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Abstract

Borodin, Linial and Saks [7] introducedmetrical task systems, a framework to model a large class of
online problems. Metrical task systems can be described as follows. We are given a graphG = (V, E)
with n nodes and a positive edge lengthλ(e) for every edgee ∈ E. An online algorithm resides inG and
has to service a sequence of tasks that arrive online. A taskτ specifies for each nodev ∈ V a request cost
r(v) ∈ R

+

0 ∪{∞}. If the algorithm resides in nodeu before the arrival of taskτ , the cost to service taskτ
in nodev is equal to the shortest path distance fromu to v plus the request costrt(v). The objective is to
service all tasks at minimum total cost. Borodin et al. showed that every deterministic online algorithm
has a competitive ratio of at least2n−1, independent of the underlying metric. Moreover, they presented
an onlinework function algorithm(WFA) that achieves this competitive ratio.

We present asmoothed competitive analysisof WFA. That is, given an adversarial task sequence,
we randomly perturb the request costs and analyze the competitive ratio of WFA on the perturbed se-
quence. Here, we are mainly interested in the asymptotic behavior of WFA. Our analysis reveals
that the smoothed competitive ratio of WFA is much better than O(n) and that it depends on several
topological parameters of the underlying graphG, such as the minimum edge lengthλmin, the max-
imum degree∆, the edge diameteremax, etc. For example, if the ratio between the maximum and
the minimum edge length ofG is bounded by a constant, the smoothed competitive ratio of WFA is
O(emax(λmin/σ + log(∆))) andO(

√

n · (λmin/σ + log(∆))), whereσ denotes the standard deviation
of the smoothing distribution. That is, already for perturbations withσ = Θ(λmin) the competitive ratio
reduces toO(log(n)) on a clique and toO(

√
n) on a line. Furthermore, we provide lower bounds on the

smoothed competitive ratio of any deterministic algorithm. We prove two general lower bounds that hold
independently of the underlying metric. Moreover, we show that our upper bounds are asymptotically
tight for a large class of graphs.

We also provide the first average case analysis of WFA. We prove that WFA hasO(log(∆)) expected
competitive ratio if the request costs are chosen randomly from an arbitrary non-increasing distribution
with standard deviationσ = Θ(λmin).

1 Introduction

Borodin, Linial and Saks [7] introduced a general frameworkto model online problems, calledmetrical task
systems. We are given an undirected and connected graphG = (V,E), with node setV and edge setE, and
a positive length functionλ : E → IR+ on the edges ofG. Let n be the number of nodes inG. We extendλ
to a metricδ on G. Let δ : V × V → IR+

0 be a distance function such thatδ(u, v) denotes the shortest path
distance (with respect toλ) between any two nodesu andv in G. A taskτ is ann-vector(r(v1), . . . , r(vn))
of request costs. The cost to process taskτ in nodevi is r(vi) ∈ IR+

0 ∪ {∞}. The online algorithm starts
from a given initial positions0 ∈ V and has to service a sequenceS = 〈τ1, . . . , τℓ〉 of tasks, arriving one
at a time. If the online algorithm resides after taskτt−1 in nodeu, the cost to service taskτt in nodev is
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δ(u, v) + rt(v); δ(u, v) is thetransition costandrt(v) is theprocessing cost. The objective is to minimize
the total transition plus processing cost.

Many well-known online problems can be formulated as metrical task systems; for example, the paging
problem, the static list accessing problem and thek-server problem. One might as well consider metrical
task system as a general scheduling problem. Due to its generality, the competitive ratio of an algorithm
for metrical task systems is usually weak compared to the oneof an online algorithm that is designed for a
particular problem, such as thek-server problem.

A widely accepted measure for the performance of an online algorithm is itscompetitive ratio[13]. Let
ALG[S] andOPT[S], respectively, be the cost of the online and the optimal offline algorithm on a sequence
S. For a cost minimization problem, algorithmALG is said to beγ-competitiveif for every sequenceS

ALG[S] ≤ γ · OPT[S] + α, (1)

whereα is some non-negative number that is independent of the length of the input sequence.α is used to
bound some initial cost inferred by the online algorithm on rather “short” input sequences; as the length of
the input sequences increases, the first term on the right-hand side of (1) becomes the dominating term. The
competitive ratioc of an online algorithmALG refers to the smallestγ for which relation (1) holds.

Borodin, Linial and Saks [7] gave a deterministic online algorithm that has a competitive ratio of2n− 1
for every metrical task system; this algorithm is known as the work function algorithmand we will subse-
quently use WFA to refer to it. The2n−1 competitive ratio of WFA is optimal. Borodin, Linial and Saks [7]
and Manasse, McGeoch and Sleator [11] proved thateverydeterministic online algorithm has competitive
ratio at least2n − 1 for any arbitrary metrical task system. We emphasize that this lower bound is proven
independently of the underlying metric, i.e., it holds for any arbitrary graphG and length functionλ.

It is a known fact that the competitive ratio of an online algorithm often is an overly pessimistic esti-
mation of its actual performance in practice. Sequences that force the online algorithm into its worst case
behavior might be artificial and therefore rarely occur in practice. In order to overcome the overly pessimistic
viewpoint adopted in worst case analysis, Spielman and Teng[14] proposedsmoothed analysis, which can
be seen as a hybrid between average case and worst case analysis. The basic idea is to randomly perturb, or
smoothen, the input instances and to analyze the performance of the algorithm on the perturbed instances.
Intuitively, the smoothed complexity of an algorithm is small if the worst case instances are isolated peaks
in the instance/time space.

Based on the idea underlyingsmoothed analysis, Becchetti et al. [3] recently proposedsmoothed com-
petitive analysisas an alternative to (worst case) competitive analysis of online algorithms. The idea is
to perturb an adversarial input sequenceŠ slightly at random and to analyze the competitive ratio of the
algorithm on the perturbed sequences. We use the notationS ← f(Š) to refer to a sequenceS that is
obtained from an adversarial sequenceŠ by perturbingŠ according to a smoothing distributionf . More
formally, Becchetti et al. defined thesmoothed competitive ratioc of an online algorithmALG with respect
to a smoothing distributionf as

c = sup
Š

ES←f(Š)

[

ALG[S]

OPT[S]

]

. (2)

In this paper, we are mainly interested in the asymptotics ofthe smoothed competitive ratio in the long
run. That is, we will not consider the supremum over all adversarial input sequences, but rather restrict our
attention to sequencešS whose length exceeds a certain threshold value.1

1We remark that defining the smoothed competitive ratio ofALG as the supremum over allγ such that for allŠ, E[ALG[S ]] ≤
γ ·E[OPT[S ]]+α, where the expectation is taken over allS ← f(Š), would give an alternative and by all means reasonable notion
of smoothed competitiveness. However, we are interested inanalyzing the smoothed competitive ratio on a “per sequencebasis”,
which we think gives a stronger notion of competitiveness, and therefore adopt the definition in (2).
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Upper Bounds

random tasks O
(

σ

λmin

(

λmin

σ
+ log(∆)

))

arbitrary tasks O
(

δmax

λmin

(

λmin

σ
+ log(∆)

))

and O

(

√

n · λmax

λmin

(

λmin

σ
+ log(∆)

)

)

β-elementary tasks O
(

β · λmax

λmin

(

λmin

σ
+ log(∆)

))

Table 1: Upper bounds on the smoothed competitive ratio of WFA.

Our contribution. In this paper, we use the notion of smoothed competitivenessto characterize the perfor-
mance of WFA. We smoothen the request costs of each task according to an additive symmetric smoothing
model. Each cost entry is smoothed by adding a random number chosen from a symmetric probability distri-
butionf with mean zero. Therefore, on expectation each smoothed cost entry coincides with its original cost
entry. Our analysis holds for various probability distributions, including the uniform, double exponential and
normal ones. We useσ to refer to the standard deviation off .

Our analysis reveals that the smoothed competitive ratio ofWFA is much better than its worst case
competitive ratio suggests and that it depends on the following topological parametersof the underlying
graph:

• n = number of nodes inG;

• λmin = minimum edge length with respect toλ;

• λmax = maximum edge length with respect toλ;

• ∆ = maximum degree of a node inG;

• δmax = diameter ofG, i.e., the maximum length of a shortest path between any two nodes; more
formally, δmax = max(u,v)∈V ×V δ(u, v);

• emax = edge diameter ofG, i.e., the maximum number of edges on a shortest path (with respect to
the number of edges) between any two nodes; observe thatemaxλmin ≤ δmax ≤ emaxλmax.

We prove several upper bounds; see Table 1.

1. We show that if the request costs are chosen randomly from adistributionf , which is non-increasing
in [0,∞), the expected competitive ratio of WFA is

O
(

1 + σ
λmin
· log(∆)

)

.

In particular, WFA has an expected competitive ratio ofO(log(∆)) if σ = Θ(λmin). For example, we
obtain a competitive ratio ofO(log(n)) on a clique and ofO(1) on a binary tree.

2. We prove two upper bounds on the smoothed competitive ratio of WFA:

O

(

δmax

λmin

(

λmin

σ + log(∆)
)

)

and O

(

√

n · λmax

λmin

(

λmin

σ + log(∆)
)

)

.

For example, ifσ = Θ(λmin) andλmax/λmin = Θ(1), WFA has smoothed competitive ratioO(log(n))
on any graph with constant edge diameter andO(

√
n) on any graph with constant maximum degree.

Note that we obtain anO(log(n)) bound on a complete binary tree.
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Lower Bounds

arbitrary tasks

– existential Ω
(

δmax

λmin

(

λmin

σ
+ log(∆)

))

and Ω

(

√

n · λmax

λmin

(

λmin

σ
+ log(∆)

)

)

– universal Ω
(

λmin

σ
+ λmin

λmax

log(∆)
)

and Ω

(

√

emax · λmin

λmax

(

λmin

σ
+ 1
)

)

β-elementary tasks Ω
(

β ·
(

λmin

σ
+ 1
))

(existential)

Table 2: Lower bounds on the smoothed competitive ratio of any deterministic online algorithm.

3. We obtain a better upper bound on the smoothed competitiveratio of WFA if the adversarial task
sequence only consists ofβ-elementary tasks. A task isβ-elementary if it has at mostβ non-zero
entries. (We will use the termelementary taskto refer to a1-elementary task.) We prove a smoothed
competitive ratio of

O
(

β · λmax

λmin

(

λmin

σ + log(∆)
))

.

