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ABSTRACT problem.

We present a surprisingly simple 5-approximation algaonifior
MRoB and 6-approximation for SST, improving on the best prev
ous guarantees of 6.828 and 12.6, and show that no apprasimat
ratio better than 47 can be achieved using the above mentioned
randomized scheme in combination with the currently bestn
Steiner forest approximation algorithms. A key componédriur
approach are cost shares that are 3-strict foutimodifiedorimal-
dual Steiner forest algorithm.

In the multi-commodity rent-or-buy network design problem
(MRoB) we are given a network together with a setkafermi-
nal pairsR= {(sy,t1),..., (S t)}. The goal is to install capacities
on the edges of the network so that a prescribed amount offflow
can be routed between all terminal pasysandt; simultaneously.
We can eitherent capacity on an edge at some cost per unit flow
or buy infinite capacity on an edge at some larger fixed cost. The
overall objective is to install capacities at a minimum totzst.
The version of the stochastic Steiner tree problem (SST) con . . )
sidered here is the Steiner tree problem in the model of tages ~ Categories and Subject Descriptors
stochastic optimization with recourse. In stage one, thigra F.2.2 JAnalysis of Algorithms and Problem Complexity]: Non-
known probability distribution on subsets of vertices angl ean numerical Algorithms and Problems
choose to buy a subset of edges at a given cost. In stage two, a
subset of vertice3 from the prior known distribution is realized,
and additional edges can be bought at a possibly higher Tbst. General Terms
objective is to buy a set of edges in stages one and two solthat a Algorithms, Design, Theory
vertices inT are connected, and the expected cost is minimized.
Gupta et al. (FOCS '03) give a randomized scheme for the
MRoB problem that was both used subsequently to improve the Keywords
approximation ratio for this problem, and extended to yitdd approximation algorithms, stochastic optimization, &¥&iring
best approximation algorithm for SST. One building blockluf
scheme is a good approximation algorithm for the Steinezstor 1. INTRODUCTION
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an instance of the MRoB problem, one also hasa node re V.
The rootr is part of every terminal pair, i.er, € {s,t} for all
1<i<k. Gupta et al. [11] gave a randomizedB-approximation
algorithm for the problem.

Kumar, Gupta and Roughgarden [16] give the first constant-
factor approximation algorithm for the MRoB problem. Based
the techniques used by Gupta et al. [11] for the single-codityio
rent-or-buy problem, Gupta et al. [10] present a 12-appnaxion
algorithm for the MRoB problem. Becchetti et al. [6] recgnib-
tained the currently best known828-approximation algorithm for
this problem.

The MRoB problem is a special case of thelticommodity buy-
at-bulk (MBaB) problem. The input in this problem is as in the
MRoB problem, except for an additional sub-additive moneto
functionl : Z+ — R™. A feasible solution consists of a vectoe
Z|+E| of edge-capacities that allows férunits of flow to be routed

betweens; andt;, for all (s.,tj) € R simultaneously, and feasibly.
The cost of installing capacitiesis § g | (Xe)Ce and the goal is to
find a feasible capacity installatiorof minimum total cost.

In [2], Awerbuch and Azar present @ a)-approximation for
MBaB, assuming that any metric can be probabilisticallyrapp
imated by a family of tree metrics with an expected distorta
mosta. In [4], Bartal showsa = O(log?n) and improves this
bound in [5] toa = O(lognloglogn). More recently, Fakcharoen-
phol et al. [8] show thatr = O(logn). Recently, Andrews [1] shows
that the results in [2] and [8] are best possible up to conésators
unlessNP C ZPTIME(nPOIog(n)),

Stochastic Steiner Tree. The stochastic Steiner tree problem
(SST)we consider here is the Steiner tree problem in the model of
two-stage stochastic optimization with recourse. In stagg there
is a known probability distributiomr on subsets of vertices and we
can chose to buy a subset of edges at a given cost. In staga two,
subset of vertice3 from the prior known distribution is realized,
and additional edges can be bought at a possibly higher Tbst.
objective is to buy a set of edges in stages one and two solthat a
vertices inT are connected, and the expected cost is minimized.

We make no assumptions about the distributioon the subset
of vertices, except that we have access to it visampling ora-
cle. on request, the oracle outputs a subset of verticesawn
from the distribution. Gupta and Pal give a.@approximation for
SST[12]. Prior to their work, there were constant factorgantees
for the problem when all of the possible subsets realizedages
two contain a fixed root terminal [13, 14].

