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Abstract

Borodin, Linial and Saks [7] introducedetrical task systema framework to model a large class of
online problems. Metrical task systems can be describedliasvs. We are given a grapl = (V, E)
with n nodes and a positive edge lengtfe) for every edge € E. An online algorithm resides i and
has to service a sequence of tasks that arrive online. Artapkcifies for each nodee V' a request cost
r(v) € Ry U{oo}. If the algorithm resides in nodebefore the arrival of task, the cost to service task
in nodew is equal to the shortest path distance fremo v plus the request cost(v). The objective is to
service all tasks at minimum total cost. Borodin et al. shibtwat every deterministic online algorithm
has a competitive ratio of at least — 1, independent of the underlying metric. Moreover, they pnésd
an onlinework function algorithn{WFA) that achieves this competitive ratio.

We present amoothed competitive analysi§ WFA. That is, given an adversarial task sequence,
we randomly perturb the request costs and analyze the cdivgeatio of WFA on the perturbed se-
quence. Here, we are mainly interested in the asymptotiasdehof WFA. Our analysis reveals
that the smoothed competitive ratio of WFA is much bettenttn) and that it depends on several
topological parameters of the underlying graghsuch as the minimum edge length,;,,, the max-
imum degreeA, the edge diametet,,.., etc. For example, if the ratio between the maximum and
the minimum edge length af is bounded by a constant, the smoothed competitive ratio I6A \'g
O(emax(Amin/0 + log(A))) andO(y/1 - (Amin/o + log(A))), whereo denotes the standard deviation
of the smoothing distribution. That is, already for peratibns withc = O (A, ) the competitive ratio
reduces t@(log(n)) on a clique and t®(/n) on a line. Furthermore, we provide lower bounds on the
smoothed competitive ratio of any deterministic algorithiie prove two general lower bounds that hold
independently of the underlying metric. Moreover, we shbet our upper bounds are asymptotically
tight for a large class of graphs.

We also provide the first average case analysis of WFA. Weegptaat WFA ha$)(log(A)) expected
competitive ratio if the request costs are chosen randoraiy fan arbitrary non-increasing distribution
with standard deviatios = ©(Ayin ).

1 Introduction

Borodin, Linial and Saks [7] introduced a general framewtorinodel online problems, calledetrical task
systemsWe are given an undirected and connected g@ph (V, ), with node se¥” and edge sef, and

a positive length function : £ — IR on the edges afi. Letn be the number of nodes . We extend\

to a metrics onG. Lets : V x V — IRy be a distance function such th#t:, v) denotes the shortest path
distance (with respect tv) between any two nodesandv in G. A taskr is ann-vector(r(vy), ..., r(vy))

of request costsThe cost to process taskin nodev; is r(v;) € IR U {co}. The online algorithm starts
from a given initial positionsy € V and has to service a sequer®e= (7, ..., 1) of tasks, arriving one
at a time. If the online algorithm resides after tagk; in nodew, the cost to service task in nodewv is



d(u,v) + r¢(v); 6(u,v) is thetransition costandr;(v) is theprocessing costThe objective is to minimize
the total transition plus processing cost.

Many well-known online problems can be formulated as mettask systems; for example, the paging
problem, the static list accessing problem andikserver problem. One might as well consider metrical
task system as a general scheduling problem. Due to its @épethe competitive ratio of an algorithm
for metrical task systems is usually weak compared to theobaa online algorithm that is designed for a
particular problem, such as ttheserver problem.

A widely accepted measure for the performance of an onligerithm is itscompetitive ratiof13]. Let
ALG[S] andoPT[S], respectively, be the cost of the online and the optimalrefflgorithm on a sequence
S. For a cost minimization problem, algorithm.G is said to bey-competitivef for every sequenceé

ALG[S] < - OPT[S] + a, (1)

wherecq is some non-negative number that is independent of theHesfghe input sequencer is used to
bound some initial cost inferred by the online algorithm ather “short” input sequences; as the length of
the input sequences increases, the first term on the rigitt-$ide of (1) becomes the dominating term. The
competitive ratia: of an online algorithmaLG refers to the smallest for which relation (1) holds.

Borodin, Linial and Saks [7] gave a deterministic onlinecgithm that has a competitive ratio 2 — 1
for every metrical task system; this algorithm is known aswtiork function algorithmand we will subse-
qguently use WFA to refer to it. Then — 1 competitive ratio of WFA is optimal. Borodin, Linial and Sal/]
and Manasse, McGeoch and Sleator [11] proved eliatydeterministic online algorithm has competitive
ratio at leasn — 1 for any arbitrary metrical task system. We emphasize thatldver bound is proven
independently of the underlying metric, i.e., it holds fayarbitrary graphG and length function\.

It is a known fact that the competitive ratio of an online altion often is an overly pessimistic esti-
mation of its actual performance in practice. Sequencedsiahee the online algorithm into its worst case
behavior might be artificial and therefore rarely occur iagbice. In order to overcome the overly pessimistic
viewpoint adopted in worst case analysis, Spielman and Tetigoroposedsmoothed analysisvhich can
be seen as a hybrid between average case and worst casesaffdigsbasic idea is to randomly perturb, or
smoothenthe input instances and to analyze the performance of uitgdm on the perturbed instances.
Intuitively, the smoothed complexity of an algorithm is dhifiathe worst case instances are isolated peaks
in the instance/time space.

Based on the idea underlyirmnoothed analysiBecchetti et al. [3] recently proposasthoothed com-
petitive analysisas an alternative to (worst case) competitive analysis 6heralgorithms. The idea is
to perturb an adversarial input sequerislightly at random and to analyze the competitive ratio @f th
algorithm on the perturbed sequences. We use the notdtien f(S) to refer to a sequencs that is
obtained from an adversarial sequert®y perturbingS according to a smoothing distributioh More
formally, Becchetti et al. defined ttenoothed competitive ratioof an online algorithnmaLG with respect
to a smoothing distributiorf as
ALG[S]
OPT[S]

- )

¢ =sup Bg._ys)
S

In this paper, we are mainly interested in the asymptotichefsmoothed competitive ratio in the long
run. That is, we will not consider the supremum over all ag&gal input sequences, but rather restrict our
attention to sequenceéswhose length exceeds a certain threshold value.

1We remark that defining the smoothed competitive ratiaiat as the supremum over ajflsuch that for allS, E[ALG[S]] <
~v-E[oPTS]] + a, where the expectation is taken over&ll— f(S), would give an alternative and by all means reasonable motio
of smoothed competitiveness. However, we are interestadalyzing the smoothed competitive ratio on a “per sequéease”,
which we think gives a stronger notion of competitiveness| therefore adopt the definition in (2).



Upper Bounds

random tasks O(52 (222 4 log(A)))

min o

>

>

min o

arbitrary tasks O (§max (Amin 4 Jog(A))) and O(\/n Jmex (Amin 4 1og(A)))

j-elementary tasks  O(f - 3=a= (22i2 4 Jog(A)))

Table 1: Upper bounds on the smoothed competitive ratio AWF

Our contribution.  In this paper, we use the notion of smoothed competitivettesisaracterize the perfor-
mance of WFA. We smoothen the request costs of each taskditogdo an additive symmetric smoothing
model. Each cost entry is smoothed by adding a random nurhbsen from a symmetric probability distri-
bution f with mean zero. Therefore, on expectation each smoothe@otyg coincides with its original cost
entry. Our analysis holds for various probability disttibas, including the uniform, double exponential and
normal ones. We use to refer to the standard deviation 6f

Our analysis reveals that the smoothed competitive ratid/BA is much better than its worst case
competitive ratio suggests and that it depends on the follpwopological parametersf the underlying
graph:

e n. = number of nodes id-;

e A\nin = Minimum edge length with respect ¢
e . = Maximum edge length with respectXp
e A = maximum degree of a node (&,

dmax = diameter ofG, i.e., the maximum length of a shortest path between any wd®s; more
formally, dmax = max(, )ev <y 6(u, v);

emax = €dge diameter of7, i.e., the maximum number of edges on a shortest path (Wéiher to
the number of edges) between any two nodes; observe thah min < dmax < €maxAmax-

We prove several upper bounds; see Table 1.

1. We show that if the request costs are chosen randomly frdistrébution f, which is non-increasing
in [0, c0), the expected competitive ratio of WFA is

O(1+ p— -log(A)).

In particular, WFA has an expected competitive rati@fog(A)) if o = ©(Amin). FOr example, we
obtain a competitive ratio aD(log(n)) on a clique and o) (1) on a binary tree.

2. We prove two upper bounds on the smoothed competitive catiVFA:

O(M(Arj%—i—log(A))> and O<\/n- M(&T!mrlog(m)).

)\min min

Forexample, it = ©(Apin) @ndAmax/Amin = O(1), WFA has smoothed competitive ratit{log(n))
on any graph with constant edge diameter &1{d/n) on any graph with constant maximum degree.
Note that we obtain a®(log(n)) bound on a complete binary tree.
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Lower Bounds

arbitrary tasks

— existential §uex (dmin 4 log(A)))  and Q<\/n Jumax (Amin 4 1og(A)))

Amax ax \ O

— universal Q2w 4 Jmin Jog(A))  and Q(\/emax, D (Dain 1))

B-elementary tasks (8- (2== + 1)) (existential)

Table 2: Lower bounds on the smoothed competitive ratio gfdmterministic online algorithm.

