3.55-approximation
algorithm for the problem.

Kumar, Gupta and Roughgarden [16] give the first constant-
factor approximation algorithm for the MRoB problem. Basedon
the techniques used by Gupta et al. [11] for the single-commodity
rent-or-buy problem, Gupta et al. [10] present a 12-approximation
algorithm for the MRoB problem. Becchetti et al. [6] recently ob-
tained the currently best known 6.828-approximation algorithm for
this problem.

The MRoB problem is a special case of themulticommodity buy-
at-bulk (MBaB) problem. The input in this problem is as in the
MRoB problem, except for an additional sub-additive monotone
function l : Z

+ → R
+. A feasible solution consists of a vectorx∈

Z
+
|E| of edge-capacities that allows forfi units of flow to be routed

betweensi and ti , for all (si ,ti) ∈ R simultaneously, and feasibly.
The cost of installing capacitiesx is ∑e∈E l(xe)ce and the goal is to
find a feasible capacity installationx of minimum total cost.

In [2], Awerbuch and Azar present anO(α)-approximation for
MBaB, assuming that any metric can be probabilistically approx-
imated by a family of tree metrics with an expected distortion at
most α. In [4], Bartal showsα = O(log2 n) and improves this
bound in [5] toα = O(lognlog logn). More recently, Fakcharoen-
phol et al. [8] show thatα = O(logn). Recently, Andrews [1] shows
that the results in [2] and [8] are best possible up to constant factors
unlessNP⊆ ZPTIME(npolylog(n)).

Stochastic Steiner Tree. The stochastic Steiner tree problem
(SST)we consider here is the Steiner tree problem in the model of
two-stage stochastic optimization with recourse. In stageone, there
is a known probability distributionπ on subsets of vertices and we
can chose to buy a subset of edges at a given cost. In stage two,a
subset of verticesT from the prior known distribution is realized,
and additional edges can be bought at a possibly higher cost.The
objective is to buy a set of edges in stages one and two so that all
vertices inT are connected, and the expected cost is minimized.

We make no assumptions about the distributionπ on the subset
of vertices, except that we have access to it via asampling ora-
cle: on request, the oracle outputs a subset of verticesT drawn
from the distribution. Gupta and Pál give a 12.6-approximation for
SST [12]. Prior to their work, there were constant factor guarantees
for the problem when all of the possible subsets realized in stage
two contain a fixed root terminal [13, 14].

Common Framework. Our work uses a common framework
developed in Gupta et al. [10] for MRoB and extended by Gupta
and Pál in [12] for SST. This framework first chooses a randomsub-
setS⊆ R of the set of terminal pairs. It then computes an approxi-
mate Steiner forestFS for Susing an adaptation of the primal-dual
algorithm for Steiner forests and buys its edges. Finally, this for-
est is augmented to a feasible solution forR by renting additional
edges in a cheapest possible way such that all remaining terminals
in R\Sare connected.

The performance of the above framework depends strongly on
a certainstability property of the Steiner forest algorithm used to
computeFS. For a forestF in G, let G|F denote the graph resulting
from contracting all trees ofF . We usecG|F (u,v) to denote the
minimum cost of anyu,v-path in G|F . For a parameterβ > 0,
Gupta et al. [10] define the notion ofβ -strict algorithms for the
minimum-cost Steiner forest problem:

DEFINITION 1. An algorithmALG for the Steiner forest prob-
lem isβ -strict if there exist cost sharesξst for all (s,t) ∈ R such
that

1. ∑(s,t)∈Rξst ≤ optR, whereoptR is the minimum cost of a
Steiner forest for R, and

2. cG|F−st
(s,t) ≤ β ·ξst for all (s,t) ∈ R, where F−st is a Steiner

forest for terminal set R−st = R\{(s,t)} returned byALG.

Gupta et al. [10] then show that using anα-approximate andβ -
strict Steiner forest algorithm in their framework yields an (α +β )-
approximation algorithm for the MRoB problem. The authors
devise a 6-approximate and 6-strict algorithm for Steiner forests
which yields a 12-approximate algorithm for MRoB. Their anal-
ysis can be tightened to achieve an 8-approximation. Becchetti
et al. [6] reduced the approximation ratio to 6.828 by devising a
(2+

√
2)-approximate and(2+

√
2)-strict primal-dual Steiner for-

est algorithm.
The notion of strictness defined above assumes thatR is a set of

terminal pairs. To extend this framework to handle SST, Gupta and
Pál extend the notion of strictness to a setR of terminal subsets of
arbitrary size, calledgroups. For a groupg∈ R, let cG|F (g) denote
the minimum cost of connecting all terminals ofg in G|F.