Common Framework. Our work uses a common framework
developed in Gupta et al. [10] for MRoB and extended by Gupta
and Palin [12] for SST. This framework first chooses a randahr
setSC Rof the set of terminal pairs. It then computes an approxi-
mate Steiner foredts for Susing an adaptation of the primal-dual
algorithm for Steiner forests and buys its edges. Findilig for-
est is augmented to a feasible solution Roby renting additional
edges in a cheapest possible way such that all remainingrizisn
in R\ Sare connected.

The performance of the above framework depends strongly on
a certainstability property of the Steiner forest algorithm used to
computeFs. For a foresF in G, let G|F denote the graph resulting
from contracting all trees of. We usecg (u,v) to denote the
minimum cost of anyu,v-path inG|F. For a parametef > 0,
Gupta et al. [10] define the notion @-strict algorithms for the
minimum-cost Steiner forest problem:

DEFINITION 1. An algorithmALG for the Steiner forest prob-
lem is B-strict if there exist cost share&; for all (s,t) € R such
that

1. 3 (st)erést < optg, Whereoptg is the minimum cost of a
Steiner forest for R, and

2. JF 4 (s,t) < B-&stforall (st) € R, where Egt is a Steiner
forest for terminal set Rt = R\ {(s,t)} returned byALG.

Gupta et al. [10] then show that using arapproximate ang-
strict Steiner forest algorithm in their framework yields(a + f3)-
approximation algorithm for the MRoB problem. The authors
devise a 6-approximate and 6-strict algorithm for Steimeedts
which yields a 12-approximate algorithm for MRoB. Their ina
ysis can be tightened to achieve an 8-approximation. Beiiche
et al. [6] reduced the approximation ratio t8B88 by devising a
(2+ v/2)-approximate an@2+ v/2)-strict primal-dual Steiner for-
est algorithm.

The notion of strictness defined above assumesRligh set of
terminal pairs. To extend this framework to handle SST, &apid
Pal extend the notion of strictness to a Reif terminal subsets of
arbitrary size, callegroups For a grougy € R, letcg g (9) denote
the minimum cost of connecting all terminalsgin GJ|F.

DEFINITION 2. An algorithmALG for the Steiner forest prob-
lem isB-group-strictif there exist cost share; for all g € R such
that

1. Ygerég < optr, Whereoptg is the minimum cost of a Steiner
forest for R, and

2. (‘G|Eg(g) < B-égforall g € R, where Eg is a Steiner forest
for terminal set Rg = R\ {g} returned byALG.

The algorithms in [6], [10], and [12] all adapt the primaladu
Steiner forest algorithm from [3]. In these papers, stasgis
achieved by adding extra edges into the Steiner forest pextiby
the standard primal-dual algorithm. This worsens the appra-
tion ratio but reduces the cost of augmenting a feasiblestére,
into a feasible forest foR.

Our Results. In this paper, we show that the primal-dual algo-
rithms for Steiner forest [3, 15] are 3-strict and 4-groties with
appropriate cost sharing rules. We summarize our main iontr
tion in the following theorem:

THEOREM 1. There exists a primal-dua-approximate algo-
rithm for the Steiner forest problem that 8strict and 4-group-
strict.

This implies a b5-approximation for MRoB and a 6-
approximation for SST using the framework in [10, 12]. Moreo
this also implies a 5-approximation algorithm for the 2gsta
stochastic Steiner forest problem in the independent ass
model [13].

This is the first algorithm to show that thexmodifiedprimal-
dual Steiner forest algorithm hasnstantstrict or group-strict cost
shares. Finally, we present an example instance that stawthe
natural primal-dual Steiner forest algorithm is r@étf €)-strict for
any € > 0, therefore showing that the two-stage analysis of Gupta
et al. given in [10] is nearly tight for MRoB.

Outline of Paper. In Section 2, we define the structure of our
cost shares and give a surprisingly simple property thaliés@a-
group-strictness if the cost shares are based om-approximate
Steiner forest. In Section 2, we also present our improg'ed
strictness result for cost shares that satisfy an additi@tpiire-
ment. In Section 3, we review the Steiner forest algorithKR
and show how the cost of every edge of the forest that is cagdput
is shared between terminal pairs in order to meet the regeinés



of our strictness results. Finally, in Section 4, we giveregkes
that demonstrate that our results are nearly tight for thméwork
proposed by [10].

2. STRICTNESS OF COST SHARING AL-
GORITHMS FOR STEINER FORESTS

Suppose we are given an-approximation algorithmALG that
computes a Steiner forestfor the set of terminal groupR. In this
section, we define two different cost sharing schemes taldlis¢ a
fraction of% of the cost ofF among the terminals. These schemes
crucially rely on a notion ofvitnesseshat are associated with each
edgee € F. We show that ifALG and the witness definition satisfy
certain properties, these cost sharing schemes yeelgrdup-strict
and % a-strict cost shares.

