Zero Knowledge Proofs
 MoL Research Project

Maaike Zwart \& Suzanne van Wijk January 2015

Overview

In this project:
Lectures:

- Complexity Theory
- Turing Machines
- Classes P and NP
- Interactive proofs
- Zero Knowledge Proofs
- ZK proofs, intuitive
- ZK proofs
- ZK proofs for NP problems
- Commitment scemes

Overview

In this project:
Lectures:

- Complexity Theory
- Turing Machines
- Classes P and NP
- Interactive proofs
- Zero Knowledge Proofs
- ZK proofs, intuitive
- ZK proofs
- ZK proofs for NP problems
- Commitment scemes

Overview

In this project:
Lectures:

- Complexity Theory
- Turing Machines
- Classes P and NP
- Interactive proofs
- Zero Knowledge Proofs
- ZK proofs, intuitive
- ZK proofs
- ZK proofs for NP problems
- Commitment scemes

Overview

In this project:
Lectures:

- Complexity Theory
- Turing Machines
- Classes P and NP
- Interactive proofs
- Zero Knowledge Proofs
- ZK proofs, intuitive
- ZK proofs
- ZK proofs for NP problems
- Commitment scemes

Overview

In this project:
Lectures:

- Complexity Theory
- Turing Machines
- Classes P and NP
- Interactive proofs
- Zero Knowledge Proofs
- ZK proofs, intuitive
- ZK proofs
- ZK proofs for NP problems
- Commitment scemes

Overview

In this project:
Work for you:

- 3 exercise classes
- Classes right after the lectures (with a 1 hour lunch break in between)
- Hand in exercises the next day before 17:00 h
- 1 final assignment
- Presentations on 22 January
- You may work in pairs
- Grading: pass/fail

Historical context

- ~ 1900-1930: formalising mathematics

Hilbert: Wir müssen wissen, wir werden wissen

- 1931: Gödel's incompleteness theorems
- 1935-1936: Entscheidungsproblem solved by Church and Turing
- Methods similar to Gödel
- Needed to formalise 'computation' (Church - Turing Thesis)
- Turing's solution: Turing machines.
- From this concept, modern computers were developed.

Alan Turing 1912-1954

- Founder of Computer Science and Artificial Intelligence
- Turing Test
- Cracked the Enigma Code
- Died a tragic death

A Theoretical Model for a Computer

A Theoretical Model for a Computer

Turing Machines are:

- Easy to understand
- As powerful as any other computer

A Theoretical Model for a Computer

Turing Machines are:

- Easy to understand
- As powerful as any other computer

Therefore they are used to:

- Find limits of computability
- Analyse algorithms: how long does a computation take?

Turing Machines

Turing Machines

	0	0	0	0	0	0	1	0	0	1	1	1	0	0	0	1	0	1

Turing Machines

	0	0	0	0	0	0	1	0	0	1	1	1	0	0	0	1	0	1

Turing Machines

Turing Machines

Turing Machines

Turing Machines

	0	0	0	0	0	0	1	0	0	1	0	1	0	0	0	1	0	1

Turing Machines

	0	0	0	0	0	0	1	0	0	1	0	1	0	0	0	1	0	1

Turing Machines

	0	0	0	0	0	0	1	0	0	1	0	1	0	0	0	1	0	1
	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0

Turing Machines

	0	0	0	0	0	0	1	0	0	1	0	1	0	0	0	1	0	1
	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0

Turing Machines

	0	0	0	0	0	0	1	0	0	1	0	1	0	0	0	1	0	1
	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Turing Machines

inputtape	0	0	0	0	0	0	1	0	0	1	0	1	0	0	0
worktape	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
worktape	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
outputtape	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Input: x
Output: $\mathrm{M}(\mathrm{x})$

Programming a Turing Machine

A Turing Machine needs instructions: write what? move where?
These instructions depend on what the TM reads, and on its internal state. Notice: also need instruction: next state?

