Algorithmica (2003) 36: 75-88 . B
DOL: 10.1007/500453-002-1008-2 Algorlthmlca

© 2003 Springer-Verlag New York Inc.

A Heuristic for Dijkstra’s Algorithm with Many Targets
and Its Use in Weighted Matching Algorithms!

Holger Bast,? Kurt Mehlhorn,? Guido Schifer,2 and Hisao Tamaki?

Abstract. We consider the single-source many-targets shortest-path (SSMTSP) problem in directed graphs
with non-negative edge weights. A source node s and a target set T is specified and the goal is to compute a
shortest path from s to a node in 7. Our interest in the shortest path problem with many targets stems from
its use in weighted bipartite matching algorithms. A weighted bipartite matching in a graph with n nodes on
each side reduces to n SSMTSP problems, where the number of targets varies between n and 1.

The SSMTSP problem can be solved by Dijkstra’s algorithm. We describe a heuristic that leads to a
significant improvement in running time for the weighted matching problem; in our experiments a speed-up
by up to a factor of 12 was achieved. We also present a partial analysis that gives some theoretical support for
our experimental findings.

Key Words. Single-source shortest-path problem, Dijkstra’s algorithm, Weighted bipartite matching prob-
lem, Assignment problem.

1. Introduction and Statement of Results. A matching in a graph is a subset of the
edges, no two of which share an endpoint. The weighted bipartite matching problem
asks for the computation of a maximum weight matching in an edge-weighted bipartite
graph G = (A U B, E, w) where the cost function w: E — R assigns a real weight
to every edge. The weight of a matching M is simply the sum of the weights of the
edges in the matching, i.e., w(M) =)_,_,, w(e). One may either ask for a perfect
matching of maximal weight (the weighted perfect matching problem or the assignment
problem) or simply for a matching of maximal weight. Both versions of the problem
can be solved by solving n, n = max(|A|[, |B]), single-source many-targets shortest-
path (SSMTSP) problems in a derived graph, see Section 4. We describe and analyze a
heuristic improvement for the SSMTSP problem which leads to a significant speed-up
in LEDA’s weighted bipartite matching implementation, see Table 3.

In the SSMTSP problem we are given a directed graph G = (V, E) whose edges
carry a non-negative cost. We use cost(e) to denote the cost of an edge e € E. We are
also given a source node s. Every node in V is designated as either free or non-free. We
are interested in finding the shortest path from s to a free node.

The SSMTSP problem is easily solved by Dijkstra’s algorithm. Dijkstra’s algorithm
(see Section 2) maintains a tentative distance for each node and a partition of the nodes

! This research was partially supported by the Future and Emerging Technologies programme of the EU under
Contract Number IST-1999-14186 (ALCOM-FT). A preliminary version of this paper appeared at ESA *01.
The third author was funded by the Deutsche Forschungsgemeinschaft (DFG), Graduiertenkolleg Quality
Guarantees for Computer Systems, Department of Computer Science, University of the Saarland, Germany.
2 Max-Planck-Institut fiir Informatik, Stuhlsatzenhausweg 85, 66123 Saarbriicken, Germany. {bast|mehlhorn|
schaefer|tamaki} @mpi-sb.mpg.de.

Received March 23, 2001; revised September 3, 2002. Communicated by H. N. Gabow.
Online publication January 13, 2003.

76 H. Bast, K. Mehlhorn, G. Schiifer, and H. Tamaki

into settled and unsettled. At the beginning all nodes are unsettled. The algorithm operates
in phases. In each phase, the unsettled node with smallest tentative distance is declared
settled and its outgoing edges are relaxed in order to improve tentative distances of other
unsettled nodes. The unsettled nodes are kept in a priority queue. The algorithm can be
stopped once the first free node becomes settled.

We describe a heuristic improvement. The improvement maintains an upper bound
for the tentative distance of free nodes and performs only queue operations with values
smaller than the bound. All other queue operations are suppressed. The heuristic sig-
nificantly reduces the number of queue operations and the running time of the bipartite
matching algorithm, see Tables 2 and 3.

This paper is structured as follows. In Section 2 we discuss Dijkstra’s algorithm
for many targets and describe our heuristic. In Section 3 we give an analysis of the
heuristic for random graphs and report about experiments on random graphs. In Section 4
we discuss the application to weighted bipartite matching algorithms and present our
experimental findings for the matching problem.

The heuristic was first used by the third author in his jump-start routine for the general
weighted matching algorithm [6], [S]. When applied to bipartite graphs, the jump-start
routine computes a maximum weight matching. When we compared the running time
of the jump-start routine with LEDA’s bipartite matching code [4, Section 7.8], we
found that the jump-start routine was consistently faster. We traced the superiority to the
heuristic described in this paper.