For example, ifσ = Θ(λmin) andλmax/λmin = Θ(1), WFA has smoothed competitive ratioO(β log(∆))
for β-elementary tasks.

We also present lower bounds; see Table 2. All our lower bounds hold foranydeterministic online algorithm
and if the request costs are smoothed according to the additive symmetric smoothing model. We distinguish
betweenexistentialanduniversallower bounds. An existential lower bound, sayΩ(f(n)), means that there
existsa class of graphs such thateverydeterministic algorithm has smoothed competitive ratioΩ(f(n)) on
these graphs. On the other hand, a universal lower boundΩ(f(n)) states that forany arbitrarygraph,every
deterministic algorithm has smoothed competitive ratioΩ(f(n)). Clearly, for metrical task systems, the best
lower bound we can hope to obtain isΩ(n). Therefore, if we state a lower bound ofΩ(f(n)), we actually
meanΩ(min{n, f(n)}).

4. For a large range of values forδmax and∆, we present existential lower bounds that are asymptotically
tight to the upper bounds stated in 2. This means (a) that the stated smoothed competitive ratio of
WFA is asymptotically tight and (b) that WFA is asymptotically optimal under the additive smoothing
model—no other deterministic algorithm can achieve a better smoothed competitive ratio.

5. We also prove two universal lower bounds on the smoothed competitive ratio:

Ω
(

λmin

σ + λmin

λmax
log(∆)

)

and Ω

(

min

{

emax,
√

emax · λmin

λmax

(

λmin

σ + 1
)

})

.

Assume thatλmax/λmin = Θ(1). Then the first bound matches the first upper bound stated in 2 if the
edge diameteremax is constant, e.g., for a clique. The second bound matches thesecond upper bound
in 2 if emax = Ω(n) and the maximum degree∆ is constant, e.g., for a line.

6. Forβ-elementary tasks, we prove an existential lower bound of

Ω
(

β ·
(

λmin

σ + 1
))

.

This implies that the bound in 3 is tight up to a factor of(λmax/λmin) log(∆).
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Our smoothed competitive analysis renders meaningless formetrical task systems whose tasks obey a certain
combinatorial structure, e.g., for the paging problem, thek-server problem, etc. The reason for this is that
our smoothing model destroys zero request costs and thus theunderlying combinatorial structure of these
problems. As a consequence, the smoothed task sequence cannot be interpreted in terms of the original
problem. One way out of this would be to consider zero-retaining smoothing models. However, as will be
addressed in the paper, these models cannot yield a smoothedcompetitive ratio better than2n − 1 for any
deterministic online algorithm and independent of the underlying metric. Therefore, the general framework
of metrical task systems is not suitable to investigate the smoothed competitiveness of these problems.

Nevertheless, numerous other online problems fall into theframework of metrical task systems and
we therefore obtain a smoothed competitive analysis for a large class of problems. As an example, one
might consider the following online problem of schedulingn jobs onm unrelated parallel machines with
predefined set-up costs. Let[k] denote the set{1, . . . , k}. The time jobj ∈ [n] needs to be processed on
machinei ∈ [m] is given by its processing timepj,i. Moreover, we have a predefined symmetric function
f : [m]× [m]→ R

+
0 , which specifies machine set-up costs. If jobj − 1 has been processed on machinei′,

the cost to process jobj on machinei is f(i′, i) + pj,i. We assume thatf(i, i) = 0 for all i ∈ [m]. The goal
is to find an assignment of jobs to machines such that the totalset-up plus processing cost is minimized.
This problem can be formulated as a metrical task system in a straight-forward way: Each machinei ∈ [m]
corresponds to a nodevi in G. We draw an edgee between nodesvi andvi′ of lengthλ(e) = f(i, i′) for all
i, i′ ∈ [m], i < i′. The arrival of a new jobj now corresponds to a taskτj, where the request costrj(vi)
of nodevi in G is given bypj,i. Observe that the maximum degree ofG is m and the edge diameter is
1. The above mentioned lower bound for metrical task systems implies that every deterministic algorithm
for this scheduling problem has a competitive ratio ofΩ(m). As opposed to this, our analysis implies
that if the processing times of the jobs are perturbed randomly, the smoothed competitive ratio of WFA is
O(log(m)) for this problem (assuming thatσ = Θ(λmin) andλmax/λmin = O(1)). Above we definedG as
the complete graph in order to capture all possible set-up functionsf . We remark that depending onf , one
might be able to construct a refined graph (e.g., the all-pairshortest path graph) that still reflects the set-up
functionf but allows to relax the conditionλmax/λmin = O(1) or/and even leads to an improved smoothed
competitive ratio of WFA.

Constrained balls into bins game. Our analysis crucially relies on a lower bound on the cost of an optimal
offline algorithm. We therefore study the growth of the work function values on a sequence of random
requests. It turns out that the increase in the work functionvalues can be modeled by a version of a balls
into bins game with dependencies between the heights of the bins, which are specified by a constraint graph.
We call this game theconstrained balls into bins game. The dependencies between the heights of the bins
make it difficult to analyze this stochastic process. We believe that the constrained balls into bins game is
also interesting independently of the context of this work.

Related work. Several other attempts were made in the past to overcome the overly pessimistic estimation
of the performance of an online algorithm by its competitiveratio. One idea, which was put forward by
Albers [1, 2], was to enhance the capability of the online algorithm by allowing a limited lookahead. Another
idea was to restrict the power of the adversary. For example,Borodin et al. [6] used an access graph model
to restrict the input sequences in online paging problems tospecific patterns. Blom et al. [4] introduced the
notion of a fair adversary to obtain improved competitiveness results for minimizing the makespan in the
online traveling salesman problem on a line. This idea was later refined by Krumke et al. [10]. They defined
a non-abusive adversary to obtain a constant competitive online algorithm for minimizing the total flow time
in the online TSP problem on a line. Yet another idea, due to Kalyanasundaram and Pruhs [8], was to use a
resource augmentation model to analyze online scheduling algorithms. In this model, the online algorithm
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has access to more resources (e.g., machines) than the optimal offline algorithm.
The diffuse adversary model by Koutsoupias and Papadimitriou [9] is another attempt to refine the

notion of competitiveness. In this model, the actual distribution of the input is chosen by an adversary from
a known class of possible distributions.

We believe that smoothed competitive analysis is a natural alternative to adequately characterize the
performance of an online algorithm.

Organization of paper. In Section 2, we first review the work function algorithm and state some of its
properties. In Section 3, we define the smoothing model that we use. The lower bound on the cost of
an optimal offline algorithm and the related balls into bins game are presented in Section 4. Then, in
Section 5 and Section 6, we prove the upper bounds on the smoothed competitive ratio of WFA. After that,
in Section 8 we present an upper bound on the expected competitive ratio of WFA and in Section 9 we
develop the bound forβ-elementary tasks. Finally, in Section 10 we prove existential and universal lower
bounds. We give some concluding remarks in Section 11.

2 Work function algorithm

Let S = 〈τ1, . . . , τℓ〉 be a request sequence and lets0 ∈ V denote the initial position. LetSt denote the
subsequence of the firstt tasks ofS. For eacht, 0 ≤ t ≤ ℓ, we define a functionwt : V → IR such that
for each nodeu ∈ V , wt(u) is the minimum offline cost to processSt starting ins0 and ending inu. The
functionwt is called thework functionat timet with respect toS ands0.

Let OPT denote an optimal offline algorithm. Clearly, the optimal offline costOPT[S] onS is equal to
the minimum work function value at timeℓ, i.e., OPT[S] = minu∈V {wℓ(u)}. We can computewt(u) for
eachu ∈ V by dynamic programming:

w0(u) = δ(s0, u), and wt(u) = min
v∈V
{wt−1(v) + rt(v) + δ(v, u)}. (3)

We next describe the online work function algorithm; see also [7, 5]. Intuitively, a good strategy for an
online algorithm to process taskτt is to move to a node whereOPT would reside ifτt would be the final
task. However, the competitive ratio of an algorithm that solely sticks to this policy can become arbitrarily
bad. A slight modification gives a2n− 1 competitive algorithm: Instead of blindly (no matter at what cost)
traveling to the node of minimum work function value, we additionally take the transition cost into account.
Essentially, this is the idea underlying the work function algorithm.

Work function algorithm (WFA): Let s0, . . . , st−1 denote the sequence of nodes visited byWFA to process
St−1. Then, to process taskτt, WFA moves to a nodest that minimizeswt(v) + δ(st−1, v) for all v ∈ V . It
can be shown (see, e.g., [7, 5]) that there is always a choice for st such that in additionwt(st) = wt−1(st)+
rt(st). More formally, we define nodest as

st = arg min
v∈V
{wt(v) + δ(st−1, v)} such that wt(st) = wt−1(st) + rt(st). (4)

Subsequently, we useWFA andOPT, respectively, to denote the work function and the optimal offline algo-
rithm. For a given sequenceS = 〈τ1, . . . , τℓ〉 of tasks,WFA[S] andOPT[S] refer to the cost incurred byWFA

andOPT onS, respectively. Bys0, . . . , sℓ we denote the sequence of nodes visited byWFA.
We continue by observing a few properties of work functions and of the online algorithmWFA (see

Appendix A for the corresponding proofs).

Fact 1. For any nodeu and any timet, wt(u) ≥ wt−1(u).

6



Fact 2. For any nodeu and any timet, wt(u) ≤ wt−1(u) + rt(u).

Fact 3. For any two nodesu andv and any timet, |wt(u)− wt(v)| ≤ δ(u, v).

Fact 4. At any timet, wt(st) = wt(st−1)− δ(st−1, st).

Fact 5. At any timet, rt(st) + δ(st−1, st) = wt(st−1)− wt−1(st).

3 Smoothing models

Let the adversarial task sequencebe given byŠ = 〈τ̌1, . . . , τ̌r〉. We smoothen each task vectorτ̌t =
(řt(v1), . . . , řt(vn)) by perturbing eachoriginal costentry řt(vj) according to some probability distribution
f as follows

rt(vj) = max{0, řt(vj) + ε(vj)}, whereε(vj)←f.

