
Introduction Graph Colouring (1) Commitment Schemes Graph Colouring (2) Zero-Knowledge for all NP

Zero Knowledge Proofs: ZK for all NP
MoL Research Project

Maaike Zwart & Suzanne van Wijk
January 2015



Introduction Graph Colouring (1) Commitment Schemes Graph Colouring (2) Zero-Knowledge for all NP

Aim: Zero Knowledge proofs for all NP-problems

Find a ZK proof for graph colouring (G3C)

Need: commitment schemes

Use this proof to find a ZK proof for all NP-problems

Do it yourself: find a direct ZK proof for some other
NP-complete problems



Introduction Graph Colouring (1) Commitment Schemes Graph Colouring (2) Zero-Knowledge for all NP

Graph Colouring

Given a graph G = {V ,E}, want:
f : V → {R,B,G}
Such that:
(u, v) ∈ E =⇒ f (u) 6= f (v)



Introduction Graph Colouring (1) Commitment Schemes Graph Colouring (2) Zero-Knowledge for all NP

Finding a ZK proof for Graph Colouring

Recall...
Zero knowledge interactive proof:

Completeness

Soundness

Zero-knowledge



Introduction Graph Colouring (1) Commitment Schemes Graph Colouring (2) Zero-Knowledge for all NP

Finding a ZK proof for Graph Colouring

That’s too much to ask!
Hmmm

No, still too much! But..
I can when I first randomly

permute the colours!
Commitment schemes!

|

Can you give me the colouring?

What about just the colouring of
two adjacent vertices?

Ok :)
Wait! How do I know you don’t

lie about the colours?

|



Introduction Graph Colouring (1) Commitment Schemes Graph Colouring (2) Zero-Knowledge for all NP

Finding a ZK proof for Graph Colouring

That’s too much to ask!

Hmmm
No, still too much! But..

I can when I first randomly
permute the colours!

Commitment schemes!

|

Can you give me the colouring?

What about just the colouring of
two adjacent vertices?

Ok :)
Wait! How do I know you don’t

lie about the colours?

|



Introduction Graph Colouring (1) Commitment Schemes Graph Colouring (2) Zero-Knowledge for all NP

Finding a ZK proof for Graph Colouring

That’s too much to ask!

Hmmm
No, still too much! But..

I can when I first randomly
permute the colours!

Commitment schemes!

|

Can you give me the colouring?

What about just the colouring of
two adjacent vertices?

Ok :)
Wait! How do I know you don’t

lie about the colours?

|



Introduction Graph Colouring (1) Commitment Schemes Graph Colouring (2) Zero-Knowledge for all NP

Finding a ZK proof for Graph Colouring

That’s too much to ask!

Hmmm

No, still too much! But..
I can when I first randomly

permute the colours!
Commitment schemes!

|

Can you give me the colouring?

What about just the colouring of
two adjacent vertices?

Ok :)
Wait! How do I know you don’t

lie about the colours?

|



Introduction Graph Colouring (1) Commitment Schemes Graph Colouring (2) Zero-Knowledge for all NP

Finding a ZK proof for Graph Colouring

That’s too much to ask!
Hmmm

No, still too much!

But..
I can when I first randomly

permute the colours!
Commitment schemes!

|

Can you give me the colouring?

What about just the colouring of
two adjacent vertices?

Ok :)
Wait! How do I know you don’t

lie about the colours?

|



Introduction Graph Colouring (1) Commitment Schemes Graph Colouring (2) Zero-Knowledge for all NP

Finding a ZK proof for Graph Colouring

That’s too much to ask!
Hmmm

No, still too much!

But..

I can when I first randomly
permute the colours!

Commitment schemes!

|

Can you give me the colouring?

What about just the colouring of
two adjacent vertices?

Ok :)
Wait! How do I know you don’t

lie about the colours?

|



Introduction Graph Colouring (1) Commitment Schemes Graph Colouring (2) Zero-Knowledge for all NP

Finding a ZK proof for Graph Colouring

That’s too much to ask!
Hmmm

No, still too much! But..

I can when I first randomly
permute the colours!

Commitment schemes!

|

Can you give me the colouring?

What about just the colouring of
two adjacent vertices?

Ok :)
Wait! How do I know you don’t

lie about the colours?

|



Introduction Graph Colouring (1) Commitment Schemes Graph Colouring (2) Zero-Knowledge for all NP

Finding a ZK proof for Graph Colouring

That’s too much to ask!
Hmmm

No, still too much! But..