The experiments presented in this paper were performed with the Tool Set for Compu-
tational Experiments (see http://explab.sourceforge.net). The tool provides
a simple way to set up, run and analyze experiments. Moreover, it facilitates the docu-
mentation of the environment in which the experiments were run and so the experiments
can be easily reproduced at a later time.

2. Dijkstra’s Algorithm with Many Targets. It is useful to introduce some more
notation. For a node v € V, let d(v) be the shortest path distance from s to v, and let
dyp = min{d(v) ; v is free}. If there is no free node reachable from s, dy = +00. Our
goal is to compute (1) a node vy with d(vy) = dy (or an indication that there is no such
node), (2) the subset V'’ of nodes with d(v) < dy, more precisely, v € V' if d(v) < dy
and d(v) > dy if v ¢ V' and (3) the value d(v) for every node v € {vg} U V', i.e., a
partial function d with d(v) = d(v) for any v € {vo} U V'. (Observe that nodes v with
d(v) = dy may or may not be in V’.) We refer to the problem just described as the
SSMTSP problem. It is easily solved by an adapted version of Dijkstra’s algorithm as
shown in Figure 1.

We maintain a priority queue PQ for the nodes of G. The queue is empty initially.
For each node u € V we compute a tentative distance dist(u) of a shortest path from s
to u. Initially, we set dist(s) to zero and insert the item (s, 0) into the priority queue. For
eachu € V,u # s, we set dist(u) to 400 (no path from s to u has been encountered
yet). In the main loop we delete a node u# with minimal dist-value from the priority
queue. If u is free, we are done: vo = u and V' is the set of nodes removed in preceding
iterations. Otherwise, we relax all edges out of u. Consider an edge e = (u, v) and let
¢ = dist(u) + cost(e). We check whether ¢ is smaller than the current tentative distance

A Heuristic for Dijkstra’s Algorithm 77

DIIKSTRA’S ALGORITHM (ADAPTED VERSION):
dist(s) = 0 and dist(u) = +oo for allu € V,u # s

PQ.insert(s,0) (insert (s,0) into PQ)
while not PQ.empty() do
u = PQ.del_min() (remove node u from PQ with minimal priority)

if u is free then STOP fi
RELAX ALL OUTGOING EDGES OF u
od

RELAX ALL OUTGOING EDGES OF u:
for all e = (u,v) € E do

¢ = dist(u) + cost(e)

if ¢ < dist(v) then

if dist(v) = +o0 (v is not contained in PQ)
then PQ.insert(v,c) (insert (v, c) into PQ)
else PQ.decrease_p(v,c) (decrease priority of v in PQ to c)
fi
dist(v) = ¢
fi

od

Fig. 1. Dijkstra’s algorithm adapted for many targets. When the first free node is removed from the queue,
the algorithm is stopped: vy is the node removed last and V’ consists of all non-free nodes removed from the
queue.

of v. If so, we distinguish two cases: (1) If e is the first edge into v that is relaxed (this
is the case iff dist(v) equals +00) we insert an item (v, c¢) into PQ. (2) Otherwise, we
decrease the priority of v in PQ to c. If a queue operation is performed, we also update
dist(v).

Observe that the SSMTSP problem can alternatively be solved by a single-source
single-target shortest-path computation from s to a target node 7, where all target nodes
in T are contracted to a single target node ¢. The adapted version essentially does the
same but without performing these contractions explicitly.

We next describe a heuristic improvement of the scheme above. Let B be the smallest
dist-value of a free node encountered by the algorithm; B = +o0 initially. We claim that
queue operations PQ.op(-, ¢) with ¢ > B may be skipped without affecting correctness.
This is clear, since the algorithm stops when the first free node is removed from the
queue and since the dist-value of this node is certainly no larger than B. Thus all dist-
values less than d (vy) will be computed correctly. The modified algorithm may output a
different node vy and a different set V’. However, if all distances are pairwise distinct the
same node vy and the same set V' as in the basic algorithm are computed. The pruning
heuristic can conceivably save on queue operations, since fewer insert and decrease
priority operations may be performed. Figure 2 shows the algorithm with the heuristic
added.

Note that the changes which are necessary to incorporate our heuristic into the adapted
version of Dijkstra’s algorithm are trivial and computationally negligible. Moreover, if
the underlying priority queue is stable, i.e., items with the same priority are removed
from the queue in the order of their insertions, then it is clear that the heuristic will never
use more queue operations than the adapted Dijkstra algorithm.