Suppose I want a TM changes the first two 1's it encounters to a 0 , and then stops.

Programming a Turing Machine

A Turing Machine needs instructions: write what? move where?
These instructions depend on what the TM reads, and on its internal state. Notice: also need instruction: next state?

Suppose I want a TM changes the first two 1's it encounters to a 0 , and then stops.

Programming a Turing Machine

A Turing Machine needs instructions: write what? move where?
These instructions depend on what the TM reads, and on its internal state. Notice: also need instruction: next state?

Suppose I want a TM changes the first two 1's it encounters to a 0 , and then stops.

Programming a Turing Machine

A Turing Machine needs instructions: write what? move where?
These instructions depend on what the TM reads, and on its internal state. Notice: also need instruction: next state?

Suppose I want a TM changes the first two 1's it encounters to a 0 , and then stops.

Programming a Turing Machine

A Turing Machine needs instructions: write what? move where?
These instructions depend on what the TM reads, and on its internal state. Notice: also need instruction: next state?

Suppose I want a TM changes the first two 1's it encounters to a 0 , and then stops.

Programming a Turing Machine

A Turing Machine needs instructions: write what? move where?
These instructions depend on what the TM reads, and on its internal state. Notice: also need instruction: next state?

Suppose I want a TM changes the first two 1's it encounters to a 0 , and then stops.

Programming a Turing Machine

A Turing Machine needs instructions: write what? move where? These instructions depend on what the TM reads, and on its internal state. Notice: also need instruction: next state?

Suppose I want a TM changes the first two 1's it encounters to a 0 , and then stops.

Programming a Turing Machine

A Turing Machine needs instructions: write what? move where? These instructions depend on what the TM reads, and on its internal state. Notice: also need instruction: next state?

Suppose I want a TM changes the first two 1's it encounters to a 0 , and then stops.

TM: formal mathematical definition

A Turing Machine is a tuple $<\Gamma, Q, \delta>$, consisting of:

TM: formal mathematical definition

A Turing Machine is a tuple $\langle\Gamma, Q, \delta>$, consisting of:

- Γ, the set of symbols allowed on the tape: the alphabet.

TM: formal mathematical definition

A Turing Machine is a tuple $\langle\Gamma, Q, \delta>$, consisting of:

- Γ, the set of symbols allowed on the tape: the alphabet.
- Q, the set of states, including an initial state S and a final state HALT

TM: formal mathematical definition

A Turing Machine is a tuple $\langle\Gamma, Q, \delta>$, consisting of:

- Γ, the set of symbols allowed on the tape: the alphabet.
- Q, the set of states, including an initial state S and a final state HALT
- $\delta: Q \times \Gamma \rightarrow \Gamma \times\{L, R,-\} \times Q$, the transition function, defining which symbol to write, where to move and which is the next state, depending on the current state and the symbol being read.
One step of a Turing Machine is one execution of the transition function.

TM: formal mathematical definition

A Turing Machine is a tuple $\langle\Gamma, Q, \delta>$, consisting of:

- Γ, the set of symbols allowed on the tape: the alphabet.
- Q, the set of states, including an initial state S and a final state HALT
- $\delta: Q \times \Gamma^{k} \rightarrow \Gamma^{k} \times\{L, R,-\}^{k} \times Q$, the transition function, defining which symbol to write, where to move and which is the next state, depending on the current state and the symbol being read.
One step of a Turing Machine is one execution of the transition function.

Turing Machines example: counting

Let $\Gamma=\{0,1$, blank $\}, Q=\{S, 1,2$, halt $\}$, and δ defined by:

State?	read?	write:	move:	next state:
state S	blank	blank	L	1
	0	0	R	0
	1	1	R	0
state 1	blank	1	R	2
	0	1	L	2
	1	0	L	1
	blank	blank	R	halt
	0	0	L	2
	1	1	L	2

Movie of a working Turing Machine

Complexity classes

Catalog problems according to 'how hard they are to solve'.

Complexity classes

Catalog problems according to 'how hard they are to solve'.

