Introduction to Modern Cryptography, Quiz

University of Amsterdam, Master of Logic 2012
Lecturer: Christian Schaffner
TA: Maria Velema

31 October 2012
(to be handed in anonymously, but immediately)

All the theory in this quiz is copied from the appendix of the [KL]-book.

1. Basic Number Theory For $a, b \in \mathbb{Z}$, we say that a divides b, written $a \mid b$, if there exists an integer $c \in \mathbb{Z}$ such that $a c=b$. The greatest common divisor $\operatorname{gcd}(a, b)$ of two integers a, b is the largest integer c such that $c \mid a$ and $c \mid b$. Using the extended Euclidean algorithm, one can find integers X, Y such that $X a+Y b=\operatorname{gcd}(a, b)$. Furthermore, $\operatorname{gcd}(a, b)$ is the smallest positive integer that can be expressed in this way.

Let $a, b, N \in \mathbb{Z}$ with $N>1$. By "division with remainder", there exist unique q, r such that $a=q N+r$ with $0 \leq r<N$. We call this remainder r the reduction of a modulo N and denote it by $[a \bmod N]$.
We say that a and b are congruent modulo N, written $a=b \bmod N$, if $[a \bmod N]=[b$ $\bmod N]$.
If for a given integer a there exists an integer a^{-1} such that $a \cdot a^{-1}=1 \bmod N$, we say that a^{-1} is a (multiplicative) inverse of a modulo N and call a invertible.
(a) List all eight common divisors of 12 and 18 . What is $\operatorname{gcd}(12,18)$?
(b) Compute (by hand) $[1094029 \cdot 1320101 \bmod 100]$.
(c) $a b=c b \bmod N$ does not necessarily imply $a=c \bmod N$. Find a non-trivial counterexample a, b, c with $N=12$ where none of a, b, c equals $0 \bmod N$.
(d) Let a, N be integers with $N>1$. Show that a is invertible modulo N if and only if $\operatorname{gcd}(a, N)=1$.
2. Probability theory Let E_{1} and E_{2} be probability events. Then, $E_{1} \wedge E_{2}$ denotes their conjunction, i.e. $E_{1} \wedge E_{2}$ is the event that both E_{1} and E_{2} occur. The conditional probability of E_{1} given E_{2}, denoted $\operatorname{Pr}\left[E_{1} \mid E_{2}\right]$ is defined as

$$
\operatorname{Pr}\left[E_{1} \mid E_{2}\right]:=\frac{\operatorname{Pr}\left[E_{1} \wedge E_{2}\right]}{\operatorname{Pr}\left[E_{2}\right]}
$$

as long as $\operatorname{Pr}\left[E_{2}\right] \neq 0$. Prove Bayes' theorem.

Theorem 1 (Bayes' theorem) If $\operatorname{Pr}\left[E_{2}\right] \neq 0$ then

$$
\operatorname{Pr}\left[E_{1} \mid E_{2}\right]=\frac{\operatorname{Pr}\left[E_{1}\right] \cdot \operatorname{Pr}\left[E_{2} \mid E_{1}\right]}{\operatorname{Pr}\left[E_{2}\right]}
$$

For an event E, the event \bar{E} is the event that E does not occur, hence $\operatorname{Pr}[\bar{E}]=1-\operatorname{Pr}[E]$. The events E_{1} and E_{2} are said to be independent if $\operatorname{Pr}\left[E_{1} \wedge E_{2}\right]=\operatorname{Pr}\left[E_{1}\right] \cdot \operatorname{Pr}\left[E_{2}\right]$. The disjunction event $E_{1} \vee E_{2}$ is the event that either E_{1} or E_{2} (or both) occur. The union bound states that for arbitrary events E_{1}, E_{2}, we have

$$
\operatorname{Pr}\left[E_{1} \vee E_{2}\right] \leq \operatorname{Pr}\left[E_{1}\right]+\operatorname{Pr}\left[E_{2}\right]
$$

Prove the following inequality for real numbers $p_{1}, p_{2}, \ldots, p_{n} \in[0,1]$:

$$
\left(1-p_{1}\right)\left(1-p_{2}\right) \cdots\left(1-p_{n}\right) \geq 1-p_{1}-p_{2}-\ldots-p_{n}
$$

by considering independent events E_{i} with probabilities $p_{i}=\operatorname{Pr}\left[E_{i}\right]$ and using the union bound.