78 H. Bast, K. Mehlhorn, G. Schiifer, and H. Tamaki

DIIKSTRA’S ALGORITHM WITH PRUNING HEURISTIC:
dist(s) = 0 and dist(u) = +ooforallu € Vu # s

B = +00 (initialize upper bound to +o0)
PQ.insert(s,0) (insert (s, 0) into PQ)
while not PQ.empty() do

u = PQ.del_min() (remove node u from PQ with minimal priority)

if u is free then STOP fi
RELAX ALL OUTGOING EDGES OF u
od

RELAX ALL OUTGOING EDGES OF u:
for all e = (u,v) € E do
¢ = dist(u) + cost(e)

if ¢ > B then continue fi (prune edge if bound is exceeded)
if v is free then B = min{c, B} fi (try to improve bound)
if ¢ < dist(v) then
if dist(v) = +o00 (v is not contained in PQ)
then PQ.insert(v,c) (insert (v, c) into PQ)
else PQ.decrease_p(v,c) (decrease priority of v in PQ to c)
fi
dist(v) =c
fi
od

Fig. 2. Dijkstra’s algorithm for many targets with a pruning heuristic. An upper bound B for d (vo) is maintained
and queue operations PQ.op(-, ¢) with ¢ > B are not performed.

3. Analysis. We perform a partial analysis of the basic and the modified version of
Dijkstra’s algorithm for many targets. We use n for the number of nodes, m for the
expected number of edges and f for the expected number of free nodes. We assume
that our graphs are random graphs in the G (n, p) model with p = m/n?, i.e., each of
the n? possible edges is picked independently and uniformly at random with probability
p. We use c to denote pn = m/n. We also assume that a node is free with probability
q = f/n and that edge costs are random reals between 0 and 1. We could alternatively
use the model in which all graphs with m edges are equally likely and in which the
free nodes form a random subset of f nodes. The results would be similar. We are
mainly interested in the case where p = ¢/n for a small constant ¢, say 2 < ¢ < 10,
and ¢ a constant, i.e., the expected number of free nodes is a fixed fraction of the
nodes.

Number of Deletions from the Queue. We first analyze the number of nodes removed
from the queue. If our graph were infinite and all nodes were reachable from s, the
expected number would be 1/g, namely the expected number of trials until the first head
occurs in a sequence of coin tosses with success probability g. However, our graph is finite
(not really a serious difference if 7 is large) and only a subset of the nodes is reachable
from s. Observe that the probability that s has no outgoing edge is (1 — p)* ~ e~¢. This
probability is non-negligible. We proceed in two steps. We first analyze the number of
nodes removed from the queue given the number R of nodes reachable from s and in a
second step review results about the number R of reachable nodes.

A Heuristic for Dijkstra’s Algorithm 79

LEMMA 1. Let R be the number of nodes reachable from s in G and let T be the number
of iterations, i.e., in iteration T the first free node is removed from the queue or there is
no free node reachable from s and T = R. ThenP(T =t | R =r) = (1 — q)''q, for
l1<t<r,andP(T =t | R=r)=(1—q)"}, fort =r. Moreover, for the expected
number of iterations we have E[T | R=r]=1/qg — (1 —¢q)"/q.

PROOF. Since each node is free with probability ¢ = f/n and since the property of
being free is independent from the order in which nodes are removed from the queue,
wehave P(T =t | R=r)= (1 —-¢) 'gandP(T >t | R=7r) = (1 —¢q)"", for
l<t<r.Xt=r,P0T=t|R=r)=10-¢q)'=P(T >t|R=r).

The expected number of iterations is

E[T|R=rl=Y PT>t|R=r= > (1-g)' +(1-¢q) "

t>1 1<t<r
_l-(-¢ 1 _(-gqr 5
I-0-¢q9) ¢ q

The expected number of edges relaxed is cE[(T — 1) | R = r] since T — 1 non-free
nodes are removed from the queue and since the expected out-degree of every node is
¢ = m/n. We conclude that the number of edges relaxed is about ((1/g) — 1)(m/n).

Now, how many nodes are reachable from s ? This quantity is analyzed in Section 10.5
of [2]. Let @ > 0 be such that @ = 1 — exp(—cw), and let R be the number of nodes
reachable from s. Then R is bounded by a constant with probability about 1 — « and is
approximately an with probability about «. More precisely, for every ¢ > 0 and § > O,
there is a 7y such that for all sufficiently large n, we have

l—a—e<PR=<t) <l—a+e¢

and
a—e<P((1—-68an <R < (1+6an) <a-+es.

Table 1 indicates that small values of € and § work even for moderate n. For ¢ = 2, we
have o ~ 0.7968. We generated 10,000 graphs with » = 1000 nodes and 2000 edges and
determined the number of nodes reachable from a given source node s. This number was
either smaller than 15 or larger than 714. The latter case occurred in 7958 ~ « - 10,000
trials. Moreover, the average number of nodes reachable from s in the latter case was
796.5 ~ « - 1000 = an.