DEFINITION 2. An algorithmALG for the Steiner forest prob-
lem isβ -group-strictif there exist cost sharesξg for all g ∈ R such
that

1. ∑g∈Rξg ≤ optR, whereoptR is the minimum cost of a Steiner
forest for R, and

2. cG|F−g
(g) ≤ β ·ξg for all g ∈ R, where F−g is a Steiner forest

for terminal set R−g = R\{g} returned byALG.

The algorithms in [6], [10], and [12] all adapt the primal-dual
Steiner forest algorithm from [3]. In these papers, strictness is
achieved by adding extra edges into the Steiner forest produced by
the standard primal-dual algorithm. This worsens the approxima-
tion ratio but reduces the cost of augmenting a feasible forest F−g
into a feasible forest forR.

Our Results. In this paper, we show that the primal-dual algo-
rithms for Steiner forest [3, 15] are 3-strict and 4-group-strict with
appropriate cost sharing rules. We summarize our main contribu-
tion in the following theorem:

THEOREM 1. There exists a primal-dual2-approximate algo-
rithm for the Steiner forest problem that is3-strict and 4-group-
strict.

This implies a 5-approximation for MRoB and a 6-
approximation for SST using the framework in [10, 12]. Moreover,
this also implies a 5-approximation algorithm for the 2-stage
stochastic Steiner forest problem in the independent decisions
model [13].

This is the first algorithm to show that theunmodifiedprimal-
dual Steiner forest algorithm hasconstantstrict or group-strict cost
shares. Finally, we present an example instance that shows that the
natural primal-dual Steiner forest algorithm is not( 8

3 −ε)-strict for
any ε > 0, therefore showing that the two-stage analysis of Gupta
et al. given in [10] is nearly tight for MRoB.

Outline of Paper. In Section 2, we define the structure of our
cost shares and give a surprisingly simple property that implies 2α-
group-strictness if the cost shares are based on anα-approximate
Steiner forest. In Section 2, we also present our improved3

2α-
strictness result for cost shares that satisfy an additional require-
ment. In Section 3, we review the Steiner forest algorithmAKR

and show how the cost of every edge of the forest that is computed
is shared between terminal pairs in order to meet the requirements



of our strictness results. Finally, in Section 4, we give examples
that demonstrate that our results are nearly tight for the framework
proposed by [10].

2. STRICTNESS OF COST SHARING AL-
GORITHMS FOR STEINER FORESTS

Suppose we are given anα-approximation algorithmALG that
computes a Steiner forestF for the set of terminal groupsR. In this
section, we define two different cost sharing schemes to distribute a
fraction of 1

α of the cost ofF among the terminals. These schemes
crucially rely on a notion ofwitnessesthat are associated with each
edgee∈ F . We show that ifALG and the witness definition satisfy
certain properties, these cost sharing schemes yield 2α-group-strict
and 3

2α-strict cost shares.
We assume without loss of generality that the terminal sets of

two different groups inR are disjoint. Ifs appears in two groups,
g1 andg2, we can create two new nodess1 ands2, add edges(s1,s)
and(s2,s) each of zero cost, and replaceswith s1 in g1 and withs2
in g2.

Given thatF is produced by anα-approximation algorithmALG,
we define the cost shareξ (e) of an edgee∈ F as

ξ (e) =
1
α

c(e). (1)

For each edgee∈ F , we assign two terminalsWe = {u,v} to be
the witnessesof e and splitξ (e) between the terminals inWe. In
this section, we give two different ways of splitting this cost share,
yielding two different strictness results.

Let ξu(e) be the share ofξ (e) of terminalu ∈ We according to
the split. The total cost share assigned to terminalu is

ξu = ∑
e∈F : u∈We

ξu(e).

The cost share of a group of terminalsg∈ R is ξg = ∑u∈gξu.

We prove that if cost shares are distributed as described above, the
total cost share of all groups of terminals does not exceed the opti-
mum cost. This validates condition (1) of Definition 2.

LEMMA 1. Let F be a Steiner forest computed by anα-
approximate algorithmALG and let {We}e∈F be the associated
witness set. If the cost sharesξ are computed as described above
then

∑
g∈R

ξg ≤ optR.

