
Topology Matters: Smoothed Competitiveness of

Metrical Task Systems?
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Abstract. We consider metrical task systems, a general framework to
model online problems. Borodin, Linial and Saks [BLS92] presented a
deterministic work function algorithm (WFA) for metrical task systems
having a tight competitive ratio of 2n−1. We present a smoothed compet-
itive analysis of WFA. Given an adversarial task sequence, we smoothen
the request costs by means of a symmetric additive smoothing model and
analyze the competitive ratio of WFA on the smoothed task sequence.
We prove upper and matching lower bounds on the smoothed competi-
tive ratio of WFA. Our analysis reveals that the smoothed competitive
ratio of WFA is much better than O(n) and that it depends on several
topological parameters of the underlying graph G, such as the maximum
degree D and the diameter. For example, already for small perturbations
the smoothed competitive ratio of WFA reduces to O(log n) on a clique
or a complete binary tree and to O(

√
n) on a line. We also provide the

first average case analysis of WFA showing that its expected competitive
ratio is O(log(D)) for various distributions.

1 Introduction

Borodin, Linial and Saks [BLS92] introduced a general framework to model
online problems, called metrical task systems. Many important online problems
can be formulated as metrical task systems; for example, the paging problem,
the static list accessing problem and the k-server problem.

We are given an undirected and connected graph G = (V, E), with node set
V and edge set E, and a positive length function λ : E → IR+ on the edges
of G. We extend λ to a metric δ on G. Let δ : V × V → IR+ be a distance
function such that δ(u, v) denotes the shortest path distance (with respect to λ)
between any two nodes u and v in G. A task τ is an n-vector (r(v1), . . . , r(vn))
of request costs. The cost to process task τ in node vi is r(vi) ∈ IR+ ∪ {∞}.
The online algorithm starts from a given initial position s0 ∈ V and has to
service a sequence S = 〈τ1, . . . , τr〉 of tasks, arriving one at a time. If the online
algorithm resides after task τt−1 in node u, the cost to service task τt in node
v is δ(u, v) + rt(v); δ(u, v) is the transition cost and rt(v) is the processing cost.
The objective is to minimize the total transition plus processing cost.
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Upper Bounds

random tasks O
(

σ

Umin

(

Umin

σ
+ log(D)

))

arbitrary tasks O
(

Diam

Umin

·
(

Umin

σ
+ log(D)

))

and O

(

√

n · Umax

Umin

(

Umin

σ
+ log(D)

)

)

β-elementary tasks O
(

β · Umax

Umin

(

Umin

σ
+ log(D)

))

Table 1. Upper bounds on the competitive ratio of WFA.

Borodin, Linial and Saks [BLS92] gave a deterministic online algorithm,
known as the work function algorithm (WFA), for metrical task systems. WFA
has a competitive ratio of 2n − 1, which is optimal. However, the competitive
ratio is often an over-pessimistic estimation of the true performance of an online
algorithm.

Based on the idea underlying smoothed analysis [ST01], Becchetti et al.
[BLMS+03] recently proposed smoothed competitive analysis as an alternative
to worst case competitive analysis of online algorithms. The idea is to randomly
perturb, or smoothen, an adversarial input instance Š and to analyze the per-
formance of the algorithm on the perturbed instances. Let alg[S] and opt[S],
respectively, be the cost of the online and the optimal offline algorithm on a
smoothed instance S obtained from Š . The smoothed competitive ratio c of alg

with respect to a smoothing distribution f is defined as

c := sup
Š

E
S

f
←Š

[

alg[S]

opt[S]

]

.

We use the notion of smoothed competitiveness to characterize the asymp-
totic performance of WFA. We smoothen the request costs of each task accord-
ing to an additive symmetric smoothing model. Each cost entry is smoothed
by adding a random number chosen from a probability distribution f , whose
expectation coincides with the original cost entry. Our analysis holds for vari-
ous probability distributions, including the uniform and the normal distribution.
We use σ to refer to the standard deviation of f . Our analysis reveals that the
smoothed competitive ratio of WFA is much better than its worst case compet-
itive ratio suggests and that it depends on certain topological parameters of the
underlying graph.