We are only interested in the case when many nodes are reachable from s. We fix
6 rather arbitrarily at 0.01 and restrict attention to the set of graphs with more than
(1 — 8)an nodes reachable from s. In this situation, the probability that all reachable
nodes are removed from the queue is

(1 —g)*" < exp(—ang) = exp(—af).

This is less than 1/n2, ifc > 2and f > 41Innsincec > 2impliesa > % We thus require
our parameters to satisfy ¢ > 2 and f > 4Inn and assume that more than (1 — §)an
nodes are reachable from s. We use the phrase “R is large” to refer to this assumption.

80 H. Bast, K. Mehlhorn, G. Schiifer, and H. Tamaki

Table 1. Results of experiments.”

2 5 8 8
o 0.7968 0.9930 0.9997 0.9997
MS 15 2 1 1
ML 714 981 996 1995
R 796.5 993 999.7 1999.3
F 7958 9931 9997 9995

“For all experiments (except the one in the last column) we used random graphs
withn = 1000 nodes and m = cn edges. For the last column we chose n = 2000
in order to illustrate that the dependency on n is weak. The following quantities
are shown; for each value of ¢ we performed 10* trials:

«: the solution of the equation @ = 1 — exp(—cw).

MS: the maximal number of nodes reachable from s when few nodes are

reachable.

ML: the minimal number of nodes reachable from s when many nodes are
reachable.

R: the average number of nodes reachable from s when many nodes are
reachable.

F: the number of times many nodes are reachable from s.

Number of Insertions into the Queue. We next analyze the number of insertions into
the queue, first for the standard scheme, i.e., the basic algorithm of Figure 1.

LEMMA 2. Let IS be the number of insertions into the queue in the standard scheme.
ThenE[IS | T =t and R is large]l > n — (n —)(1 — p)'~! fort < (1 — 8)an and

c(l—gq) (I —=q)c/n

E[IS | R is large] > —
g+ —q)/n g+ 1A —g)c/n

fl—o()~ S —ctl—0(1).
q

PROOF. We need to review some more material from Section 10.5 of [2]. Consider the
following sequence of random variables:?

Yo=1 and Y, =Y,_;+Bin[n —Y;_y, p] for 1<t<n

and let R denote the least ¢ such that Y, = ¢. Then R is the number of reachable nodes as a
simple induction shows: observe that precisely s is reachable before the first removal and
that at the time the ¢th node is removed from the queue, each of the n — Y;_; remaining
(i.e., non-reached) nodes is reached with probability p. Figure 3 illustrates the process.

An inductive argument (see Section 10.5 of [2]) shows Y, = 1+Bin[n—1, 1—(1—p)’]
and hence E[Y;] = n — (n — 1)(1 — p)’ for 0 < ¢t < n. We cannot directly use this
result as we are interested in the process without the dashed edges. Let E, = (Yy >
I A--- A Y1 > t) be the event that there are at least ¢ reachable nodes. Then E(;_s)qn
is tantamount to R is large. Also, E[Y; | R is large] is the expected value of Y, for the

3 Bin [k,p] denotes the Binomial distribution with k trials and success probability p.

A Heuristic for Dijkstra’s Algorithm 81

Ys=n

Fig. 3. The probability of the bold edge is the probability of having two successes in n — 3 Bernoulli trials
with success probability p. We can view the process with and without the dashed edges. The process with
the dashed edges corresponds to the recursive definition of the variables Y; given in the text and the process
without the dashed edges corresponds to graph exploration. In the latter case the process dies as soonas Y; = ¢
(= a box is hit). We are interested in the latter process. The transition probabilities in the latter process differ
in a non-trivial way from the transition probabilities in the original process.

process without the dashed edges. The following claim that the event R is large (= the
exclusion of the dashed edges) biases Y; towards larger values is intuitively plausible,
but not at all trivial to prove.

PROPOSITION 1. Fort < (1 — §)an we have

ElY; | Rislarge] > E[Y;]=n— (n — 1)(1 — p)’.

PROOF. Let N = (1 —§)an.Recall that Yy = 1,and Y, = Y, + Bin[n — Y,_;, p] for
1 <t < n.Itis convenient to view the underlying probability space €2 as {0, 1}"*, where
entries are independently 1 with probability p. An elementary eventis w = (wy, ..., ®,)
where w; € {0, 1} and Y; (w) — Y;_; () is the number of ones among the firstn —Y;_{ (w)
entries of w;.