That is, to each original cost entry we add a random number which is chosen independently fromf . The
obtainedsmoothedtask is denoted byτt = (rt(v1), . . . , rt(vn)). We useµ to denote the expectation off .
We assume thatf is symmetric aroundµ = 0. We take the maximum of zero and the smoothing outcome
in order to assure that the smoothed costs are non-negative.Thus, the probability for an original zero cost
entry to remain zero is amplified to12 .

A major criticism to the additive model is that zero cost entries are destroyed. However, as we will argue
in the next subsection, one can easily verify that the lower bound proof of2n− 1 on the competitive ratio of
any deterministic algorithm for metrical task systems goesthrough for any smoothing model that does not
destroy zeros.

Our analysis holds for a large class of probability distributions, which we callpermissible. We sayf
is permissible if (i)f is symmetric aroundµ = 0 and (ii) f is non-increasing in[0,∞). For example,
the uniform and the normal distribution are permissible. The concentration off aroundµ is given by its
standard deviationσ. Since the stated upper bounds on the smoothed competitive ratio of WFA do not
further improve by choosingσ much larger thanλmin, we assume thatσ ≤ 2λmin. Moreover, we usecf to
denote a constant depending onf such that for a randomε chosen fromf , P[ε ≥ σ/cf ] ≥ 1

4 .
All our results hold against anadaptive adversary. An adaptive adversary takes decisions made by the

online algorithm in the past into account; that is, it determines tasǩτt knowing the decisions taken by the
online algorithm on the smoothed sequenceτ1, . . . , τt−1.

3.1 Lower bound for zero-retaining smoothing models

The proof of the2n − 1 lower bound on the competitive ratio of any deterministic algorithm ALG, see
[7, 11, 5], uses elementary tasks of the following form. LetALG reside in nodes′t−1 after having serviced
taskτt−1. Then taskτt is defined as follows:rt(v) = 0 for all v 6= s′t−1 andrt(v) = ǫ for v = s′t−1, whereǫ
is an arbitrary positive number. Observe that by servicing taskτt, ALG incurs a non-zero cost: either it stays
in s′t−1 and incurs a cost ofǫ > 0, or it moves to some other node and incurs a positive transition cost (recall
thatλ is a positive length function). The lower bound proof now only exploits the fact that the cost ofALG

is strictly increasing with the length of the input sequence.
Assume we consider a zero-retaining smoothing model, in which zero cost entries are invariant to the

smoothing. In such a model, elementary tasks are smoothed toelementary tasks. In particular, this means
that the above property still holds. Therefore, the lower bound proof also goes through for sequences that
are smoothed according to any zero-retaining smoothing model.

Theorem 1. Given any graphG and length functionλ, there exists a task sequence such that every deter-
ministic online algorithmALG has a smoothed competitive ratio of at least2n − 1 under a zero-retaining
smoothing model.
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Figure 1: Illustration of the “unfolding” forQ = 1 andh = 5. Left: constraint graphGc. Right: layered
dependency graphDh.

4 A lower bound on the optimal offline cost

In this section, we establish a lower bound on the cost incurred by an optimal offline algorithmOPT when
run on tasks smoothed according to the additive smoothing model. For the purpose of proving the lower
bound, we first investigate a balls into bins experiment, which we call theconstrained balls into bins game.

4.1 Constrained balls into bins game

We are givenn binsB1, . . . , Bn. In each round, we place a ball independently in each binBi with probability
p; with probability 1 − p no ball is placed inBi. We define theheightht(i) of a binBi as the number of
balls inBi after roundt. We have dependencies between the heights of different binsthat are specified by
an (undirected)constraint graphGc = (Vc, Ec). The node setVc of Gc containsn nodesu1, . . . , un, where
each nodeui corresponds to a binBi. All edges inEc have uniform edge lengths equal toQ. Let ∆ be the
maximum degree of a vertex inGc. Throughout the experiment, we maintain the following invariant.

Invariant: The difference in height between two binsBi and Bj is at most the shortest path distance
betweenui anduj in Gc.

If the placement of a ball into a binBi would violate this invariant, the ball isrejected; otherwise we say
that the ball isaccepted. Observe that if two binsBi andBj do not violate the invariant in roundt, then, in
roundt + 1, Bi andBj might cause a violation only if one bin, sayBi, receives a ball and the other,Bj,
does not receive a ball; if both receive a ball, or both do not receive a ball, the invariant remains true.

Theorem 2. Fix any bin Bz. Let Rz be the number of rounds needed until the height ofBz becomes
h ≥ log(n). Then,P[Rz > c1h(1 + log(∆)/Q)] ≤ 1/n4 for an appropriate constantc1.

We remark that constraint graphs withQ = 1 exist, e.g., a clique onn nodes, such that the expected
number of rounds needed for the height of a bin to becomeh is Ω(h log(n)). Moreover, for any given
maximum degree∆, one can create graph instances withQ = 1 such that the expected number of rounds is
Ω(h log(∆)).

We next describe how one can model the growth of the height ofBz by an alternative game on alayered
dependency graph. A layered dependency graphDh consists ofh layers,V1, . . . , Vh, and edges are present
only between adjacent layers. The idea is to “unfold” the constraint graphGc into a layered dependency
graphDh.

We first describe the construction forQ = 1: Each layer ofDh corresponds to a subset of nodes inGc.
Layer1 consists ofz only, the node corresponding to binBz. Assume we have constructed layersV1, . . . , Vi,
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i < h. Then,Vi+1 is constructed fromVi by adding all nodes,ΓGc
(Vi), that are adjacent toVi in Gc, i.e.,

Vi+1 = Vi ∪ ΓGc
(Vi). For every pair(u, v) ∈ Vi × Vi+1, we add an edge(u, v) to Dh if (u, v) ∈ Ec, or

u = v. See Figure 1 for an example.
Now, the following game onDh is equivalent to the balls and bins game. Each node inDh is in one of

three states, namelyUNFINISHED, READY or FINISHED. Initially, all nodes in layerh areREADY and all
other nodes areUNFINISHED. In each round, allREADY nodes independently toss a coin; each coin turns up
headwith probabilityp andtail with probability1− p. A READY node changes its state toFINISHED if the
outcome of its coin toss ishead. At the end of each round, anUNFINISHED node in layerj changes its state
to READY, if all its neighbors in layerj + 1 areFINISHED.

Note that the nodes in layerVj areFINISHED if the corresponding binsBi, i ∈ Vj, have height at least
j. Consequently, the number of rounds needed until the root nodez becomesFINISHED in Dh is larger or
equal to the number of rounds needed for the height ofBz to becomeh.

We use a similar construction ifQ > 1. For simplicity, leth be a multiple ofQ and defineh′ = h/Q.
We construct a dependency graphDh′ with h′ layers as described above (replaceh by h′ in the description
above). Then, we transformDh′ into a layered graphDh with h layers as follows. Letv be a node in layer
j of Dh′ . We replacev by a path(v1, . . . , vk), wherek = |Q|. Nodev1 is connected to all neighbors ofv in
layerj − 1 and nodevk is connected to all neighbors ofv in layerj + 1. This replacement makes sure that
the number of rounds needed until the root node becomesFINISHED in Dh dominates the number of rounds
needed for the height ofBz to becomeh.

Let R′z be the number of rounds needed until the root nodez becomesFINISHED in Dh. We recall that
Rz denotes the number of rounds needed until the height of binBz becomesh. From the discussion above,
we infer that the event(Rz > t) is stochastically dominated by the event(R′z > t), i.e., P[Rz > t] ≤
P[R′z > t] .

Proof of Theorem 2 .LetDh be a layered dependency graph constructed fromGc as described above. Con-
sider the event that the root nodez does not becomeFINISHED after t rounds, i.e.,(R′z > t). Then there
exists abadpathP = (v1, . . . , vh) from z = v1 to some nodevh in the bottom layerh such that no node
vi of P was delayed by nodes other thanvi+1, . . . , vh. Put differently,P was delayed independently of
any other path. Consider the outcome of the coin flips only forthe nodes alongP . If P is bad then the
number of coin flips, denoted byX, that turned upheadwithin t rounds is at mosth − 1. Let α(t) denote
the probability thatP is bad. Clearly,E[X] = pt. Using a Chernoff bound (see [12]) onX, we obtain for
t ≥ 2(h− 1)/p

α(t) = P[X ≤ h− 1] ≤ P[X ≤ pt/2] ≤ e−pt/8.

Observe that inDh (i) at mosth′ layers contain nodes of degree larger than2 and (ii) these nodes have at
most∆ + 1 neighbors in the next larger layer. That is, the number of possible paths fromz to any nodev in
layerh is bounded by(∆ + 1)h

′

.
We conclude thatP[R′z > t] ≤ α(t)(∆ + 1)h

′ ≤ e−pt/8(∆ + 1)h
′

. Choosingt ≥ (32/p)h(1 +
log(∆)/Q) andh ≥ log(n), we obtain thatP[R′z > t] ≤ 1/n4. The lemma now follows sinceP[Rz >
t] ≤ P[R′z > t] .

4.2 Lower bound

We are now in a position to prove that an optimal offline algorithm incurs with high probability a cost of at
leastγλmin on a sequence ofΘ(γ (λmin/σ + log(∆))) tasks, whereγ ≥ log(n)/2.

Lemma 1. Let Š be an adversarial sequence ofℓ = ⌈c2γ(λmin/σ + log(∆))⌉ tasks, for a fixed constantc2

and someγ ≥ log(n)/2. Then,P[OPT[S] < γλmin] ≤ 1/n3.

9



Proof. The cost ofOPT on a smoothed sequenceS of lengthℓ is OPT[S] = minu∈V {wℓ(u)}. Therefore,
it suffices to prove that with probability at least1 − 1/n3, wℓ(u) ≥ γλmin for eachu ∈ V . Observe that
we can assume that the initial work function values are all set to zero, since this can only reduce the cost of
OPT.

We relate the growth of the work function values to the balls and bins experiment. For each nodevi of
G we have a corresponding binBi. The constraint graphGc is obtained fromG by setting all edge lengths
to Q = ⌊λmin/κ⌋, whereκ = min{λmin, σ/cf}. Note thatQ ≥ 1. The placement of a ball inBi in round
t corresponds to the event(rt(vi) ≥ σ/cf ). Since our smoothing distribution satisfiesP[ε ≥ σ/cf ] ≥ 1

4 ,
we have that for anyvi and anyt the smoothed request costrt(vi) is at leastσ/cf with probability at least
1
4 , irrespectively of its original cost entry and independently of the other request costs. Therefore, in each
roundt we place a ball into each bin with probabilityp = 1

4 . By Lemma 2, which is given below, the number
of rounds needed until a binBi has heighth is larger than or equal to the timet needed untilwt(vi) ≥ hκ.
Thus, for anyt, P[ht(i) ≥ h] ≤ P[wt(vi) ≥ hκ] .