3. We obtain a better upper bound on the smoothed competitie of WFA if the adversarial task
sequence only consists Gfelementary tasksA task is8-elementary if it has at mogt non-zero
entries. (We will use the termlementary tasko refer to al-elementary task.) We prove a smoothed
competitive ratio of

O(f - Jmax (2min 4 Jog(A))).

)\min

Forexample, it = ©(Amin) @NdAmax/Amin = O(1), WFA has smoothed competitive ratit{ 5 log(A))
for 5-elementary tasks.

We also present lower bounds; see Table 2. All our lower bstnodt foranydeterministic online algorithm
and if the request costs are smoothed according to theagditmmetric smoothing model. We distinguish
betweerexistentialanduniversallower bounds. An existential lower bound, Sayf (n)), means that there
existsa class of graphs such thaterydeterministic algorithm has smoothed competitive rétigf(n)) on
these graphs. On the other hand, a universal lower bOridn)) states that foany arbitrary graph,every
deterministic algorithm has smoothed competitive r&ig(n)). Clearly, for metrical task systems, the best
lower bound we can hope to obtain{i§n). Therefore, if we state a lower bound @f f (n)), we actually
mean{)(min{n, f(n)}).

4. For alarge range of values &y, andA, we present existential lower bounds that are asymptbtical
tight to the upper bounds stated in 2. This means (a) thatttedssmoothed competitive ratio of
WFA is asymptotically tight and (b) that WFA is asymptotlgadptimal under the additive smoothing
model—no other deterministic algorithm can achieve a bstteothed competitive ratio.

5. We also prove two universal lower bounds on the smoothetpetitive ratio:

max A max

Q(% + i‘\m—m log(A)) and Q(min {emax, \/emax . m(% + 1) })

Assume thah . /Amin = ©(1). Then the first bound matches the first upper bound statedf it i
edge diametet,,,. IS constant, e.g., for a clique. The second bound matchesetttsnd upper bound
in 2 if emax = ©2(n) and the maximum degre& is constant, e.g., for a line.

6. Forg-elementary tasks, we prove an existential lower bound of
QB - (R +1)).

This implies that the bound in 3 is tight up to a factor 8f,.x / Amin ) log(A).
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Our smoothed competitive analysis renders meaninglessduical task systems whose tasks obey a certain
combinatorial structure, e.g., for the paging problem,ifserver problem, etc. The reason for this is that
our smoothing model destroys zero request costs and thumttexlying combinatorial structure of these
problems. As a consequence, the smoothed task sequencaat banimterpreted in terms of the original
problem. One way out of this would be to consider zero-ratgismoothing models. However, as will be
addressed in the paper, these models cannot yield a smamihwgaktitive ratio better tha?v, — 1 for any
deterministic online algorithm and independent of the ulydey metric. Therefore, the general framework
of metrical task systems is not suitable to investigate theahed competitiveness of these problems.
Nevertheless, numerous other online problems fall intoftamework of metrical task systems and
we therefore obtain a smoothed competitive analysis forgelalass of problems. As an example, one
might consider the following online problem of schedulingobs onm unrelated parallel machines with
predefined set-up costs. Lif denote the sefl,...,k}. The time jobj € [n] needs to be processed on
machine: € [m] is given by its processing time; ;. Moreover, we have a predefined symmetric function
f:[m] x [m] — R, which specifies machine set-up costs. If job 1 has been processed on machife
the cost to process jopon machine is f(i',4) + p; ;. We assume that(i, :) = 0 for all i € [m]. The goal
is to find an assignment of jobs to machines such that the getalip plus processing cost is minimized.
This problem can be formulated as a metrical task system tirmgylst-forward way: Each machiriec [m]
corresponds to a nodg in G. We draw an edge between nodes; andv;: of length\(e) = f(i,') for all
i,7 € [m], i < 7. The arrival of a new joh now corresponds to a task, where the request cosf(v;)
of nodew; in G is given byp;;. Observe that the maximum degreefis m and the edge diameter is
1. The above mentioned lower bound for metrical task systenpiiés that every deterministic algorithm
for this scheduling problem has a competitive ratio{Xffn). As opposed to this, our analysis implies
that if the processing times of the jobs are perturbed rahgdhe smoothed competitive ratio of WFA is
O(log(m)) for this problem (assuming that= O (Apin) @andAmax/Amin = O(1)). Above we defined as
the complete graph in order to capture all possible set-nptions f. We remark that depending g one
might be able to construct a refined graph (e.g., the allgf@rtest path graph) that still reflects the set-up
function f but allows to relax the conditioA,,.x / Amin = O(1) or/and even leads to an improved smoothed
competitive ratio of WFA.

Constrained balls into bins game. Our analysis crucially relies on a lower bound on the coshaffatimal
offline algorithm. We therefore study the growth of the wodkdtion values on a sequence of random
requests. It turns out that the increase in the work functednes can be modeled by a version of a balls
into bins game with dependencies between the heights ofrtkewhich are specified by a constraint graph.
We call this game theonstrained balls into bins gamé&he dependencies between the heights of the bins
make it difficult to analyze this stochastic process. Wedbvelithat the constrained balls into bins game is
also interesting independently of the context of this work.

Related work. Several other attempts were made in the past to overcomedily pessimistic estimation

of the performance of an online algorithm by its competitigéo. One idea, which was put forward by
Albers [1, 2], was to enhance the capability of the onlin@atgm by allowing a limited lookahead. Another
idea was to restrict the power of the adversary. For exarBaeydin et al. [6] used an access graph model
to restrict the input sequences in online paging problenspéeific patterns. Blom et al. [4] introduced the
notion of a fair adversary to obtain improved competitive@neesults for minimizing the makespan in the
online traveling salesman problem on aline. This idea wias fafined by Krumke et al. [10]. They defined
a non-abusive adversary to obtain a constant competitiesoalgorithm for minimizing the total flow time

in the online TSP problem on a line. Yet another idea, due fgdt@sundaram and Pruhs [8], was to use a
resource augmentation model to analyze online schedulgayitoms. In this model, the online algorithm



has access to more resources (e.g., machines) than theabpfilime algorithm.

The diffuse adversary model by Koutsoupias and Papadaniti®] is another attempt to refine the
notion of competitiveness. In this model, the actual distion of the input is chosen by an adversary from
a known class of possible distributions.

We believe that smoothed competitive analysis is a natdltainative to adequately characterize the
performance of an online algorithm.

Organization of paper. In Section 2, we first review the work function algorithm arndte some of its
properties. In Section 3, we define the smoothing model tleause. The lower bound on the cost of
an optimal offline algorithm and the related balls into birssng are presented in Section 4. Then, in
Section 5 and Section 6, we prove the upper bounds on the Batbobmpetitive ratio of WFA. After that,
in Section 8 we present an upper bound on the expected cdivpetitio of WFA and in Section 9 we
develop the bound faB-elementary tasks. Finally, in Section 10 we prove exigéand universal lower
bounds. We give some concluding remarks in Section 11.

2 Work function algorithm

LetS = (r,...,7s) be arequest sequence anddgte V' denote the initial position. Lef; denote the
subsequence of the firstasks ofS. For eacht, 0 < ¢t < ¢, we define a functionv; : V' — IR such that
for each node: € V, wy(u) is the minimum offline cost to proces$ starting insy and ending in:. The
functionw; is called thework functionat timet with respect taS ands.

Let opT denote an optimal offline algorithm. Clearly, the optimédlioé costopT]S] on S is equal to
the minimum work function value at timg i.e., oPT[S| = min,ey {wy(u)}. We can computev,(u) for
eachu € V by dynamic programming:

wo(u) = d(sp,u), and w(u) = {)Iéi‘l;l{wt,l(v) +7ri(v) + 0(v,u)}. (3)

We next describe the online work function algorithm; see §Is 5]. Intuitively, a good strategy for an
online algorithm to process task is to move to a node wherePT would reside ifr; would be the final
task. However, the competitive ratio of an algorithm thadgelgosticks to this policy can become arbitrarily
bad. A slight modification gives 2n — 1 competitive algorithm: Instead of blindly (no matter at whast)
traveling to the node of minimum work function value, we diddially take the transition cost into account.
Essentially, this is the idea underlying the work functidgoaithm.

Work function algorithm (wFrA): Let s, ..., s;_1 denote the sequence of nodes visited\MRA to process
Si—1. Then, to process task, WFA moves to a node, that minimizesw;(v) + 0(s;—1,v) forallv € V. It
can be shown (see, e.g., [7, 5]) that there is always a choicg $uch that in addition,(s;) = wi—1(s¢) +
r¢(s¢). More formally, we define node; as

s¢ = arg Héi‘r/l{wt(v) +0(st—1,v)} suchthat we(s;) = we—1(s¢) + re(se). 4

Subsequently, we usgrFA andoPT, respectively, to denote the work function and the optiniihe algo-
rithm. For a given sequence= (7, ..., 7¢) of tasks WFA[S] andOPT[S] refer to the cost incurred byFa
andopPTon S, respectively. By, ..., s, we denote the sequence of nodes visitedvma.

We continue by observing a few properties of work functiond af the online algorithnwra (see
Appendix A for the corresponding proofs).

Fact 1. For any nodeu and any time, wy(u) > w1 (u).



Fact 2. For any nodeu and any time, wy(u) < wy—1(u) + r¢(u).

Fact 3. For any two nodes andv and any time, |w, (u) — w;(v)| < 6(u,v).
Fact 4. At any timet, w;(s;) = wi(si—1) — 0(s¢—1, St)-

Fact 5. Atany timet, r4(s¢) 4+ 0(si—1, 5¢) = wi(Si—1) — wi—1(8¢).