Let EbetheeventY; > i + 1for0 <i < N (=the event “R is large”) and let A be
the event Y; > a for some arbitrary ¢ and a. Both events are monotone increasing, i.e.,
if @ is componentwise less than or equal to ', then w € E implies ' € E and w € A
implies " € A. Thus (by Theorem 3.2 in Chapter 6 of [2])

P(AAE)>P(A)-P(E) or P(Y;, >a| Rislarge) > P(Y, > a).
Thus

E[Y; | R is large] > E[Y,]. O

We can now derive our bound on the number of insertions. Let 7 be the number of
removals from the queue. Then

E[IS | R is large]
=E[IS|T < (1 —8)an and R is large]P(T < (1 — 8)an | R is large)
+E[IS| T > (1 —8)an and R is large]P(T > (1 — §)an | R is large).

82 H. Bast, K. Mehlhorn, G. Schiifer, and H. Tamaki

If R is large, the probability that we have more than (1 — §)an removals from the queue
is O(1/n?). Thus

E[IS| Rislarge] > E[IS| T < (1 — §)an and R is large](1 — o(n=?)
E[IS|T < (1 —d)an and R is large] — o(1).

\%

If Rislarge and T < (1 — 8)an, the procedure stops when the first free node is reached
(and not because it runs out of edges). The number of insertions into the queue equals
the number of nodes which are reached until the first free node is removed from the
queue. Thus for r < (1 — §)an, we obtain (recall that the outgoing edges of the free node
removed are not relaxed)

E[IS|T =tand Rislarge] >n— (n — 1)(1 — p) L
Thus

E[IS | R is large]

(1=8)an

> Z E[IS|T =t and R is large]P(T =t | R is large) — o(1)
=1
=Y (r—(=DU=p U - g —0()
t>1
=n—qgn—1)) (1-¢) (1—p) —o(l)
>0
=n—qgn-—1) ! —o(1)
- I—(1-pld-g9
—n—1—--D—T 1o
p+q—rq
—m-n—L=PL o)
p+q—rpq
__ =g (A =g)/n 1 —o(l)
g+ —=q)/n g+ —-q)/n
~S _cr1-o0). O
q

The final approximation is valid if ¢/n « g. The approximation makes sense intu-
itively: By Lemma 1, we relax the edges out of 1/¢ — 1 nodes and hence relax about
¢ times as many edges. There is hardly any sharing of targets between these edges, if
n is large (and c is small). We conclude that the number of insertions into the queue is
c/qg —c+ 1.

Observe that the standard scheme makes about ¢/q insertions into but only 1/g
removals from the queue. This is where the refined scheme, i.e., the modified algorithm
of Figure 2, saves.

A Heuristic for Dijkstra’s Algorithm 83
Number of Nodes Inserted but Never Removed

LEMMA 3. Let INRS be the number of nodes which are Inserted into the queue but
Never Removed in the Standard scheme. Then, by the above,

. c 1 c—1
E[INRS | Rislargel~ — —c+1— — = .
q q q

The standard scheme also performs some decrease_ p operations on the nodes inserted
but never removed. This number is small since the expected number of incoming edges
per node is ¢, which we assumed to be a small constant. Observe that the expected
number of insertions is basically the same as the expected number of edge relaxations.

We turn to the refined scheme. We have three kinds of savings:

e Nodes that are removed from the queue may incur fewer queue operations because
they are inserted later or because some distance decreases do not lead to a queue
operation. This saving is small since the number of distance decreases is small (recall
that only few incoming edges per node are scanned).

e Nodes that are never removed from the queue in the standard scheme are not inserted
in the refined scheme. This saving is significant and we estimate it below.

e Nodes that are never removed from the queue in the standard scheme are inserted in the
refined scheme but fewer decreases of their distance labels lead to a queue operation.
This saving is small for the same reason as in the first item.

We concentrate on the set of nodes that are inserted into but never removed from the
queue in the standard scheme. How many of these INRS insertions are also performed
in the refined scheme? We use INRR to denote their number.

LEMMA 4. Let INRR denote the number of insertions which are also performed in the
refined scheme. Then

E[INRR | R is large] < — - (1 +1n(c — 1)).

Q| =

PROOF. We first compute the expectation of INRR conditional on an arbitrary fixing of
the edges of the graph and of the nodes removed from the queue by the standard scheme.
More precisely, what is fixed in this event is the edges of the graph, the sequence of
vertices removed from the queue, their distance labels and whether they are free or not.

Then what is still random in this conditional probability space? It is the weights of
the edges going from a vertex removed from the queue to a vertex that is (thus inserted
but) not removed from the queue, and it is whether the vertices these edges are going to
are free or not. Still random are, of course, the weights of all edges with neither vertex
looked at by the standard scheme, and whether these vertices are free or not.