Consider a binBi. Using Theorem 2, we obtain that afterℓ ≥ c1h(1 + log(∆)/Q) rounds where
h ≥ log(n), P[hℓ(i) < h] ≤ 1/n4. This implies that with probability at most1/n4, wℓ(vi) < hκ. Thus, we
have with probability at least1− 1/n3, wℓ(vi) ≥ hκ for every nodevi ∈ V . Choosingh = 2γQ, which for
γ ≥ log(n)/2 guarantees thath ≥ log(n), we obtain with high probabilitywℓ(vi) ≥ γλmin for all vi of G.
Finally, we make sure thatℓ = ⌈c2γ(λmin/σ + log(∆))⌉ ≥ c1h(1 + log(∆)/Q) by fixing c2 = 4c1cf .

Lemma 2. Consider any nodevi and its corresponding binBi. Letht(i) denote the number of balls in bin
Bi after t rounds. Then, for anyt ≥ 0, wt(vi) ≥ ht(i)κ.

Proof. We prove the lemma by induction on the number of roundst. For t = 0, the lemma clearly holds.
(We can assume that the initial work function values are all zero.) Assume that the induction hypothesis
holds aftert rounds. In roundt+1, if no ball is accepted in any bin then clearly the hypothesisremains true.
Consider the case where at least one ball is accepted by some bin Bi. By the induction hypothesis, we have
wt(vi) ≥ ht(i)κ. Let vk be the node that determines the work function valuewt+1(vi), i.e.,

wt+1(vi) = wt(vk) + rt+1(vk) + δ(vi, vk).

Assume thatvk = vi. Then, the work function value ofvi increases by the request costrt+1(vi) and since
a ball was accepted inBi, rt+1(vi) ≥ κ. Thus, we havewt+1(vi) ≥ wt(vi) + κ ≥ (ht(i) + 1)κ = ht+1(i)κ
and we are done.

Next, assume thatvk 6= vi. Letd be the shortest path distance betweenvi andvk in the constraint graph.
Since in roundt + 1 a ball was accepted inBi, Bi andBk do not violate the invariant. Therefore,

ht(i) − ht(k) ≤ d− 1 + [ball accepted inBk in roundt + 1],

where “[statement]” is 1 if statementis true, and0 otherwise. By multiplying both sides withκ and rear-
ranging terms, we obtain

(ht(k) + d)κ ≥ (ht(i) + 1− [ball accepted inBk in roundt + 1])κ.

Observe thatdκ ≤ δ(vi, vk) by the definition ofd and the edge lengthsQ of the constraint graph. Moreover,
rt+1(vk) ≥ [ball accepted inBk in roundt + 1]κ. Thus,

wt+1(vi) = wt(vk) + rt+1(vk) + δ(vi, vk)

≥ ht(k)κ + [ball accepted inBk in roundt + 1]κ + dκ

≥ (ht(i) + 1)κ = ht+1(i)κ.
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Subsequently, we will exploit Lemma 1 several times as follows. LetŠ be an adversarial sequence of length
ℓ = ⌈c2γ(λmin/σ + log(∆))⌉ for someγ ≥ log(n)/2. Moreover, letS be a smoothed sequence obtained
from Š. DefineE as the event thatOPT incurs a cost of at leastγλmin onS, i.e.,E = (OPT[S] ≥ γλmin).
By Lemma 1,P[¬E ] ≤ 1/n3. We can then bound the smoothed competitive ratio of WFA as follows:

ES←f(Š)

[

WFA[S]

OPT[S]

]

= E

[

WFA[S]

OPT[S]

∣

∣

∣

∣

E
]

P[E ] + E

[

WFA[S]

OPT[S]

∣

∣

∣

∣

¬E
]

P[¬E ]

≤ E

[

WFA[S]

OPT[S]

∣

∣

∣

∣

E
]

P[E ] +
2n − 1

n3
≤ E[WFA[S]]

γλmin
+ o(1), (5)

where the first inequality follows from the fact that the (worst case) competitive ratio ofWFA is 2n − 1 and
the second one follows from the definition ofE .

5 First upper bound

We can use the lower bound obtained in the last section to derive our first upper bound on the smoothed
competitive ratio ofWFA. We prove the following deterministic bound on the cost ofWFA.

Lemma 3. LetS be any request sequence of lengthℓ. Then,WFA[S] ≤ OPT[S] + δmax · ℓ.

Proof. Let s0, . . . , sℓ denote the sequence of nodes visited byWFA. For anyt, the cost incurred byWFA to
process taskt is C(t) = rt(st) + δ(st−1, st). By Fact 5, we obtainC(t) = wt(st−1)−wt−1(st). Hence,

WFA[S] =
ℓ
∑

t=1

C(t) = wℓ(sℓ−1)− w0(s1) +
ℓ−1
∑

t=1

wt(st−1)− wt(st+1)

≤ wℓ(sℓ−1) + (ℓ− 1) · δmax ≤ min
v∈V
{wℓ(v)}+ ℓ · δmax,

where the last two inequalities follow from Fact 3. SinceOPT[S] ≥ minv∈V wℓ(v), the lemma follows.

Theorem 3. Let Š be an adversarial sequence of lengthℓ = ⌈c2γ(λmin/σ + log(∆))⌉ for someγ ≥
log(n)/2. Then

ES←f(Š)

[

WFA[S]

OPT[S]

]

= O

(

δmax

λmin

(

λmin

σ
+ log(∆)

))

.

Proof. Using Lemma 3, we have for any sequenceS of ℓ tasks,WFA[S] ≤ OPT[S] + δmax · ℓ. Let E be the
event(OPT[S] ≥ γλmin). Then,

E

[

WFA[S]

OPT[S]

∣

∣

∣

∣

E
]

≤ E

[

OPT[S] + δmax · ℓ
OPT[S]

∣

∣

∣

∣

E
]

≤ 1 +
δmax · ℓ
γλmin

= O

(

δmax

λmin

(

λmin

σ
+ log(∆)

))

,

where the last equality follows from the definition ofℓ. The lemma now follows from (5).

Observe that Theorem 3 holds for any algorithm that satisfiesLemma 3.
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6 Second upper bound

We prove a second upper bound on the smoothed competitive ratio of WFA. The idea is as follows. We
derive two upper bounds on the smoothed competitive ratio ofWFA. The first one is a deterministic bound
and the second one uses the probabilistic lower bound onOPT. We then combine these two bounds using
the following fact. The proof of Fact 6 can be found in Appendix A.

Fact 6. LetA, B andXi, 1 ≤ i ≤ m, be positive quantities. We have

min

{

A
∑m

i=1 Xi
∑m

i=1 X2
i

,
B
∑m

i=1 Xi

m

}

≤
√

AB.

Consider any deterministic task sequenceS of lengthℓ. Let s0, s1, . . . , sℓ denote the sequence of nodes
visited byWFA. DefineC(t) = rt(st) + δ(st−1, st) as the service cost plus the transition cost incurred by
WFA in roundt.

With respect toS we defineT as the set of rounds, where the increase of the work function value ofst−1

is at least one half of the transition cost, i.e.,t ∈ T if and only if wt(st−1) − wt−1(st−1) ≥ δ(st−1, st)/2.
Due to Fact 4 we havewt(st−1) = wt(st) + δ(st−1, st). Therefore, the above definition is equivalent to

T =

{

t : wt(st)−wt−1(st−1) ≥ −
1

2
δ(st−1, st)

}

. (6)

We useT̄ to denote the complement ofT .
We first prove that the total cost ofWFA onS is bounded by a constant times the total cost contributed

by rounds inT .

Lemma 4. LetS be an arbitrary task sequence. Then,WFA[S] ≤ 4
∑

t∈T C(t).

Proof. Sincewℓ(sℓ) ≥ 0 andw0(s0) = 0 by definition, we havewℓ(sℓ)− w0(s0) ≥ 0. Thus,

ℓ
∑

t=1

(wt(st)− wt−1(st−1)) ≥ 0.

Let R− be the set of rounds wherewt(st) − wt−1(st−1) < 0, and letR+ be the set of rounds where
wt(st)− wt−1(st−1) ≥ 0. The above inequality can be rewritten as

∑

t∈R−

(wt−1(st−1)−wt(st)) ≤
∑

t∈R+

(wt(st)− wt−1(st−1)).

SinceT̄ ⊆ R− and each term on the left hand side is non-negative, we have
∑

t∈T̄

(wt−1(st−1)− wt(st)) ≤
∑

t∈R+

(wt(st)− wt−1(st−1)). (7)

For anyt ∈ T̄ , we haveC(t) < 3 (wt−1(st−1)− wt(st)). This can be seen as follows. We have
wt−1(st) ≥ wt−1(st−1) − δ(st−1, st) (by Fact 3) andrt(st) = wt(st) − wt−1(st) (by (4)). Therefore,
rt(st) ≤ δ(st−1, st) − wt−1(st−1) + wt(st). Moreover, sincet ∈ T̄ and by the definition (6) ofT ,
δ(st−1, st) < 2(wt−1(st−1)− wt(st)). Hence,C(t) = rt(st) + δ(st−1, st) < 3 (wt−1(st−1)− wt(st)).

Furthermore, for anyt, we havewt(st)− wt−1(st−1) ≤ C(t). This follows fromwt(st) = wt−1(st) +
rt(st) (by (4)) andwt−1(st)− wt−1(st−1) ≤ δ(st−1, st) (by Fact 3). SinceR+ ⊆ T , we conclude

∑

t∈R+

(wt(st)− wt−1(st−1) ≤
∑

t∈R+

C(t) ≤
∑

t∈T

C(t).
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wt−1(·)
u1u0 ud

H

λmax

λmax

wt(·)

Figure 2: Increase in∆t if wt(u0)− wt−1(u0) ≥ H andH ≤ 4λmaxemax.

Therefore, (7) implies
1

3

∑

t∈T̄

C(t) ≤
∑

t∈T

C(t).