We assume without loss of generality that the terminal skts o
two different groups irR are disjoint. Ifs appears in two groups,
g1 andgy, we can create two new nodgsands,, add edgesss, s)
and(sp,s) each of zero cost, and replaswith s in g; and withs,
in go.

Given thatF is produced by aa-approximation algorithnALG,
we define the cost shaéde) of an edgee € F as

¢(e)= %C(e)- (1)

For each edge € F, we assign two terminal¥e = {u,v} to be
the witnesseof e and splité (e) between the terminals ie. In
this section, we give two different ways of splitting thisstshare,
yielding two different strictness results.

Let éu(e) be the share of (e) of terminalu € #e according to
the split. The total cost share assigned to termirial

du= Su(e).

ecF I ue¥e

The cost share of a group of terminglg Ris §g = 3 g u-

We prove that if cost shares are distributed as describedtative
total cost share of all groups of terminals does not exceedjpti-
mum cost. This validates condition (1) of Definition 2.

LEMMA 1. Let F be a Steiner forest computed by an
approximate algorithmALG and let {#e}ecr be the associated
witness set. If the cost sharésare computed as described above

then
ZREQ S OptR.
ge

PROOF By our cost sharing rule (1), we have

c(F)= eg':(:(e) = eg:u;/ aéule) = agngg

and this implies the lemma a$F) < o -optg. [

2.1 Symmetric Cost Share Assignment

Crucial to proving the strictness of our cost sharing sch&me
to define the witness sé¥e}ecr to satisfy the following property.
For a group of verticeg € R, let Ty denote the unique tree connect-
ing g in F if such atree exists; otherwiSg = 0. In the following
we abuse notation by letting a pa&®or treeT also stand for the set
of edges in it.

PROPERTY 1. Consider an arbitrary group of terminalsgR
and let e be an edge in treg.TIf #eNg = 0 then e is part of the
forest F 4.

Remove terminal groug from R and runALG on the set of
terminal groupR_g = R\ {g}. Property 1 implies that if an edge
e € Ty is not part of the foresF_g thene is witnessed by some
terminal ing, i.e., ZeNg # 0.

A natural idea is to split the cost shaf¢e) of e evenly among
the two witnesses. This is what we call ttgmmetric cost share
assignment

Symmetric cost share assignmentThe cost share that each wit-
nessu € #e receives for edgeis

ule) = 3¢ (e) @

Itis easy to see that Property 1 together with the symmest ¢
share assignment yields cost shares that arstéct.

LEMMA 2. Let F be a Steiner forest computed by an
approximate algorithmALG and let{#c}eck be the witness set.
If algorithm ALG and {#e}eck satisfy Property 1, then the sym-
metric cost share§ are 3 = 2a-strict, i.e., for allge R

ColF 4(9) < 20 - &g

PrROOF. Property 1 ensures that all edges Tg that are not part
of F_g must be witnessed by some terminabinThe claim of the
lemma follows since for each edg®f Ty with 7N g # 0, there is

some terminali in g with &u(e) = 3&(e) = s c(e). O

2.2 Asymmetric Cost Share Assignment

We next turn to a refinedsymmetric cost sharing scheménere
we split the cost sharé(e) of an edgee € F unevenly among
its witnesses inZ.. We prove that this asymmetric cost sharing
scheme yieId%a-strict cost shares, if only algorith&L G and the
witness se{ #e}eck satisfy an additional property.

This property is motivated by the following intuition: Ifri@i-
nals in groupg witness some edges that are notTy) it might
be cheaper to connect the terminalsgoin F_g by using those
edges instead of some edgesTif\ F_q. If these alternate edges
do not provide a cheaper connection than the correspondigese
in Ty \ F_g, then they contribute some significant cost sharg to
thatg can then use to pay for edgesTig\ F_g.

PROPERTY 2. There exists an ordek on the groups of termi-
nals in R such that for any two terminal groupshgs R, h< g
implies that all edges e ofy R Ty with #e g = 0 are part of the
forest F 4.

While we will show in Section 3.3 that our witness definition
satisfies Property 2 for groups of arbitrary size, the asytrioeost
sharing rule below is designed specifically for the case wdilen
groups are pairs. Thus the remainder of this section is ddviat
the case when all groups consist of just two terminals. Ind¢hse,
we specialize our notation as followBx; is the unique path ifr
connectings andt. For terminalu, let u be the terminal it is paired
with, i.e., (u,0) € R. The cost share of a terminal p&ir,u) € Ris
denoted .