PROOF. By our cost sharing rule (1), we have

c(F) = ∑
e∈F

c(e) = ∑
e∈F

∑
u∈We

αξu(e) = α ∑
g∈R

ξg

and this implies the lemma asc(F) ≤ α ·optR.

2.1 Symmetric Cost Share Assignment
Crucial to proving the strictness of our cost sharing schemeis

to define the witness set{We}e∈F to satisfy the following property.
For a group of verticesg∈R, letTg denote the unique tree connect-
ing g in F if such a tree exists; otherwiseTg = /0. In the following
we abuse notation by letting a pathP or treeT also stand for the set
of edges in it.

PROPERTY 1. Consider an arbitrary group of terminals g∈ R
and let e be an edge in tree Tg. If We∩g = /0 then e is part of the
forest F−g.

Remove terminal groupg from R and runALG on the set of
terminal groupsR−g = R\{g}. Property 1 implies that if an edge
e∈ Tg is not part of the forestF−g then e is witnessed by some
terminal ing, i.e.,We∩g 6= /0.

A natural idea is to split the cost shareξ (e) of e evenly among
the two witnesses. This is what we call thesymmetric cost share
assignment:

Symmetric cost share assignment:The cost share that each wit-
nessu∈ We receives for edgee is

ξu(e) =
1
2

ξ (e). (2)

It is easy to see that Property 1 together with the symmetric cost
share assignment yields cost shares that are 2α-strict.

LEMMA 2. Let F be a Steiner forest computed by anα-
approximate algorithmALG and let{We}e∈F be the witness set.
If algorithm ALG and {We}e∈F satisfy Property 1, then the sym-
metric cost sharesξ are β = 2α-strict, i.e., for all g∈ R

cG|F−g
(g) ≤ 2α ·ξg.

PROOF. Property 1 ensures that all edgese∈ Tg that are not part
of F−g must be witnessed by some terminal ing. The claim of the
lemma follows since for each edgeeof Tg with We∩g 6= /0, there is
some terminalu in g with ξu(e) = 1

2ξ (e) = 1
2α c(e).

2.2 Asymmetric Cost Share Assignment
We next turn to a refinedasymmetric cost sharing scheme, where

we split the cost shareξ (e) of an edgee∈ F unevenly among
its witnesses inWe. We prove that this asymmetric cost sharing
scheme yields32α-strict cost shares, if only algorithmALG and the
witness set{We}e∈F satisfy an additional property.

This property is motivated by the following intuition: If termi-
nals in groupg witness some edges that are not inTg, it might
be cheaper to connect the terminals ofg in F−g by using those
edges instead of some edges inTg \F−g. If these alternate edges
do not provide a cheaper connection than the corresponding edges
in Tg \F−g, then they contribute some significant cost share tog
thatg can then use to pay for edges inTg\F−g.

PROPERTY 2. There exists an order≺ on the groups of termi-
nals in R such that for any two terminal groups g,h ∈ R, h≺ g
implies that all edges e of Th \Tg with We∩g = /0 are part of the
forest F−g.

While we will show in Section 3.3 that our witness definition
satisfies Property 2 for groups of arbitrary size, the asymmetric cost
sharing rule below is designed specifically for the case whenall
groups are pairs. Thus the remainder of this section is devoted to
the case when all groups consist of just two terminals. In this case,
we specialize our notation as follows:Pst is the unique path inF
connectings andt. For terminalu, let ū be the terminal it is paired
with, i.e.,(u, ū) ∈ R. The cost share of a terminal pair(u, ū) ∈ R is
denotedξuū.

We define an asymmetric cost sharing rule as follows:

Asymmetric cost share assignment:Consider an edgee∈ F and
let We = {u,v}. Assume without loss of generality that
(u, ū) ≺ (v, v̄). We shareξ (e) among the two witnessesu
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Figure 1: The figure shows the pathPst and three terminal pairs (ui , ūi),(u j , ū j ) ∈ Ist with 1≤ i < j ≤ q.

andv as follows:

ξu(e) =

{

1
3ξ (e) if e /∈ Puū
2
3ξ (e) if e∈ Puū

and

ξv(e) =

{

2
3ξ (e) if e /∈ Puū
1
3ξ (e) if e∈ Puū.

(3)

Observe that with this cost sharing rule, the total cost share that the
witnesses inWe receive fore∈ F is at mostξ (e).