3 Smoothing models

Let the adversarial task sequendee given byS = (7,...,7.). We smoothen each task vectyr =
(7¢(v1), ... ,7(vy)) by perturbing eacbriginal costentry;(v;) according to some probability distribution
f as follows

re(v;) = max{0,7(v;) +e(vj)}, wheree(v;)«—f.

That is, to each original cost entry we add a random numbectwilsichosen independently frofn The
obtainedsmoothedask is denoted by, = (r¢(v1),...,7r(v,)). We useu to denote the expectation ¢f

We assume thaf is symmetric aroungh = 0. We take the maximum of zero and the smoothing outcome
in order to assure that the smoothed costs are non-negatiues, the probability for an original zero cost
entry to remain zero is amplified t%)

A major criticism to the additive model is that zero cost Er#tiare destroyed. However, as we will argue
in the next subsection, one can easily verify that the loveemnid proof of2n — 1 on the competitive ratio of
any deterministic algorithm for metrical task systems gibesugh for any smoothing model that does not
destroy zeros.

Our analysis holds for a large class of probability disttifns, which we callpermissible We say f
is permissible if (i) f is symmetric aroung: = 0 and (ii) f is non-increasing if0, co). For example,
the uniform and the normal distribution are permissible.e Eboncentration of aroundy is given by its
standard deviatiowr. Since the stated upper bounds on the smoothed competitiie af WFA do not
further improve by choosing much larger than,,,;,, we assume that < 2\.,;,. Moreover, we use; to
denote a constant depending psuch that for a randomchosen fromf, Ps > o /cs] > 1.

All our results hold against aadaptive adversaryAn adaptive adversary takes decisions made by the
online algorithm in the past into account; that is, it detiews taskr, knowing the decisions taken by the
online algorithm on the smoothed sequengce .., 1.

3.1 Lower bound for zero-retaining smoothing models

The proof of the2n — 1 lower bound on the competitive ratio of any deterministigoaithm ALG, see
[7, 11, 5], uses elementary tasks of the following form. ket reside in nodes;_; after having serviced
taskr;_;. Then taskr is defined as followst;(v) = 0 forall v # s;_, andry(v) = eforv = s,_,, wheree
is an arbitrary positive number. Observe that by servicasiit;, ALG incurs a non-zero cost: either it stays
in s;_, and incurs a cost of > 0, or it moves to some other node and incurs a positive transitbst (recall
that \ is a positive length function). The lower bound proof nowyoekploits the fact that the cost ei.G
is strictly increasing with the length of the input sequence

Assume we consider a zero-retaining smoothing model, irthivhéro cost entries are invariant to the
smoothing. In such a model, elementary tasks are smootheléntentary tasks. In particular, this means
that the above property still holds. Therefore, the lowarrwbproof also goes through for sequences that
are smoothed according to any zero-retaining smoothingeinod

Theorem 1. Given any graphG and length functior\, there exists a task sequence such that every deter-
ministic online algorithmaLG has a smoothed competitive ratio of at ledst— 1 under a zero-retaining
smoothing model.
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Figure 1: lllustration of the “unfolding” fo) = 1 andh = 5. Left: constraint grapliz.. Right: layered
dependency graphy,.

4 A lower bound on the optimal offline cost

In this section, we establish a lower bound on the cost iecuby an optimal offline algorithroPT when
run on tasks smoothed according to the additive smoothindgeind-or the purpose of proving the lower
bound, we first investigate a balls into bins experiment,ciwhve call theconstrained balls into bins game

4.1 Constrained balls into bins game

We are givem bins By, ..., B,. In each round, we place a ball independently in eactBpiwvith probability
p; with probability 1 — p no ball is placed inB;. We define théneighth, (i) of a bin B; as the number of
balls in B; after roundt. We have dependencies between the heights of differentlwtsre specified by
an (undirectedyonstraint graphGG. = (V., E.). The node seV, of G, containsn nodesuy, . . . , u,, where
each node:; corresponds to a bii;. All edges inE. have uniform edge lengths equaldo Let A be the
maximum degree of a vertex .. Throughout the experiment, we maintain the following nnat.

Invariant: The difference in height between two bi#% and B; is at most the shortest path distance
betweenu; andu; in G..

If the placement of a ball into a bi; would violate this invariant, the ball i®jected otherwise we say
that the ball isaccepted Observe that if two bing3; and B; do not violate the invariant in round then, in
roundt + 1, B; and B; might cause a violation only if one bin, sd, receives a ball and the othés;,
does not receive a ball; if both receive a ball, or both do aotive a ball, the invariant remains true.

Theorem 2. Fix any bin B,. Let R, be the number of rounds needed until the heighBofbecomes
h >1log(n). Then,P[R, > c;h(1 +1og(A)/Q)] < 1/n* for an appropriate constant; .

We remark that constraint graphs with = 1 exist, e.g., a clique on nodes, such that the expected
number of rounds needed for the height of a bin to becani® Q(hlog(n)). Moreover, for any given
maximum degreé\, one can create graph instances wijth= 1 such that the expected number of rounds is
Q(hlog(A)).

We next describe how one can model the growth of the heigli,dby an alternative game onlayered

dependency graptA layered dependency grafh, consists of: layers,V4, ..., V4, and edges are present
only between adjacent layers. The idea is to “unfold” thest@int graphG . into a layered dependency
graphDy,.

We first describe the construction f@r = 1: Each layer ofD;, corresponds to a subset of nodegsin
Layer1 consists ot only, the node corresponding to bify. Assume we have constructed laygis. . ., V;,
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i < h. Then,V;; is constructed fronV; by adding all noded'¢, (V;), that are adjacent to; in G, i.e.,
Vig1 = V; UTq (V;). For every paiu,v) € V; x V;11, we add an edgéu, v) to Dy, if (u,v) € E., or
u = v. See Figure 1 for an example.

Now, the following game orD,, is equivalent to the balls and bins game. Each nodg;jiis in one of
three states, namelyNFINISHED, READY Or FINISHED. Initially, all nodes in layeth areREADY and all
other nodes areNFINISHED. In each round, alREADY nodes independently toss a coin; each coin turns up
headwith probability p andtail with probability 1 — p. A READY node changes its state *NISHED if the
outcome of its coin toss isead At the end of each round, aINFINISHED node in layerj changes its state
to READY, if all its neighbors in laye + 1 areFINISHED.

Note that the nodes in layéf; are FINISHED if the corresponding bin;, i € V;, have height at least
j. Consequently, the number of rounds needed until the rai¢ adoecomesINISHED in Dj, is larger or
equal to the number of rounds needed for the heigli?.ofo becomeh.

We use a similar construction @ > 1. For simplicity, leth be a multiple of@ and defineh’ = h/Q.
We construct a dependency graply with 2’ layers as described above (replacky &’ in the description
above). Then, we transforf@; into a layered grap®,, with i layers as follows. Let be a node in layer
j of Dy,. We replacey by a path(vy, ..., v;), wherek = |Q|. Nodew; is connected to all neighbors ofin
layerj — 1 and nodev;, is connected to all neighbors ofin layer j + 1. This replacement makes sure that
the number of rounds needed until the root node becamasHED in D;, dominates the number of rounds
needed for the height a8, to becomeh.

Let R/, be the number of rounds needed until the root nethecomesINISHED in D;,. We recall that
R, denotes the number of rounds needed until the height oBbihecomed:. From the discussion above,
we infer that the eventR, > t) is stochastically dominated by the evéit, > t), i.e., P[R, > t] <
PR, > t].

Proof of Theorem 2 Let Dy, be a layered dependency graph constructed ffaras described above. Con-
sider the event that the root nodedoes not becomeiNISHED after¢ rounds, i.e.(R, > t). Then there
exists abadpathP = (vy,...,v,) from z = v; to some nodey, in the bottom layer such that no node
v; of P was delayed by nodes other than 1, ...,v,. Put differently, P was delayed independently of
any other path. Consider the outcome of the coin flips onlytiiernodes alond’. If P is bad then the
number of coin flips, denoted hy, that turned ugheadwithin ¢ rounds is at mosk — 1. Let «(t) denote
the probability thatP is bad. ClearlyE[X] = pt. Using a Chernoff bound (see [12]) df, we obtain for
t=2(h—1)/p

a(t) =P[X <h—1] <P[X < pt/2] <e P8,

Observe that irD;, (i) at mosth’ layers contain nodes of degree larger tRaand (ii) these nodes have at
mostA + 1 neighbors in the next larger layer. That is, the number o$ibtes paths from: to any nodev in
layerh is bounded by A + 1)

We conclude thaP[R, > ] < a(t)(A + 1" < e P/$(A + 1)/, Choosingt > (32/p)h(1 +
log(A)/Q) andh > log(n), we obtain thalP[R, > t] < 1/n*. The lemma now follows sincP[R, >
t] <P[R. > 1]. O

4.2 Lower bound

We are now in a position to prove that an optimal offline alponi incurs with high probability a cost of at
leastyA\min ON a sequence & (v (Amin/o + log(A))) tasks, wherey > log(n)/2.

Lemma 1. LetS be an adversarial sequence 6f= [cay(Amin/o + log(A))] tasks, for a fixed constang
and somey > log(n)/2. Then,P[OPT[S] < YAmin] < 1/n3.



Proof. The cost ofoPT on a smoothed sequenéeof length ¢ is OPT[S| = min,cy{w(u)}. Therefore,
it suffices to prove that with probability at least- 1/n3, we(u) > yAmin for eachu € V. Observe that
we can assume that the initial work function values are aliseero, since this can only reduce the cost of
OPT.