We define an asymmetric cost sharing rule as follows:

Asymmetric cost share assignment:Consider an edge< F and
let #e = {u,v}. Assume without loss of generality that
(u,u) < (V). We shareé(e) among the two witnessas
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Figure 1: The figure shows the pathPst and three terminal pairs (ui,u;), (uj,u;j) € lsswith 1<i < j<q.

andv as follows:

_J3E@ ife¢Pu
éu(e) = {gf(e) if ec Py and

_ | 5&(e) ife¢Pu
fv(e)_{gg(e) if e € Pug. ®)

Observe that with this cost sharing rule, the total costesttzat the
witnesses ir#/e receive fore € F is at most (e).

LEMMA 3. Let F be a Steiner forest computed by an
approximate algorithmALG and let{#c}eck be the witness set.
If algorithm ALG and{#%}ecr satisfy Properties 1 and 2, then the
asymmetric cost shardsare 8 = %a-strict, i.e., forall(s;t) e R

3
CG\F,SI(Svt) < Ea'fsb

PROOF Consider pathPst in F. From Property 1 we know that
each edge € Py that is missing irF_g; is witnessed by at least one
of sandt. If the cost share of terminal pafs,t) for such an edge
eis at least3&(e), then 3o - &(e) suffices to reconstrue We
can therefore reconstruct all such edges u%ugimes their total
cost share. By contracting all such edge$-in;, we can assume
without loss of generality that & or t witness an edge ¢ F_g,
thenési(e) = %E(e). Let.#s; be the set of all such edges.

M= {ec GIF o &le) = 5E(0)}

We show that we can establish connection betweandt in the
contracted graph ata cost at mést Y ec.u, €st(€). By then uncon-
tracting the edges for whicfs(e) > %E(e), we have established a
connection betweesandt in G|F_s; at cost at mosgafst.

By Property 2 and the cost share assignment given in (8)if
Pst N st then the following must hold: (i) there is a terminaf
{s,t} that together witls ort witnesses, (ii) (u,u) < (s,t) and (iii)

e € Py. For these edges we need to collect additional cost share

from edges irP,g\ Pst witnessed by(s,t) and possibly exploit the
connectivity provided by,gin F_gt.

Let It be the set of terminal pairs that witness edge$grio-
gether with one of andt:

Ist={(u,u) € R: Je € Pst such that
{st}N 7% # 0 and{u,d} N 7% # 0}.

Assume thatst = {(uz,u1),. .., (Ug, Ug)} for someq > 0. We use
R, 1 <i <q, to refer to they;, Ui-path inF. For 1<i < q, let p
and p; be the first and last vertices ¢ that are onPs;. We call
pi and p; the projectionsof u; andu;, respectively, on patRs;. We
choose the labgh; so that it is closer tethanp; for all 1 <i <gq.

We order the indices of pairs ig; so thatp is closer tos than pj
forall 1 <i< j <q. Referto Figure 1 for an example.

In the following, we letPy; be thes, pi-segment ofPs; for all
0 <i < g (where we defingg = s). We then define

P =PLUPU...UR

as the union of patﬁ{i,t and the paths of the firsterminal pairs in
Ist. Finally, let

My = My P

be the set of edges i’ that are witnessed ksyort.

For an edge seS C .Zs, let &t(S) be a short-hand for
Yecsést(€). Using induction over G< i < g, we will now prove
that we can reconstruct anz-path inF_g; for all verticesz € &'
at a cost at mos} o - &t(.A4y).

This is clearly true for = 0. Now assume that the claim holds for
some 0<i < g. Consider first the case whepg precedes; .1 on
Pst (see also Figure 2.(i)). Letbe a node on the;, pi.1-segment
P of Ps;. Observe that none of the edges P can be contained
onPj for any 1< j < g. Hence, ifsort witnessed this edge, they

would receive at least a cost share%ﬁ(e). We excluded those
edges initially and hence, using the inductive hypothesescan
reconstruct a, z-path inF_g; at a cost at mosga Est(AMY).

For the above argument, we will now assume that precedes
pi on Ps.. Let f andl be the first and last vertices df 1, re-
spectively, that are incident to edges# (refer to Figure 2.(ii)).
Clearly, the uniquef,l-pathPs; in F must be contained ',
Let z; be a node orP;;. We can then use the induction hypoth-
esis in order to reconstruct anzi-path inF_g at a cost at most
%0’ Est(AMgy).

Now consider a node, € P 1\ P;. Assume that, is contained
on thel, Ui 1-segment o1 (the case where, is contained on
theu;, 1, f-segment of ;1 works analogously). We consider two
ways to reconstruct agz-path inF_gt:

1. UseP; for the union of thay, 1, f- andz, u;, 1-segments of
R.1, and let#; be the set of edges dh that are witnessed
by sort. We can then inductively reconstruct srf-path in
F_st at a cost at mosgaf( o). Using the fact that; 1
andu;.q are connected iffr_st, we obtain ars, z»-path by
reconstructing. This costs at mostd- &st(.#).