LEMMA 3. Let F be a Steiner forest computed by anα-
approximate algorithmALG and let{We}e∈F be the witness set.
If algorithmALG and{We}e∈F satisfy Properties 1 and 2, then the
asymmetric cost sharesξ are β = 3

2α-strict, i.e., for all(s,t) ∈ R

cG|F−st
(s,t) ≤ 3

2
α ·ξst.

PROOF. Consider pathPst in F . From Property 1 we know that
each edgee∈ Pst that is missing inF−st is witnessed by at least one
of s andt. If the cost share of terminal pair(s,t) for such an edge
e is at least23ξ (e), then 3

2α · ξst(e) suffices to reconstructe. We
can therefore reconstruct all such edges using3

2α times their total
cost share. By contracting all such edges inF−st, we can assume
without loss of generality that ifs or t witness an edgee /∈ F−st,
thenξst(e) = 1

3ξ (e). Let Mst be the set of all such edges.

Mst = {e∈ G|F−st : ξst(e) =
1
3

ξ (e)}

We show that we can establish connection betweens andt in the
contracted graph at a cost at most3

2α ∑e∈Mst
ξst(e). By then uncon-

tracting the edges for whichξst(e) ≥ 2
3ξ (e), we have established a

connection betweensandt in G|F−st at cost at most32αξst.
By Property 2 and the cost share assignment given in (3), ife∈

Pst∩Mst then the following must hold: (i) there is a terminalu /∈
{s,t} that together withsor t witnessese, (ii) (u, ū)≺ (s,t) and (iii)
e∈ Puū. For these edges we need to collect additional cost share
from edges inPuū \Pst witnessed by(s,t) and possibly exploit the
connectivity provided byPuū in F−st.

Let Ist be the set of terminal pairs that witness edges onPst to-
gether with one ofsandt:

Ist = {(u, ū) ∈ R : ∃e∈ Pst such that

{s,t}∩We 6= /0 and{u, ū}∩We 6= /0}.

Assume thatIst = {(u1, ū1), . . . ,(uq, ūq)} for someq≥ 0. We use
Pi , 1≤ i ≤ q, to refer to theui , ūi-path inF . For 1≤ i ≤ q, let pi
and p̄i be the first and last vertices onPi that are onPst. We call
pi and p̄i theprojectionsof ui andūi , respectively, on pathPst. We
choose the labelpi so that it is closer tos than p̄i for all 1≤ i ≤ q.

We order the indices of pairs inIst so that ¯pi is closer tos than p̄ j
for all 1≤ i < j ≤ q. Refer to Figure 1 for an example.

In the following, we letPi
st be thes, p̄i -segment ofPst for all

0≤ i ≤ q (where we define ¯p0 = s). We then define

P
i = Pi

st∪P1∪ . . .∪Pi

as the union of pathPi
st and the paths of the firsti terminal pairs in

Ist. Finally, let

M
i
st = Mst∩P

i

be the set of edges inP i that are witnessed bysor t.
For an edge setS ⊆ Mst, let ξst(S) be a short-hand for

∑e∈Sξst(e). Using induction over 0≤ i ≤ q, we will now prove
that we can reconstruct ans,z-path inF−st for all verticesz∈ P i

at a cost at most32α ·ξst(M
i
st).

This is clearly true fori = 0. Now assume that the claim holds for
some 0≤ i < q. Consider first the case where ¯pi precedespi+1 on
Pst (see also Figure 2.(i)). Letz be a node on the ¯pi , pi+1-segment
P of Pst. Observe that none of the edgese∈ P can be contained
on Pj for any 1≤ j ≤ q. Hence, ifs or t witnessed this edge, they
would receive at least a cost share of2

3ξ (e). We excluded those
edges initially and hence, using the inductive hypothesis,we can
reconstruct ans,z-path inF−st at a cost at most32α ·ξst(M

i
st).

For the above argument, we will now assume thatpi+1 precedes
p̄i on Pst. Let f and l be the first and last vertices onPi+1, re-
spectively, that are incident to edges ofP i (refer to Figure 2.(ii)).
Clearly, the uniquef , l -path Pf l in F must be contained inP i .
Let z1 be a node onPf l . We can then use the induction hypoth-
esis in order to reconstruct ans,z1-path inF−st at a cost at most
3
2α ·ξst(M

i
st).