Lete; = (u1, vy), ..., e = (uy, vy) be the edges going from a vertex removed from
the queue to a vertex that is inserted but not removed from the queue, in the order in
which they are relaxed, that is, d(u4;) < d(u;4+1), fori = 1,...,1 — 1. Note that the
sequence uy, ..., i; may contain repetitions of the same node, corresponding to edges
relaxed from the same node, whereas the vy, ..., v; are all different.

84 H. Bast, K. Mehlhorn, G. Schiifer, and H. Tamaki

The key observation is that in the conditional probability space the edge weights
w(ey), ..., w(e) are still independent, and the distance label d (u;) + w(e;) with which
v; isinserted into the queue is uniformly from [d (u;), d (u;)+1]. This is because the fixing
of the nodes removed from the queue by the standard scheme implies thatd (u;) +w(e;) >
d(u;) but reveals nothing else about the value of d(u;) + w(e;).

In the refined scheme e; leads to an insertion only if d(u;) + w(e;) is smaller than
d(u;) + w(e;) for every free v; with j < i. The probability for this event is at most
1/(k + 1), where k is the number of free v; preceding v;. The probability would be
exactly 1/(k + 1) if the values d (uy,) +w(ey), 1 < h < i, were all contained in the same
interval. Since the upper bound of the interval containing d(u;) + w(ey,) increases with
h, the probability is at most 1/(k + 1).

‘We thus obtain that, for any event E; that fixes the edges of the graph and a sequence
of [nodes removed by the standard scheme,

1 A 1
E[INRR | E] < Y Y (l L)qk(l—q)"“km

1<i<l 0<k<i

_ 1 i k+1,q _ Ni—(k+1)
=) Z<k+1)q (1-9)

1<i<t Y o<k<i

-y (;) "1 -

(<i<i 4 (<k=<i

=y La—a-gh,

I<i<l

where the first equality follows from

i—1\ 1 1 i
k Jk+1 i\k+1)"

The final formula can also be interpreted intuitively. There are about ig free nodes
preceding v; and hence v; is inserted with probability about 1/(ig).

In order to estimate the final sum we split the sum at a yet to be determined index i.
Fori < iy, we estimate (1 — (1 — ¢)") < ig, and for i > iy, we use (1 — (1 —g)") < 1.
We obtain

1 1 1.1
E[INRR|E1]§ZO+—ZTmOJr—ln.—.
qg

ip<i<l

For iy = 1/¢ (which minimizes the final expression*) we have

E[INRR | E/] < — - (1 + In(g)).

Q| =

4 Take the derivative with respect to ig - - - .

A Heuristic for Dijkstra’s Algorithm 85

Now of all the parameters that constitute E;, this upper bound depends solely on /,
the number of nodes removed by the standard scheme, so that we may conclude

E[INRR | INRS = and R is large] < — - (1 4+ In(lg)).

| =

Since In(/g) is a convex function of / (its first derivative is positive and its second
derivative is negative), we obtain an upper bound on the expectation of INRR conditioned
on R being large, if we replace INRS by its expectation. We obtain

E[INRR | R is large]

IA

- (1 + In(gE[INRS | R is large]))

(1en(e57)) =
(1+In{g—— = — - +1In(c —1)). O
q q

Number of Saved Queue Operations. We can now finally lower bound the number S
of queue operations saved by the refined scheme.

%

R = Q=

THEOREM 1. Let S denote the number of queue operations saved by the refined scheme.
Then

2 +1In(c — 1
Em|Rism@4;i5(1—-étfgé—l>.
q

c

That is, if the refined scheme is used to solve the SSMTSP problem on random graphs
drawn from the G (n, p) model, with p = c¢/n and ¢ = m/n, then we are guaranteed to
save at least the fraction 1 — (2 + In(c — 1))/c of the queue operations performed by
the standard scheme.

PROOF. By the above the saving is at least INRS — INRR. Thus
. c—1 1 c
E[S|Rislarge] > —— — —(1+In(c—1)) = — (1
q q q

2+m@—n) 5
C

For example, if c = 8, we will save at least a fraction of 1 — (2+1In7)/8 ~ 0.51 of the
queue operations. The actual savings are higher, see Table 2. Also, there are substantial
savings even if the assumption of R being large does not hold (e.g., for ¢ = 2 and
q = 0.02).

Itis interesting to observe how our randomness assumptions were used in the argument
above. G is a random graph and hence the number of nodes reachable from s is either
bounded or very large. The fact that a node is free with fixed probability gives us the
distribution of the number of deletions from the queue. In order to estimate the savings
resulting from the refined scheme we use that every node has the same chance of being
free and that edge weights are random. For this part of the argument we do not need our
graph to be random.

86 H. Bast, K. Mehlhorn, G. Schifer, and H. Tamaki

Table 2. Results of experiments.?