2. UseR for thel,z-segment of? 1 and let.# be a short-
hand for.#ZstnA. We can then inductively reconstruct an
s,|-path inF_g; at a cost at moga & (). We obtain an
s,zp-path by reconstructing at a cost at mosta@- &st(. 4 ).



s Bz Pt Pis1
oo o
Uil Uit1

s Py By Pt
' A
Z V)
Mt M
Ui f U+ Uit1

Figure 2: The figure illustrates the cases used in the proof diemma 3. Solid edges represent segments Bf;, dotted edges represent

connectivity in F_gt.

In summary, reconstructing anz,-path inF_g; costs at most

S Ea ) + 30 min{ &), Ex A1)}

<

NI w

a- (&l M) + Eal 1)+ Eal ) ).

Observing that#s U.#; U .44 is a partition of.#.* finishes the
proof of the lemma. [J

3. A PRIMAL-DUAL BASED STRICT AL-
GORITHM FOR STEINER FORESTS

In this section we review & — 1/k)-approximate primal-dual
algorithm for Steiner forests. The algorithms for Steirett pre-
sented in [3] and [15] differ only slightly. In this paper, Wozus on
the viewpoint taken in [3]. We us&KR to refer to this algorithm.
We then show thaAKR together with an appropriate witness defi-
nition satisfies Properties 1 and 2.

While the Steiner forest problem is traditionally definedpairs
of nodes, itis easy to extend the definition to groups of nodesv-
ever, in the case of the Steiner forest problem, the groupl@mo
can be modeled and solved as the problem defined on pairsgby cr
ating a pair for each pair of nodes in a group.

3.1 Primal-Dual
Forests

The primal-dual algorithnrAKR constructs both a feasible pri-
mal and a feasible dual solution for a linear programmingnior
lation of the Steiner forest problem and its dual, respebtivA
standard integer programming formulation for the Steireest
problem has a binary variabkg for all edges € E. Variablexe has
value 1 if edgeeis part of the resulting forest. We I€t contain ex-
actly those subset$ of V thatseparateat least one terminal pair in
R. In other wordsU € 7 iffthere is(s,t) € Rwith [{s,;t} NU|=1.

For a subset of the nodes we also I€](U) denote the set of
those edges that have exactly one endpoibk.ilVe then obtain the
following integer linear programming formulation for theefer
forest problem:

Algorithms for Steiner

min Ce-Xe (1P)
P

s.t. Xe>1 YWUe%
eco(U)
X integer

The linear programming dual of the LP-relaxation (LP) of)(fRs
a variableyy for all node setd) € %. There is a constraint for
each edge € E that limits the total dual assigned to sétss %

that contain exactly one endpoint@fo be at moste.

max YU (D)

Uew

s.t. Y <C VecE

Uew'ecd(U)
y>0

4)

Algorithm AKR constructs a primal solution for (LP) and a dual
solution for (D). The algorithm has two goals:

1. Compute a feasible solution for the given Steiner fonest i
stance. The algorithm reduces the degree of infeasibiity a
it progresses.

2. Create a dual feasible packing of sets of largest positde
value. The algorithm raises dual variables of certain sisbse
of nodes at all times. The final dual solution is maximal in
the sense that no single set can be raised without violating a
constraint of type (4).

Consider the execution of algorith&AKR as a process over time
and letx" andy' be the primal incidence vector and feasible dual
solution at timer. Note that in any optimal solution to (IP}e €
{0,1}. LetFT denote the forest corresponding to the set of edges
with x§ = 1. Initially, let x2 = 0 for all e € E andyg = 0 for all

U € % . The algorithm maintains the invariaxg < xZ andyf, <y§
forallt < 1.

An edgee € E is tight if the corresponding constraint (4) holds
with equality; and a path i8ght if every edge in the path is tight.
Assume that the fore$t” at timeT is infeasible. A terminal node
v € Ris activeat timet if v and itsmatev, i.e., (V) € R, are in
different trees in the foredt”; v is inactive otherwise! Let FT
denote the subgraph &fthat is induced by the tight edges for dual
y'. To avoid confusion between connected components’iand
those inF T, the termmoatrefers to a connected componentih.
The algorithm maintains that @ € FT thenC CU € FT. A moat
U of FT is active at timer if U contains an active termindlj is
inactive otherwise. LeA” be the set of all active moats R’ at
time 7. AKR raises the dual variables for all setsAh uniformly
at all timest > 0, so that ifU is active from timer’ until time t”,
thenyy =1 —1'.

Two disjoint moatscollide at time T in the execution ofAKR
if there is a path inG from one moat to the other that becomes
tight at timet. In order for this to happen, at least one of the two
moats must be active. Suppose that a fFatlonnecting twaactive
terminalsu andu’ becomes tight at time in the execution oAKR.