Exploiting the fact thatWFA[S] =
∑

t∈T̄ C(t) +
∑

t∈T C(t), we obtainWFA[S] ≤ 4
∑

t∈T C(t).

We partitionT into T 1 andT 2, whereT 1 = {t ∈ T : wt(st)− wt−1(st) ≤ 4λmaxemax} andT 2 =
T \ T 1. For any roundt, we defineWt =

∑n
i=1 wt(vi) and∆t = Wt −Wt−1.

Lemma 5. Fix a roundt and consider any nodeu such thatwt(u) − wt−1(u) ≥ H. If H ≤ 4λmaxemax

then∆t ≥ H2/(10λmax); otherwise,∆t ≥ nH/2.

Proof. Let H ≤ 4λmaxemax. Defined = ⌊H/(8λmax)⌋. Assumed = 0. ThenH < 8λmax, which is
equivalent toH2/(8λmax) < H. The claim now follows since∆t ≥ H. Let d > 0. Consider a pathP =
(u0, u1, . . . , ud) of d edges starting inu0 = u. Note that there is always such a path sinced ≤ ⌊emax/2⌋.2
By Fact 3, we have for eachi, 0 ≤ i ≤ d, wt(ui) ≥ wt(u0) − iλmax andwt−1(ui) ≤ wt−1(u0) + iλmax;
see also Figure 2. Therefore,

d
∑

i=0

(wt(ui)−wt−1(ui)) ≥
d
∑

i=0

(wt(u0)− wt−1(u0))− 2λmax

d
∑

i=1

i

≥ (d + 1)H − (d + 1)dλmax ≥ (d + 1)(H − dλmax) ≥
H2

10λmax
,

where the last inequality holds sinced ≤ H/(8λmax) ≤ d + 1.
Let H > 4λmaxemax. Since for any nodevi, wt(vi) ≥ wt(u) − λmaxemax andwt−1(vi) ≤ wt−1(u) +

λmaxemax, we have
n
∑

i=1

(wt(vi)− wt−1(vi)) ≥
n
∑

i=1

(wt(u)− wt−1(u))− 2nλmaxemax ≥ nH − 2nλmaxemax ≥ nH/2.

2To see this, consider the shortest path (with respect to the number of edges) inG havingemax edges. For every node on this
path we can identify a path of⌈emax/2⌉ edges; all other nodes can reach a node on this path, sinceG is connected.
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Lemma 6. LetS be a sufficiently long task sequence such thatOPT[S] ≥ 2δmax. There exists a constantc3

such that

OPT[S] ≥ 1

c3n





1

λmax

∑

t∈T 1

C(t)2 + n
∑

t∈T 2

C(t)



 .

Proof. For every nodevi ∈ V , wℓ(vi) ≤ minu∈V {wℓ(u)} + δmax (by Fact 3). Moreover,OPT[S] ≥
minu∈V {wℓ(u)}. We obtain

n
∑

i=1

wℓ(vi) ≤ nOPT[S] + nδmax, or, equivalently, OPT[S] ≥ 1

n

(

n
∑

i=1

wℓ(vi)− nδmax

)

.

SinceOPT[S] ≥ 2δmax, the latter reduces to

OPT[S] ≥ 2

3n

n
∑

i=1

wℓ(vi). (8)

Claim 1. For anyt ∈ T 1, ∆t ≥ C(t)2/(160λmax).

Proof. By (4) we havert(st) = wt(st)− wt−1(st). Below, we will show that

∆t ≥
(

δ(st−1, st)
2 + rt(st)

2
)

/(80λmax). (9)

SinceC(t)2 = (δ(st−1, st)+rt(st))
2 ≤ 2(δ(st−1, st)

2+rt(st)
2), we conclude that∆t ≥ C(t)2/(160λmax).

Now, all that remains to be shown is (9). We distinguish two cases.
Let δ(st−1, st) ≥ rt(st). By the definition ofT , we havewt(st−1)−wt−1(st−1) ≥ δ(st−1, st)/2. Using

Lemma 5 withH = δ(st−1, st)/2, we obtain

∆t ≥ δ(st−1, st)
2/(40λmax) ≥

(

δ(st−1, st)
2 + rt(st)

2
)

/(80λmax).

Let δ(st−1, st) < rt(st). Sincewt(st) − wt−1(st) = rt(st) andrt(st) ≤ 4λmaxemax by the definition
of T1, using Lemma 5 withH = rt(st), we obtain

∆t ≥ rt(st)
2/(10λmax) ≥ (δ(st−1, st)

2 + rt(st)
2)/(20λmax).

Claim 2. For anyt ∈ T 2, ∆t ≥ 4nC(t)/10.

Proof. Sincet ∈ T 2 and by (4),rt(st)/4 > emaxλmax ≥ δ(st−1, st). Thus,C(t) = rt(st) + δ(st−1, st) <
5rt(st)/4. Furthermore, by (4) we havert(st) = wt(st)− wt−1(st). Applying Lemma 5 withH = rt(st),
we obtain∆t ≥ nrt(st)/2 ≥ 4nC(t)/10.

Claim 1 and Claim 2 together imply that

n
∑

i=1

wℓ(vi) ≥
ℓ
∑

t=1

∆t ≥
∑

t∈T

∆t ≥
1

160λmax

∑

t∈T 1

C(t)2 +
4n

10

∑

t∈T 2

C(t).

The proof now follows for an appropriate constantc3 from (8).
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Theorem 4. Let Š be an adversarial task sequence of lengthℓ = ⌈c2γ(λmin/σ + log(∆))⌉ for some
γ ≥ max{6δmax/λmin, log(n)/2}. Then

ES←f(Š)

[

WFA[S]

OPT[S]

]

= O

(
√

n · λmax

λmin

(

λmin

σ
+ log(∆)

)

)

.

Proof. Due to inequality (5), it suffices to boundE[WFA[S]/OPT[S] | E ], whereE is the event(OPT[S] ≥
γλmin). Consider a smoothing outcomeS such that the eventE holds. By the choice ofγ, we haveOPT[S] ≥
6δmax. Observe thatWFA[S] ≥ OPT[S] ≥ 6δmax.

First, assume
∑

t∈T 1 C(t) <
∑

t∈T 2 C(t). Then, due to Lemma 4 and Lemma 6,

WFA[S] ≤ 8
∑

t∈T 2

C(t) and OPT[S] ≥ 1

c3

∑

t∈T 2

C(t).

Hence,E[WFA[S]/OPT[S] | E ] = O(1).
Next, assume

∑

t∈T 1 C(t) ≥∑t∈T 2 C(t). By Lemma 4 and Lemma 6 we have

WFA[S] ≤ 8
∑

t∈T 1

C(t) and OPT[S] ≥ 1

c3n

(

1

λmax

∑

t∈T 1

C(t)2
)

. (10)

Thus,
WFA[S]

OPT[S]
≤ 8c3nλmax

(
∑

t∈T 1 C(t)
∑

t∈T 1 C(t)2

)

. (11)

SinceE holds, we also have

WFA[S]

OPT[S]
≤ ℓ · 8∑t∈T 1 C(t)

ℓ · γλmin
≤ c4

λmin

(

λmin

σ
+ log(∆)

)(
∑

t∈T 1 C(t)

|T 1|

)

, (12)

where the latter inequality holds for an appropriate constant c4 and sinceℓ ≥ |T 1|. Observe that (12) is
well-defined since

∑

t∈T 1 C(t) ≥ 1
8 WFA[S] (by (10)) andWFA[S] ≥ 6δmax imply that |T 1| ≥ 1.

Applying Fact 6 to (11) and (12), these two bounds are combined to

WFA[S]

OPT[S]
≤
√

8c3c4n ·
λmax

λmin

(

λmin

σ
+ log(∆)

)

= O

(
√

n · λmax

λmin

(

λmin

σ
+ log(∆)

)

)

,

which concludes the proof.

7 Potential function

In this section we use a potential function argument to derive an upper bound on the expected cost ofWFA.

Lemma 7. Let Š be an adversarial task sequence of lengthℓ and letS = 〈τ1, . . . , τℓ〉 be a smoothed
sequence obtained from̌S. We define a random variableΓt(s) for each nodes ∈ V and 1 ≤ t ≤ ℓ:
Γt(s) = minu∈V {rt(u) + δ(u, s)}. Letκ > 0 be some positive number. IfE[Γt(s)] ≤ κ for all s ∈ V and
1 ≤ t ≤ ℓ, thenE[WFA[S]] ≤ 4κℓ + δmax.

Before we proceed to prove the lemma, we provide some intuition. Assume we consider a simple greedy
online algorithmALG that always moves to a node which minimizes the transition plus request cost. That
is, ALG services taskτt by moving from its current position, says′t−1, to a nodes′t that minimizes the
expressionminu∈V {rt(u) + δ(u, s′t−1)}. Clearly, if the requirement of Lemma 7 holds, the total expected

cost ofALG on S is
∑ℓ

t=1 E[Γt(st−1)] ≤ ℓκ. The above lemma shows that the expected cost of the work
function algorithmWFA is at most4 times the expected cost ofALG plus some additive term. In the analysis,
it will sometimes be convenient to considerALG instead ofWFA.
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Proof of Lemma 7 .We denote byst, 1 ≤ t ≤ ℓ, the node in whichWFA resides after taskτt has been
processed; we uses0 to refer to the node in whichWFA resides initially. We define a potential functionΦ as

Φ(t) = wt(st) + tδmax/ℓ.

Observe that

Φ(ℓ)− Φ(0) = wℓ(sℓ)− w0(s0) + δmax ≥ wℓ(sℓ)− wℓ(s0) + δmax ≥ 0,

where the last inequality follows from Fact 3 and sinceδ(sℓ, s0) ≤ δmax.
We define theamortized costCa(t) incurred byWFA to process taskτt as

Ca(t) = rt(st) + δ(st−1, st) + Φ(t)− Φ(t− 1)

= rt(st) + δ(st−1, st) + wt(st)− wt−1(st−1) + δmax/ℓ

= wt(st)− wt−1(st) + wt(st−1)− wt−1(st−1) + δmax/ℓ, (13)

where the last equality follows from Fact 5. Using Fact 3 and (3) we obtain that for eachu ∈ V

wt−1(st) ≥ wt−1(u)− δ(u, st) and wt(st) ≤ wt−1(u) + rt(u) + δ(u, st).

