Zero Knowledge Proofs MoL Research Project

Maaike Zwart & Suzanne van Wijk January 2015

<ロト <回ト < 注ト < 注ト

- Complexity Theory
 - Turing Machines
 - Classes P and NP
 - Interactive proofs
- Zero Knowledge Proofs
 - ZK proofs, intuitive
 - ZK proofs
 - ZK proofs for NP problems
 - Commitment scemes

- Complexity Theory
 - Turing Machines
 - Classes P and NP
 - Interactive proofs
- Zero Knowledge Proofs
 - ZK proofs, intuitive
 - ZK proofs
 - ZK proofs for NP problems
 - Commitment scemes

- Complexity Theory
 - Turing Machines
 - Classes P and NP
 - Interactive proofs
- Zero Knowledge Proofs
 - ZK proofs, intuitive
 - ZK proofs
 - ZK proofs for NP problems
 - Commitment scemes

- Complexity Theory
 - Turing Machines
 - Classes P and NP
 - Interactive proofs
- Zero Knowledge Proofs
 - ZK proofs, intuitive
 - ZK proofs
 - ZK proofs for NP problems
 - Commitment scemes

- Complexity Theory
 - Turing Machines
 - Classes P and NP
 - Interactive proofs
- Zero Knowledge Proofs
 - ZK proofs, intuitive
 - ZK proofs
 - ZK proofs for NP problems
 - Commitment scemes

In this project: Work for you:

- 3 exercise classes
 - Classes right after the lectures (with a 1 hour lunch break in between)

(日)、

э

- Hand in exercises the next day before 17:00 h
- 1 final assignment
 - Presentations on 22 January
 - You may work in pairs
- Grading: pass/fail

Historical context

- \sim 1900 1930: formalising mathematics Hilbert: Wir müssen wissen, wir werden wissen
- 1931: Gödel's incompleteness theorems
- 1935 1936: Entscheidungsproblem solved by Church and Turing
 - Methods similar to Gödel
 - Needed to formalise 'computation' (Church Turing Thesis)

A D F A B F A B F A B F

э

- Turing's solution: Turing machines.
- From this concept, modern computers were developed.

Alan Turing 1912 - 1954

- Founder of Computer Science and Artificial Intelligence
- Turing Test
- Cracked the Enigma Code
- Died a tragic death

Introduction 000 Turing Machines

P and NP 0000000

A Theoretical Model for a Computer

A Theoretical Model for a Computer

Turing Machines are:

- Easy to understand
- As powerful as any other computer

(日)

A Theoretical Model for a Computer

Turing Machines are:

- Easy to understand
- As powerful as any other computer

Therefore they are used to:

- Find limits of computability
- Analyse algorithms: how long does a computation take?

(日)

0	0	0	0	0	0	1	0	0	1	1	1	0	0	0	1	0	1

0	0	0	0	0	0	1	0	0	1	0	1	0	0	0	1	0	1

0	0	0	0	0	0	1	0	0	1	0	1	0	0	0	1	0	
0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	
 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Γ

1

0

0

INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION

æ

・ロト ・回ト ・ヨト ・ヨト

Turing Machines

							A								
inputtape	0	0	0	0	0	0	1	0	0	1	0	1	0	0	0
worktape	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
worktape	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
outputtape	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Input: xOutput: M(x)

A Turing Machine needs instructions: write what? move where? These instructions depend on what the TM reads, and on its internal *state*. Notice: also need instruction: next state?

A Turing Machine needs instructions: write what? move where? These instructions depend on what the TM reads, and on its internal *state*. Notice: also need instruction: next state?

A Turing Machine needs instructions: write what? move where? These instructions depend on what the TM reads, and on its internal *state*. Notice: also need instruction: next state?

A Turing Machine needs instructions: write what? move where? These instructions depend on what the TM reads, and on its internal *state*. Notice: also need instruction: next state?

W: 0
M: R
$$S$$
 $\frac{1}{W: 0}$
M: R

A Turing Machine needs instructions: write what? move where? These instructions depend on what the TM reads, and on its internal *state*. Notice: also need instruction: next state?

A Turing Machine needs instructions: write what? move where? These instructions depend on what the TM reads, and on its internal *state*. Notice: also need instruction: next state?

A Turing Machine needs instructions: write what? move where? These instructions depend on what the TM reads, and on its internal *state*. Notice: also need instruction: next state?

Suppose I want a TM changes the first two 1's it encounters to a 0, and then stops.

INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION

(日) (同) (日) (日)

A Turing Machine needs instructions: write what? move where? These instructions depend on what the TM reads, and on its internal *state*. Notice: also need instruction: next state?

Suppose I want a TM changes the first two 1's it encounters to a 0, and then stops.

INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION

(日) (同) (日) (日)

A Turing Machine is a tuple $< \Gamma, Q, \delta >$, consisting of:

- A Turing Machine is a tuple $< \Gamma, Q, \delta >$, consisting of:
 - Γ , the set of symbols allowed on the tape: the alphabet.

