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Overview

In this project:
Work for you:

3 exercise classes

Classes right after the lectures (with a 1 hour lunch break in
between)
Hand in exercises the next day before 17:00 h

1 final assignment

Presentations on 22 January
You may work in pairs

Grading: pass/fail
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Historical context

∼ 1900 - 1930: formalising mathematics
Hilbert: Wir müssen wissen, wir werden wissen

1931: Gödel’s incompleteness theorems

1935 - 1936: Entscheidungsproblem solved by Church and
Turing

Methods similar to Gödel
Needed to formalise ’computation’ (Church - Turing Thesis)
Turing’s solution: Turing machines.

From this concept, modern computers were developed.
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Alan Turing 1912 - 1954

Founder of Computer Science and
Artificial Intelligence

Turing Test

Cracked the Enigma Code

Died a tragic death
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A Theoretical Model for a Computer

Turing Machines are:

Easy to understand

As powerful as any other computer

Therefore they are used to:

Find limits of computability

Analyse algorithms: how long does a
computation take?
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Turing Machines

0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1
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Turing Machines

inputtape 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1

worktape 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

worktape 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

outputtape 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Input: x
Output: M(x)
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Programming a Turing Machine

A Turing Machine needs instructions: write what? move where?
These instructions depend on what the TM reads, and on its
internal state. Notice: also need instruction: next state?

Suppose I want a TM changes the first two 1’s it encounters to a
0, and then stops.
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TM: formal mathematical definition

A Turing Machine is a tuple < Γ,Q, δ >, consisting of:

Γ, the set of symbols allowed on the tape: the alphabet.

Q, the set of states, including an initial state S and a final
state HALT

δ : Q × Γ→ Γ× {L,R,−} × Q, the transition function,
defining which symbol to write, where to move and which is
the next state, depending on the current state and the symbol
being read.

One step of a Turing Machine is one execution of the transition
function.
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Turing Machines example: counting

Let Γ = {0, 1, blank}, Q = {S , 1, 2, halt}, and δ defined by:

State? read? write: move: next state:

state S blank blank L 1
0 0 R 0
1 1 R 0

state 1 blank 1 R 2
0 1 L 2
1 0 L 1

state 2 blank blank R halt
0 0 L 2
1 1 L 2
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Movie of a working Turing Machine
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Complexity classes

Catalog problems according to ’how hard they are to solve’.

Formalise ‘solving a problem’:

Find an algorithm that decides for all relevant x whether x ∈ L
Note: usually, L ⊆ {0, 1}∗

Example: Which words are palindromes?
→ x ∈ {Palindromes}? (x = ’radar’, ’mandarin’, ... )

Find algorithm: build a TM M such that:

x ∈ L ⇐⇒ M(x) = 1

x /∈ L ⇐⇒ M(x) = 0
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Complexity classes

Catalog problems according to ’how hard they are to solve’.

Formalise ‘hardness’:

Time/Space/Communication/. . . needed, as funtion of the input
length.

Time: number of steps TM takes to compute output.
Space: number of cells of working tape TM needs to compute
output.

Note: Complexity of a problem is independent of the model of TM
(Exercise!)
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P: Polynomial Time

Complexity Class P

All problems that are solved in polynomial time.

Complexity Class P:
L ∈ P if and only if:
∃c ∈ N and a TM M such that for all x :

M halts on input x within |x |c steps.

x ∈ L ⇐⇒ M(x) = 1

x /∈ L ⇐⇒ M(x) = 0
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P: example

Is x a palindrome?
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NP: Nondeterministic Polynomial Time

Complexity Class NP

All problems verifiable in polynomial time.

Complexity Class NP:
L ∈ NP if and only if:
∃c1, c2 ∈ N and a TM M such that for all x there is a witness y
such that:

|y | < |x |c1

M halts on input x , y within |x |c2 steps.

x ∈ L ⇐⇒ M(x , y) = 1

x /∈ L ⇐⇒ M(x , y) = 0
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NP: example

SAT: Satisfiability of a boolean formula
Is there an assignment of True and False to the variables in a
formula, such that the formula evaluates to True?

Input: a boolean formula φ in standard form
(x1 ∨ ¬x2) ∧ (¬x1 ∨ x2 ∨ x3)
(x1 ∨ ¬x2) ∧ (¬x1 ∨ x2 ∨ x3) ∧ ¬x1 ∧ (x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ x3)
Time to compute solution: ∼ 2|φ|

Exponential!

Witness: an assignment to the variables.
Time to check assignment: ∼ |φ|
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P vs NP

Clearly P ⊆ NP
Open problem: P = NP?

General consensus: no.
We will use this later on!

Fun Facts:

Solving the P vs NP problem wins you a million dollars!

If P = NP ... could be a problem:

Digital security collapses
Mathematicians would be out of work

But, as Donald Knuth1 reassures us: A proof of P = NP will
almost certainly be non-constructive, so no worries there :)

1
Knuth, Donald E. (May 20, 2014). ”Twenty Questions for Donald Knuth”. informit.com.
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