I can when I first randomly
permute the colours!

Commitment schemes!

|

Can you give me the colouring?
What about just the colouring of

two adjacent vertices?

Ok :)

Wait! How do I know you don’t
lie about the colours?

|



Introduction Graph Colouring (1) Commitment Schemes Graph Colouring (2) Zero-Knowledge for all NP

Finding a ZK proof for Graph Colouring

That’s too much to ask!
Hmmm

No, still too much! But..

I can when I first randomly
permute the colours!

Commitment schemes!

|

Can you give me the colouring?
What about just the colouring of

two adjacent vertices?
Ok :)

Wait! How do I know you don’t
lie about the colours?

|



Introduction Graph Colouring (1) Commitment Schemes Graph Colouring (2) Zero-Knowledge for all NP

Finding a ZK proof for Graph Colouring

That’s too much to ask!
Hmmm

No, still too much! But..
I can when I first randomly

permute the colours!

Commitment schemes!
|

Can you give me the colouring?
What about just the colouring of

two adjacent vertices?
Ok :)

Wait! How do I know you don’t
lie about the colours?

|



Introduction Graph Colouring (1) Commitment Schemes Graph Colouring (2) Zero-Knowledge for all NP

Commitment Schemes: Digital Envelopes

Prover should commit the whole colouring
before the verifier asks the colour of two
vertices.

Two phases: commit and reveal

Commitment should be secret
(non-transparent envelopes)

The revealed information should be
unambiguous

How secret / unambiguous? Computationally!



Introduction Graph Colouring (1) Commitment Schemes Graph Colouring (2) Zero-Knowledge for all NP

Commitment Schemes: Digital Envelopes

Prover should commit the whole colouring
before the verifier asks the colour of two
vertices.

Two phases: commit and reveal

Commitment should be secret
(non-transparent envelopes)

The revealed information should be
unambiguous

How secret / unambiguous? Computationally!



Introduction Graph Colouring (1) Commitment Schemes Graph Colouring (2) Zero-Knowledge for all NP

Commitment Schemes: Digital Envelopes

Prover should commit the whole colouring
before the verifier asks the colour of two
vertices.

Two phases: commit and reveal

Commitment should be secret
(non-transparent envelopes)

The revealed information should be
unambiguous

How secret / unambiguous? Computationally!



Introduction Graph Colouring (1) Commitment Schemes Graph Colouring (2) Zero-Knowledge for all NP

Commitment Schemes

Digital examples:

One-way functions: easy to compute f (x) given f and x , but
hard to compute x given f and f (x).

Discrete log: easy to compute gh mod p given g , h, p, but
hard to compute h given g , p and gh

Real-life examples: exercise!



Introduction Graph Colouring (1) Commitment Schemes Graph Colouring (2) Zero-Knowledge for all NP

Full Zero-Knowlege proof of Graph Colouring

Prover colours the graph

Prover takes a random permutation of the
colours

Prover commits the colouring

Verifier asks for the colour of two
adjacent vertices

Prover reveals the colour of these vertices

Verifier checks the commitment

Verifier checks that the colours are
different

Verifier accepts/rejects on the outcome of
the two checks

Repeat until Verifier is fully satisfied

Prover:

Verifier:



Introduction Graph Colouring (1) Commitment Schemes Graph Colouring (2) Zero-Knowledge for all NP

Full Zero-Knowlege proof of Graph Colouring

Prover colours the graph

Prover takes a random permutation of the
colours

Prover commits the colouring

Verifier asks for the colour of two
adjacent vertices

Prover reveals the colour of these vertices

Verifier checks the commitment

Verifier checks that the colours are
different

Verifier accepts/rejects on the outcome of
the two checks

Repeat until Verifier is fully satisfied

Prover:

Verifier:



Introduction Graph Colouring (1) Commitment Schemes Graph Colouring (2) Zero-Knowledge for all NP

Full Zero-Knowlege proof of Graph Colouring

Prover colours the graph

Prover takes a random permutation of the
colours

Prover commits the colouring

Verifier asks for the colour of two
adjacent vertices

Prover reveals the colour of these vertices

Verifier checks the commitment

Verifier checks that the colours are
different

Verifier accepts/rejects on the outcome of
the two checks

Repeat until Verifier is fully satisfied

Prover:

Verifier:



Introduction Graph Colouring (1) Commitment Schemes Graph Colouring (2) Zero-Knowledge for all NP

