Introduction
[1}

Zero Knowledge Proofs: ZK for all NP

MoL Research Project

Maaike Zwart & Suzanne van Wijk
January 2015

Introduction
oce

Aim: Zero Knowledge proofs for all NP-problems J

e Find a ZK proof for graph colouring (G3C)
@ Need: commitment schemes
@ Use this proof to find a ZK proof for all NP-problems

@ Do it yourself: find a direct ZK proof for some other
NP-complete problems

Graph Colouring (1)
®00

Graph Colouring

Given a graph G = {V, E}, want:
f:V—-{R,B,G}

Such that:

(u,v) € E = f(u) # f(v)

Graph Colouring (1)
ceo

Finding a ZK proof for Graph Colouring

Recall...
Zero knowledge interactive proof:

@ Completeness
@ Soundness

@ Zero-knowledge

Graph Colouring (1)
ooe

Finding a ZK proof for Graph Colouring

Can you give me the colouring?

Graph Colouring (1)
ooe

Finding a ZK proof for Graph Colouring

That's too much to ask! Can you give me the colouring?

, |
<
\

\

Graph Colouring (1)
ooe

Finding a ZK proof for Graph Colouring

That's too much to ask! . .
What about just the colouring of

two adjacent vertices?

| |
@
\

\

Graph Colouring (1)
ooe

Finding a ZK proof for Graph Colouring

What about just the colouring of

Hmmm ; i
two adjacent vertices?

Graph Colouring (1)
ooe

Finding a ZK proof for Graph Colouring

What about just the colouring of

No. still too much! two adjacent vertices?

| |
@
\

\

Graph Colouring (1)
ooe

Finding a ZK proof for Graph Colouring

What about just the colouring of

But.. two adjacent vertices?

Graph Colouring (1)
ooe

Finding a ZK proof for Graph Colouring

What about just the colouring of
two adjacent vertices?

| can when | first randomly
permute the colours!

’ |
<
\

\

Graph Colouring (1)
ooe

Finding a ZK proof for Graph Colouring

| can when | first randomly
permute the colours!

’ |
<
\

\

Graph Colouring (1)
ooe

Finding a ZK proof for Graph Colouring

| can when | first randomly

permute the colours! Wait! How do | know you don't

lie about the colours?

Graph Colouring (1)
ooe

Finding a ZK proof for Graph Colouring

Wait! How do | know you don't

Commitment schemes! lie about the colours?

Commitment Schemes
[1)

Commitment Schemes: Digital Envelopes

Prover should commit the whole colouring
before the verifier asks the colour of two
vertices.

Commitment Schemes
[1)

Commitment Schemes: Digital Envelopes

Prover should commit the whole colouring
before the verifier asks the colour of two
vertices.

Two phases: commit and reveal

e Commitment should be secret
(non-transparent envelopes)

@ The revealed information should be
unambiguous

Commitment Schemes
[1)

Commitment Schemes: Digital Envelopes

Prover should commit the whole colouring
before the verifier asks the colour of two
vertices.

Two phases: commit and reveal

e Commitment should be secret
(non-transparent envelopes)

@ The revealed information should be
unambiguous

How secret / unambiguous? Computationally!

Commitment Schemes
oce

Commitment Schemes

Digital examples:

@ One-way functions: easy to compute f(x) given f and x, but
hard to compute x given f and f(x).

@ Discrete log: easy to compute g” mod p given g, h, p, but
hard to compute h given g, p and g"

Real-life examples: exercise!

Graph Colouring (2)
©000000

Full Zero-Knowlege proof of Graph Colouring

Prover:

Verifier:

Graph Colouring (2)
©000000

Full Zero-Knowlege proof of Graph Colouring

Prover:
@ Prover colours the graph .-

Verifier:

Graph Colouring (2)
©000000

Full Zero-Knowlege proof of Graph Colouring

Prover:

@ Prover colours the graph [S

@ Prover takes a random permutation of the
colours

Verifier:

Graph Colouring (2)
©000000

Full Zero-Knowlege proof of Graph Colouring

Prover:

@ Prover colours the graph (S »

@ Prover takes a random permutation of the
colours

@ Prover commits the colouring

Verifier:

Graph Colouring (2)
©000000

Full Zero-Knowlege proof of Graph Colouring

Prover:

@ Prover colours the graph .-

@ Prover takes a random permutation of the
colours

@ Prover commits the colouring

@ Verifier asks for the colour of two
adjacent vertices

Verifier:

Graph Colouring (2)
©000000

Full Zero-Knowlege proof of Graph Colouring

Prover:
@ Prover colours the graph 'S
@ Prover takes a random permutation of the
colours ®
@ Prover commits the colouring
o Verifier asks for the colour of two

adjacent vertices

@ Prover reveals the colour of these vertices i
Verifier:

Graph Colouring (2)
©000000

Full Zero-Knowlege proof of Graph Colouring

Prover:

Prover colours the graph

Prover takes a random permutation of the
colours

[

Prover commits the colouring

Verifier asks for the colour of two
adjacent vertices

Prover reveals the colour of these vertices

Verifier:
Verifier checks the commitment

Graph Colouring (2)
©000000

Full Zero-Knowlege proof of Graph Colouring

Prover:

Prover colours the graph

Prover takes a random permutation of the
colours

[

Prover commits the colouring

Verifier asks for the colour of two
adjacent vertices

Prover reveals the colour of these vertices

Verifier:
Verifier checks the commitment

Verifier checks that the colours are
different

Graph Colouring (2)
©000000

Full Zero-Knowlege proof of Graph Colouring

Prover:
@ Prover colours the graph o9

@ Prover takes a random permutation of the
colours

@ Prover commits the colouring

@ Verifier asks for the colour of two
adjacent vertices

@ Prover reveals the colour of these vertices i

Verifier:

@ Verifier checks the commitment

o Verifier checks that the colours are
different

@ Verifier accepts/rejects on the outcome of
the two checks

Graph Colouring (2)
©000000

Full Zero-Knowlege proof of Graph Colouring

Prover:
@ Prover colours the graph o9

@ Prover takes a random permutation of the
colours

@ Prover commits the colouring

@ Verifier asks for the colour of two
adjacent vertices

@ Prover reveals the colour of these vertices i

Verifier:

@ Verifier checks the commitment

o Verifier checks that the colours are
different

@ Verifier accepts/rejects on the outcome of
the two checks

@ Repeat until Verifier is fully satisfied

Graph Colouring (2)
©0@00000

ZK proof of G3C: Analysis

@ Completeness error?
@ Soundness error?

@ Zero-Knowledge?

Graph Colouring (2)
©0@00000

ZK proof of G3C: Analysis

e Completeness error?
@ Soundness error?

@ Zero-Knowledge?

Graph Colouring (2)

00®@0000

@ Prover takes a random permutation of the
colours

@ Prover colours the graph with the
permuted colours

@ Prover commits the colouring

@ Verifier asks for the colour of two
adjacent vertices

@ Prover reveals the colour of these vertices
@ Verifier checks the commitment

@ Verifier checks that the colours are
different

@ Verifier accepts/rejects on the outcome of
the two checks

@ Repeat until Verifier is fully satisfied

Verifier:

“

Graph Colouring (2)
0000000

ZK proof of G3C: Analysis

@ Completeness error?
@ Soundness error?

@ Zero-Knowledge?

Graph Colouring (2)
0000000

@ Prover takes a random permutation of the Prover: ‘
colours | o 1
@ Prover colours the graph with the i | }

permuted colours /T

e Prover commits the colouring " J

@ Verifier asks for the colour of two
adjacent vertices

@ Prover reveals the colour of these vertices Verifier:
@ Verifier checks the commitment

@ Verifier checks that the colours are
different

@ Verifier accepts/rejects on the outcome of
the two checks

@ Repeat until Verifier is fully satisfied

Graph Colouring (2)
0000000

ZK proof of G3C: Analysis

@ Completeness error?
@ Soundness error?

o Zero-Knowledge?

Graph Colouring (2)

0O00000e

@ Prover takes a random permutation of the
colours

@ Prover colours the graph with the
permuted colours

@ Prover commits the colouring

@ Verifier asks for the colour of two
adjacent vertices

@ Prover reveals the colour of these vertices
@ Verifier checks the commitment

@ Verifier checks that the colours are
different

@ Verifier accepts/rejects on the outcome of
the two checks

@ Repeat until Verifier is fully satisfied

Verifier:

“

Zero-Knowledge for all NP
®00

NP-completeness

Note: G3C is NP-complete.

That means, that every NP problem x € L can be translated to a
question f(x) € G3C.

(How? Follow a course on complexity theory! But let me give you a

flavour:)

Zero-Knowledge for all NP
®00

NP-completeness

Note: G3C is NP-complete.

That means, that every NP problem x € L can be translated to a
question f(x) € G3C.

(How? Follow a course on complexity theory! But let me give you a
flavour:)

Cook-Levin Theorem: SAT is NP-complete.
Proof: Fiddle with TM.

Zero-Knowledge for all NP
®00

NP-completeness

Note: G3C is NP-complete.

That means, that every NP problem x € L can be translated to a
question f(x) € G3C.

(How? Follow a course on complexity theory! But let me give you a
flavour:)

Cook-Levin Theorem: SAT is NP-complete.
Proof: Fiddle with TM.

Next: Reduce SAT to L to prove L is NP-complete too.

Zero-Knowledge for all NP

[e] Je}

Web of reductions

2.4. The Web of Reductions

VLe NP
Theorem 2.10 {Lemma 2.11)
B SAT__ 'I'h
Theorem 2. ” | Theorem 2. |f‘“‘=---~—~,ﬁ
. NTEGERPROG T
dHAMPATH II.' B A _— j\sA']'-\.______HE M
Ex218 [Theorem215 __— Ex217 T
! i
HAMPATH i Exactone3SAT ICOL
Ex2.17
SUBSETSUM

/ Ex 218 /
HAM(YCLE

TSP
Ex211
THEOREMS CLIQUE VERTEXCOVER
Ex21?
l Ex216
MAXCUT

x2.19
llAI]EO
COMBINATORIAL

AUCTION
Figure 2.4. Web of reductions between the NP-completeness problems described in this chapter and the

exercises. Thousands more are known
image taken from Arora, Barak, Computational Complexity (2009)

INSTITUTE FOR Lo
LanGuaGE A Copamanon

Zero-Knowledge for all NP
ocoe

/K proofs for all NP

A Zero-Knowledge proof for any L in NP:

@ Reduce L to G3C (find f s.t. x € Liff f(x) € G3C).

@ Check that knowing a witness for f(x) € G3C implies knowing
a witness for x € L (this usually follows immediately from f)

@ Execute the Zero-Knowledge proof for G3C.

Zero-Knowledge for all NP
ocoe

/K proofs for all NP

A Zero-Knowledge proof for any L in NP:

@ Reduce L to G3C (find f s.t. x € Liff f(x) € G3C).

@ Check that knowing a witness for f(x) € G3C implies knowing
a witness for x € L (this usually follows immediately from f)

@ Execute the Zero-Knowledge proof for G3C.

Anticlimax?
Final Assignment: Choose an NP-complete problem (out of some
given) and find a direct Zero-Knowledge proof for it.