INote that for the problem defined on groups, each termindien t
group will become inactive at exactly the same time, sindbéf
group is not connected, then each terminal is not connectsaihe
other terminal in the group.



Figure 3: A path P that becomes tight at timetp in AKR(R).

Thenu is contained in some active mddtandu’ is in a disjoint
active moat)’. When this happen#AKR adds the edges & not
already inF* to FT: that is, for alle € P, the algorithm setsl = 1.
Fort’ > 1, setsU andU’ are part of the same moat Bf .

Subsequently, we usé’ (v) to refer to the moat ifr T that con-
tains noder € V attimet. Similarly, we letU ™ (C) denote the moat
in FT that contains the connected compon@mt FT at timeT. Let
F be the final forest.

The following is the main theorem of [3]:

THEOREM 2. Let F be the forest computed BKR on termi-
nal set R. We then havéfe) < (2— 1) - optg, whereoptg is the
minimum cost of a Steiner forest for the given input instanitk
terminal set R.

3.2 Witness Definition

We define a sef#c}eck Of witnesses that are used to distribute
the cost shares as described in Section 2. In Section 3.3 eve sh
thatAKR together with this witness definition satisfies Properties 1
and 2.

Let AKR(S) refer to the execution 0iKR on terminal seBC R.
Let F be the forest computed AKR(R) for terminal setR. The
witnesses/, for each edge € F are defined by the execution of
AKR(R).

Consider a patt® that becomes tight at time> in AKR(R), as
depicted in Figure 3. Path starts from a node in a connected
componenC of F™, passes through a (possibly empty) sequence
Ci,...,G of connected components6f?, and ends in a nodg of
a connected compone@t of F. LetPy,..., A1 be the sequence
of paths ofP\ F™ and letZ%p be the set of edges R\F ™. When
P becomes tight, the se¥p is added to- and we determine for
each edge € &p the corresponding witness# as follows.

Each edge € #p will have the same witness sgt = {w,w'}.
We will also say thaP is witnessed byv andw’. Since the moats
U™ (C) andU™(C’) are active at timap, bothC andC’ must con-
tain at least one active terminal. We will choose one wita@seng
the active terminals in each & andC’. Intuitively, the witness
chosen irC is the active terminal whose moat interseét®arliest
among all active terminals i@. Similarly, the moat of the witness
chosen irC’ is the first to intersed® , ; among all active terminals
in C'. To make this precise, lé&c be the set of terminals i@ that
are active at timap. By definition ofC, all terminals inAc are
connected tarin F™. If uc Ac, thenw = u. Otherwise, letr, be
the first time that modt *(u) collides with a moat, containing a
terminal inAc. (Letty=0if ue Ac.)

LEMMA 4. There is a terminal w in YN Ac whose moat col-
lides with u’s moat at time, even if all terminals in 8\ {w} are
not part of the terminal set R.

PrROOF We will prove the lemma by showing a stronger claim:
For all terminalsy in C that become inactive before tinte, let 7y
be the first time that mo&t ™ (v) collides with a moatly containing
at least one terminal frodc. Then there is a terminal € Uy, N Ac
whose moat collides witk’'s moat at timer, even if all terminals

in Ac\ {w} are not part of the terminal sB This clearly implies
the lemma.

Fix a terminalv in C that becomes inactive at some time before
1p. Observe that by the definition af, UT(v) does not intersect
Ac before timery, and therefore the growth efs moat until time
Ty is not affected by the removal é¢.

The proof is by induction ofJy|. If |Uy| =1 then the set con-
sists of only a terminalv € Ac, and the growth ofv's moat is not
affected by the removal of other terminalsAg.

Now assume thgty| > 1. Letz € Uy be the endpoint of the path
R, that becomes tight wheu, collides withUT(v). If zis in Ac we
are done: We define = z and observe that’'s moat intersect®,
atalltimes 0< 7 < 1y even if the terminals if\c \ {w} are not part
of the terminal set.

Assume thatis notinAc. Inthis case, let; be the first time that
UT(z) collides with a moat; that contains a terminal frod. We
have|U;| < |Uy| and can therefore apply the induction hypothesis
to zandU,. That is, there is a terminal € U, whose moat collides
with Zs moat at timer; even if all terminals irAc \ {w} are not part
of the terminal seR. Sincew is in Ac, it causes the moat containing
zto grow after timer, regardless of other terminals Ax. Thus,
w's moat collides with that o/ at time 1, and this finishes the
lemma. O

The witnesaw is a terminal described by Lemma 4. The witness
w with respect tcC’ is defined analogously.