Now consider a nodez2 ∈Pi+1\Pf l . Assume thatz2 is contained
on thel , ūi+1-segment ofPi+1 (the case wherez2 is contained on
theui+1, f -segment ofPi+1 works analogously). We consider two
ways to reconstruct ans,z2-path inF−st:

1. UsePf for the union of theui+1, f - andz2, ūi+1-segments of
Pi+1, and letM f be the set of edges onPf that are witnessed
by s or t. We can then inductively reconstruct ans, f -path in
F−st at a cost at most32α · ξ (M i

st). Using the fact thatui+1
and ūi+1 are connected inF−st, we obtain ans,z2-path by
reconstructingPf . This costs at most 3α ·ξst(M f ).

2. UsePl for the l ,z2-segment ofPi+1 and letMl be a short-
hand forMst ∩Pl . We can then inductively reconstruct an
s, l -path inF−st at a cost at most32α · ξ (M i

st). We obtain an
s,z2-path by reconstructingPl at a cost at most 3α ·ξst(Ml ).
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Figure 2: The figure illustrates the cases used in the proof ofLemma 3. Solid edges represent segments ofPst, dotted edges represent
connectivity in F−st.

In summary, reconstructing ans,z2-path inF−st costs at most

3
2

α ·ξst(M
i
st)+3α ·min{ξst(M f ),ξst(Ml )}

≤ 3
2

α ·
(

ξst(M
i
st)+ξst(M f )+ξst(Ml )

)

.

Observing thatM f ∪Ml ∪M i
st is a partition ofM i+1

st finishes the
proof of the lemma.

3. A PRIMAL-DUAL BASED STRICT AL-
GORITHM FOR STEINER FORESTS

In this section we review a(2− 1/k)-approximate primal-dual
algorithm for Steiner forests. The algorithms for Steiner forest pre-
sented in [3] and [15] differ only slightly. In this paper, wefocus on
the viewpoint taken in [3]. We useAKR to refer to this algorithm.
We then show thatAKR together with an appropriate witness defi-
nition satisfies Properties 1 and 2.

While the Steiner forest problem is traditionally defined onpairs
of nodes, it is easy to extend the definition to groups of nodes. How-
ever, in the case of the Steiner forest problem, the group problem
can be modeled and solved as the problem defined on pairs, by cre-
ating a pair for each pair of nodes in a group.

3.1 Primal-Dual Algorithms for Steiner
Forests

The primal-dual algorithmAKR constructs both a feasible pri-
mal and a feasible dual solution for a linear programming formu-
lation of the Steiner forest problem and its dual, respectively. A
standard integer programming formulation for the Steiner forest
problem has a binary variablexe for all edgese∈E. Variablexe has
value 1 if edgee is part of the resulting forest. We letU contain ex-
actly those subsetsU of V thatseparateat least one terminal pair in
R. In other words,U ∈U iff there is(s,t)∈Rwith |{s,t}∩U |= 1.

For a subsetU of the nodes we also letδ (U) denote the set of
those edges that have exactly one endpoint inU . We then obtain the
following integer linear programming formulation for the Steiner
forest problem:

min ∑
e∈E

ce ·xe (IP)

s.t. ∑
e∈δ (U)

xe ≥ 1 ∀U ∈ U

x integer

The linear programming dual of the LP-relaxation (LP) of (IP) has
a variableyU for all node setsU ∈ U . There is a constraint for
each edgee∈ E that limits the total dual assigned to setsU ∈ U

that contain exactly one endpoint ofe to be at mostce.

max ∑
U∈U

yU (D)

s.t. ∑
U∈U :e∈δ (U)

yU ≤ ce ∀e∈ E (4)

y≥ 0

Algorithm AKR constructs a primal solution for (LP) and a dual
solution for (D). The algorithm has two goals:

1. Compute a feasible solution for the given Steiner forest in-
stance. The algorithm reduces the degree of infeasibility as
it progresses.

2. Create a dual feasible packing of sets of largest possibletotal
value. The algorithm raises dual variables of certain subsets
of nodes at all times. The final dual solution is maximal in
the sense that no single set can be raised without violating a
constraint of type (4).