Combining these two inequalities, we obtain for eachu ∈ V

wt(st)− wt−1(st) ≤ rt(u) + 2δ(u, st)

and hence
wt(st)− wt−1(st) ≤ 2min

u∈V
{rt(u) + δ(u, st)} = 2Γt(st).

A similar argument shows thatwt(st−1)− wt−1(st−1) ≤ 2Γt(st−1). Hence, we can rewrite (13) as

Ca(t) ≤ 2Γt(st) + 2Γt(st−1) + δmax/ℓ.

SinceWFA[S] =
∑ℓ

t=1 Ca(t)− Φ(ℓ) + Φ(0) andΦ(ℓ)−Φ(0) ≥ 0, we obtain

E[WFA[S]] ≤ E

[

ℓ
∑

t=1

Ca(t)

]

≤ 2E

[

ℓ
∑

t=1

(Γt(st) + Γt(st−1))

]

+ δmax ≤ 4κℓ + δmax.

Inequality (5) together with Lemma 7 yield the following corollary.

Corollary 1. Let Š be an adversarial task sequence of lengthℓ = ⌈c2γ(λmin/σ + log(∆))⌉ for some
γ ≥ max{δmax/λmin, log(n)/2}. Then

ES←f(Š)

[

WFA[S]

OPT[S]

]

≤ E[WFA[S]]

γλmin
+ o(1) = O

(

κℓ + δmax

γλmin

)

= O

(

κ

(

1

σ
+

log(∆)

λmin

))

.
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8 Random tasks

We derive an upper bound on the expected competitive ratio ofWFA if each request cost is chosen indepen-
dently from a probability distributionf which is non-increasing in[0,∞). We need the following fact; the
proof is given in Appendix A.

Fact 7. Letf be a continuous, non-increasing distribution over[0,∞) with meanµ and standard deviation
σ. Then,µ ≤

√
12σ.

Theorem 5. Let S be a random task sequence of lengthℓ = ⌈c2γ(λmin/σ) + log(∆))⌉ for someγ ≥
max{δmax/λmin, log(n)/2}. If each request cost is chosen independently from a non-increasing probability
distributionf over [0,∞) then

ES←f

[

WFA[S]

OPT[S]

]

= O

(

1 +
σ

λmin
log(∆)

)

.

Proof. For every nodes and any1 ≤ t ≤ ℓ, we haveΓt(s) = minu∈V {rt(u)+δ(u, s)} ≤ rt(s). Sincert(s)
is chosen fromf , Fact 7 implies thatE[Γt(s)] ≤

√
12σ = κ. The theorem now follows from Corollary 1.

Note that we can use the lower bound established in Section 4 to bound the cost ofOPT: The generation
of S is equivalent to smoothing (according tof ) an adversarial task sequence consisting of all-zero request
vectors only. Here, we do not need that the distributionf is symmetric around its mean.

9 β-elementary tasks

We can strengthen the upper bound on the smoothed competitive ratio ofWFA if the adversarial task sequence
only consists ofβ-elementary tasks. Recall that aβ-elementary task has at mostβ non-zero request costs.

Theorem 6. Let Š be anβ-elementary adversarial task sequence of lengthℓ = ⌈c2γ(λmin/σ + log(∆))⌉
for someγ ≥ max{δmax/λmin, log(n)/2}. Then

ES←f(Š)

[

WFA[S]

OPT[S]

]

= O

(

β · λmax

λmin

(

λmin

σ
+ log(∆)

))

.

We state the following fact; the proof is given in Appendix A.

Fact 8. Let f be a permissible probability distribution. Then,E[max{0, ε}] ≤ σ, whereε is a random
variable chosen fromf .

We first prove the following lemma.

Lemma 8. Lets be an arbitrary node ofG. Consider aβ-elementary adversarial tasǩτt = (řt(v1), . . . , řt(vn)),
whereβ < n. Then,E[Γt(s)] ≤ σ + βλmax.

Proof. Let V0 ⊆ V be the set of all nodes with original cost zero, i.e.,V0 = {u ∈ V : řt(u) = 0}.
Then |V0| ≥ n − β andV0 is non-empty ifβ < n. Let v∗ be a node fromV0 which is closest tos. We
haveδ(v∗, s) ≤ βλmax. (Otherwise, there must exist at leastβ + 1 nodes with non-zero original cost, a
contradiction.) Thus,

E[Γt(s)] ≤ E[minu∈V0
{rt(u) + δ(u, s)}] ≤ E[rt(v

∗) + δ(v∗, s)] ≤ σ + βλmax,

where the last inequality follows sincert(v
∗) = max{0, ε(v∗)}, ε(v∗) is a random variable chosen fromf

and Fact 8.

Proof of Theorem 6 .By Lemma 8,E[Γt(s)] ≤ σ + βλmax. Since we assume thatσ ≤ 2λmin, the latter is
bounded byκ = O(βλmax). The theorem now follows from Corollary 1.
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10 Lower bounds

In this section we present existential and universal lower bounds. All our lower bounds hold for any deter-
ministic online algorithmALG and against an adaptive adversary.

10.1 Existential lower bound forβ-elementary tasks

We show an existential lower bound forβ-elementary tasks on a line. We prove that the upper bound
O(β(λmax/λmin)(λmin/σ + log(∆))) established in Theorem 6 is tight up to a factor ofλmax/λmin if the
underlying graph is a line. Later, we will use Theorem 7 to obtain our first universal lower bound.

Theorem 7. LetG be a line graph. There exists anβ-elementary adversarial task sequenceŠ such that any
deterministic online algorithmALG has a smoothed competitive ratio

ES←f(Š)

[

ALG[S]

OPT[S]

]

= Ω

(

min

{

β ·
(

λmin

σ
+ 1

)

,
n

β
· λmin

λmax

})

.

Proof. We use an averaging technique (see [7]). Divide the line intoh = n/(2β) contiguous segments of
2β nodes. For simplicity assume thath is an integer. (This does not affect the asymptotic lower bound.) We
refer to these segments byS1, S2, . . . , Sh.

The adversarial task sequenceŠ is defined as follows. Letst be the node in whichALG resides after the
tth task. In roundt, the adversary issues aβ-elementary task by placing∞ cost on each node that is within
distance⌈β/2⌉ − 1 from st−1 and zero cost on all other nodes. Note that the adversary is adaptive. LetS
be a smoothed task sequence obtained fromŠ.

We consider a setB of h offline algorithms, one for each segment. LetBj denote the offline algorithm
that resides in segmentSj; Bj always stays inSj. In each roundt, eachBj moves to a nodev in Sj

minimizing the transition cost plus the request cost. DefineB[S] =
∑h

j=1 Bj [S] as the total cost incurred
by the offline algorithms onS; Bj [S] is a random variable denoting the total cost incurred byBj on S.
Clearly,B̃[S] = B[S]/h is an upper bound onOPT[S].

Consider any roundt. At most two consecutive line segments can have∞ request costs and there are at
mostβ nodes with∞ request cost. Thus, the corresponding offline algorithms incur a transition cost of at
mostβλmax to move to a node with original request0. By Fact 8, the expected request cost of a node with
0 original request cost is at mostσ. Thus, the total expected cost of the offline algorithms in round t is at
mostβλmax + hσ. Hence,

E[B̃[S]] =
1

h
E





h
∑

j=1

Bj [S]



 ≤ ℓ

(

βλmax + hσ

h

)

.

By Markov’s inequality,P[B̃[S] < 2E[B̃[S]]] ≥ 1
2 . Since in each round,ALG is forced to traverse at

least⌈β/2⌉ edges, we haveALG[S] ≥ ℓβλmin/2. We conclude

E

[

ALG[S]

OPT[S]

]

≥
(

1

2

)

ℓβλmin/2

2ℓ
(

βλmax+hσ
h

) = Ω

(

βλmin

β2λmax/n + σ

)

.

That is, we obtain a lower bound ofΩ((n/β) · (λmin/λmax)) if β ≥
√

n/(λmax/σ) and ofΩ(β · (λmin/σ))
if β ≤

√

n/(λmax/σ). In the latter case, exploiting thatσ ≤ 2λmin, we obtain aΩ(β · (λmin/σ + 1))
bound.
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Observe that on a line theβ-elementary bound of Theorem 6 is stronger than the general upper bound
of Theorem 4 only if

β ≤
√

nλmin

λmax(λmin/σ + 1)
.

In this case, Theorem 7 provides a lower bound ofΩ(β · (λmin/σ + 1)). That is, for a line graph these
bounds differ by a factor of at mostλmax/λmin.

10.2 Universal lower bounds

We derive two universal lower bounds on the smoothed competitive ratio of any deterministic algorithm.
The first universal bound uses the following corollary of Theorem 7.

Corollary 2. Let G be a line graph. Any deterministic algorithmALG has smoothed competitive ratio
Ω(min{n,

√

n(λmin/λmax)(λmin/σ + 1)}.

Proof. Fix β =
√

nλmin/(λmax(λmin/σ + 1)) and use the lower bound given in Theorem 7.

Theorem 8. Let G be an arbitrary graph. Any deterministic algorithmALG has a smoothed competitive
ratio of

Ω

(

min

{

emax,

√

emax ·
λmin

λmax
·
(

λmin

σ
+ 1

)

})

.

Proof. We extend Theorem 7 to arbitrary graphs in a straightforwardway. Consider a path inG of edge
length at leastemax. The adversary enforces thatALG andOPT never leave this path by specifying∞ cost
for each node that is not part of the path. The desired lower bound now follows from Corollary 2.

Next, we prove the following universal lower bound.

Theorem 9. Let G be an arbitrary graph. Any deterministic algorithmALG has a smoothed competitive
ratio of

Ω

(

min

{

n,
λmin

σ
+

λmin

λmax
· log(∆)

})

.

Proof. The adversary issues a sequence ofℓ tasks as described below. Note that the adversary is adaptive.
For eacht, 1 ≤ t ≤ ℓ, let st denote the node at which the deterministic online algorithmALG resides
after thetth task; we uses0 to refer to the initial position ofALG. We prove two different lower bounds.
Combining these two lower bounds, we obtain the bound statedabove.