2 2 2 5 5 5 8 8 8 8
q 0.02 0.06 0.18 0.02 0.06 0.18 0.02 0.06 0.18 0.18
D 49.60 16.40 5.51 4933 16.72 5.50 50.22 16.79 5.61 5.53
D* 50.00 16.67 5.56 50.00 16.67 5.56 50.00 16.67 5.56 5.56
IS 90.01 3140 1041 19520 73.71 2298 281.30 11290 36.45 36.52
IS* 90.16 3135 10.02 197.60 73.57 2325 28230 11230 36.13 36.77

INRS 4041 15.00 4.89 14580 5699 1749 231.00 96.07 30.85 30.99
INRS* 40.16 14.68 446 147.60 5690 17.69 232.30 95.60 30.57 31.22
INRR 11.00 4.00 1.00 35.00 12.00 4.00 51.00 18.00 5.00 5.00
INRR* 39.05 14.56 434 10410 37.13 11.99 126.80 4578 15.03 15.15

DPq 1.42 0.19 0.02 13.78 1.90 0.19 36.55 5.28 0.56 0.28
DP; 0.71 0.09 0.01 2.63 0.31 0.03 4.60 0.50 0.05 0.03
Qs 140.00 4698 1494 25730 9133 27.67 367.00 13390 41.62 41.34
Or 11040 36.12 11.52 13450 4533 1397 154.40 50.85 16.00 15.77
N 29.58 10.86 342 12280 46.00 13.69 212.70 83.08 25.62 25.57
S* 1.12 0.13 0.12 4347 19.77 5770 105.50 49.82 1554 16.07
P 21.12 23.11 22.87 47.74 5037 49.50 57.94 62.03 61.55 61.85

“For all experiments (except the one in the last column) we used random graphs with n = 1000 nodes and m = cn edges.
For the last column we chose n = 2000 in order to illustrate that the dependency on n is weak. Nodes were free with
probability g. The following quantities are shown; for each value of ¢ and ¢ we performed 10* trials. Trials where only a
small number of nodes were reachable from s were ignored, i.e., about (1 — &) - 10# trials were ignored.

D: the number of deletions from the queue.

D* =1/q(1 — (1 — g)*"): the predicted number of deletions from the queue.

1S: the number of insertions into the queue in the standard scheme.

IS*=c(l1—¢q)/(g+ (1 —q)c/n) — (1 —q)c/n)/(q + (1 — q)c/n) + 1: the predicted number of insertions into the
queue.

INRS: the number of nodes inserted but never removed.

INRS* = IS* — D*: the predicted number.

INRR: the number of extra nodes inserted by the refined scheme.

INRR* = 1/q - (1 + In(¢g N*)): the predicted number.

DPys: the number of decrease priority operations in the standard scheme.

DP;: the number of decrease priority operations in the refined scheme.

Qs the total number of queue operations in the standard scheme.

Qy: the total number of queue operations in the refined scheme.

S = Qs — QOr: the number of saved queue operations.

S*: the lower bound on the number of saved queue operations.

P = §/Qs: the percentage of queue operations saved.

4. Bipartite Matching Problems. Both versions of the weighted bipartite matching
problem, i.e., the assignment problem and the maximum weight matching problem, can
be reduced to solving n,n = max(|A|, | B]), SSMTSP problems; we discuss the reduction
for the assignment problem.

A popular algorithm for the assignment problem follows the primal dual paradigm
[1, Section 12.4], [4, Section 7.8], [3]. The algorithm constructs a perfect matching and
a dual solution simultaneously. A dual solution is simply a function 7: V — R that
assigns areal potential to every node. We use V to denote AU B. The algorithm maintains
a matching M and a potential function 7z with the property that

(a) w(e) < m(a)+ m(b) for every edge e = (a, b),

A Heuristic for Dijkstra’s Algorithm 87

(b) w(e) = m(a)+ m(b) for every edge e = (a, b) € M and
(c) m(b) = 0 for every free’ node b € B.

Initially, M = @, w(a) = max,cg w(e) for every a € A and 7w (b) = 0 for every b € B.
The algorithm stops when M is a perfect matching® or when it discovers that there is no
perfect matching. The algorithm works in phases. In each phase the size of the matching
is increased by one (or it is determined that there is no perfect matching).

A phase consists of the search for an augmenting path of minimum reduced cost. An
augmenting path is a path starting at a free node in A, ending at a free node in B and
using alternately edges not in M and in M. The reduced cost of an edge e = (a, b) is
defined as (¢) = 7 (a) + 7(b) — w(e); observe that edges in M have reduced cost zero
and that all edges have non-negative reduced cost. The reduced cost of a path is simply
the sum of the reduced costs of the edges contained in it. There is no need to search for
augmenting paths from all free nodes in A; it suffices to search for augmenting paths
from a single arbitrarily chosen free node ay € A.