Definition of Topological Parameters. In this paper, we assume that the
underlying graph G has n nodes, minimum edge length Umin, maximum edge
length Umax, and maximum degree D. Furthermore, we use Diam to refer to
the diameter of G, i.e., the maximum length of a shortest path between any two
nodes. Similarly, a graph has edge diameter diam if any two nodes are connected
by a path of at most diam edges. Observe that diamUmin ≤ Diam ≤ diamUmax.



Lower Bounds

arbitrary tasks

– existential Ω

(

Diam

Umin

·
(

Umin

σ
+ log(D)

)

)

and Ω

(

√

n · Umax

Umin

·
(

Umin

σ
+ log(D)

)

)

– universal Ω

(

Umin

σ
+ Umin

Umax
log(D)

)

and Ω

(

√

diam · Umin

Umax
·
(

Umin

σ
+ 1
)

)

β-elementary tasks Ω
(

β ·
(

Umin

σ
+ 1
))

(existential)

Table 2. Lower bounds on the competitive ratio of any deterministic online algorithm.

We emphasize that these topological parameters are defined with respect to G
and its length function λ—not with respect to the resulting metric.

We prove several upper bounds; see also Table 1.

1. We show that if the request costs are chosen randomly from a distribution
f , which is non-increasing in [0,∞), the expected competitive ratio of WFA
is

O
(

1 + σ
Umin

· log(D)
)

.

In particular, WFA has an expected competitive ratio of O(log(D)) if σ =
Θ(Umin). For example, we obtain a competitive ratio of O(log(n)) on a clique
and of O(1) on a binary tree.

2. We prove two upper bounds on the smoothed competitive ratio of WFA:

O

(

Diam

Umin

·
(

Umin

σ + log(D)
)

)

and O

(

√

n · Umax

Umin

(

Umin

σ + log(D)
)

)

.

For example, if σ = Θ(Umin) and Umax/Umin = Θ(1), WFA has smoothed
competitive ratio O(log(n)) on any constant diameter graph and O(

√
n) on

any constant degree graph. Note also that on a complete binary tree we
obtain an O(log(n)) upper bound.

3. We obtain a better upper bound on the smoothed competitive ratio of WFA
if the adversarial task sequence only consists of β-elementary tasks. A task
is β-elementary if it has at most β non-zero entries. We prove a smoothed
competitive ratio of

O
(

β · Umax

Umin

(

Umin

σ + log(D)
))

.

For example, if σ = Θ(Umin) and Umax/Umin = Θ(1), WFA has smoothed
competitive ratio O(β log(D)) for β-elementary tasks.

We also present lower bounds; see Table 2. All our lower bounds hold for any
deterministic online algorithm and if the request costs are smoothed according



to the additive symmetric smoothing model. We distinguish between existential
and universal lower bounds. An existential lower bound, say Ω(f(n)), means
that there exists a class of graphs such that every deterministic algorithm has
smoothed competitive ratio Ω(f(n)) on these graphs. On the other hand, a
universal lower bound Ω(f(n)) states that for any arbitrary graph, every deter-
ministic algorithm has smoothed competitive ratio Ω(f(n)). Clearly, for metrical
task systems, the best lower bound we can hope to obtain is Ω(n). Therefore, if
we state a lower bound of Ω(f(n)), we actually mean Ω(min{n, f(n)}).

4. For a large range of values for Diam and D, we present existential lower
bounds that are asymptotically tight to the upper bounds stated in 2.

5. We also prove two universal lower bounds on the smoothed competitive ratio:

Ω

(

Umin

σ + Umin

Umax

log(D)

)

and Ω

(

min

{

diam ,
√

diam · Umin

Umax

·
(

Umin

σ + 1
)

})

.

Assume that Umax/Umin = Θ(1). Then, the first bound matches the first
upper bound stated in 2 if the edge diameter diam is constant, e.g., for a
clique. The second bound matches the second upper bound in 2 if diam =
Ω(n) and the maximum degree D is constant, e.g., for a line.

6. For β-elementary tasks, we prove an existential lower bound of

Ω
(

β ·
(

Umin

σ + 1
))

.

