Zero-Knowledge Proofs - final presentation "The Sudoku Problem"

Pietro Pasotti

This is the second slide

1 Live demonstration of the protocol
Soundness
Completeness
Zero-Knowledge

[insert live demonstration of the protocol here]

This is the fourth slide

Live demonstration of the protocol
2 Soundness
Completeness
Zero-Knowledge

Soundness

Assume P has the solution. Does V accept with probability $\geq \frac{2}{3}$? Yes, it does: in fact, the probability is 1 .

Sixth slide

Live demonstration of the protocol
Soundness
3 Completeness
Zero-Knowledge

Completeness

Suppose P doesn't have the solution. Then, say it fills in the sudoku blanks randomly.
Then, the chances of still picking a correct line/column/square depend heavily on the difficulty of the sudoku. Also, P might use some more refined strategy, such as filling the squares randomly with the numbers 1-9 which are not yet in it. In this case, only lines and columns will contain errors.
In the worst-case scenario, where P is maximally smart, only two mistakes can be found in the whole sudoku: two lines/columns/squares which contain a number twice.
That is a probability of $\frac{2}{27}$.

However, we know we can have V iterate the procedure many times to take the probability of finding a mistake arbitrarily close to 1 . Namely, we will need V to iterate the procedure many times, depending on the size of the sudoku. Remark: this function will be polynomial in the size of the sudoku. I guess, \mid sizeofsudoku ${ }^{2}$ could suffice.

It is a good moment to remark that V is polytime

- Pick a random line/column/square: polytime.
- Verify the line/column/square contains exactly the numbers $1, \ldots$, sizeofsudoku: polytime.
- repeat the previous steps a polynomial number of times in sizeofsudoku: polytime.
- Accept or refuse: still polytime.
- Halt: very polytime.

$\therefore \mathrm{V}$ is polytime.

Getting closer to the end

Live demonstration of the protocol
Soundness
Completeness
4 Zero-Knowledge

(Perfect) Zero-Knowledge

The simulation routine (S is the simulator):

- Fake Prover fills in the sudoku randomly (or, using some more refined strategy as we saw before).
- Fake Verifier randomly picks a row/column/square: if it's correct, accept and return 1 ; if it's incorrect, S repeats the procedure n times. If, after n iteration, no correct row/column/square has been found, S returns \perp

To take the probability of finding a correct row/column/square up above $\frac{1}{2}$ it suffices to toy (polinomially) with n. I guess $n=\mid$ sizeofsudoku $\left.\right|^{2}$ again would do.
Then, conditional on not returning \perp, S's distribution is exactly equivalent to the actual one.

The simulator S is polytime

- Fill in randomly the sudoku (there are different strategies, though): polytime.
- Emulate V : polytime, because V is polytime.
- Iteration of the procedure polinomially many times: polytime.

$\therefore \mathrm{S}$ is polytime.

This is the last slide

That's all!

Thanks for your attention.