Full Zero-Knowlege proof of Graph Colouring

Prover colours the graph

Prover takes a random permutation of the
colours

Prover commits the colouring

Verifier asks for the colour of two
adjacent vertices

Prover reveals the colour of these vertices

Verifier checks the commitment

Verifier checks that the colours are
different

Verifier accepts/rejects on the outcome of
the two checks

Repeat until Verifier is fully satisfied

Prover:

Verifier:



Introduction Graph Colouring (1) Commitment Schemes Graph Colouring (2) Zero-Knowledge for all NP

Full Zero-Knowlege proof of Graph Colouring

Prover colours the graph

Prover takes a random permutation of the
colours

Prover commits the colouring

Verifier asks for the colour of two
adjacent vertices

Prover reveals the colour of these vertices

Verifier checks the commitment

Verifier checks that the colours are
different

Verifier accepts/rejects on the outcome of
the two checks

Repeat until Verifier is fully satisfied

Prover:

Verifier:



Introduction Graph Colouring (1) Commitment Schemes Graph Colouring (2) Zero-Knowledge for all NP

Full Zero-Knowlege proof of Graph Colouring

Prover colours the graph

Prover takes a random permutation of the
colours

Prover commits the colouring

Verifier asks for the colour of two
adjacent vertices

Prover reveals the colour of these vertices

Verifier checks the commitment

Verifier checks that the colours are
different

Verifier accepts/rejects on the outcome of
the two checks

Repeat until Verifier is fully satisfied

Prover:

Verifier:



Introduction Graph Colouring (1) Commitment Schemes Graph Colouring (2) Zero-Knowledge for all NP

Full Zero-Knowlege proof of Graph Colouring

Prover colours the graph

Prover takes a random permutation of the
colours

Prover commits the colouring

Verifier asks for the colour of two
adjacent vertices

Prover reveals the colour of these vertices

Verifier checks the commitment

Verifier checks that the colours are
different

Verifier accepts/rejects on the outcome of
the two checks

Repeat until Verifier is fully satisfied

Prover:

Verifier:



Introduction Graph Colouring (1) Commitment Schemes Graph Colouring (2) Zero-Knowledge for all NP

Full Zero-Knowlege proof of Graph Colouring

Prover colours the graph

Prover takes a random permutation of the
colours

Prover commits the colouring

Verifier asks for the colour of two
adjacent vertices

Prover reveals the colour of these vertices

Verifier checks the commitment

Verifier checks that the colours are
different

Verifier accepts/rejects on the outcome of
the two checks

Repeat until Verifier is fully satisfied

Prover:

Verifier:



Introduction Graph Colouring (1) Commitment Schemes Graph Colouring (2) Zero-Knowledge for all NP

Full Zero-Knowlege proof of Graph Colouring

Prover colours the graph

Prover takes a random permutation of the
colours

Prover commits the colouring

Verifier asks for the colour of two
adjacent vertices

Prover reveals the colour of these vertices

Verifier checks the commitment

Verifier checks that the colours are
different

Verifier accepts/rejects on the outcome of
the two checks

Repeat until Verifier is fully satisfied

Prover:

Verifier:



Introduction Graph Colouring (1) Commitment Schemes Graph Colouring (2) Zero-Knowledge for all NP

Full Zero-Knowlege proof of Graph Colouring

Prover colours the graph

Prover takes a random permutation of the
colours

Prover commits the colouring

Verifier asks for the colour of two
adjacent vertices

Prover reveals the colour of these vertices

Verifier checks the commitment

Verifier checks that the colours are
different

Verifier accepts/rejects on the outcome of
the two checks

Repeat until Verifier is fully satisfied

Prover:

Verifier:



Introduction Graph Colouring (1) Commitment Schemes Graph Colouring (2) Zero-Knowledge for all NP

ZK proof of G3C: Analysis

Completeness error?

Soundness error?

Zero-Knowledge?



Introduction Graph Colouring (1) Commitment Schemes Graph Colouring (2) Zero-Knowledge for all NP

ZK proof of G3C: Analysis

Completeness error?

Soundness error?

Zero-Knowledge?



Introduction Graph Colouring (1) Commitment Schemes Graph Colouring (2) Zero-Knowledge for all NP

Prover takes a random permutation of the
colours

Prover colours the graph with the
permuted colours

Prover commits the colouring

Verifier asks for the colour of two
adjacent vertices

Prover reveals the colour of these vertices

Verifier checks the commitment

Verifier checks that the colours are
different

Verifier accepts/rejects on the outcome of
the two checks

Repeat until Verifier is fully satisfied

Prover:

Verifier:



Introduction Graph Colouring (1) Commitment Schemes Graph Colouring (2) Zero-Knowledge for all NP

ZK proof of G3C: Analysis

Completeness error?