This implies that the bound in 3 is tight up to a factor of (Umax/Umin) log(D).

Constrained Balls into Bins Game. Our analysis crucially relies on a lower
bound on the cost of an optimal offline algorithm. We therefore study the growth
of the work function values on a sequence of random requests. It turns out that
the increase in the work function values can be modeled by a version of a balls
into bins game with dependencies between the heights of the bins, which are
specified by a constraint graph. We call this game the constrained balls into bins
game. We believe that this game is also interesting independently of the context
of this paper.

Due to lack of space, we omit the lower bounds and some upper bound proofs
from this extended abstract. We refer the reader to [SS03] for a complete version
of this paper.

2 Work Function Algorithm

Let S = 〈τ1, . . . , τ`〉 be a request sequence, and let s0 ∈ V denote the initial
position. Let St denote the subsequence of the first t tasks of S. For each t,
0 ≤ t ≤ `, we define a function wt : V → IR such that for each node u ∈ V ,
wt(u) is the minimum offline cost to process St starting in s0 and ending in u.
The function wt is called the work function at time t with respect to S and s0.



Let opt denote an optimal offline algorithm. Clearly, the optimal offline
cost opt[S] on S is equal to the minimum work function value at time `, i.e.,
opt[S] = minu∈V {w`(u)}. We can compute wt(u) for each u ∈ V by dynamic
programming:

w0(u) := δ(s0, u), and wt(u) := min
v∈V
{wt−1(v) + rt(v) + δ(v, u)}. (1)

We next describe the online work function algorithm; see also
[BLS92,BEY98]. Intuitively, a good strategy for an online algorithm to process
task τt is to move to a node where opt would reside if τt would be the final
task. However, the competitive ratio of an algorithm that solely sticks to this
policy can become arbitrarily bad. A slight modification gives a 2n− 1 competi-
tive algorithm: Instead of blindly (no matter at what cost) traveling to the node
of minimum work function value, we additionally take the transition cost into
account. Essentially, this is the idea underlying the work function algorithm.

Work Function Algorithm (wfa): Let s0, . . . , st−1 denote the sequence of
nodes visited by wfa to process St−1. Then, to process task τt, wfa moves to a
node st that minimizes wt(v) + δ(st−1, v) for all v ∈ V . There is always a choice
for st such that in addition wt(st) = wt−1(st) + rt(st). More formally,

st := arg min
v∈V
{wt(v) + δ(st−1, v)} such that wt(st) = wt−1(st) + rt(st). (2)

In the sequel, we use wfa and opt, respectively, to denote the work function
and the optimal offline algorithm. For a given sequence S = 〈τ1, . . . , τ`〉 of tasks,
wfa[S] and opt[S] refer to the cost incurred by wfa and opt on S, respectively.
By s0, . . . , s` we denote the sequence of nodes visited by wfa.

We state the following facts without proof.

Fact 1. For any two nodes u and v and any time t, |wt(u)− wt(v)| ≤ δ(u, v).

Fact 2. At any time t, wt(st) = wt(st−1)− δ(st−1, st).

Fact 3. At any time t, rt(st) + δ(st−1, st) = wt(st−1)− wt−1(st).

3 Smoothing Model

Let the adversarial task sequence be given by Š := 〈τ̌1, . . . , τ̌r〉. We smoothen
each task vector τ̌t := (řt(v1), . . . , řt(vn)) by perturbing each original cost entry
řt(vj) according to some probability distribution f as follows

rt(vj) := max{0, řt(vj) + ε(vj)}, where ε(vj)←f.

That is, to each original cost entry we add a random number which is chosen
from f . The obtained smoothed task is denoted by τt := (rt(v1), . . . , rt(vn)). We
use µ and σ, respectively, to denote the expectation and the standard deviation
of f . We assume that f is symmetric around µ := 0. We take the maximum of



zero and the smoothing outcome in order to assure that the smoothed costs are
non-negative. Thus, the probability for an original zero cost entry to remain zero
is amplified to 1

2
.