Formalise 'solving a problem':

Complexity classes

Catalog problems according to 'how hard they are to solve'.

Formalise 'solving a problem':
Find an algorithm that decides for all relevant x whether $x \in L$ Note: usually, $L \subseteq\{0,1\}^{*}$

Complexity classes

Catalog problems according to 'how hard they are to solve'.

Formalise 'solving a problem':
Find an algorithm that decides for all relevant x whether $x \in L$ Note: usually, $L \subseteq\{0,1\}^{*}$

Example: Which words are palindromes?

Complexity classes

Catalog problems according to 'how hard they are to solve'.

Formalise 'solving a problem':
Find an algorithm that decides for all relevant x whether $x \in L$ Note: usually, $L \subseteq\{0,1\}^{*}$

Example: Which words are palindromes?
$\rightarrow \quad x \in\{$ Palindromes $\} ?(x=$ 'radar', 'mandarin',..)

Complexity classes

Catalog problems according to 'how hard they are to solve'.

Formalise 'solving a problem':
Find an algorithm that decides for all relevant x whether $x \in L$
Note: usually, $L \subseteq\{0,1\}^{*}$
Example: Which words are palindromes?
$\rightarrow \quad x \in\{$ Palindromes $\} ?(x=$ 'radar', 'mandarin',..)
Find algorithm: build a TM M such that:

- $x \in L \Longleftrightarrow M(x)=1$
- $x \notin L \Longleftrightarrow M(x)=0$

Complexity classes

Catalog problems according to 'how hard they are to solve'.

Formalise 'hardness':

Complexity classes

Catalog problems according to 'how hard they are to solve'.

Formalise 'hardness':
Time/Space/Communication/... needed, as funtion of the input length.

Complexity classes

Catalog problems according to 'how hard they are to solve'.

Formalise 'hardness':
Time/Space/Communication/... needed, as funtion of the input length.

Time: number of steps TM takes to compute output. Space: number of cells of working tape TM needs to compute output.

Complexity classes

Catalog problems according to 'how hard they are to solve'.

Formalise 'hardness':
Time/Space/Communication/... needed, as funtion of the input length.

Time: number of steps TM takes to compute output. Space: number of cells of working tape TM needs to compute output.

Note: Complexity of a problem is independent of the model of TM (Exercise!)

P: Polynomial Time

Complexity Class P
All problems that are solved in polynomial time.

P: Polynomial Time

Complexity Class P

All problems that are solved in polynomial time.

Complexity Class P :
$L \in P$ if and only if: $\exists c \in \mathbb{N}$ and a TM M such that for all x :

- M halts on input x within $|x|^{c}$ steps.

P: Polynomial Time

Complexity Class P

All problems that are solved in polynomial time.

Complexity Class P :
$L \in P$ if and only if:
$\exists c \in \mathbb{N}$ and a TM M such that for all x :

- M halts on input x within $|x|^{c}$ steps.
- $x \in L \Longleftrightarrow M(x)=1$
- $x \notin L \Longleftrightarrow M(x)=0$

P: example

Is x a palindrome?

NP: Nondeterministic Polynomial Time

Complexity Class NP

All problems verifiable in polynomial time.

NP: Nondeterministic Polynomial Time

Complexity Class NP

All problems verifiable in polynomial time.
Complexity Class NP:
$L \in N P$ if and only if:
$\exists c_{1}, c_{2} \in \mathbb{N}$ and a TM M such that for all x there is a witness y such that:

NP: Nondeterministic Polynomial Time

Complexity Class NP

All problems verifiable in polynomial time.
Complexity Class NP:
$L \in N P$ if and only if:
$\exists c_{1}, c_{2} \in \mathbb{N}$ and a TM M such that for all x there is a witness y such that:

- $|y|<|x|^{c_{1}}$

NP: Nondeterministic Polynomial Time

Complexity Class NP

All problems verifiable in polynomial time.
Complexity Class NP:
$L \in N P$ if and only if:
$\exists c_{1}, c_{2} \in \mathbb{N}$ and a TM M such that for all x there is a witness y such that:

- $|y|<|x|^{c_{1}}$
- M halts on input x, y within $|x|^{c_{2}}$ steps.