- A Turing Machine is a tuple $< \Gamma, Q, \delta >$, consisting of:
 - Γ , the set of symbols allowed on the tape: the alphabet.
 - *Q*, the set of states, including an initial state *S* and a final state *HALT*

- A Turing Machine is a tuple $< \Gamma, Q, \delta >$, consisting of:
 - Γ , the set of symbols allowed on the tape: the alphabet.
 - *Q*, the set of states, including an initial state *S* and a final state *HALT*
 - δ: Q × Γ → Γ × {L, R, −} × Q, the transition function, defining which symbol to write, where to move and which is the next state, depending on the current state and the symbol being read.

A D F A B F A B F A B F

э

One step of a Turing Machine is one execution of the transition function.

TM: formal mathematical definition

- A Turing Machine is a tuple $< \Gamma, Q, \delta >$, consisting of:
 - Γ , the set of symbols allowed on the tape: the alphabet.
 - *Q*, the set of states, including an initial state *S* and a final state *HALT*
 - δ: Q × Γ^k → Γ^k × {L, R, -}^k × Q, the transition function, defining which symbol to write, where to move and which is the next state, depending on the current state and the symbol being read.

A D F A B F A B F A B F

э

One step of a Turing Machine is one execution of the transition function.

Turing Machines example: counting

Let $\Gamma = \{0, 1, blank\}$, $Q = \{S, 1, 2, halt\}$, and δ defined by:

State?	read?	write:	move:	next state:
state S	blank	blank	L	1
	0	0	R	0
	1	1	R	0
state 1	blank	1	R	2
	0	1	L	2
	1	0	L	1
state 2	blank	blank	R	halt
	0	0	L	2
	1	1	L	2

Movie of a working Turing Machine

Catalog problems according to 'how hard they are to solve'.

Catalog problems according to 'how hard they are to solve'.

Formalise 'solving a problem':

Catalog problems according to 'how hard they are to solve'.

Formalise 'solving a problem':

Find an algorithm that decides for all relevant x whether $x \in L$ Note: usually, $L \subseteq \{0,1\}^*$

Catalog problems according to 'how hard they are to solve'.

Formalise 'solving a problem':

Find an algorithm that decides for all relevant x whether $x \in L$ Note: usually, $L \subseteq \{0, 1\}^*$

Example: Which words are palindromes?

Catalog problems according to 'how hard they are to solve'.

Formalise 'solving a problem':

Find an algorithm that decides for all relevant x whether $x \in L$ Note: usually, $L \subseteq \{0, 1\}^*$

Example: Which words are palindromes? $\rightarrow x \in \{\text{Palindromes}\}? (x = 'radar', 'mandarin', ...)$

(日) (同) (日) (日)

Complexity classes

Catalog problems according to 'how hard they are to solve'.

Formalise 'solving a problem':

Find an algorithm that decides for all relevant x whether $x \in L$ Note: usually, $L \subseteq \{0,1\}^*$

Example: Which words are palindromes? $\rightarrow x \in \{\text{Palindromes}\}? (x = 'radar', 'mandarin', ...)$

Find algorithm: build a TM M such that:

•
$$x \in L \iff M(x) = 1$$

•
$$x \notin L \iff M(x) = 0$$

Catalog problems according to 'how hard they are to solve'.

Formalise 'hardness':

Catalog problems according to 'how hard they are to solve'.

Formalise 'hardness':

 $\label{eq:limit} Time/Space/Communication/\dots\ needed,\ as\ function\ of\ the\ input\ length.$

Catalog problems according to 'how hard they are to solve'.

Formalise 'hardness':

Time/Space/Communication/... needed, as function of the input length.

Time: number of steps TM takes to compute output. Space: number of cells of working tape TM needs to compute output.

Catalog problems according to 'how hard they are to solve'.

Formalise 'hardness':

Time/Space/Communication/... needed, as function of the input length.

Time: number of steps TM takes to compute output. Space: number of cells of working tape TM needs to compute output.

Note: Complexity of a problem is independent of the model of TM (Exercise!)

A D F A B F A B F A B F

P: Polynomial Time

Complexity Class P

All problems that are solved in polynomial time.

P: Polynomial Time

Complexity Class P

All problems that are solved in polynomial time.

Complexity Class P: $L \in P$ if and only if: $\exists c \in \mathbb{N}$ and a TM *M* such that for all *x*:

• *M* halts on input *x* within $|x|^c$ steps.

P: Polynomial Time

Complexity Class P

All problems that are solved in polynomial time.

Complexity Class P: $L \in P$ if and only if: $\exists c \in \mathbb{N}$ and a TM *M* such that for all *x*:

• *M* halts on input *x* within $|x|^c$ steps.

•
$$x \in L \iff M(x) = 1$$

•
$$x \notin L \iff M(x) = 0$$

Is x a palindrome?

Complexity Class NP

All problems verifiable in polynomial time.