We relate the growth of the work function values to the bafid hins experiment. For each nodgof
G we have a corresponding big;. The constraint grapty. is obtained from= by setting all edge lengths
t0 Q = |Amin/K|, Wheres = min{Anin, o /cs}. Note thatQ) > 1. The placement of a ball iB3; in round
¢ corresponds to the evefit,(v;) > o/cys). Since our smoothing distribution satisflB§ > o/cs] > 1,
we have that for any; and anyt the smoothed request costv;) is at leasio/c; with probability at least
%, irrespectively of its original cost entry and independienf the other request costs. Therefore, in each
roundt we place a ball into each bin with probabilipy= i. By Lemma 2, which is given below, the number
of rounds needed until a biB; has height: is larger than or equal to the timteneeded untitv,(v;) > hk.
Thus, for anyt, P[h.(i) > h] < Plw(v;) > hk].

Consider a binB;. Using Theorem 2, we obtain that after> c¢;h(1 + log(A)/Q) rounds where
h > log(n), P[h(i) < h] < 1/n*. This implies that with probability at most/n*, w,(v;) < hx. Thus, we
have with probability at least — 1/n3, w,(v;) > hx for every nodey; € V. Choosingh = 2vQ, which for
v > log(n)/2 guarantees thdt > log(n), we obtain with high probabilityv,(v;) > v Anin for all v; of G.
Finally, we make sure th#t= [cyy(Amin/o +10g(A))] > c1h(1 +1og(A)/Q) by fixing ¢ = 4cicp. O

Lemma 2. Consider any node; and its corresponding bi®;. Leth, (i) denote the number of balls in bin
B aftert rounds. Then, for any > 0, w(v;) > h.(i) k.

Proof. We prove the lemma by induction on the number of rouhdSor ¢ = 0, the lemma clearly holds.
(We can assume that the initial work function values areelb? Assume that the induction hypothesis
holds aftert rounds. In round + 1, if no ball is accepted in any bin then clearly the hypothestisains true.
Consider the case where at least one ball is accepted by sanik.[By the induction hypothesis, we have
we(v;) > he(i)k. Letvy be the node that determines the work function value, (v;), i.e.,

wWit1(v;) = we(vg) + rep1(vg) + 0(vi, vk).

Assume that, = v;. Then, the work function value ef increases by the request cest; (v;) and since
a ball was accepted iB;, r1+1(v;) > k. Thus, we havev; 1 (v;) > wi(v;) + &k > (he(i) + 1)k = he1 ()R
and we are done.

Next, assume that, # v;. Letd be the shortest path distance betweganduv,. in the constraint graph.
Since in round + 1 a ball was accepted iB;, B; and B;, do not violate the invariant. Therefore,

he(i) — hi(k) < d— 1+ [ball accepted iBy, in roundt + 1],

where ‘{statemernit is 1 if statements true, and) otherwise. By multiplying both sides with and rear-
ranging terms, we obtain

(he(k) + d)x > (h(i) + 1 — [ball accepted By, in roundt + 1])k.

Observe thatlx < 6(v;, vy) by the definition of and the edge length@ of the constraint graph. Moreover,
ri+1(vg) > [ball accepted iBy, in roundt + 1]x. Thus,

wiy1(vi) = we(vg) + rep1(ve) + (v, vg)
hi(k)x + [ball accepted iBy, in roundt + 1]k + dk
(he(i) + 1)k = hyy1 (i) k.

AVARLYS
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Subsequently, we will exploit Lemma 1 several times as ¥adloLetS be an adversarial sequence of length
¢ = [coy(Amin/o + log(A))] for somey > log(n)/2. Moreover, letS be a smoothed sequence obtained
from S. Define€ as the event thabPT incurs a cost of at least\,i, on S, i.e.,& = (OPT[S] > YAmin)-

By Lemma 1,P[~€] < 1/n3. We can then bound the smoothed competitive ratio of WFA ksAe:

o1 [armet| = ammet €] €1 + B[t | €] Pt
< V(;’E_A}[[g]] M P[] + 271; L < E[x\/;n/f“ + o(1), (5)

where the first inequality follows from the fact that the (atocase) competitive ratio ®¥FA is 2n — 1 and
the second one follows from the definition &f

5 First upper bound

We can use the lower bound obtained in the last section teelerr first upper bound on the smoothed
competitive ratio ofvFA. We prove the following deterministic bound on the costvsa.

Lemma 3. LetS be any request sequence of lengtffhen,WFA[S] < OPT[S] + dmax - £-

Proof. Let s, ..., s, denote the sequence of nodes visited\la. For anyt, the cost incurred bywFa to
process taskis C(t) = ry(s¢) + d(s¢—1,s¢). By Fact 5, we obtai@'(t) = wy(s¢—1) — wi—1(s¢). Hence,

¢ -1
WFRA[S] = > " C(t) = wils1) —wo(s1) + Y wilse1) = wilses1)

1 t=1
< wé(sé—l) + (f - 1) “Omax < Hél‘r/l{wé(v)} + £ - Omax,
v
where the last two inequalities follow from Fact 3. SiraeT[S] > min,cy w¢(v), the lemma follows. O

Theorem 3. Let S be an adversarial sequence of length="[coy(Amin/o + log(A))] for somey >

log(n)/2. Then
srs) =0 (e (P v remta) ).

Proof. Using Lemma 3, we have for any sequeitef ¢ tasks,WFA[S] < OPT[S] + 0max - ¢. LetE be the
event(OPT[S] > YAmin). Then,

Es 1)

OPT[S] + Omax - ¢
<1
oPTS) '5]-' *

5max )\min
= — +log(A
o3 (222 4 1oga))).

where the last equality follows from the definition©fThe lemma now follows from (5). O

5max A
7)\min

Observe that Theorem 3 holds for any algorithm that satitgesma 3.

11



6 Second upper bound

We prove a second upper bound on the smoothed competiticeofatvFA. The idea is as follows. We
derive two upper bounds on the smoothed competitive ratiwrsf. The first one is a deterministic bound
and the second one uses the probabilistic lower boundron We then combine these two bounds using
the following fact. The proof of Fact 6 can be found in Appenéi

Fact6. Let A, B and X;, 1 <1 < m, be positive quantities. We have

AT X, BY™. X;
min ;nlzl 5 izt < VAB.
> X; m

Consider any deterministic task sequescef length/. Let sg, s1,. . ., s, denote the sequence of nodes
visited bywFA. DefineC(t) = r(s¢) + d(s¢—1, s¢) as the service cost plus the transition cost incurred by
WFA in roundt.

With respect taS we definel” as the set of rounds, where the increase of the work functturewofs; ;
is at least one half of the transition cost, ifeg T if and only if wy(s;—1) — wi—1(s¢—1) > 6(s¢—1,8¢)/2.

Due to Fact 4 we have(s;—1) = wi(s¢) + d(si—1, s¢). Therefore, the above definition is equivalent to

T= {t : wt(st) — ’wt_l(St_l) > —%(5(815_1, St)} . (6)

We useT to denote the complement &t
We first prove that the total cost @fFA on S is bounded by a constant times the total cost contributed
by rounds in7".

Lemma 4. LetS be an arbitrary task sequence. TheveA[S] <43, C(1).

Proof. Sincewy(s;) > 0 andwy(sg) = 0 by definition, we havev,(s;) — wo(so) > 0. Thus,

¢
Z(wt(st) —wi—1(8t-1)) > 0.

t=1

Let R~ be the set of rounds where;(s;) — w; 1(s;—1) < 0, and letR™ be the set of rounds where
wi(s¢) —wi—1(s¢—1) > 0. The above inequality can be rewritten as

Z (wi-1(s1-1) —we(st)) < Z (wi(st) — wi-1(st-1))-

teER™ teRT

SinceT C R~ and each term on the left hand side is non-negative, we have

D (wea(se1) —wils)) < D (wilse) — w1 (si-1), ()

teT teRt

For anyt € T, we haveC(t) < 3(w;_1(st—1) — wi(s¢)). This can be seen as follows. We have
wi—1(st) > wi—1(se—1) — 0(se—1,8¢) (by Fact 3) andry(s;) = wi(se) — wi—1(se) (by (4)). Therefore,
re(se) < 0(si—1,8¢) — wi—1(st—1) + we(s¢). Moreover, since € T and by the definition (6) off’,
(S(St,l, St) < 2(wt,1(st,1) — wt(st)). Hence,C(t) = T‘t(St) + 5(815,1, St) <3 (wt,l(st,l) — wt(st)).

Furthermore, for any, we havew;(s;) — wi—1(s¢—1) < C(t). This follows fromwy(s;) = wi—1(s¢) +
re(s¢) (by (4)) anchw; 1 (s¢) — wy—1(si—1) < d(s¢—1, s¢) (by Fact 3). SinceR™ C T, we conclude

D (wils) —wioa(se1) < Y CH) <Y C(1).

teRt teRt+ teT
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Wi_q () )\max

UgU1 Uq

Figure 2: Increase if\; if wy(ug) — wi—1(ug) > H andH < 4\ naxCmax-

Therefore, (7) implies

% PRECESINEGE

teT teT
Exploiting the fact thawrA[S] = >, .+ C(t) + >, C(t), we obtainwFA[S] < 4%, - C(t). O

We partitionT into 7' and T2, whereT! = {t € T : wy(s;) — wi—1(5¢) < 4Mmaxmax ) aNAT? =
T\ T*. For any round, we defineW; = > | w(v;) andAy = Wy — Wy_y.