A major criticism to the additive model is that zero entries are de-
stroyed. However, one can easily verify that the lower bound proof of 2n − 1
[BLS92,MMS88,BEY98] on the competitive ratio of any deterministic algorithm
for metrical task systems goes through for any smoothing model that does not
destroy zeros.

Our analysis holds for a large class of probability distributions, which we
call permissible. We say f is permissible if (i) f is symmetric around µ = 0
and (ii) f is non-increasing in [0,∞). For example, the uniform and the normal
distribution are permissible. Since the stated upper bounds on the competitive
ratio of WFA do not further improve by choosing σ much larger than Umin, we
assume that σ ≤ 2Umin. Moreover, we use cf to denote a constant depending on
f such that for a random ε chosen from f , P[ε ≥ σ/cf ] ≥ 1

4
.

All our results hold against an adaptive adversary. An adaptive adversary
reveals the task sequence over time, thereby taking decisions made by the online
algorithm in the past into account.

4 A Lower Bound on the Optimal Offline Cost

In this section, we establish a lower bound on the cost incurred by an optimal
offline algorithm opt when run on smoothed task sequences. For the purpose
of proving the lower bound, we first investigate an interesting version of a balls
into bins experiment, which we call the constrained balls into bins game.

4.1 Constrained Balls into Bins Game

We are given n bins B1, . . . , Bn. In each round, we place a ball independently
in each bin Bi with probability p; with probability 1− p no ball is placed in Bi.
We define the height ht(i) of a bin Bi as the number of balls in Bi after round t.
We have dependencies between the heights of different bins that are specified by
an (undirected) constraint graph Gc := (Vc, Ec). The node set Vc of Gc contains
n nodes u1, . . . , un, where each node ui corresponds to a bin Bi. All edges in
Ec have uniform edge lengths equal to Q. Let D be the maximum degree of a
vertex in Gc. Throughout the experiment, we maintain the following invariant.

Invariant: The difference in height between two bins Bi and Bj is at most the
shortest path distance between ui and uj in Gc.

If the placement of a ball into a bin Bi would violate this invariant, the ball is
rejected ; otherwise we say that the ball is accepted. Observe that if two bins Bi

and Bj do not violate the invariant in round t, then, in round t + 1, Bi and Bj

might cause a violation only if one bin, say Bi, receives a ball, and the other,
Bj , does not receive a ball; if both receive a ball, or both do not receive a ball,
the invariant remains true.
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Fig. 1. Illustration of the “unfolding” for Q = 1 and h = 5. Left: constraint graph Gc.
Right: layered dependency graph Dh.

Theorem 1. Fix any bin Bz. Let Rz be the number of rounds needed until the
height of Bz becomes h ≥ log(n). Then, P[Rz > c3h (1 + log(D)/Q)] ≤ 1/n4.

We remark that there are instances, where the above bound is indeed tight.
We next describe how one can model the growth of the height of Bz by

an alternative, but essentially equivalent, game on a layered dependency graph.
A layered dependency graph Dh consists of h layers, V1, . . . , Vh, and edges are
present only between adjacent layers. The idea is to “unfold” the constraint
graph Gc into a layered dependency graph Dh.

We describe the construction for Q = 1; the details for Q > 1 can be found
in [SS03]. Each layer of Dh corresponds to a subset of nodes in Gc. Layer 1
consists of z only, the node corresponding to bin Bz. Assume we have constructed
layers V1, . . . , Vi, i < h. Then, Vi+1 is constructed from Vi by adding all nodes,
ΓGc

(Vi), that are adjacent to Vi in Gc, i.e., Vi+1 := Vi ∪ ΓGc
(Vi). For every pair

(u, v) ∈ Vi × Vi+1, we add an edge (u, v) to Dh if (u, v) ∈ Ec, or u = v. See
Figure 1 for an example.

Now, the following game on Dh is equivalent to the balls and bins game. Each
node in Dh is in one of three states, namely unfinished, ready or finished.
Initially, all nodes in layer h are ready and all other nodes are unfinished. In
each round, all ready nodes toss a coin; each coin independently turns up head
with probability p and tail with probability 1 − p. A ready node changes its
state to finished if the outcome of its coin toss is head. At the end of each round,
an unfinished node in layer j changes its state to ready, if all its neighbors in
layer j + 1 are finished.