Soundness error?

Zero-Knowledge?



Introduction Graph Colouring (1) Commitment Schemes Graph Colouring (2) Zero-Knowledge for all NP

Prover takes a random permutation of the
colours

Prover colours the graph with the
permuted colours

Prover commits the colouring

Verifier asks for the colour of two
adjacent vertices

Prover reveals the colour of these vertices

Verifier checks the commitment

Verifier checks that the colours are
different

Verifier accepts/rejects on the outcome of
the two checks

Repeat until Verifier is fully satisfied

Prover:

Verifier:



Introduction Graph Colouring (1) Commitment Schemes Graph Colouring (2) Zero-Knowledge for all NP

ZK proof of G3C: Analysis

Completeness error?

Soundness error?

Zero-Knowledge?



Introduction Graph Colouring (1) Commitment Schemes Graph Colouring (2) Zero-Knowledge for all NP

Prover takes a random permutation of the
colours

Prover colours the graph with the
permuted colours

Prover commits the colouring

Verifier asks for the colour of two
adjacent vertices

Prover reveals the colour of these vertices

Verifier checks the commitment

Verifier checks that the colours are
different

Verifier accepts/rejects on the outcome of
the two checks

Repeat until Verifier is fully satisfied

Prover:

Verifier:



Introduction Graph Colouring (1) Commitment Schemes Graph Colouring (2) Zero-Knowledge for all NP

NP-completeness

Note: G3C is NP-complete.

That means, that every NP problem x ∈ L can be translated to a
question f (x) ∈ G3C .
(How? Follow a course on complexity theory! But let me give you a

flavour:)

Cook-Levin Theorem: SAT is NP-complete.
Proof: Fiddle with TM.

Next: Reduce SAT to L to prove L is NP-complete too.



Introduction Graph Colouring (1) Commitment Schemes Graph Colouring (2) Zero-Knowledge for all NP

NP-completeness

Note: G3C is NP-complete.

That means, that every NP problem x ∈ L can be translated to a
question f (x) ∈ G3C .
(How? Follow a course on complexity theory! But let me give you a

flavour:)

Cook-Levin Theorem: SAT is NP-complete.
Proof: Fiddle with TM.

Next: Reduce SAT to L to prove L is NP-complete too.



Introduction Graph Colouring (1) Commitment Schemes Graph Colouring (2) Zero-Knowledge for all NP

NP-completeness

Note: G3C is NP-complete.

That means, that every NP problem x ∈ L can be translated to a
question f (x) ∈ G3C .
(How? Follow a course on complexity theory! But let me give you a

flavour:)

Cook-Levin Theorem: SAT is NP-complete.
Proof: Fiddle with TM.

Next: Reduce SAT to L to prove L is NP-complete too.



Introduction Graph Colouring (1) Commitment Schemes Graph Colouring (2) Zero-Knowledge for all NP

Web of reductions

1

1image taken from Arora, Barak, Computational Complexity (2009)



Introduction Graph Colouring (1) Commitment Schemes Graph Colouring (2) Zero-Knowledge for all NP

ZK proofs for all NP

A Zero-Knowledge proof for any L in NP:

Reduce L to G3C (find f s.t. x ∈ L iff f (x) ∈ G3C ).

Check that knowing a witness for f (x) ∈ G3C implies knowing
a witness for x ∈ L (this usually follows immediately from f )

Execute the Zero-Knowledge proof for G3C.

Anticlimax?
Final Assignment: Choose an NP-complete problem (out of some
given) and find a direct Zero-Knowledge proof for it.



Introduction Graph Colouring (1) Commitment Schemes Graph Colouring (2) Zero-Knowledge for all NP

ZK proofs for all NP

A Zero-Knowledge proof for any L in NP:

Reduce L to G3C (find f s.t. x ∈ L iff f (x) ∈ G3C ).

Check that knowing a witness for f (x) ∈ G3C implies knowing
a witness for x ∈ L (this usually follows immediately from f )

Execute the Zero-Knowledge proof for G3C.

Anticlimax?
Final Assignment: Choose an NP-complete problem (out of some
given) and find a direct Zero-Knowledge proof for it.