We first obtain a lower bound ofΩ(min{n, λmin/σ}) assuming thatλmin/σ ≥ 1. In roundt, the adversary
enforces a request cost ofλmin onst−1 and zero request cost on all other nodes. Recall that the adversary is
adaptive and therefore knows the position ofALG.

We use an averaging technique to relate the cost ofALG to the average cost of a collection of offline
algorithms. LetB be a collection ofn offline algorithms. We place one offline algorithm at each node and
each offline algorithm remains at its node during the processing of the task sequence. LetS be a random
variable denoting a smoothing outcome ofŠ. We defineB[S] as the total cost incurred by then algorithms
to processS. Clearly, the average cost̃B[S] = B[S]/n is an upper bound onOPT[S]. It suffices to prove
that with constant probabilityALG[S]/B̃[S] = Ω(min{n, λmin/σ}).

For the analysis, we view the smoothing process as being doneinto two stages.
Stage 1:Initially we smoothenℓ zero tasks (all request costs are zero) according to the given smoothing

distribution. Let the smoothed sequence beS ′ = 〈τ ′1, . . . , τ ′ℓ〉.
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Stage 2:For eacht, 1 ≤ t ≤ ℓ, we replace the request cost ofst−1 in τ ′t by the outcome of smoothing
λmin. We useτt to refer to the obtained task.

Let R′(v) =
∑ℓ

t=1 r′t(v) be the total request cost accumulated inv with respect toS ′. Moreover, we
defineℓ random variablesλ1, . . . , λℓ: λt refers to the smoothed request costrt(st−1) of taskτt obtained in
Stage 2. For each1 ≤ t ≤ ℓ, let Zt be a0/1 random variable which is1 if and only if λt ≥ λmin. We
defineZ =

∑ℓ
t=1 Zt. Subsequently, we condition the smoothing outcomeS on the following three events:

(i) E = (
∑

v∈V R
′(v) ≤ 2nℓσ), (ii) F = (

∑ℓ
t=1 λt ≤ 4ℓλmin) and (iii) G = (Z ≥ ℓ/4).

We first argue that the event(E ∩ F ∩ G) occurs with at least constant probability. (i) Due to Fact
8, E[R′(v)] ≤ ℓσ for eachv ∈ V . By Markov’s inequality, we thus haveP[E ] ≥ 1/2. (ii) By Fact 8
and sinceσ ≤ λmin, we also haveE[λt] ≤ λmin + σ ≤ 2λmin for each1 ≤ t ≤ ℓ. Hence by Markov’s
inequality,P[

∑ℓ
t=1 λt ≥ 4ℓλmin] ≤ 1/2. (iii) Since the smoothing distributionf is a symmetric, we have

P[λt ≥ λmin] ≥ 1/2 for each1 ≤ t ≤ ℓ. Thus,E[Zt] ≥ 1/2. Moreover, theZt’s are independent.
Applying Chernoff’s bound (see [12]), we obtainP[Z ≤ ℓ/4] ≤ e−ℓ/16.

Since eventE is defined with respect toS ′, it is independent of the event(F ∩ G). Therefore,

P[E ∩ F ∩ G] ≥ 1

2
·
(

1−
(

1

2
+ e−ℓ/16

))

≥ 1

8
,

where the last inequality holds ifℓ ≥ 64.
Let S be any fixed outcome of the smoothing such that(E ∩ F ∩ G) holds. Assume that to process

sequenceS, ALG changes its position ink of the ℓ rounds. LetTk refer to the set of rounds whereALG

changes its position. We bound the cost of the offline algorithms as follows. In any roundt, the total cost
incurred by the offline algorithms at nodes different fromst−1 is at most

∑

v∈V r′t(v). If ALG does not move
in roundt, bothALG andB incur a cost ofλt. If ALG moves in roundt, B incurs an additional cost ofλt,
since one algorithm resides inst−1. Thus,

B[S] ≤ ALG[S] +
∑

t∈Tk

λt +
∑

v∈V

R
′(v) ≤ ALG[S] + 4ℓλmin + 2nℓσ,

where the last inequality follows fromF andE .
Since alsoG holds, we can conclude thatALG incurs a cost of at leastℓλmin/4: In each of the at least

ℓ/4 rounds, we havert(st−1) = λt ≥ λmin. That is, no matter whetherALG moves or stays in these rounds,
it incurs a cost of at leastλmin.

Thus, conditioned on the event(E ∩ F ∩ G) we obtain for an appropriate constantc

ALG[S]

B̃[S]
≥ ALG[S]

17ALG[S]/n + 2ℓσ
≥ c ·min

{

n,
λmin

σ

}

.

Next we obtain a lower bound ofΩ((λmin/λmax) log(∆)). Consider a nodes of G with degree∆. Let Vs

be the set of nodes containings and all the neighbors ofs in G. DefineGs as the subgraph ofG induced
by Vs. The adversary makes sure that every reasonable online algorithm will always reside at a node inV0

by specifying in each round a request cost of∞ for eachv /∈ V0. In addition, in each roundt the adversary
enforces the online algorithm to move by placing a request cost of∞ at st−1. All other request cost are
zero.

Let S be a smoothed task sequence obtained fromŠ. SinceGs is a star with∆ + 1 nodes and the
transition cost between any two nodes is at most2λmax, Lemma 9 implies that there exists a deterministic
offline algorithmB with E[B[S]] ≤ 2cℓλmax/ log(∆). (Observe that we can apply Lemma 9 here since
with respect toGs the request sequence is elementary.) Applying Markov’s inequality, we obtainP[B[S] ≥
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4cℓλmax/ log(∆)] ≤ 1/2. SinceALG has to move in each round to avoid∞ cost, the cost ofALG for any
smoothed sequence is at leastℓλmin. Putting everything together, we obtain

E

[

ALG[S]

OPT[S]

]

≥ E

[

ALG[S]

B[S]

]

≥
(

1

2

)

· ℓλmin

4cℓλmax/ log(∆)
= Ω

(

λmin

λmax
· log(∆)

)

.

Lemma 9. Let G be a clique withm + 1 nodes and maximum edge lengthλmax. Consider an adversarial
sequencěS of ℓ elementary tasks for a sufficiently largeℓ. Then, there exists an offline algorithmB such
that form ≥ 16, E[B[S]] ≤ cℓλmax/ log(m) for a constantc.

Proof. We first consider an adversarial sequenceŠ = 〈τ̌1, . . . , τ̌k〉 of k = ⌊log(m)/2⌋ elementary tasks.
We view the smoothing of the elementary tasks as being done intwo stages.

Stage 1:Initially we smoothenk zero tasks (all request costs are zero) according to the given smoothing
distribution. Let the smoothed sequence beS ′ = 〈τ ′1, . . . , τ ′k〉.

Stage 2:For eacht, 1 ≤ t ≤ k, we obtain a taskτt from τ ′t as follows. Letv∗ be the node with non-zero
request cosťrt(v

∗) in τ̌t. We replace the request cost ofv∗ in τ ′t by the outcome of smoothinǧrt(v
∗). Let

S = 〈τ1, . . . , τk〉 be the resulting task sequence.
For any nodevi, we define a0/1 random variableXi which is 1 if and only if the total request cost

accumulated invi with respect toS ′ is zero. Since for each nodevi the request cost remains zero with
probability at least12 , we haveP[Xi = 1] ≥ (1/2)k ≥ 1/

√
m. Note that theXi’s are independent. Let

X = X1 + · · · + Xm+1. We haveE[X] ≥ √m. Let E denote the event(X >
√

m/2). Using Chernoff’s
bound (see [12]), we obtain

P[¬E ] = P[X ≤
√

m/2] ≤ e−
√

m/8.

The offline algorithmB has two different strategies depending on whether eventE holds or not.
Strategy 1:If eventE holds,B moves at the beginning to a nodevi whose total accumulated request cost

is zero and stays there. (Recall thatB is offline.) Note that sinceE holds there are more than
√

m/2 − k
such nodes; form ≥ 16 there exists at least one such node.

Strategy 2:If eventE does not hold,B always moves to a node with minimum request cost.

SinceB only incurs the initial travel cost of at mostλmax if E holds, we obtain

E[B[S]] = E[B[S] | E ] P[E ] + E[B[S] | ¬E ] P[¬E ] ≤ λmax + E[B[S] | ¬E ] · e−
√

m/8.

Next, we boundE[B[S] | ¬E ]. Clearly, the transition cost in each round is at mostλmax. The expected
request cost incurred byB in roundt is E[minu∈V {rt(u)} | ¬E ]. Consider a nodevi with řt(vi) = 0. The
smoothed request cost ofvi is not affected by Stage 2. We haveE[minu∈V {rt(u)} | ¬E ] ≤ E[rt(vi) | ¬E ].
Let (X1 = x1, . . . ,Xm+1 = xm+1) be any outcome such that¬E holds. Since the request costs are chosen
independently, we haveE[rt(vi) |X1 = x1, . . . ,Xm+1 = xm+1] = E[rt(vi) |Xi = xi]. If xi = 1 then
E[rt(vi) |Xi = xi] = 0, since all request costs atvi must be zero. Ifxi = 0 thenE[rt(vi) |Xi = xi] ≤
E[rt(vi) | rt(vi) > 0]. (Forrt(vi) the event(Xi = 0) means that eitherrt(vi) = 0 andrt′(vi) > 0 for some
t′ 6= t, or rt(vi) > 0.) By Fact 8, the expected costE[rt(vi)] is at mostσ. Moreover,P[rt(vi) > 0] ≥
P[rt(vi) ≥ σ/cf ] ≥ 1

4 . Hence,E[rt(vi) | rt(vi) > 0] ≤ 4E[rt(vi)] ≤ 4σ. Putting everything together, we
obtain

E[B[S] | ¬E ] ≤
k
∑

t=1

(E[minu∈V {rt(u)} | ¬E ] + λmax) ≤ k(4σ + λmax) ≤ 9kλmax,

where the last inequality holds since we assume thatσ ≤ 2λmin ≤ 2λmax,
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Altogether, we obtain for a sequenceS of lengthk and form ≥ 16,

E[B[S]] ≤ λmax + 9kλmax · e−
√

m/8 ≤ 13λmax.

We conclude the proof as follows. We split the entire adversarial sequenceŠ of lengthℓ into j ≥ 1
subsequences of lengthk (the final one might have length less thank). On each subsequence,B performs
as described above. We therefore obtain for the entire sequenceS and an appropriate constantc

E[B[S]] ≤ E

[

j
∑

t=1

13λmax

]

= 13jλmax ≤
cℓλmax

log(m)
,

where the last inequality follows from the relation betweenℓ andj and definition ofk.