3.3 Properties ofakR

We show that Properties 1 and 2 hold KR and the witness
definition given above. Lef”ec}ecr be the set of witnesses as-
signed byAKR. Let¥_g (where¥ =U.F or F) refer to set¥
in run AKR(R_g). For examplel® (u) refers to the moat o at
time T in AKR(R_g). Let g denote the time at which all terminals
in group g become inactive ilMKR(R). Subsequently, we abuse
notation by lettingR also refer to the set of all terminals that are
contained in the groups &.

LEMMA 5. For all T < 1g and for all terminals ve R g:
UZg4(v) CUT(v). Moreover, if UF (v)Ng =0, then ULy (v) =UT(v).

PROOF. We prove the lemma by induction over timeAt time
T =0 we haveUy(v) =UT(v) for all v€ R_g and thus the in-
duction hypothesis clearly holds. Assume the inductiorollygsis
holds at timer. We will show that it remains true at time+ ¢ for
any smalle > 0.

Consider the case (v) g =0 and thusJ*y(v) =UT(v). That
is, UT4(v) is active at timer iff UT(v) is active at that time. Then
UTEE(v) =UTE(v) if UTHE(v)ng = 0; andUT{®(v) CUTH(v)
otherwise. Now assumé’(v) Ng# 0 and thudJy(v) CUT(v).
Clearly,U™"¢(v)ng+ 0. Sincer < 1g, all terminals ing are active
at timet and thus ™ (v) is active at timer. It follows UT{#(v) C
Uté(v). O



Figure 4: Instance used in the lower bound argument.

CoROLLARY 1. Consider a terminal & R_g. If v is active at
timeT < 7gin AKR(R) then v must be active until time at leasin
AKR(R_g).

As in Figure 3, leP be a path connecting two active components
C andC’ that becomes tight at timg < Ty in the execution of
AKR(R). As before, lets andu’ be the two endpoints i@ andC’,
respectively, and leEy, .. .,C; be the connected componentsdf
that lie onP. Moreover, assume is witnessed by andw’. The
following lemma implies Property 1 for our definition of wésses.

LEMMA 6. Assume that none of the two witnesses’vof P is
ing, i.e., Zeng=0 for all edges e= &p. Then for each edge
ec P, the contribution to (4) before tin® is the same iIMKR(R)
as itis inAKR(R_g). In particular, P is added at timep in both
runs.

PROOF. Firstwe show that the contribution to (4) from variables
corresponding to moats not containingndu’ is the same in both
runs. Forall 1<i <1, G isinactive at timep < 1g, S0 thaCiNg =
0. LetT; < 1p be the time at which compone@t becomes inactive.
Then, by Lemma 5,Jgr(v) =UT(v) forall T < 1, for all v e G, for
all 1 <i <. Thus, the dual variable values for all sets restricted to
subsets o€ are the same in bothKR(R) andAKR(R_g).

Now consider the contribution to (4) from variables coresg
ing to moats containing. Let 7 be the first time at which moat
UT(u) collides with a moat containing a terminal il\c. By the
definition of ,UT(uyng= 0 forall T € [0, 7). Thus by Lemma 5,
Ulg(u)=UT(u) forall T € [0,7); and the contribution to (4) from
variables corresponding to moats containinigefore timef is the
same iNAKR(R) andAKR(R_g). From timef, w andu are in the
same moat iMKR(R), and by Lemma 4, they are also in the same
moat at this time iIMKR(R_g). By Lemma 5,w is still active at
time 7p in both AKR(R) andAKR(R_g). Thus the contribution to
(4) of variables corresponding to moats containinfjom time
until time 1p is also the same in both runs. A symmetric argument
for variables corresponding to moats containinghows that path
P is tight at timetp in AKR(R_gt).

Finally, note that Lemma 5 also implies thatandw’ are con-
tained in disjoint moats iMAKR(R_st) before timetp. Hence path
P is added at timep in AKR(R_st) and the lemma follows. (]

We show that the following precedence ordertogether with
the witness definition described above imply Property 2AfR.

Consider a rurAKR(R). For each group of terminatsc R, let
Ty be the time at which the terminals gnbecome inactive. Fix an
order on the terminal groups R= {gj } 1<j<k such that

Tglng2§~~~§Tgk.

We defineg; < gj if i < j in this order.
The following lemma implies Property 2.