Lemma 5. Fix a roundt and consider any node such thatw;(u) — wi—1(u) > H. If H < 4\ pax€max
thenA; > H?/(10\max ); Otherwise,A; > nH/2.

Proof. Let H < 4\pax€max- Defined = |H/(8Amax)]- Assumed = 0. ThenH < 8Apax, Which is
equivalent toH? /(8 \max) < H. The claim now follows sincé\; > H. Letd > 0. Consider a patt® =
(ug, u1,...,uq) of d edges starting imy = u. Note that there is always such a path Sidce |epay/2].2
By Fact 3, we have for each0 < i < d, w(u;) > wi(up) — iAmax @ndwy—1 (u;) < wi—1(up) + iAmax;
see also Figure 2. Therefore,

d d d
> (wiwi) = w1 (u)) = > (wi(uo) — we1(u0)) = 2Amax P d
=0 =0 =1
> (4 DI = (04 D > (D — D) >

where the last inequality holds sinde< H/(8\pax) < d + 1.
Let H > 4\ naxemax- Since for any node;, wy(v;) > wi(u) — Apax€max andwy—1(v;) < we—q(u) +
AmaxCmax, W€ have
n n
Z (wi(vs) — we—1(v;)) > Z(wt(u) —wi—1(u)) — 2nAmaxmax > NH — 2nApax€max > nH/2.
i=1 i=1
Ol

2To see this, consider the shortest path (with respect touhear of edges) iy havingem.. edges. For every node on this
path we can identify a path dt..x /2] edges; all other nodes can reach a node on this path, Gileeonnected.
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Lemma 6. LetS be a sufficiently long task sequence such Grit[S] > 26,,.x. There exists a constans
such that

1 1 5
opPT[S] > pwe ( dCwyP+nd C(t)) .

A
Max e teT?

Proof. For every nodey; € V, wy(v;) < mingey{ws(u)} + dmax (by Fact 3). MoreoverprT[S] >
min, ey {w(u)}. We obtain

E wy(v;) < nOPT[S| + ndmax, OF, equivalently, opT[S] > 1 <§ wy(v;) — n5max> .
n
i=1 i=1

OoP [S] > — En w (?)) (8)
n =1 o

Claim 1. Foranyt € T, A; > C()?/(160 A\ max)-

Proof. By (4) we havery(s;) = w¢(s¢) — wi—1(s¢). Below, we will show that
At > ((5(8,5_1, St)2 + T't(St)Q) /(80)\max)- (9)

SinceC (t)? = (8(s¢—1,5¢)+7:(5¢))? < 2(0(s¢—1, 8¢)%+1¢(s¢)?), we conclude thad; > C(¢)? /(160 max )-
Now, all that remains to be shown is (9). We distinguish tweesa

Letd(si—1,s¢) > 1(s¢). By the definition ofl’, we havew; (s;—1) —wi—1(st—1) > 0(s¢—1, s¢)/2. Using
Lemma 5 withH = 6(s¢—1, s¢)/2, we obtain

At Z (S(St,l, St)Q/(40>\maX) Z ((S(Stfl, St)2 + ’I“t(St)Z) /(80)\max)'

Letd(si—1,5¢) < re(s¢). Sincewy(sy) — wi—1(s¢) = re(se) andry(sy) < 4A\maxemax DY the definition
of T, using Lemma 5 withd = r.(s;), we obtain

Ay > 1(50)% /(10 max) > (6(s¢-1,5¢0)% +7¢(5¢)) /(20 Ammax )-

Claim 2. Foranyt € T2, Ay > 4nC(t)/10.

Proof. Sincet € T2 and by (4)7¢(s¢)/4 > emaxAmax > 0(8t_1,8¢). Thus,C(t) = r(ss) + 6(s4-1, 8¢) <
5r¢(s¢)/4. Furthermore, by (4) we have(s;) = w(st) — wi—1(s¢). Applying Lemma 5 withH = 7(s;),
we obtainA; > nry(s;)/2 > 4nC(t)/10. O

Claim 1 and Claim 2 together imply that

n J4
> we(vi) =Y A=Y A > ﬁ d oo+ % > cw).
i=1 t=1 teT max e

teT?

The proof now follows for an appropriate constagfrom (8). O
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Theorem 4. Let S be an adversarial task sequence of lendth= [coy(Amin/o + log(A))] for some
v > max{60max/Amin,log(n)/2}. Then

%[[SS]]] - O<\/n- b (Af;i“ +log(A)>> |

S—f£(S)
Proof. Due to inequality (5), it suffices to bourld[wFA[S]/oPT[S]| £], wheref is the even{oPT[S]| >
7Amin). Consider a smoothing outcorSesuch that the evestholds. By the choice of, we haveopPT[S] >
60max. Observe thatvFA[S] > OPT[S] > 60 max-
First, assume_, ;1 C(t) < >_,cp2 C(t). Then, due to Lemma 4 and Lemma 6,
1
WFA[S] <8 > C(t) and oPTS] > ” o).
teT? teT?
Hence E[WFA[S]/oPT[S]| €] = O(1).
Next, assume _, ;1 C(t) > >, C(t). By Lemma 4 and Lemma 6 we have
1 1 )
< >
WFA[S] <8 )  C(t) and oOPTS] > 03n< - > o) > (10)
teT? teT?
Thus,
C(t
WFA[S] < 8¢3nAmax <M> . (11)
OPT[S] > e C(t)?
Since& holds, we also have
WFA [S] -8 ZteTl C(t) Cq Amin Zt T1 C(t)
< < log(A el 27 12
oPTS] = e dem o T og(A) ] : (12)

where the latter inequality holds for an appropriate cartsta and since/ > |T!|. Observe that (12) is
well-defined sincé”, .1 C(t) > wFA[S] (by (10)) andwFA[S] > 65ax imply that|T1| > 1.
Applying Fact 6 to (11) and (12), these two bounds are conabine

WFA[S] )\max )\min )\max )\min
< . log(A) ] = . log(A
orTls] —\/8"304” e ) O<\/" o (2 )>>

which concludes the proof. O

7 Potential function

In this section we use a potential function argument to @eaiiv upper bound on the expected costveA.

Lemma 7. Let S be an adversarial task sequence of lengtand letS = (ry,...,7,) be a smoothed
sequence obtained frod. We define a random variable,(s) for each nodes € V.and1 < ¢t < ¢
I'y(s) = mingey{r¢(u) + 6(u, s)}. Letk > 0 be some positive number.HfI';(s)] < x forall s € V and
1 <t </, thenE[WFA[S]] < 4kl + dpmax-

Before we proceed to prove the lemma, we provide some iotuithssume we consider a simple greedy
online algorithmALG that always moves to a node which minimizes the transitiols ptquest cost. That
is, ALG services tasky by moving from its current position, say_,, to a nodes; that minimizes the
expressionuin,cy {r¢(u) + d(u, s;_;)}. Clearly, if the requirement of Lemma 7 holds, the total expd
cost ofALG on S is Zle E[l'.(s;—1)] < ¢k. The above lemma shows that the expected cost of the work
function algorithmwFa is at mostt times the expected cost af G plus some additive term. In the analysis,
it will sometimes be convenient to considarG instead ofwrA.
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Proof of Lemma 7 We denote bys;, 1 < t < /¢, the node in whichvFA resides after task; has been
processed; we usg to refer to the node in whictvra resides initially. We define a potential functidnas

P(t) = we(st) + tomax/YL.
Observe that
(I)(E) - ‘I)(O) = U}g(Sg) - wO(SO) + 5max > ’U)g(Sg) - ’U)g(So) + 5max > 0,

where the last inequality follows from Fact 3 and sii¢ey, sp) < dmax-
We define themortized cost, (t) incurred bywFA to process task; as

Ca(t) - Tt(St) + (5(St_1, St) + q)(t) — q)(t — 1)
= Tt(St) + 5(St_1, St) + wt(st) — wt_l(st_l) + 5max/€
= wt(St) - wt—l(st) + wt(St—l) - wt—l(st—l) + 5max/€7 (13)

where the last equality follows from Fact 5. Using Fact 3 &8)dife obtain that for each € V/
wi—1(8¢) = wi—1(u) —(u,s¢) and wy(sy) < wi—q(u) + re(u) + 6(u, s¢).
Combining these two inequalities, we obtain for each
wi(se) — wi—1(s¢) < 1e(u) + 26(u, s¢)

and hence
wi(s) — wi-1(st) < 2{%{}{%(“) + 6(u, s¢)} = 2T4(s4).-

A similar argument shows that; (s;—1) — w—1(s¢—1) < 2T'(s¢—1). Hence, we can rewrite (13) as
Ca(t) < 2Ft(3t) + 2Ft(3t71) + 5max/£'

SincewFA[S] = Zf:1 Co(t) — ®(¢) + ®(0) andP(¢) — ¢(0) > 0, we obtain

¢

Sl

t=1

4

Z Ft St +Ft St— 1))

t=1

E[wrA[S]] < E <2E + Omax < 468 + Smax-

Inequality (5) together with Lemma 7 yield the following otiary.

Corollary 1. LetS be an adversarial task sequence of lendth= [coy(Amin/o + log(A))] for some
v > max{dmax/Amin,10g(n)/2}. Then

s = Tl om = oM7) — o (4 1Y) ).