Consider the execution of algorithmAKR as a process over time
and letxτ andyτ be the primal incidence vector and feasible dual
solution at timeτ. Note that in any optimal solution to (IP),xe ∈
{0,1}. Let Fτ denote the forest corresponding to the set of edges
with xτ

e = 1. Initially, let x0
e = 0 for all e∈ E andy0

U = 0 for all
U ∈U . The algorithm maintains the invariantxτ

e ≤ xτ ′
e andyτ

U ≤ yτ ′
U

for all τ < τ ′.
An edgee∈ E is tight if the corresponding constraint (4) holds

with equality; and a path istight if every edge in the path is tight.
Assume that the forestFτ at timeτ is infeasible. A terminal node
v ∈ R is activeat timeτ if v and itsmatev̄, i.e., (v, v̄) ∈ R, are in
different trees in the forestFτ ; v is inactiveotherwise.1 Let F̄τ

denote the subgraph ofG that is induced by the tight edges for dual
yτ . To avoid confusion between connected components inFτ and
those inF̄τ , the termmoatrefers to a connected component in̄Fτ .
The algorithm maintains that ifC ∈ Fτ thenC ⊆U ∈ F̄τ . A moat
U of F̄τ is active at timeτ if U contains an active terminal;U is
inactive otherwise. LetAτ be the set of all active moats in̄Fτ at
time τ. AKR raises the dual variables for all sets inAτ uniformly
at all timesτ ≥ 0, so that ifU is active from timeτ ′ until time τ ′′,
thenyU = τ ′′− τ ′.

Two disjoint moatscollide at time τ in the execution ofAKR

if there is a path inG from one moat to the other that becomes
tight at timeτ. In order for this to happen, at least one of the two
moats must be active. Suppose that a pathP connecting twoactive
terminalsu andu′ becomes tight at timeτ in the execution ofAKR.

1Note that for the problem defined on groups, each terminal in the
group will become inactive at exactly the same time, since ifthe
group is not connected, then each terminal is not connected to some
other terminal in the group.
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Figure 3: A path P that becomes tight at timeτP in AKR(R).

Thenu is contained in some active moatU andu′ is in a disjoint
active moatU ′. When this happens,AKR adds the edges ofP not
already inFτ to Fτ : that is, for alle∈ P, the algorithm setsxτ

e = 1.
For τ ′ > τ, setsU andU ′ are part of the same moat of̄Fτ ′

.
Subsequently, we useUτ(v) to refer to the moat in̄Fτ that con-

tains nodev∈V at timeτ. Similarly, we letUτ (C) denote the moat
in F̄τ that contains the connected componentC∈ Fτ at timeτ. Let
F be the final forest.

The following is the main theorem of [3]:

THEOREM 2. Let F be the forest computed byAKR on termi-
nal set R. We then have c(F) ≤

(

2− 1
k

)

· optR, whereoptR is the
minimum cost of a Steiner forest for the given input instancewith
terminal set R.

3.2 Witness Definition
We define a set{We}e∈F of witnesses that are used to distribute

the cost shares as described in Section 2. In Section 3.3 we show
thatAKR together with this witness definition satisfies Properties 1
and 2.

Let AKR(S) refer to the execution ofAKR on terminal setS⊆ R.
Let F be the forest computed byAKR(R) for terminal setR. The
witnessesWe for each edgee∈ F are defined by the execution of
AKR(R).

Consider a pathP that becomes tight at timeτP in AKR(R), as
depicted in Figure 3. PathP starts from a nodeu in a connected
componentC of FτP, passes through a (possibly empty) sequence
C1, . . . ,Cl of connected components ofFτP, and ends in a nodeu′ of
a connected componentC′ of FτP . Let P1, . . . ,Pl+1 be the sequence
of paths ofP\FτP and letPP be the set of edges inP\FτP. When
P becomes tight, the setPP is added toF and we determine for
each edgee∈ PP the corresponding witnessesWe as follows.

Each edgee∈ PP will have the same witness setWe = {w,w′}.
We will also say thatP is witnessed byw andw′. Since the moats
UτP(C) andUτP(C′) are active at timeτP, bothC andC′ must con-
tain at least one active terminal. We will choose one witnessamong
the active terminals in each ofC andC′. Intuitively, the witness
chosen inC is the active terminal whose moat intersectsP1 earliest
among all active terminals inC. Similarly, the moat of the witness
chosen inC′ is the first to intersectPl+1 among all active terminals
in C′. To make this precise, letAC be the set of terminals inC that
are active at timeτP. By definition ofC, all terminals inAC are
connected tou in FτP. If u∈ AC, thenw = u. Otherwise, letτu be
the first time that moatUτ (u) collides with a moatUu containing a
terminal inAC. (Let τu = 0 if u∈ AC.)