Complexity Class NP

All problems verifiable in polynomial time.

Complexity Class NP:

 $L \in NP$ if and only if:

Complexity Class NP

All problems verifiable in polynomial time.

Complexity Class NP:

 $L \in NP$ if and only if:

•
$$|y| < |x|^{c_1}$$

Complexity Class NP

All problems verifiable in polynomial time.

Complexity Class NP:

 $L \in NP$ if and only if:

- $|y| < |x|^{c_1}$
- *M* halts on input x, y within $|x|^{c_2}$ steps.

(日)、

NP: Nondeterministic Polynomial Time

Complexity Class NP

All problems verifiable in polynomial time.

Complexity Class NP:

 $L \in \mathsf{NP}$ if and only if:

- $|y| < |x|^{c_1}$
- *M* halts on input x, y within $|x|^{c_2}$ steps.
- $x \in L \iff M(x,y) = 1$
- $x \notin L \iff M(x,y) = 0$

SAT: Satisfiability of a boolean formula Is there an assignment of True and False to the variables in a formula, such that the formula evaluates to True?

SAT: Satisfiability of a boolean formula Is there an assignment of True and False to the variables in a formula, such that the formula evaluates to True?

Input: a boolean formula ϕ in standard form

SAT: Satisfiability of a boolean formula Is there an assignment of True and False to the variables in a formula, such that the formula evaluates to True?

Input: a boolean formula ϕ in standard form $(x_1 \lor \neg x_2) \land (\neg x_1 \lor x_2 \lor x_3)$

SAT: Satisfiability of a boolean formula Is there an assignment of True and False to the variables in a formula, such that the formula evaluates to True?

Input: a boolean formula ϕ in standard form $(x_1 \lor \neg x_2) \land (\neg x_1 \lor x_2 \lor x_3)$ $(x_1 \lor \neg x_2) \land (\neg x_1 \lor x_2 \lor x_3) \land \neg x_1 \land (x_2 \lor \neg x_3) \land (x_1 \lor \neg x_2 \lor x_3)$

SAT: Satisfiability of a boolean formula Is there an assignment of True and False to the variables in a formula, such that the formula evaluates to True?

Input: a boolean formula ϕ in standard form $(x_1 \lor \neg x_2) \land (\neg x_1 \lor x_2 \lor x_3)$ $(x_1 \lor \neg x_2) \land (\neg x_1 \lor x_2 \lor x_3) \land \neg x_1 \land (x_2 \lor \neg x_3) \land (x_1 \lor \neg x_2 \lor x_3)$ Time to compute solution: $\sim 2^{|\phi|}$ Exponential!

SAT: Satisfiability of a boolean formula Is there an assignment of True and False to the variables in a formula, such that the formula evaluates to True?

Input: a boolean formula ϕ in standard form $(x_1 \lor \neg x_2) \land (\neg x_1 \lor x_2 \lor x_3)$ $(x_1 \lor \neg x_2) \land (\neg x_1 \lor x_2 \lor x_3) \land \neg x_1 \land (x_2 \lor \neg x_3) \land (x_1 \lor \neg x_2 \lor x_3)$ Time to compute solution: $\sim 2^{|\phi|}$ Exponential!

(日)、

Witness: an assignment to the variables.

SAT: Satisfiability of a boolean formula Is there an assignment of True and False to the variables in a formula, such that the formula evaluates to True?

Input: a boolean formula ϕ in standard form $(x_1 \lor \neg x_2) \land (\neg x_1 \lor x_2 \lor x_3)$ $(x_1 \lor \neg x_2) \land (\neg x_1 \lor x_2 \lor x_3) \land \neg x_1 \land (x_2 \lor \neg x_3) \land (x_1 \lor \neg x_2 \lor x_3)$ Time to compute solution: $\sim 2^{|\phi|}$ Exponential!

(日)、

Witness: an assignment to the variables. Time to check assignment: $\sim |\phi|$

Clearly $P \subseteq NP$ Open problem: P = NP?

General consensus: no. We will use this later on!

¹Knuth, Donald E. (May 20, 2014). "Twenty Questions for Donald Knuth" informit.com.

Clearly $P \subseteq NP$ Open problem: P = NP?

General consensus: no. We will use this later on!

Fun Facts:

• Solving the P vs NP problem wins you a million dollars!

¹Knuth, Donald E. (May 20, 2014). "Twenty Questions for Donald Knuth" informaticom.

Clearly $P \subseteq NP$ Open problem: P = NP?

General consensus: no. We will use this later on!

Fun Facts:

- Solving the P vs NP problem wins you a million dollars!
- If $P = NP \dots$ could be a problem:
 - Digital security collapses
 - Mathematicians would be out of work

But, as Donald Knuth¹ reassures us: A proof of P = NP will almost certainly be non-constructive, so no worries there :)

¹Knuth, Donald E. (May 20, 2014). "Twenty Questions for Donald Knuth" informit.com. = > < = >