LEMMA 7. Let g and h be two groups of terminals in R such
that h< g and let e be an edge on treg i F. If #eng=0then
ecF g

PROOF The proof is by contradiction. Assume that edgis
not part ofF_g. Edgee € Ty, is added td- attimet < 1, < 1g. By
Lemma 6 and sinc#eNg= 0, eis picked at timer in AKR(R_g).
This is a contradiction. [J

4. A LOWER BOUND ON THE STRICT-
NESS FACTOR

Figure 4 shows a simple Steiner forest instance with twoiteain
pairsR= {(s;t),(s,t')}. The solid lines in Figure 4.(i) correspond
to edges of foresE returned by algorithmAKR when run on this
instance. The total cost share of all edge§ iis 3 and therefore,
there must be a terminal pair Rwhose cost share is at mo%t

Without loss of generality, assume tt&t < % RunningAKR on
terminal setR_st = {(s,t)} yields the forest in Figure 4.(ii). As
CalF_«(S,t) = 4— ¢, this example shows that the strictnes#\&iR

is atleas(4—¢) % ~ % whenever the sum of the cost shares of all
terminal pairs is at most half of the cost of the computedsbre

We remark that the previously known algorithms for the MRoB
problem in [10] and [6] essentially distribute half of thestof a
forest computed bAKR as cost shares among the terminal pairs.
Given a terminal paifs;t) € R, both of these algorithms use an
adaptation of the standard primal-dual Steiner forestratga (so
calledtimedor boostedprimal-dual algorithms) to compute a forest
F_st. In a nutshell, the idea behind these adaptations is to peodu
a forest whose connectivity is higher than that of a forestipced
by standard primal-dual algorithms. For the example abboei-
ever, both algorithms in [10] and [6] return the forest in Uig
4.(ii). Thus, the above example provides%u‘ower bound for the
strictness of these algorithms as well.

5. REFERENCES
[1] M. Andrews. Hardness of buy-at-bulk network design. In

Proceedings, IEEE Symposium on Foundations of Computer

Sciencepages 115-124, 2004.

B. Awerbuch and Y. Azar. Buy-at-bulk network design. In

Proceedings, IEEE Symposium on Foundations of Computer

Sciencepages 542-547, 1997.

[3] A. Agrawal, P. Klein, and R. Ravi. When trees collide: An
approximation algorithm for the generalized Steiner peabl
in networks.SIAM J. Comput.24:440-456, 1995.

[4] Y. Bartal. Probabilistic Approximation of Metric Spasand
its Algorithmic Applications. InProceedings, IEEE
Symposium on Foundations of Computer Sciepages
184-193, 1996.

[5] Y. Bartal. On approximating arbitrary metrics by tree

metrics. InProceedings, ACM Symposium on Theory of

Computing pages 161-168, 1998.

L. Becchetti, J. Kbnemann, S. Leonardi, and M. Pal.r8iia

the cost more efficiently: Improved approximation for

multicommodity rent-or-buy. IfProceedings, ACM-SIAM

Symposium on Discrete Algorithnmages 375-384, 2005.

(2]

(6]



[7]
(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

M. Bern and P. Plassmann. The Steiner problem with edge
lengths 1 and 2nform. Process. Lett32(4):171-176, 1989.
J. Fakcharoenphol, S. Rao and K. Talwar. A tight bound on
approximating arbitrary metrics by tree metrics. In
Proceedings, ACM Symposium on Theory of Computing
pages 448-455, 2003.

M. R. Garey and D. S. Johnso@omputers and

Intractability: A Guide to the Theory of NP-completeness
Freeman, San Francisco, 1979.

A. Gupta, A. Kumar, M. Pal, and T. Roughgarden.
Approximation via cost-sharing: A simple approximation
algorithm for the multicommaodity rent-or-buy problem. In
Proceedings, IEEE Symposium on Foundations of Computer
Sciencepages 606-617, 2003.

A. Gupta, A. Kumar, and T. Roughgarden. Simpler and
better approximation algorithms for network design. In
Proceedings, ACM Symposium on Theory of Computing
pages 365-372, 2003.

A. Gupta and M. Pal. Stochastic Steiner trees withoutai.

In Proceedings, International Colloquium on Automata,
Languages and Programmingages 1051-1063, 2005.

A. Gupta, M. Pal, R. Ravi, and A. Sinha. Boosted santplin
Approximation algorithms for stochastic optimization. In
Proceedings, ACM Symposium on Theory of Computing
pages 417-426, 2004.

A. Gupta, R. Ravi, and A. Sinha. An edge in time saves:nine
LP rounding approximation algorithms. Rroceedings,

IEEE Symposium on Foundations of Computer Science
pages 218-227, 2004.

M. X. Goemans and D. P. Williamson. A general
approximation technique for constrained forest problems.
SIAM J. Comput.24:296-317, 1995.

A. Kumar, A. Gupta, and T. Roughgarden. A constant facto
approximation algorithm for the multicommodity rent-amb
problem. InProceedings, IEEE Symposium on Foundations
of Computer Scieng@ages 333-344, 2002.