LEMMA 4. There is a terminal w in Uu ∩AC whose moat col-
lides with u’s moat at timeτu even if all terminals in AC \{w} are
not part of the terminal set R.

PROOF. We will prove the lemma by showing a stronger claim:
For all terminalsv in C that become inactive before timeτP, let τv
be the first time that moatUτ(v) collides with a moatUv containing
at least one terminal fromAC. Then there is a terminalw∈Uv∩AC
whose moat collides withv’s moat at timeτv even if all terminals

in AC \{w} are not part of the terminal setR. This clearly implies
the lemma.

Fix a terminalv in C that becomes inactive at some time before
τP. Observe that by the definition ofτv, Uτ (v) does not intersect
AC before timeτv, and therefore the growth ofv’s moat until time
τv is not affected by the removal ofAC.

The proof is by induction on|Uv|. If |Uv| = 1 then the set con-
sists of only a terminalw∈ AC, and the growth ofw’s moat is not
affected by the removal of other terminals inAC.

Now assume that|Uv|> 1. Letz∈Uv be the endpoint of the path
Pv that becomes tight whenUv collides withUτ (v). If z is in AC we
are done: We definew = z and observe thatw’s moat intersectsPv
at all times 0≤ τ ≤ τv even if the terminals inAC\{w} are not part
of the terminal set.

Assume thatz is not inAC. In this case, letτz be the first time that
Uτ (z) collides with a moatUz that contains a terminal fromAC. We
have|Uz| < |Uv| and can therefore apply the induction hypothesis
to zandUz. That is, there is a terminalw∈Uz whose moat collides
with z’s moat at timeτz even if all terminals inAC\{w} are not part
of the terminal setR. Sincew is in AC, it causes the moat containing
z to grow after timeτz regardless of other terminals inAC. Thus,
w’s moat collides with that ofv at time τv and this finishes the
lemma.

The witnessw is a terminal described by Lemma 4. The witness
w′ with respect toC′ is defined analogously.

3.3 Properties ofAKR

We show that Properties 1 and 2 hold forAKR and the witness
definition given above. Let{We}e∈F be the set of witnesses as-
signed byAKR. Let G−g (whereG = U,F or F̄) refer to setG
in run AKR(R−g). For example,Uτ

−g(u) refers to the moat ofu at
time τ in AKR(R−g). Let τg denote the time at which all terminals
in groupg become inactive inAKR(R). Subsequently, we abuse
notation by lettingR also refer to the set of all terminals that are
contained in the groups ofR.

LEMMA 5. For all τ ≤ τg and for all terminals v∈ R−g:
Uτ
−g(v)⊆Uτ (v). Moreover, if Uτ(v)∩g= /0, then Uτ

−g(v) =Uτ (v).

PROOF. We prove the lemma by induction over timeτ. At time
τ = 0 we haveUτ

−g(v) = Uτ (v) for all v ∈ R−g and thus the in-
duction hypothesis clearly holds. Assume the induction hypothesis
holds at timeτ. We will show that it remains true at timeτ + ε for
any smallε > 0.

Consider the caseUτ (v)∩g = /0 and thusUτ
−g(v) = Uτ (v). That

is, Uτ
−g(v) is active at timeτ iff Uτ(v) is active at that time. Then

Uτ+ε
−g (v) = Uτ+ε(v) if Uτ+ε(v)∩g = /0; andUτ+ε

−g (v) ⊆Uτ+ε(v)
otherwise. Now assumeUτ (v)∩g 6= /0 and thusUτ

−g(v) ⊆ Uτ (v).
Clearly,Uτ+ε(v)∩g 6= /0. Sinceτ ≤ τg, all terminals ing are active
at timeτ and thusUτ(v) is active at timeτ. It follows Uτ+ε

−g (v) ⊆
Uτ+ε(v).
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Figure 4: Instance used in the lower bound argument.

COROLLARY 1. Consider a terminal v∈ R−g. If v is active at
timeτ ≤ τg in AKR(R) then v must be active until time at leastτ in
AKR(R−g).

As in Figure 3, letP be a path connecting two active components
C andC′ that becomes tight at timeτP ≤ τg in the execution of
AKR(R). As before, letu andu′ be the two endpoints inC andC′,
respectively, and letC1, . . . ,Cl be the connected components ofFτP

that lie onP. Moreover, assumeP is witnessed byw andw′. The
following lemma implies Property 1 for our definition of witnesses.