NP: Nondeterministic Polynomial Time

Complexity Class NP

All problems verifiable in polynomial time.
Complexity Class NP:
$L \in N P$ if and only if:
$\exists c_{1}, c_{2} \in \mathbb{N}$ and a TM M such that for all x there is a witness y such that:

- $|y|<|x|^{c_{1}}$
- M halts on input x, y within $|x|^{c_{2}}$ steps.
- $x \in L \Longleftrightarrow M(x, y)=1$
- $x \notin L \Longleftrightarrow M(x, y)=0$

NP: example

SAT: Satisfiability of a boolean formula Is there an assignment of True and False to the variables in a formula, such that the formula evaluates to True?

NP: example

SAT: Satisfiability of a boolean formula Is there an assignment of True and False to the variables in a formula, such that the formula evaluates to True?

Input: a boolean formula ϕ in standard form

NP: example

SAT: Satisfiability of a boolean formula Is there an assignment of True and False to the variables in a formula, such that the formula evaluates to True?

Input: a boolean formula ϕ in standard form $\left(x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right)$

NP: example

SAT: Satisfiability of a boolean formula Is there an assignment of True and False to the variables in a formula, such that the formula evaluates to True?

Input: a boolean formula ϕ in standard form
$\left(x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right)$
$\left(x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge \neg x_{1} \wedge\left(x_{2} \vee \neg x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee x_{3}\right)$

NP: example

SAT: Satisfiability of a boolean formula Is there an assignment of True and False to the variables in a formula, such that the formula evaluates to True?

Input: a boolean formula ϕ in standard form
$\left(x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right)$
$\left(x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge \neg x_{1} \wedge\left(x_{2} \vee \neg x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee x_{3}\right)$
Time to compute solution: $\sim 2^{|\phi|}$
Exponential!

NP: example

SAT: Satisfiability of a boolean formula Is there an assignment of True and False to the variables in a formula, such that the formula evaluates to True?

Input: a boolean formula ϕ in standard form
$\left(x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right)$
$\left(x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge \neg x_{1} \wedge\left(x_{2} \vee \neg x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee x_{3}\right)$
Time to compute solution: $\sim 2^{|\phi|}$
Exponential!
Witness: an assignment to the variables.

NP: example

SAT: Satisfiability of a boolean formula Is there an assignment of True and False to the variables in a formula, such that the formula evaluates to True?

Input: a boolean formula ϕ in standard form
$\left(x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right)$
$\left(x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge \neg x_{1} \wedge\left(x_{2} \vee \neg x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee x_{3}\right)$
Time to compute solution: $\sim 2^{|\phi|}$
Exponential!
Witness: an assignment to the variables.
Time to check assignment: $\sim|\phi|$

P vs NP

Clearly $P \subseteq N P$
 Open problem: $P=N P$?

General consensus: no.
We will use this later on!

P vs NP

Clearly $P \subseteq N P$
 Open problem: $P=N P$?
 General consensus: no.
 We will use this later on!

Fun Facts:

- Solving the P vs NP problem wins you a million dollars!

P vs NP

Clearly $P \subseteq N P$
 Open problem: $P=N P$?

General consensus: no.
We will use this later on!

Fun Facts:

- Solving the P vs NP problem wins you a million dollars!
- If $P=N P$... could be a problem:
- Digital security collapses
- Mathematicians would be out of work

But, as Donald Knuth ${ }^{1}$ reassures us: A proof of $\mathrm{P}=\mathrm{NP}$ will almost certainly be non-constructive, so no worries there :)

[^0]
[^0]: Knuth, Donald E. (May 20, 2014). "Twenty Questions for Donald Knuth" informit.com.