Note that the nodes in layer Vj are finished if and only if the corresponding
bins Bi, i ∈ Vj , have height at least j. Consequently, the number of rounds
needed until the root node z in Dh becomes finished is equal to the number of
rounds needed for the height of Bz to become h.

Proof (Theorem 1). Let Dh be a layered dependency graph constructed from Gc

as described above. As argued above, the event (Rz ≤ t) is equivalent to the
event that the root node becomes finished within t rounds in Dh. Consider the
event that the root node z does not become finished after t rounds. Then, there
exists a bad path P := (v1, . . . , vh) from z = v1 to some node vh in the bottom



layer h such that no node vi of P was delayed by nodes other than vi+1, . . . , vh.
Put differently, P was delayed independently of any other path. Consider the
outcome of the coin flips only for the nodes along P . If P is bad then the number
of coin flips, denoted by X , that turned up head within t rounds is at most h−1.
Let α(t) denote the probability that P is bad, i.e., α(t) := P[X ≤ h−1] . Clearly,
E[X ] = tp.

Observe that in Dh any node has at most D + 1 neighbors in the next larger
layer. That is, the number of possible paths from z to any node v in layer h is
bounded by (D + 1)h.

Thus, P[Rz > t] ≤ α(t)(D + 1)h. We want to choose t such that this proba-
bility is at most 1/n4. If we choose t ≥ (32/p)(h + h log(D)) and use Chernoff’s
bound [MR95] on X , we obtain for h ≥ log(n)

α(t) = P[X ≤ h− 1] ≤ P[X ≤ pt/2] ≤ e−pt/8 ≤ 1

n4(D + 1)h
.

ut

4.2 Lower Bound

We are now in a position to prove the following lemma.

Lemma 1. Let Š be an adversarial sequence of ` := dc2nγ(Umin/σ + log(D))e
tasks, for a fixed constant c2 and some γ ≥ 1. Then, P[opt[S] < nγUmin] ≤
1/n3.

We relate the growth of the work function values to the balls and bins game
as follows. For each node vi of G we have a corresponding bin Bi. We obtain the
constraint graph Gc from G by setting all edge lengths to Q := bUmin/∆c, where
∆ := min{Umin, σ/cf}. Since for any vi and any time t, P[rt(vi) ≥ σ/cf ] ≥ 1

4
,

we place a ball into Bi with probability 1

4
. The following lemma establishes a

relation between the work function value of vi and the height ht(i) of Bi.

Lemma 2. Consider any node vi and its corresponding bin Bi. Let ht(i) denote
the number of balls in bin Bi after t rounds. Then, for any t ≥ 0, wt(vi) ≥
ht(i) ∆.

Put differently, the number of rounds needed until a bin Bi has height h
stochastically dominates the time t needed until wt(vi) ≥ h∆. Applying The-
orem 1, we obtain that after ` := dc2nγ(Umin/σ + log(D))e rounds, for an ap-
propriate constant c2, the probability that there exists a bin of height less than
2nγQ is at most 1/n3. That is, with probability at least 1 − 1/n3, all vi sat-
isfy w`(vi) ≥ 2nγQ∆ ≥ nγUmin. Since opt[S] = minu∈V {w`(u)}, the theorem
follows.

We will use the Lemma 1 several times as follows.

Corollary 1. Let Š be an adversarial sequence of ` := dc2nγ(Umin/σ+log(D))e
tasks, for a fixed constant c2 and an some γ ≥ 1. Then, the smoothed competitive
ratio of wfa is at most E[wfa[S]]/(nγUmin) + o(1).