If no augmenting path starting in ag exists, there is no perfect matching in G and the
algorithm stops. Otherwise, for every v € V, let d(v) be the minimal reduced cost of
an alternating path from ag to v. Let by € B be a free node in B which minimizes d(b)
among all free nodes b in B. We update the potential function according to the rules (we
use 7’ to denote the new potential function):

(d) 7’(a) = w(a) — max(d(by) — d(a),0) foralla € A,
(e) 7/ (b) = (b) + max(d(by) — d(b),0) forall b € B.

It is easy to see that this change maintains (a)—(c) and that all edges on the least cost
alternating path p from ay to by become tight.” We complete the phase by switching
the edges on p: matching edges on p become non-matching and non-matching edges
become matching edges. This increases the size of the matching by one.?

A phase is tantamount to an SSMTSP problem: ay is the source and the free nodes
are the targets. We want to determine a target (= free node) by with minimal distance
from aq and the distance values of all nodes v with d(v) < d(by). For nodes v with
d(v) > d(by), there is no need to know the exact distance. It suffices to know that the
distance is at least d (by).

Table 3 shows the effect of the pruning heuristic for the bipartite matching algorithm.
(The improved code will be part of LEDA Version 4.3.)

5 A node is free if no edge in M is incident to it.

6 It is easy to see that M has maximal weight among all perfect matchings. Observe that if M’ is any perfect
matching and 7 is any potential function such that (a) holds, then w(M’) < X ,cym(v). If (b) also holds, we
have a pair (M’,) with equality and hence the matching has maximal weight (and the node potential has
minimal weight among all potentials satisfying (a)).

7 An edge is called tight if its reduced cost is zero.

8 The correctness of the algorithm can be seen as follows. The algorithm maintains properties (a)—(c) and
hence the current matching M is optimal in the following sense. Let A,, be the nodes in A that are matched.
Then M is a maximal weight matching among the matchings that match the nodes in A,, and leave the nodes
in A\ A,, unmatched. Indeed, if M’ is any such matching, then w(M’) < X ca,, 7(a) + Xpepm(h) = w(M),
where the inequality follows from (a) and (c) and the equality follows from (b) and (c).

88

H. Bast, K. Mehlhorn, G. Schifer, and H. Tamaki

Table 3. Effect of the pruning heuristic.*

c LEDA MS c LEDA MS c LEDA MS
Unit Weights
10,000 2 0.60 0.47 5 42.51 10.80 8 93.07 8.21
20,000 2 1.32 1.03 5 152.82 39.31 8 336.24 28.20
40,000 2 2.94 2.33 5 550.54 138.88 8 1255.05 97.97
Random Weights [1 - - - 1000]
10,000 2 0.57 0.50 5 2.33 1.41 8 11.22 4.87
20,000 2 1.20 1.05 5 5.25 3.14 8 25.41 10.79
40,000 2 2.63 2.31 5 11.09 6.80 8 56.00 23.63
Random Weights [1000 - - - 1005]
10,000 2 0.66 0.57 5 11.42 7.02 8 20.13 11.00
20,000 2 1.39 1.22 5 36.56 22.69 8 59.36 31.59
40,000 2 3.07 2.71 5 112.05 68.29 8 181.85 99.17

“LEDA stands for LEDA’s bipartite matching algorithm (up to version LEDA-4.2) as described in Section 7.8 of [4] and MS
stands for a modified implementation with the pruning heuristic. We created random graphs with n nodes on each side and
each edge is present with probability p = ¢/n. The running time is stated in CPU seconds and is an average of 10 trials.

Acknowledgements. The authors thank an anonymous referee for several helpful com-
ments and questions. The questions revealed an error in the preliminary version of the

paper.

(1]
[2]
[3]
[4]

[5]

[6]

References

R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows. Prentice-Hall, Englewood Cliffs, NJ, 1993.
N. Alon and J. H. Spencer. The Probabilistic Method. Wiley, New York, 1992.

Z. Galil. Efficient algorithms for finding maximum matching in graphs. ACM Computing Surveys, 18(1)
(1986), 23-37.

K. Mehlhorn and S. Néher. The LEDA Platform for Combinatorial and Geometric Computing. Cambridge
University Press, Cambridge, 1999.

K. Mehlhorn and G. Schifer. Implementation of O (nmlogn) weighted matchings in general graphs. The
power of data structures. In Proceedings of the 4th International Workshop on Algorithm Engineering
(WAE ’00). Lecture Notes in Computer Science 1982, pp. 23-38. Springer-Verlag, Berlin, 2001.

G. Schifer. Weighted Matchings in General Graphs. Master’s Thesis, Fachbereich Informatik, Universitit
des Saarlandes, Saarbriicken, 2000.