10.3 Existential lower bounds

We provide two existential lower bounds showing that for a large range of parametersn, λmin, λmax, ∆ and
δmax there exists a class of graphs on whichanydeterministic algorithm has a smoothed competitive ratio
that asymptotically matches the upper bounds stated in Theorem 3 and Theorem 4. In order to prove these
existential lower bounds, we first show the following lemma.

Lemma 10. Given a number of nodesn, minimum edge costλmin, maximum edge costλmax, maximum
degree∆ ≥ 3, and diameterδmax such that

δmax ≥ 4λmin logD−1(n), and D = min {δmax/λmax,D} ≥ 17,

there exists a graph such that the smoothed competitive ratio of any deterministic algorithmALG is

Ω

(

min

{

nλmax

δmax
,
δmax

λmin
·
(

λmin

σ
+ log(D)

)})

.

We would like to point out that in any graph ofn nodes and maximum degree∆, δmax/λmin ≥
log∆−1(n), i.e., the restriction onδmax in the above lemma is slightly stronger.

Proof of Lemma 10 .We construct a graphG as depicted in Figure 3. The graph consists ofm =
1
2nλmax/δmax cliques. Each clique hasD nodes and the length of an edge between any two nodes isλmin.
We need to ensure that the maximum degree is at most∆. Therefore, we connect each clique by a path to a
(∆− 1)-ary treeT . Each such path consists ofX edges of lengthλmax. We assign a length ofλmin to each
edge inT . Each clique is attached to a leaf node ofT ; a leaf node may take up to∆ − 1 cliques. Sincem
cliques need to be connected toT and we can attach at most(∆−1)h cliques to a tree of heighth−1, we fix
h = log∆−1(m). The total number of nodes inT is therefore((∆ − 1)h − 1)/(∆ − 2) ≤ m, since∆ ≥ 3.
It is easy to verify thatm + m · (X − 1) + m · D ≤ n, i.e., the total number of nodes inG is at mostn. (If
it is less thann, we let the remaining nodes become part ofT .) The graph should have diameterδmax and
thus we fixX such that2(λmin + X · λmax + (h− 1)λmin) = δmax, i.e.,X = ⌈(δmax/2− hλmin)/λmax⌉.
Moreover, we want that the minimum distance between any two nodes in different cliques is at least1

4δmax,
i.e.,X · λmax ≥ 1

8δmax. If δmax ≥ 4λmin log∆−1(n), this condition holds. (Also observe that in any graph
of n nodes and maximum degree∆, δmax/λmin ≥ log∆−1(n), i.e., our condition is slightly stronger.)

Consider the caseλmin/σ > log(D). We need to prove a lower bound of
Ω(min{nλmax/δmax, δmax/σ}). In each round, the adversary imposes an∞ cost on all nodes of the
graph except on those nodes that join a clique with its path. That is, the adversary restricts bothALG and
OPT to stay in a “virtual” clique of sizem with λmin = 1

4δmax andλmax = δmax. Applying the universal
lower bound of Theorem 9 to this clique we obtain the desired lower bound ofΩ(min{m, δmax/σ}).
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Figure 3:

Consider the caseλmin/σ ≤ log(D). In each round, the adversary imposes an∞ cost on all nodes in
T and on all nodes that belong to a connecting path. Furthermore, in each round, the adversary forces the
online algorithmALG to leave its clique by specifying∞ costs on all nodes of the clique in whichALG

resides. All other request costs are zero.
We use an averaging technique. We define a collection ofm − 1 offline algorithms and compare the

cost ofALG with the average cost of the offline algorithms. At most one algorithm resides in each clique.
An offline algorithmBi remains in its cliqueCi until ∞ costs are imposed onCi; at this point,Bi moves
to the free clique. Within each clique, the offline algorithmfollows the strategy as specified in the proof of
Lemma 9. We may assume without loss of generality that eachBi starts in a different clique.

Consider a smoothed sequenceS of lengthℓ. LetB[S] be the total cost incurred by the offline algorithms
and defineBi[S] as the total cost ofBi on S. The total cost of the offline algorithms to travel away from
cliques with∞ costs is at mostℓδmax. The expected cost of each algorithm in a clique with zero adversarial
request cost is, due to Lemma 9, at mostcℓλmin/ log(D − 1); recall that each clique is of sizeD ≥ 17 and
the maximum edge length in each clique isλmin. Thus,

E[B̃[S]] ≤ ℓδmax

m− 1
+

1

m− 1
E

[

m−1
∑

i=1

Bi[S]

]

≤ ℓδmax

m− 1
+

cℓλmin

log(D − 1)
.

By Markov’s inequality,P[B̃[S] < 2E[B̃[S]]] ≥ 1
2 . Clearly,ALG[S] ≥ 1

4ℓδmax. Therefore,

E

[

ALG[S]

OPT[S]

]

≥
(

1

2

) 1
4ℓδmax

2( ℓδmax

m−1 + cℓλmin

log(D−1))
= Ω

(

min

{

m,
δmax

λmin
· log(D)

})

.

The next bound shows that if Theorem 3 gives a better upper bound than Theorem 4 then this bound is
tight up to a factor oflog(∆)/ log(D) ≤ log(n) for a large class of graphs.

Theorem 10. There exists a class of graphs such that the smoothed competitive ratio of any deterministic
algorithm ALG is

Ω

(

min

{

n,
δmax

λmin

(

λmin

σ
+ log(D)

)})

,

whereD = min{δmax/λmin,D}.
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Proof. If Theorem 3 gives a better upper bound than Theorem 4, we have

δmax

λmin

(

λmin

σ
+ log(D)

)

≤
√

n · λmax

λmin

(

λmin

σ
+ log(∆)

)

,

which is equivalent to
nλmax

δmax
≥ δmax

λmin

(

λmin

σ
+ log(D)

)

.

Sincelog(∆) ≥ log(D), we obtain from Lemma 10 the desired lower bound.

Theorem 11. There exist a class of graphs such that the smoothed competitive ratio of any deterministic
algorithm ALG is

Ω

(

min

{

n,

√

n
λmax

λmin

(

λmin

σ
+ log(D)

)

})

,

whereD = min{δmax/λmin,D}.

Proof. Let λmin/σ > log(D). We fix δmax such thatnλmax/δmax = δmax/σ, i.e.,δmax =
√

nσλmax. The
lower bound of Lemma 10 then reduces toΩ(

√

nλmax/σ).
Assumeλmin/σ ≤ log(D). We fix δmax such thatnλmax/δmax = (δmax/λmin) log(D), i.e., δmax =

√

nλmaxλmin/ log(D). The lower bound of Lemma 10 then reduces toΩ(
√

n(λmax/λmin) log(D)).

11 Concluding remarks

In this paper, we focused on the asymptotic behavior of WFA ifthe request costs of an adversarial task
sequence are perturbed by means of a symmetric additive smoothing model. We showed that the smoothed
competitive ratio of WFA is much better than its worst case competitive ratio suggests and that it depends on
topological parameters of the underlying graph. Moreover,all our bounds, except the one forβ-elementary
tasks, are tight up to constant factors. We believe that our analysis gives a strong indication that the perfor-
mance of WFA in practice is much better than2n − 1.

An open problem would be to strengthen the universal lower bounds. Moreover, it would be interesting
to obtain exact (and not only asymptotic) bounds on the smoothed competitive ratio of WFA.
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A Proofs of Facts

Proof of Fact 3 .Assumex is the node that defineswt(v), i.e., wt(v) = wt−1(x) + rt(x) + δ(x, v). We
havewt(u) ≤ wt−1(x) + rt(x) + δ(x, u) ≤ wt−1(x) + rt(x) + δ(x, v) + δ(v, u) = wt(v) + δ(v, u).

Proof of Fact 4 .By (4), we have thatwt(st)+δ(st−1, st) ≤ wt(v)+δ(st−1, v) for all v ∈ V . In particular,
for v = st−1 this implieswt(st) ≤ wt(st−1) − δ(st−1, st). On the other hand, due to Fact 3,wt(st) ≥
wt(st−1)− δ(st−1, st).

Proof of Fact 5 .Using (4) and Fact 4, we obtain

rt(st) + δ(st−1, st) = wt(st)− wt−1(st) + wt(st−1)− wt(st) = wt(st−1)−wt−1(st).

Proof of Fact 7.Let X be a random variable chosen fromf . DefineE as the event(|X −µ| ≥ µ/2). Using
Chebyshev’s inequality, we obtain

P[E ] = P

[

|X − µ| ≥ µ

2

]

≤ 4σ2

µ2
. (14)

Sincef is continuous and non-increasing in[0,∞),

P[E ] = P

[

|X − µ| ≥ µ

2

]

≥ P

[

X ≤ µ

2

]

≥ 1

2
P

[

µ

2
< X ≤ 3µ

2

]

≥ 1

2
P[¬E ] .

This implies thatP[E ] ≥ 1
3 . Hence, (14) givesµ2 ≤ 12σ2.

Proof of Fact 8 .DefineY = max{0,X}. Sinceµ = 0, we haveσ2 = E[X2]. Let σY denote the standard
deviation of the distribution ofY . By the definition ofE[X2], E[Y 2] = 1

2E[X2]. Sinceσ2
Y = E[Y 2] −

E[Y ]2 andσ2
Y ≥ 0, we haveE[Y ]2 ≤ E[Y 2]. This in turn implies thatE[Y ] ≤ σ/

√
2.

Proof of Fact 6 .DefineX = min
{

A
P

m

i=1
Xi

P

m

i=1 X2
i

,
B

P

m

i=1
Xi

m

}

. First, note that

m(X2
1 + X2

2 + · · ·+ X2
m) ≥ (X1 + X2 + · · ·+ Xm)2, (15)

because
1

2

∑

i,j

(

X2
i + X2

j

)

≥
m
∑

i=1

X2
i +

∑

i,j,i6=j

XiXj .

DefineY =
∑m

i=1 Xi/m. Note thatY is positive. Due to (15), we can writeX ≤ min {A/Y,BY }. The
latter expression is maximized ifA/Y = BY , i.e., if Y =

√

A/B. ThusX ≤
√

AB.
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