Proof. Let S be a random variable denoting a smoothed sequence obtained from
Š . We define E as the event that opt incurs a cost of at least nγUmin on S. By
Lemma 1, we have P[¬E ] ≤ 1/n3. Thus,

E

[

wfa[S]

opt[S]

]

= E

[

wfa[S]

opt[S]

∣

∣

∣

∣

E
]

P[E ] + E

[

wfa[S]

opt[S]

∣

∣

∣

∣

¬E
]

P[¬E ]

≤ E[wfa[S] | E ]P[E ]
nγUmin

+
2n− 1

n3
≤ E[wfa[S]]

nγUmin

+ o(1),

where the second inequality follows from the definition of E and the fact that
the (worst case) competitive ratio of wfa is 2n− 1. ut

5 Upper Bounds

5.1 First Upper Bound

We derive the first upper bound on the smoothed competitive ratio of wfa. The
idea is as follows. We derive two upper bounds on the smoothed competitive
ratio of wfa. The first one is a deterministic bound, and the second one uses
the probabilistic lower bound on opt. We combine these two bounds using the
following fact to obtain the theorem stated below.

Fact 4. Let A, B, and Xi, 1 ≤ i ≤ m, be positive quantities. We have

min

{

A
∑m

i=1
Xi

∑m
i=1

X2
i

,
B
∑m

i=1
Xi

m

}

≤
√

A B.

Consider any deterministic input sequence K of length `. Let s0, s1, . . . , s`

denote the sequence of nodes visited by wfa. Define C(t) := rt(st)+δ(st−1, st) as
the service cost plus the transition cost incurred by wfa in round t. With respect
to K we define T as the set of rounds, where the increase of the work function
value of st−1 is at least one half of the transition cost, i.e., t ∈ T if and only if
wt(st−1) − wt−1(st−1) ≥ δ(st−1, st)/2. We use T̄ to refer to the complement of
T . Due to Fact 2 we have wt(st−1) = wt(st) + δ(st−1, st). Therefore, the above
definition is equivalent to

T :=
{

t : wt(st)− wt−1(st−1) ≥ − 1

2
δ(st−1, st)

}

. (3)

We first prove that the total cost of wfa on K is bounded by a constant
times the contribution of rounds in T .

Lemma 3. Let K be a sufficiently long sequence such that wfa[K] ≥ 6Diam.
Then, wfa[K] ≤ 8

∑

t∈T C(t).

We partition T into T 1 and T 2, where T 1 := {t ∈ T : wt(st) − wt−1(st) ≤
4Umaxdiam}, and T 2 := T \ T1.



Lemma 4. Let K be a sufficiently long sequence such that opt[K] ≥ 2Diam.
There exists a constant b such that

opt[K] ≥ 1

bn

(

1

Umax

∑

t∈T 1

C(t)2 + n
∑

t∈T 2

C(t)

)

.

Theorem 2. The smoothed competitive ratio of wfa is
O(
√

n · (Umax/Umin)(Umin/σ + log(D))).

Proof. Let Š be an adversarial task sequence of length ` := dc2nγ(Umin/σ +
log(D))e, and let S be a random variable denoting a smoothed sequence
obtained from Š . Due to the proof of Corrollary 1 it suffices to bound
E[wfa[S]/opt[S] | E ], where E is the event (opt[S] ≥ nγUmin). Consider a
smoothing outcome S such that the event E holds. We fix γ sufficiently large
such that opt[S] ≥ 6Diam. Observe that wfa[S] ≥ opt[S] ≥ 6Diam.

First, assume
∑

t∈T 1 C(t) <
∑

t∈T 2 C(t). Due to Lemma 3 and Lemma 4,

wfa[S] ≤ 16
∑

t∈T 2

C(t) and opt[S] ≥ 1

b

∑

t∈T 2

C(t).

Hence, E[wfa[S]/opt[S] | E ] = O(1).
Next, assume

∑

t∈T 1 C(t) ≥∑t∈T 2 C(t). By Lemma 3 and Lemma 4 we have

wfa[S] ≤ 16
∑

t∈T 1

C(t) and opt[S] ≥ 1

bn

(

1

Umax

∑

t∈T 1

C(t)2
)

. (4)

Thus,
wfa[S]

opt[S]
≤ 16bnUmax

(
∑

t∈T 1 C(t)
∑

t∈T 1 C(t)2

)

. (5)

Since E holds, we also have

wfa[S]

opt[S]
≤ 16`

∑

t∈T 1 C(t)

`nγUmin

≤ c

Umin

(

Umin

σ
+ log(D)

)(
∑

t∈T 1 C(t)

|T 1|

)

, (6)

where the last inequality holds for an appropriate constant c and since ` ≥ |T 1|.
Observe that (6) is well-defined since

∑

t∈T 1 C(t) ≥ 1

16
wfa[S] (by (4)) and

wfa[S] ≥ 6Diam imply that |T 1| ≥ 1.
Applying Fact 4 to (5) and (6), these two bounds are combined to the one

stated in the theorem. ut

5.2 Second Upper Bound

Our second upper bound easily follows from the proof of Corrollary 1 and the
following deterministic relation between wfa and opt.