E&— (S
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8 Random tasks

We derive an upper bound on the expected competitive ratiorefif each request cost is chosen indepen-
dently from a probability distributiorf which is non-increasing iff), o). We need the following fact; the
proof is given in Appendix A.

Fact 7. Let f be a continuous, non-increasing distribution oy@roo) with meanu and standard deviation
o. Thenu < v/120.

Theorem 5. Let S be a random task sequence of length= [coy(Amin/0) + log(A))] for somey >
max{dmax/Amin,l0g(n)/2}. If each request cost is chosen independently from a naeasing probability

distribution f over|[0, co) then
WFA[S]] o
oPTlS] ] = O(l + p— 10g(A)> .

Proof. For every node and anyl < ¢ < ¢, we havely(s) = miny,ecy{r:(u)+0d(u, s)} < r(s). Sincery(s)

is chosen frony, Fact 7 implies thaE([T';(s)] < v/12¢ = x. The theorem now follows from Corollary 1.
Note that we can use the lower bound established in Sectiotdund the cost abPT: The generation

of S is equivalent to smoothing (according fpan adversarial task sequence consisting of all-zero stque

vectors only. Here, we do not need that the distributfde symmetric around its mean. O

S f

9 [-elementary tasks
We can strengthen the upper bound on the smoothed comeetétiv ofwFA if the adversarial task sequence
only consists ofi-elementary tasks. Recall thaiaelementary task has at mgshon-zero request costs.

Theorem 6. LetS be ang-elementary adversarial task sequence of length [coy(Amin/o + log(A))]
for somey > max{dmax/Amin, log(n)/2}. Then

ﬂ[s]] = o(g- Amax (% +log(A)>> .

O PT[S] )\min

S—f(S)

We state the following fact; the proof is given in Appendix A.

Fact 8. Let f be a permissible probability distribution. TheR[max{0,e}] < o, wheree is a random
variable chosen fronf.

We first prove the following lemma.

Lemma 8. Lets be an arbitrary node ofs. Consider g3-elementary adversarial task = (7(v1), ..., 7(vy)),
where < n. ThenE[I'.(s)] < o + BAmax-

Proof. Let V[ C V be the set of all nodes with original cost zero, i¥;, = {u € V : 7(u) = 0}.
Then|Vy| > n — 8 andV, is non-empty if3 < n. Letv* be a node fronif which is closest ta. We
haved(v*,s) < BAmax- (Otherwise, there must exist at least 1 nodes with non-zero original cost, a
contradiction.) Thus,

E[l(s)] < Emingey, {re(u) + 6(u, s)}] < E[ry(v*) + 6(v*, s)] < 0 + BAmax,

where the last inequality follows sineg(v*) = max{0,e(v*)}, e(v*) is a random variable chosen frofn
and Fact 8. O

Proof of Theorem 6 By Lemma 8 E[I';(s)] < 0 + SAmax. Since we assume that< 2\, the latter is
bounded by = O(5Anax). The theorem now follows from Corollary 1. O
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10 Lower bounds

In this section we present existential and universal loveemiols. All our lower bounds hold for any deter-
ministic online algorithmALG and against an adaptive adversary.

10.1 Existential lower bound for S-elementary tasks

We show an existential lower bound forelementary tasks on a line. We prove that the upper bound
O(B(Amax/Amin) Amin/0 + log(A))) established in Theorem 6 is tight up to a factoR\gf.. /Amin if the
underlying graph is a line. Later, we will use Theorem 7 taaobbur first universal lower bound.

Theorem 7. LetG be a line graph. There exists @helementary adversarial task sequerisuch that any
deterministic online algorithmaLG has a smoothed competitive ratio

o]~ 2 - () 5 ).

Proof. We use an averaging technique (see [7]). Divide the line inte n/(2/3) contiguous segments of
23 nodes. For simplicity assume thats an integer. (This does not affect the asymptotic lowemnidguWe
refer to these segments BY, Ss, ..., S.

The adversarial task sequengés defined as follows. Let; be the node in whichLG resides after the
tth task. In round, the adversary issuesfelementary task by placings cost on each node that is within
distance[3/2] — 1 from s;_; and zero cost on all other nodes. Note that the adversanajstigd. LetS
be a smoothed task sequence obtained ffom

We consider a sdB of  offline algorithms, one for each segment. Bet denote the offline algorithm
that resides in segmeist;; B; always stays inS;. In each round, eachB; moves to a node in S
minimizing the transition cost plus the request cost. DeBii&] = Z?:l B;[S] as the total cost incurred
by the offline algorithms oi&; B;[S] is a random variable denoting the total cost incurredBgyon S.
Clearly, B[S] = B[S]/h is an upper bound oapPT[S].

Consider any round At most two consecutive line segments can haveequest costs and there are at
most 3 nodes withoo request cost. Thus, the corresponding offline algorithrosrila transition cost of at
most S Amax t0 Move to a node with original request By Fact 8, the expected request cost of a node with
0 original request cost is at most Thus, the total expected cost of the offline algorithms umigbt is at
MostGAmax + ho. Hence,

S—f(S)

h
= 1 BAmax + ho
= — - < -_— .
E[B[S]| = +E j}ﬂj B,[S]| < e( - )

By Markov’s inequality,P[B[S] < 2E[BI[S]]] > 1. Since in each roundyLG is forced to traverse at
least[3/2] edges, we haveLG[S] > ¢5Amin/2. We conclude

ALG [S] 1 gﬁ)\min/Q o BAmin
B OPT[S]:| = (5) 20 (ﬁAma;chFhU) B Q<ﬁ2)‘max/n + U) .

That is, we obtain a lower bound 0f((n/3) - (Amin/Amax)) If B > \/1/(Amax/0) and ofQ(5 - (Amin/0))
if 5 < \/n/(Amax/0). In the latter case, exploiting that < 2\, we obtain a (8 - (Amin/o + 1))

bound.
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Observe that on a line the-elementary bound of Theorem 6 is stronger than the genpparibound

of Theorem 4 only if
N Amin
< .
ﬂ o \/)\max()\min/a + 1)

In this case, Theorem 7 provides a lower bound20f - (Ain/o + 1)). That is, for a line graph these
bounds differ by a factor of at moat,,ax/ Amin-

10.2 Universal lower bounds

We derive two universal lower bounds on the smoothed cotingetiatio of any deterministic algorithm.
The first universal bound uses the following corollary of dfen 7.

Corollary 2. Let GG be a line graph. Any deterministic algorithaLG has smoothed competitive ratio
Q(min{n7 \/n()\min/)\max)()\min/g + 1)}

Proof. Fix 8 = \/n)\min/()\max()\min/a + 1)) and use the lower bound given in Theorem 7. O

Theorem 8. Let G be an arbitrary graph. Any deterministic algorithm.G has a smoothed competitive

ratio of
Q<min {emaxa \/emax : M : (Amin + 1> }) .
)\max g

Proof. We extend Theorem 7 to arbitrary graphs in a straightforweagt. Consider a path it of edge
length at least,,,.x. The adversary enforces thatG andoPT never leave this path by specifying cost
for each node that is not part of the path. The desired lowentdamow follows from Corollary 2. O

Next, we prove the following universal lower bound.

Theorem 9. Let G be an arbitrary graph. Any deterministic algorithm.G has a smoothed competitive

ratio of
Q(min {n, Awin + Amin Jog(A)}) .
(e )\max

Proof. The adversary issues a sequencé tafsks as described below. Note that the adversary is adaptiv
For eacht, 1 < t < /, let s; denote the node at which the deterministic online algoritkus resides
after thetth task; we use to refer to the initial position oALG. We prove two different lower bounds.
Combining these two lower bounds, we obtain the bound statede.

We first obtain a lower bound &2(min{n, A\ynin/0}) @assuming thak,,;, /o > 1. In roundt, the adversary
enforces a request cost ®f,;,, ons;_1 and zero request cost on all other nodes. Recall that thesadyds
adaptive and therefore knows the positiomaot.

We use an averaging technique to relate the costLaf to the average cost of a collection of offline
algorithms. LefB be a collection of: offline algorithms. We place one offline algorithm at eachenadd
each offline algorithm remains at its node during the prangssf the task sequence. LStbe a random
variable denoting a smoothing outcomefWe defineB|S] as the total cost incurred by thealgorithms
to processS. Clearly, the average coB[S] = B[S]/n is an upper bound oopT[S]. It suffices to prove
that with constant probabilitgL G [S]/B[S] = Q(min{n, Apin/c}).

For the analysis, we view the smoothing process as beingidamavo stages.

Stage l:nitially we smoother? zero tasks (all request costs are zero) according to the giveothing
distribution. Let the smoothed sequence®e= (77, ..., 7).
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Stage 2:For eacht, 1 <t < ¢, we replace the request cost%f ; in 7/ by the outcome of smoothing
Amin. We user; to refer to the obtained task.

LetR/(v) = Zf:1 r;(v) be the total request cost accumulated iwith respect taS’. Moreover, we
define/ random variables\, ..., \s: A refers to the smoothed request cogis; 1) of taskr; obtained in
Stage 2. For each < t < ¢, let Z;, be a0/1 random variable which i$ if and only if \; > A\pi,. We
defineZ = Zle Z;. Subsequently, we condition the smoothing outca@men the following three events:
() € = (O ,ev R'(v) < 2nlo), (i) F = (Zf:1 At < Alpin) @and (i) G = (Z > £/4).