The "Birthday" Problem If we choose q elements y_{1}, \ldots, y_{q} uniformly at random from a set of size N (with replacements), we are interested in the probability that there exist distinct i, j with $y_{i}=y_{j}$. We refer to the stated event as a collision, and denote the probability of this event by $\operatorname{coll}(q, N)$. In Appendix A. 4 of the [KL]-book, it is shown that if $q<\sqrt{N}$, the probability of a collision is $\Theta\left(q^{2} / N\right)$; alternatively, for $q=\Theta(\sqrt{N})$, the probability of a collision is constant. ${ }^{1}$

If we select 2^{64} elements uniformly at random from some set, and we want that any two of the chosen elements coincide with probability at most 2^{-40}, how large must the set be?

3. Asymptotic notation

Definition 1 Let $f(n), g(n)$ be functions from non-negative integers to non-negative reals. Then:

- $f(n)=O(g(n))$ means that there exist a positive integer n^{\prime} and a positive real constant $c>0$ such that for all $n>n^{\prime}$ it holds that $f(n) \leq c \cdot g(n)$.
- $f(n)=\Omega(g(n))$ means that there exist a positive integer n^{\prime} and a positive real constant $c>0$ such that for all $n>n^{\prime}$ it holds that $f(n) \geq c \cdot g(n)$.
- $f(n)=\Theta(g(n))$ means that $f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$.
- $f(n)=o(g(n))$ means that $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$.
- $f(n)=\omega(g(n))$ means that $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\infty$.

[^0]Show the following:
(a) $f(n)=o(g(n))$ implies $f(n)=O(g(n))$.
(b) For any constant $c>1$, it holds that $\log _{c} n=\Theta\left(\log _{2} n\right)$.
(c) For $f(n)=e^{\sqrt{n}}$, it holds that $f(n)=O\left(2^{n}\right)$.
(d) Let ε and c be arbitrary constants such that $0<\varepsilon<1<c$. Order the following terms in increasing order of their asymptotic growth rates.

$$
\begin{array}{llllllllll}
n^{n} & \exp (\sqrt{\log n \log \log n}) & 1 & \log \log n & c^{c^{n}} & n^{c} & n^{\varepsilon} & n^{\log n} & \log n & c^{n}
\end{array}
$$

Hint: In some cases, it might help to express two terms you want to compare in the form e^{\cdots} and then compare their exponents.
4. Name the following people: The possible names in alphabetical order (and ROT-3 encrypted) are Fkduohv Edeedjh, Mxolxv Fdhvdu, Rghg Jroguhlfk, Vkdil Jrogzdvvhu, Mrq Ndwc, Dxjxvwh Nhufnkriiv, Bhkxgd Olqghoo, Vloylr Plfdol, Fodxgh Vkdqqrq, Eodlvh gh Yljhqhuh.

Hint: Their real names are Charles Babbage, Julius Caesar, Oded Goldreich, Shafi Goldwasser, Jonathan Katz, Auguste Kerckhoffs, Yehuda Lindell, Silvio Micali, Claude Shannon, Blaise de Vigenère.

[^0]: ${ }^{1}$ This bound is sometimes referred to as "birthday paradox", because the collision probability coll $(q, 365)$ gets large for pretty small values of q. For example, the probability that among 23 people two people have the same birthday is more than 50%. Among 57 people, the chance is 99%.