Lemma 5. Let K be any request sequence of length `. Then, wfa[K] ≤ opt[K]+
Diam · `.
Theorem 3. The smoothed competitive ratio of wfa is O((Diam/Umin) ·
(Umin/σ + log(D))).



5.3 Potential Function

The next lemma can be proved using a potential function argument. Intuitively,
it states that the expected cost of wfa is bounded by the expected cost of a
simple greedy online algorithm.

Lemma 6. Let S be a smoothed sequence of ` tasks. For each t, 1 ≤ t ≤ `,
and a given node s, define a random variable ∆t(s) := minu∈V {rt(u) + δ(u, s)}.
Let κ > 0. If E[∆t(s)] ≤ κ for each s ∈ V and for each t, 1 ≤ t ≤ `, then
E[wfa[S]] ≤ 4κ` + Diam.

5.4 Random Tasks

We derive an upper bound on the expected competitive ratio of wfa if each
request cost is chosen independently from a probability distribution f which is
non-increasing in [0,∞). We need the following fact.

Fact 5. Let f be a continuous, non-increasing distribution over [0,∞) with
mean µ and standard deviation σ. Then, µ ≤

√
12σ.

Theorem 4. If each request cost is chosen independently from a non-increasing
probability distribution f over [0,∞) with standard deviation σ then the expected
competitive ratio of wfa is O(1 + (σ/Umin) · log(D)).

Proof. Let S be a random task sequence of length ` := dc2nγ(Umin/σ)+log(D))e,
for an appropriate γ ≥ Umax, generated from f . Observe that since γ ≥ Umax,
we have ` ≥ Diam . For any t and any node s, we have ∆t(s) = minu∈V {rt(u) +
δ(u, s)} ≤ rt(s). Since rt(s) is chosen from f , Fact 5 implies that E[∆t(s)] ≤
κ :=

√
12σ. Thus, by Lemma 6, we have E[wfa[S]] = 4

√
12σ` + Diam = O(σ`).

Note that we can use the lower bound established in Section 4 to bound the
cost of opt: The generation of S is equivalent to smoothing (according to f)
an adversarial task sequence consisting of all-zero request vectors only. Here, we
do not need that the distribution f is symmetric around its mean. The theorem
now follows from Corrollary 1. ut

5.5 β-Elementary Tasks

We can strengthen the upper bound on the smoothed competitive ratio of wfa

if the adversarial task sequence only consists of β-elementary tasks. Recall that
in a β-elementary task the number of non-zero request costs is at most β.

Theorem 5. If the adversarial task sequence only consists of β-elementary
tasks then the smoothed competitive ratio of wfa is O(β(Umax/Umin)(Umin/σ +
log(D))).

The proof follows easily from the following lemma, Lemma 6 and Corrollary 1.

Lemma 7. Let τt be a task obtained by smoothing a β-elementary task, where
β < n. Then, E[∆t(s)] ≤ σ + βUmax for each node s ∈ V .



6 Conclusion

In this paper we focused on the asymptotic behaviour of WFA if the request
costs of an adversarial task sequence are perturbed by means of a symmetric
additive smoothing model. We showed that the smoothed competitive ratio of
WFA is much better than its worst case competitive ratio suggests and that it
depends on topological parameters of the underlying graph. Moreover, all our
bounds, except the one for β-elementary tasks, are tight up to constant factors.
We believe that our analysis gives a strong indication that the performance of
WFA in practice is much better than 2n− 1.

An open problem would be to strengthen the universal lower bounds. More-
over, it would be interesting to obtain exact (and not only asymptotic) bounds
on the smoothed competitive ratio of WFA.
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