We first argue that the evei N F N G) occurs with at least constant probability. (i) Due to Fact
8, E[R/(v)] < (o for eachv € V. By Markov’s inequality, we thus havP[£] > 1/2. (ii) By Fact 8
and sinces < Apin, We also havE([ Ny < Apin + 0 < 2Ay, for eachl < ¢ < . Hence by Markov’s
inequality,P[fo:1 At > dlmin] < 1/2. (iii) Since the smoothing distributiof is a symmetric, we have
P[\; > Amin] > 1/2 for eachl < t < ¢. Thus,E[Z;] > 1/2. Moreover, theZ,'s are independent.
Applying Chernoff’s bound (see [12]), we obtdZ < ¢/4] < e~¢/16,

Since event is defined with respect t§', it is independent of the eve(i& N G). Therefore,

1 L 6 1
> . — — >
PEnFngl =3 <1 <2+e =3

where the last inequality holds4f> 64.

Let S be any fixed outcome of the smoothing such tt#&ath F N G) holds. Assume that to process
sequenceS, ALG changes its position ik of the ¢ rounds. LetT} refer to the set of rounds where G
changes its position. We bound the cost of the offline algor#t as follows. In any round the total cost
incurred by the offline algorithms at nodes different frem; is at mosty ", _,, ;(v). If ALG does not move
in roundt, bothALG andB incur a cost of\;. If ALG moves in round, B incurs an additional cost of;,
since one algorithm resides én_;. Thus,

BIS] < ALG[S]+ Y M+ > R/(v) < ALG[S] + 4lAmin + 2nlo,
teTy, veV

where the last inequality follows froift and€.

Since alsag holds, we can conclude thatG incurs a cost of at leagt\,,;, /4: In each of the at least
¢/4 rounds, we have;(s;—1) = A\¢ > A\min. Thatis, no matter wheth@iLc moves or stays in these rounds,
it incurs a cost of at least,;,.

Thus, conditioned on the evef® N F N G) we obtain for an appropriate constant

ALG[S] - ALG[S] - . Amin
B[S] ~ 17ALG[S]/n + 2lo S P

Next we obtain a lower bound éf((Amin/Amax) log(A)). Consider a node of G with degreeA. Let V;
be the set of nodes containisgand all the neighbors of in G. DefineGy as the subgraph af induced
by V;. The adversary makes sure that every reasonable onlingthaigawill always reside at a node ivj
by specifying in each round a request costofor eachv ¢ V4. In addition, in each roundthe adversary
enforces the online algorithm to move by placing a request abco at s; 1. All other request cost are
zero.

Let S be a smoothed task sequence obtained f&nSinceG, is a star withA + 1 nodes and the
transition cost between any two nodes is at n®st.., Lemma 9 implies that there exists a deterministic
offline algorithmB with E[B[S]] < 2¢lAnyax/log(A). (Observe that we can apply Lemma 9 here since
with respect ta7 the request sequence is elementary.) Applying Markov'guaéty, we obtairlP[B[S] >
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4climax/ log(A)] < 1/2. SinceALG has to move in each round to avaid cost, the cost oALG for any
smoothed sequence is at leék},;,. Putting everything together, we obtain

o[58 =55 () s o )

O

Lemma 9. Let G be a clique withm + 1 nodes and maximum edge length.<. Consider an adversarial
sequenceS of ¢ elementary tasks for a sufficiently large Then, there exists an offline algoritiBisuch
that form > 16, E[B[S]] < clAnax/ log(m) for a constant.

Proof. We first consider an adversarial sequesice- (71,...,7;) of k = [log(m)/2] elementary tasks.
We view the smoothing of the elementary tasks as being dotveoiistages.

Stage 1:nitially we smootherk zero tasks (all request costs are zero) according to tha giv@othing
distribution. Let the smoothed sequence®e= ({,..., 7).

Stage 2:For eacht, 1 < t < k, we obtain a task; from 7/ as follows. Letv* be the node with non-zero
request cost,(v*) in 7. We replace the request cost«dfin 7/ by the outcome of smoothing (v*). Let
S = (n,..., ) be the resulting task sequence.

For any nodev;, we define &/1 random variableX; which is 1 if and only if the total request cost
accumulated iny; with respect taS’ is zero. Since for each nodeg the request cost remains zero with
probability at least, we haveP[X; = 1] > (1/2)F > 1/\/m. Note that theX;’s are independent. Let
X =X+ -+ X;nt1. We haveE[X] > /m. Let& denote the ever(iX > \/m/2). Using Chernoff’s
bound (see [12]), we obtain

P[-€] = P[X < /m/2] <e V™8,

The offline algorithmB has two different strategies depending on whether evdmids or not.

Strategy 1:If event& holds,B moves at the beginning to a nodewhose total accumulated request cost
is zero and stays there. (Recall thats offline.) Note that sinc€ holds there are more thapim /2 — k
such nodes; fom > 16 there exists at least one such node.

Strategy 2:If event& does not holdB always moves to a node with minimum request cost.

SinceB only incurs the initial travel cost of at moat, . if £ holds, we obtain
E[B[S]] = E[B[S] | €] P[€] + E[B[S]| €] P[-€] < Amax + E[B[S]| €] - V™8,

Next, we boundE[B[S] | —&]. Clearly, the transition cost in each round is at mastx. The expected
request cost incurred B3 in roundt is E[min,cy{r:(u)} | -€]. Consider a node; with 7(v;) = 0. The
smoothed request cost of is not affected by Stage 2. We hall@min,cy {r:(u)} | =&] < Elri(v;) | =&].

Let (Xy = z1,...,Xm+1 = Tmy1) be any outcome such that€ holds. Since the request costs are chosen
independently, we havE[r:(v;) | X1 = x1,..., Xmt+1 = Tmy1] = E[re(vi) | X; = x;]. If 2; = 1 then
Elri(v;) | Xi; = x;] = 0, since all request costs at must be zero. If;; = 0 thenE[ry(v;) | X; = z;] <
E[ri(v;) | re(v;) > 0]. (Forry(v;) the event X; = 0) means that eithet;(v;) = 0 andry (v;) > 0 for some

t' # t, orry(v;) > 0.) By Fact 8, the expected coBfr;(v;)] is at mosts. Moreover,P[r;(v;) > 0] >
Plri(v;) > o/cs] > L. Hence E[ry(v;) | (v;) > 0] < 4E[ry(v;)] < 4o. Putting everything together, we
obtain

k
| —|5 S Z mlnuEV{Tt )} | _‘5] + )\max) < k(40 + )\max) < 9kj>\maxa

where the last inequality holds since we assumedhat2A,in < 2Amax,
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Altogether, we obtain for a sequenSeof lengthk and form > 16,
E[B[S]] < Amax + %Amax - € V™8 < 13X

We conclude the proof as follows. We split the entire advéabaequences of length/ into j > 1
subsequences of lengkh(the final one might have length less thian On each subsequends,performs
as described above. We therefore obtain for the entire segeand an appropriate constant

J
Ce}‘max
EB S <E 13)\max =13 ')\max S )
BIS) < B| 3 190 = 13700 <
where the last inequality follows from the relation betwéemd;j and definition off. O

10.3 Existential lower bounds

We provide two existential lower bounds showing that forrgéarange of parameters A\min, Amax, A and
Omax there exists a class of graphs on wharty deterministic algorithm has a smoothed competitive ratio
that asymptotically matches the upper bounds stated inf€he8 and Theorem 4. In order to prove these
existential lower bounds, we first show the following lemma.

Lemma 10. Given a number of nodes, minimum edge cost,,;,, maximum edge co,,,, Maximum
degreeA > 3, and diametep,, ., such that

Omax = 4Aminlogp_;(n), and D = min {0max/Amax, D} > 17,

there exists a graph such that the smoothed competitive ohtainy deterministic algorithmLG is

. n)\max 5max )\min
Q(mm{ e ( > +log(D)> }) .

We would like to point out that in any graph of nodes and maximum degre®, dmax/Amin >
loga_1(n), i.e., the restriction on,,.x in the above lemma is slightly stronger.

Proof of Lemma 10 We construct a grapld; as depicted in Figure 3. The graph consistsnof =
%n)\max/%ax cliques. Each clique ha® nodes and the length of an edge between any two nodgg.is
We need to ensure that the maximum degree is at lo3therefore, we connect each clique by a path to a
(A — 1)-ary treeT'. Each such path consists &f edges of length ... We assign a length of,,;,, to each
edge inT. Each clique is attached to a leaf nodelgfa leaf node may take up th — 1 cliques. Sincen
cliques need to be connectedf@nd we can attach at mask — 1)” cliques to a tree of heighit— 1, we fix
h = logx_4(m). The total number of nodes ifi is therefore((A — 1)* —1)/(A — 2) < m, sinceA > 3.
It is easy to verify thatn +m - (X — 1) +m - D < n, i.e., the total number of nodes @ris at mostn. (If
it is less tham, we let the remaining nodes become parffof The graph should have diametgf,, and
thus we fixX such tha2(Apin + X - Amax + (A — 1) Amin) = Imax, 1€, X = [(Omax/2 — PAmin)/Amax | -
Moreover, we want that the minimum distance between any tvdes in different cliques is at Ieaﬂmax,
i.e., X - Apax > éémax. If dmax = 4Amin loga_;(n), this condition holds. (Also observe that in any graph
of n nodes and maximum degrég d,nax/Amin > loga_1(n), i.e., our condition is slightly stronger.)
Consider the caseMyin/o > log(D). We need to prove a lower bound of
Q(min{nAmax/0max, omax/0}). In each round, the adversary imposescancost on all nodes of the
graph except on those nodes that join a clique with its pattat &, the adversary restricts bothc and
OPT to stay in a “virtual” clique of sizen with A\, = iémax and A\ pnax = Omax. AppPlying the universal
lower bound of Theorem 9 to this clique we obtain the desioacel bound of2(min{m, dmax/c}).
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(D — 1)-ary tree

m cliques of sizeD

Figure 3:

Consider the cas&,in/o < log(D). In each round, the adversary imposes»arcost on all nodes in
T and on all nodes that belong to a connecting path. Furthesneach round, the adversary forces the
online algorithmALG to leave its clique by specifyingo costs on all nodes of the clique in whighc
resides. All other request costs are zero.