LEMMA 6. Assume that none of the two witnesses w,w′ of P is
in g, i.e.,We∩ g = /0 for all edges e∈ PP. Then for each edge
e∈ P, the contribution to (4) before timeτP is the same inAKR(R)
as it is inAKR(R−g). In particular, P is added at timeτP in both
runs.

PROOF. First we show that the contribution to (4) from variables
corresponding to moats not containingu andu′ is the same in both
runs. For all 1≤ i ≤ l ,Ci is inactive at timeτP < τg, so thatCi ∩g=
/0. Letτi < τP be the time at which componentCi becomes inactive.
Then, by Lemma 5,Uτ

g (v) = Uτ(v) for all τ ≤ τi , for all v∈Ci , for
all 1≤ i ≤ l . Thus, the dual variable values for all sets restricted to
subsets ofCi are the same in bothAKR(R) andAKR(R−g).

Now consider the contribution to (4) from variables correspond-
ing to moats containingu. Let τ̂ be the first time at which moat
U τ̂ (u) collides with a moatÛ containing a terminal inAC. By the
definition of τ̂, Uτ (u)∩g = /0 for all τ ∈ [0, τ̂). Thus by Lemma 5,
Uτ
−g(u) = Uτ(u) for all τ ∈ [0, τ̂); and the contribution to (4) from

variables corresponding to moats containingu before timeτ̂ is the
same inAKR(R) andAKR(R−g). From timeτ̂, w andu are in the
same moat inAKR(R), and by Lemma 4, they are also in the same
moat at this time inAKR(R−g). By Lemma 5,w is still active at
time τP in bothAKR(R) andAKR(R−g). Thus the contribution to
(4) of variables corresponding to moats containingu from time τ̂
until time τP is also the same in both runs. A symmetric argument
for variables corresponding to moats containingu′ shows that path
P is tight at timeτP in AKR(R−st).

Finally, note that Lemma 5 also implies thatw andw′ are con-
tained in disjoint moats inAKR(R−st) before timeτP. Hence path
P is added at timeτP in AKR(R−st) and the lemma follows.

We show that the following precedence order≺ together with
the witness definition described above imply Property 2 forAKR.

Consider a runAKR(R). For each group of terminalsg∈ R, let
τg be the time at which the terminals ing become inactive. Fix an
order on the terminal groups inR= {gi}1≤i≤k such that

τg1 ≤ τg2 ≤ ·· · ≤ τgk .

We definegi ≺ g j if i ≤ j in this order.
The following lemma implies Property 2.

LEMMA 7. Let g and h be two groups of terminals in R such
that h≺ g and let e be an edge on tree Th in F. If We∩g = /0 then
e∈ F−g.

PROOF. The proof is by contradiction. Assume that edgee is
not part ofF−g. Edgee∈ Th is added toF at timeτ ≤ τh ≤ τg. By
Lemma 6 and sinceWe∩g= /0, e is picked at timeτ in AKR(R−g).
This is a contradiction.

4. A LOWER BOUND ON THE STRICT-
NESS FACTOR

Figure 4 shows a simple Steiner forest instance with two terminal
pairsR= {(s,t),(s′,t ′)}. The solid lines in Figure 4.(i) correspond
to edges of forestF returned by algorithmAKR when run on this
instance. The total cost share of all edges inF is 3 and therefore,
there must be a terminal pair inR whose cost share is at most3

2 .
Without loss of generality, assume thatξst ≤ 3

2 . RunningAKR on
terminal setR−st = {(s′,t ′)} yields the forest in Figure 4.(ii). As
cG|F−st

(s,t) = 4− ε, this example shows that the strictness ofAKR

is at least(4− ε)/3
2 ≈ 8

3 whenever the sum of the cost shares of all
terminal pairs is at most half of the cost of the computed forest.

We remark that the previously known algorithms for the MRoB
problem in [10] and [6] essentially distribute half of the cost of a
forest computed byAKR as cost shares among the terminal pairs.
Given a terminal pair(s,t) ∈ R, both of these algorithms use an
adaptation of the standard primal-dual Steiner forest algorithm (so
calledtimedor boostedprimal-dual algorithms) to compute a forest
F−st. In a nutshell, the idea behind these adaptations is to produce
a forest whose connectivity is higher than that of a forest produced
by standard primal-dual algorithms. For the example above,how-
ever, both algorithms in [10] and [6] return the forest in Figure
4.(ii). Thus, the above example provides an8

3 lower bound for the
strictness of these algorithms as well.
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