We use an averaging technique. We define a collectiom of 1 offline algorithms and compare the
cost of ALG with the average cost of the offline algorithms. At most orgoathm resides in each clique.
An offline algorithmB; remains in its clique”; until co costs are imposed af;; at this point,B; moves
to the free clique. Within each clique, the offline algoritfimiows the strategy as specified in the proof of
Lemma 9. We may assume without loss of generality that @gdtarts in a different clique.

Consider a smoothed sequewtef length?. Let B[S] be the total cost incurred by the offline algorithms
and defineB;[S] as the total cost aB; on S. The total cost of the offline algorithms to travel away from
cliques withoo costs is at mosti,,.x. The expected cost of each algorithm in a clique with zereeshrial
request cost is, due to Lemma 9, at mast,,;,,/ log(D — 1); recall that each clique is of siZé > 17 and
the maximum edge length in each clique\igi,. Thus,

- g(smax 1
<
E[B[S]] < — +m_1E

E(Smax CE)\min
“m-—1 log(D-1)

By Markov's inequality,P[B[S] < 2E[B|[S]]] > 3. Clearly,ALG[S] > 1{6,ax. Therefore,

ALG[S] 1 108 max . .
> (= _ ‘ |
. OPT[SJ - <2> 2(Bus + Dogiar ) € min  m, 5= - log(D)

m—1 og(D—1

O

The next bound shows that if Theorem 3 gives a better uppercbthan Theorem 4 then this bound is
tight up to a factor ofog(A)/log(D) < log(n) for a large class of graphs.

Theorem 10. There exists a class of graphs such that the smoothed cdivpetitio of any deterministic

algorithmALG is
0 . 5max )\min _|_1 (D)
min 4 n, Ao p og R

whereD = min{dmax/Amin, D}
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Proof. If Theorem 3 gives a better upper bound than Theorem 4, we have

5max )\min )\max )\min
< | /max
(22 4 tog(1) ) _\/n s (22 og() ).

NAmax Omax < A
>

5max o )\min

which is equivalent to

2

min log(D)> .
Sincelog(A) > log(D), we obtain from Lemma 10 the desired lower bound. O

Theorem 11. There exist a class of graphs such that the smoothed coimpetitio of any deterministic

algorithmALG is
A Ami
Q . max min 1 D
(mm {n, \/n -~ <—a + log( )> }) ,

whereD = min{dmax/Amin, D}

Proof. Let Apin/o > log(D). We fiX dimax SUCh thati A\ ax/Omax = Omax /0, 1.€.,0max = VO Amax. The
lower bound of Lemma 10 then reduceSt0\/nApax/o).

Assumelin/o < log(D). We fiX dmax SUCh thati\ax/Omax = (dmax/Amin) l0g(D), i.€., dmax =
/N AmaxAmin/ log(D). The lower bound of Lemma 10 then reduce$?a,/ 1 (Amax/Amin) log(D)). O

11 Concluding remarks

In this paper, we focused on the asymptotic behavior of WFhéf request costs of an adversarial task
sequence are perturbed by means of a symmetric additivetsmganodel. We showed that the smoothed
competitive ratio of WFA is much better than its worst casmpetitive ratio suggests and that it depends on
topological parameters of the underlying graph. Moreoaiigur bounds, except the one f@relementary
tasks, are tight up to constant factors. We believe that oalyais gives a strong indication that the perfor-
mance of WFA in practice is much better thzm — 1.

An open problem would be to strengthen the universal lowentds. Moreover, it would be interesting
to obtain exact (and not only asymptotic) bounds on the shaabtompetitive ratio of WFA.

Acknowledgments

We would like to thank Alberto Marchetti-Spaccamela for¢asnments on a first draft of this paper. More-
over, we would like to thank Kurt Mehlhorn for helpful sugfieas and discussions; due to one of his
suggestions we were able to significantly shorten the prb@heorem 2. Finally, we would like thank an
anonymous referee that helped to improve the expositioheopaper.

References

[1] S. Albers. On the influence of lookahead in competitivgipg algorithms Algorithmica 18(3):283-305, 1997.

[2] S. Albers. A competitive analysis of the list update desb with lookahead.Theoretical Computer Science
197(1-2):95-109, 1998.

[3] L. Becchetti, S. Leonardi, A. Marchetti-SpaccamelaSehafer, and T. Vredeveld. Average case and smoothed
competitive analysis of the multi-level feedback algarith In Proceedings of the Forty-Fourth Annual IEEE
Symposium on Foundations of Computer Sciepages 462—471, 2003.

24



[4] M. Blom, S. O. Krumke, W. E. de Paepe, and L. Stougie. ThigenTSP against fair adversarielNFORMS
Journal on Computingl 3(2):138-148, 2001.

[5] A.Borodin and R. El-YanivOnline Computation and Competitive Analystambridge University Press, 1998.

[6] A. Borodin, S. Irani, P. Raghavan, and B. Schieber. Caditipe paging with locality of referenceJournal of
Computer and System Science®(2):244—258, 1995.

[7] A.Borodin, N. Linial, and M. Saks. An optimal online algthm for metrical task systemgournal of the ACM
39:745-763, 1992.

[8] B. Kalyanasundaram and K. Pruhs. Speed is as powerfuhasayance.Journal of the ACM47(4):617-643,
2000.

[9] E. Koutsoupias and C. Papadimitriou. Beyond competitimalysis. IProceedings of the Twenty-Fifth Sympo-
sium on Foundations of Computer Sciengages 394-400, 1994.

[10] S. O. Krumke, L. Laura, M. Lipmann, A. Marchetti-Spaotzla, W. de Paepe, D. Poensgen, and L. Stougie.
Non-abusiveness helps: An(1)-competitive algorithm for minimizing the maximum flow tinie the online
traveling salesman problem. Rroceedings of the 5th International Workshop on ApproxiomsAlgorithms for
Combinatorial Optimizationpages 200-214, 2002.

[11] M. S. Manasse, L. A. McGeoch, and D. D. Sleator. Competdlgorithms for on-line problems. Proceedings
of the Twentieth Annual ACM Symposium on Theory of Compuytayges 322—-333, 1988.

[12] R. Motwani and P. RaghavaRandomized algorithm&ambridge University Press, 1 edition, 1995.

[13] D. Sleator and R. E. Tarjan. Amortized efficiency of ligdate and paging rule&ommunications of the ACM
28:202-208, 1985.

[14] D. A. Spielman and S. H. Teng. Smoothed analysis of délgms: Why the simplex algorithm usually takes
polynomial time.Journal of the ACM51(3):385-463, 2004.

25



A Proofs of Facts

Proof of Fact 3 . Assumez is the node that defines;(v), i.e., w;(v) = wi_1(z) + r(x) + 6(x,v). We
havew,(u) < wy—1(z) + ri(x) + d(z,u) < w1 (z) + 7re(x) + 6(x,v) + 0(v,u) = we(v) + 0(v,u). O

Proof of Fact 4 . By (4), we have thatv,(s;) +0(s¢—1, 5¢t) < we(v)+d(si—1,v) forallv € V. In particular,
for v = s;_1 this impliesw(s;) < wi(si—1) — I(s¢—1,s¢). On the other hand, due to Fact3,(s;) >
’U)t(stfl) — 6(815,1, St). Ol

Proof of Fact 5 . Using (4) and Fact 4, we obtain
Tt(St) + 5(51571, St) = wt(St) - wtfl(st) + wt(stfl) - wt(St) = wt(stfl) - wtfl(st)-
O

Proof of Fact 7. Let X be a random variable chosen frgfnDefine€ as the event| X — u| > 1/2). Using
Chebyshev’s inequality, we obtain

Plel = P[1x - ul 2 4] < . (14)
Sincef is continuous and non-increasing[in oo),
P[¢] :P[]X—m > g} ZP[X < g] > %P[% <X< 37”] > %P[ﬂe].
This implies thatP[€] > 1. Hence, (14) giveg? < 1202 O

Proof of Fact 8 . DefineY = max{0, X }. Sinceu = 0, we haver? = E[X?]. Let oy denote the standard
deviation of the distribution of". By the definition ofE[X?], E[Y?] = 1E[X?]. Sincec? = E[Y?] —

E[Y])? ando? > 0, we haveE[Y]? < E[Y?]. This in turn implies thaE[Y] < ¢/v/2. O
Proof of Fact 6 . DefineX’ = min{A 2,;1)()5, b Z%IXZ' } First, note that
i=1“%q
m(X7 + X5+ + X2) = (X4 Xy 4+ X)), (15)

because .
1 2 2 2
DICEEPOED SRS PRES
& i=1 N
DefineY = 3", X;/m. Note thatY” is positive. Due to (15), we can writ¢ < min{A4/Y, BY'}. The
latter expression is maximized#/Y = BY,i.e.,ifY = \/A/B. ThusX < v AB. O
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